core.c 199.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 877

/*
878 879 880 881
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
882
 */
883
static void perf_event_ctx_activate(struct perf_event_context *ctx)
884
{
885
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886

887
	WARN_ON(!irqs_disabled());
888

889 890 891 892 893 894 895 896 897 898 899 900
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
901 902
}

903
static void get_ctx(struct perf_event_context *ctx)
904
{
905
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 907
}

908 909 910 911 912 913 914 915 916
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

917
static void put_ctx(struct perf_event_context *ctx)
918
{
919 920 921
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
922 923
		if (ctx->task)
			put_task_struct(ctx->task);
924
		call_rcu(&ctx->rcu_head, free_ctx);
925
	}
926 927
}

P
Peter Zijlstra 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
969 970
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
971 972 973 974 975 976 977 978 979 980 981 982
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
983
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
984 985 986 987 988 989 990 991 992
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
993 994 995 996 997 998
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1006 1007 1008 1009 1010 1011 1012
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1013
{
1014 1015 1016 1017 1018
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1019
		ctx->parent_ctx = NULL;
1020
	ctx->generation++;
1021 1022

	return parent_ctx;
1023 1024
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1047
/*
1048
 * If we inherit events we want to return the parent event id
1049 1050
 * to userspace.
 */
1051
static u64 primary_event_id(struct perf_event *event)
1052
{
1053
	u64 id = event->id;
1054

1055 1056
	if (event->parent)
		id = event->parent->id;
1057 1058 1059 1060

	return id;
}

1061
/*
1062
 * Get the perf_event_context for a task and lock it.
1063 1064 1065
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1066
static struct perf_event_context *
P
Peter Zijlstra 已提交
1067
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1068
{
1069
	struct perf_event_context *ctx;
1070

P
Peter Zijlstra 已提交
1071
retry:
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1083
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1084 1085 1086 1087
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1088
		 * perf_event_task_sched_out, though the
1089 1090 1091 1092 1093 1094
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1095
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1096
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1097
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1098 1099
			rcu_read_unlock();
			preempt_enable();
1100 1101
			goto retry;
		}
1102 1103

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1104
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1105 1106
			ctx = NULL;
		}
1107 1108
	}
	rcu_read_unlock();
1109
	preempt_enable();
1110 1111 1112 1113 1114 1115 1116 1117
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1118 1119
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1120
{
1121
	struct perf_event_context *ctx;
1122 1123
	unsigned long flags;

P
Peter Zijlstra 已提交
1124
	ctx = perf_lock_task_context(task, ctxn, &flags);
1125 1126
	if (ctx) {
		++ctx->pin_count;
1127
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1128 1129 1130 1131
	}
	return ctx;
}

1132
static void perf_unpin_context(struct perf_event_context *ctx)
1133 1134 1135
{
	unsigned long flags;

1136
	raw_spin_lock_irqsave(&ctx->lock, flags);
1137
	--ctx->pin_count;
1138
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1152 1153 1154
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1155 1156 1157 1158

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1159 1160 1161
	return ctx ? ctx->time : 0;
}

1162 1163
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1164
 * The caller of this function needs to hold the ctx->lock.
1165 1166 1167 1168 1169 1170 1171 1172 1173
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1185
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1186 1187
	else if (ctx->is_active)
		run_end = ctx->time;
1188 1189 1190 1191
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1192 1193 1194 1195

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1196
		run_end = perf_event_time(event);
1197 1198

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1199

1200 1201
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1214 1215 1216 1217 1218 1219 1220 1221 1222
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1223
/*
1224
 * Add a event from the lists for its context.
1225 1226
 * Must be called with ctx->mutex and ctx->lock held.
 */
1227
static void
1228
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1229
{
1230 1231
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1232 1233

	/*
1234 1235 1236
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1237
	 */
1238
	if (event->group_leader == event) {
1239 1240
		struct list_head *list;

1241 1242 1243
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1244 1245
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1246
	}
P
Peter Zijlstra 已提交
1247

1248
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1249 1250
		ctx->nr_cgroups++;

1251 1252 1253
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1254
		ctx->nr_stat++;
1255 1256

	ctx->generation++;
1257 1258
}

J
Jiri Olsa 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1307 1308 1309 1310 1311 1312
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1313 1314 1315
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1316 1317 1318
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1319 1320 1321
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1322 1323 1324
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1325 1326 1327 1328 1329 1330 1331 1332 1333
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1334 1335 1336 1337 1338 1339
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1340 1341 1342
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1343 1344 1345 1346 1347 1348 1349 1350 1351
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1352
	event->id_header_size = size;
1353 1354
}

1355 1356
static void perf_group_attach(struct perf_event *event)
{
1357
	struct perf_event *group_leader = event->group_leader, *pos;
1358

P
Peter Zijlstra 已提交
1359 1360 1361 1362 1363 1364
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1365 1366 1367 1368 1369
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1370 1371
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1372 1373 1374 1375 1376 1377
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1378 1379 1380 1381 1382

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1383 1384
}

1385
/*
1386
 * Remove a event from the lists for its context.
1387
 * Must be called with ctx->mutex and ctx->lock held.
1388
 */
1389
static void
1390
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1391
{
1392
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1393 1394 1395 1396

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1397 1398 1399 1400
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1401
		return;
1402 1403 1404

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1405
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1406
		ctx->nr_cgroups--;
1407 1408 1409 1410 1411 1412 1413 1414 1415
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1416

1417 1418
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1419
		ctx->nr_stat--;
1420

1421
	list_del_rcu(&event->event_entry);
1422

1423 1424
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1425

1426
	update_group_times(event);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1437 1438

	ctx->generation++;
1439 1440
}

1441
static void perf_group_detach(struct perf_event *event)
1442 1443
{
	struct perf_event *sibling, *tmp;
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1460
		goto out;
1461 1462 1463 1464
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1465

1466
	/*
1467 1468
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1469
	 * to whatever list we are on.
1470
	 */
1471
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1472 1473
		if (list)
			list_move_tail(&sibling->group_entry, list);
1474
		sibling->group_leader = sibling;
1475 1476 1477

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1478 1479

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1480
	}
1481 1482 1483 1484 1485 1486

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1487 1488
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1528 1529 1530
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1531 1532
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1533 1534
}

1535 1536
static void
event_sched_out(struct perf_event *event,
1537
		  struct perf_cpu_context *cpuctx,
1538
		  struct perf_event_context *ctx)
1539
{
1540
	u64 tstamp = perf_event_time(event);
1541
	u64 delta;
P
Peter Zijlstra 已提交
1542 1543 1544 1545

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1546 1547 1548 1549 1550 1551 1552 1553
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1554
		delta = tstamp - event->tstamp_stopped;
1555
		event->tstamp_running += delta;
1556
		event->tstamp_stopped = tstamp;
1557 1558
	}

1559
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1560
		return;
1561

1562 1563
	perf_pmu_disable(event->pmu);

1564 1565 1566 1567
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1568
	}
1569
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1570
	event->pmu->del(event, 0);
1571
	event->oncpu = -1;
1572

1573
	if (!is_software_event(event))
1574
		cpuctx->active_oncpu--;
1575 1576
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1577 1578
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1579
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1580
		cpuctx->exclusive = 0;
1581

1582 1583 1584
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1585
	perf_pmu_enable(event->pmu);
1586 1587
}

1588
static void
1589
group_sched_out(struct perf_event *group_event,
1590
		struct perf_cpu_context *cpuctx,
1591
		struct perf_event_context *ctx)
1592
{
1593
	struct perf_event *event;
1594
	int state = group_event->state;
1595

1596
	event_sched_out(group_event, cpuctx, ctx);
1597 1598 1599 1600

	/*
	 * Schedule out siblings (if any):
	 */
1601 1602
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1603

1604
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1605 1606 1607
		cpuctx->exclusive = 0;
}

1608 1609 1610 1611 1612
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1613
/*
1614
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1615
 *
1616
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1617 1618
 * remove it from the context list.
 */
1619
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1620
{
1621 1622
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1623
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1624
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1625

1626
	raw_spin_lock(&ctx->lock);
1627
	event_sched_out(event, cpuctx, ctx);
1628 1629
	if (re->detach_group)
		perf_group_detach(event);
1630
	list_del_event(event, ctx);
1631 1632 1633 1634
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1635
	raw_spin_unlock(&ctx->lock);
1636 1637

	return 0;
T
Thomas Gleixner 已提交
1638 1639 1640 1641
}


/*
1642
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1643
 *
1644
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1645
 * call when the task is on a CPU.
1646
 *
1647 1648
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1649 1650
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1651
 * When called from perf_event_exit_task, it's OK because the
1652
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1653
 */
1654
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1655
{
1656
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1657
	struct task_struct *task = ctx->task;
1658 1659 1660 1661
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1662

1663 1664
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1665 1666
	if (!task) {
		/*
1667 1668 1669 1670
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1671
		 */
1672
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1673 1674 1675 1676
		return;
	}

retry:
1677
	if (!task_function_call(task, __perf_remove_from_context, &re))
1678
		return;
T
Thomas Gleixner 已提交
1679

1680
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1681
	/*
1682 1683
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1684
	 */
1685
	if (ctx->is_active) {
1686
		raw_spin_unlock_irq(&ctx->lock);
1687 1688 1689 1690 1691
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1692 1693 1694 1695
		goto retry;
	}

	/*
1696 1697
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1698
	 */
1699 1700
	if (detach_group)
		perf_group_detach(event);
1701
	list_del_event(event, ctx);
1702
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1703 1704
}

1705
/*
1706
 * Cross CPU call to disable a performance event
1707
 */
1708
int __perf_event_disable(void *info)
1709
{
1710 1711
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1712
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1713 1714

	/*
1715 1716
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1717 1718 1719
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1720
	 */
1721
	if (ctx->task && cpuctx->task_ctx != ctx)
1722
		return -EINVAL;
1723

1724
	raw_spin_lock(&ctx->lock);
1725 1726

	/*
1727
	 * If the event is on, turn it off.
1728 1729
	 * If it is in error state, leave it in error state.
	 */
1730
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1731
		update_context_time(ctx);
S
Stephane Eranian 已提交
1732
		update_cgrp_time_from_event(event);
1733 1734 1735
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1736
		else
1737 1738
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1739 1740
	}

1741
	raw_spin_unlock(&ctx->lock);
1742 1743

	return 0;
1744 1745 1746
}

/*
1747
 * Disable a event.
1748
 *
1749 1750
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1751
 * remains valid.  This condition is satisifed when called through
1752 1753 1754 1755
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1756
 * is the current context on this CPU and preemption is disabled,
1757
 * hence we can't get into perf_event_task_sched_out for this context.
1758
 */
P
Peter Zijlstra 已提交
1759
static void _perf_event_disable(struct perf_event *event)
1760
{
1761
	struct perf_event_context *ctx = event->ctx;
1762 1763 1764 1765
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1766
		 * Disable the event on the cpu that it's on
1767
		 */
1768
		cpu_function_call(event->cpu, __perf_event_disable, event);
1769 1770 1771
		return;
	}

P
Peter Zijlstra 已提交
1772
retry:
1773 1774
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1775

1776
	raw_spin_lock_irq(&ctx->lock);
1777
	/*
1778
	 * If the event is still active, we need to retry the cross-call.
1779
	 */
1780
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1781
		raw_spin_unlock_irq(&ctx->lock);
1782 1783 1784 1785 1786
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1787 1788 1789 1790 1791 1792 1793
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1794 1795 1796
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1797
	}
1798
	raw_spin_unlock_irq(&ctx->lock);
1799
}
P
Peter Zijlstra 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1813
EXPORT_SYMBOL_GPL(perf_event_disable);
1814

S
Stephane Eranian 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1850 1851 1852 1853
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1854
static int
1855
event_sched_in(struct perf_event *event,
1856
		 struct perf_cpu_context *cpuctx,
1857
		 struct perf_event_context *ctx)
1858
{
1859
	u64 tstamp = perf_event_time(event);
1860
	int ret = 0;
1861

1862 1863
	lockdep_assert_held(&ctx->lock);

1864
	if (event->state <= PERF_EVENT_STATE_OFF)
1865 1866
		return 0;

1867
	event->state = PERF_EVENT_STATE_ACTIVE;
1868
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1880 1881 1882 1883 1884
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1885 1886
	perf_pmu_disable(event->pmu);

1887 1888 1889 1890
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

P
Peter Zijlstra 已提交
1891
	if (event->pmu->add(event, PERF_EF_START)) {
1892 1893
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1894 1895
		ret = -EAGAIN;
		goto out;
1896 1897
	}

1898
	if (!is_software_event(event))
1899
		cpuctx->active_oncpu++;
1900 1901
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1902 1903
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1904

1905
	if (event->attr.exclusive)
1906 1907
		cpuctx->exclusive = 1;

1908 1909 1910
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1911 1912 1913 1914
out:
	perf_pmu_enable(event->pmu);

	return ret;
1915 1916
}

1917
static int
1918
group_sched_in(struct perf_event *group_event,
1919
	       struct perf_cpu_context *cpuctx,
1920
	       struct perf_event_context *ctx)
1921
{
1922
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1923
	struct pmu *pmu = ctx->pmu;
1924 1925
	u64 now = ctx->time;
	bool simulate = false;
1926

1927
	if (group_event->state == PERF_EVENT_STATE_OFF)
1928 1929
		return 0;

P
Peter Zijlstra 已提交
1930
	pmu->start_txn(pmu);
1931

1932
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1933
		pmu->cancel_txn(pmu);
1934
		perf_cpu_hrtimer_restart(cpuctx);
1935
		return -EAGAIN;
1936
	}
1937 1938 1939 1940

	/*
	 * Schedule in siblings as one group (if any):
	 */
1941
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1942
		if (event_sched_in(event, cpuctx, ctx)) {
1943
			partial_group = event;
1944 1945 1946 1947
			goto group_error;
		}
	}

1948
	if (!pmu->commit_txn(pmu))
1949
		return 0;
1950

1951 1952 1953 1954
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1965
	 */
1966 1967
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1968 1969 1970 1971 1972 1973 1974 1975
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1976
	}
1977
	event_sched_out(group_event, cpuctx, ctx);
1978

P
Peter Zijlstra 已提交
1979
	pmu->cancel_txn(pmu);
1980

1981 1982
	perf_cpu_hrtimer_restart(cpuctx);

1983 1984 1985
	return -EAGAIN;
}

1986
/*
1987
 * Work out whether we can put this event group on the CPU now.
1988
 */
1989
static int group_can_go_on(struct perf_event *event,
1990 1991 1992 1993
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1994
	 * Groups consisting entirely of software events can always go on.
1995
	 */
1996
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1997 1998 1999
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2000
	 * events can go on.
2001 2002 2003 2004 2005
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2006
	 * events on the CPU, it can't go on.
2007
	 */
2008
	if (event->attr.exclusive && cpuctx->active_oncpu)
2009 2010 2011 2012 2013 2014 2015 2016
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2017 2018
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2019
{
2020 2021
	u64 tstamp = perf_event_time(event);

2022
	list_add_event(event, ctx);
2023
	perf_group_attach(event);
2024 2025 2026
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2027 2028
}

2029 2030 2031 2032 2033 2034
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2048
/*
2049
 * Cross CPU call to install and enable a performance event
2050 2051
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2052
 */
2053
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2054
{
2055 2056
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2057
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2058 2059 2060
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2061
	perf_ctx_lock(cpuctx, task_ctx);
2062
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2063 2064

	/*
2065
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2066
	 */
2067
	if (task_ctx)
2068
		task_ctx_sched_out(task_ctx);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2083 2084
		task = task_ctx->task;
	}
2085

2086
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2087

2088
	update_context_time(ctx);
S
Stephane Eranian 已提交
2089 2090 2091 2092 2093 2094
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2095

2096
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2097

2098
	/*
2099
	 * Schedule everything back in
2100
	 */
2101
	perf_event_sched_in(cpuctx, task_ctx, task);
2102 2103 2104

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2105 2106

	return 0;
T
Thomas Gleixner 已提交
2107 2108 2109
}

/*
2110
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2111
 *
2112 2113
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2114
 *
2115
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2116 2117 2118 2119
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2120 2121
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2122 2123 2124 2125
			int cpu)
{
	struct task_struct *task = ctx->task;

2126 2127
	lockdep_assert_held(&ctx->mutex);

2128
	event->ctx = ctx;
2129 2130
	if (event->cpu != -1)
		event->cpu = cpu;
2131

T
Thomas Gleixner 已提交
2132 2133
	if (!task) {
		/*
2134
		 * Per cpu events are installed via an smp call and
2135
		 * the install is always successful.
T
Thomas Gleixner 已提交
2136
		 */
2137
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2138 2139 2140 2141
		return;
	}

retry:
2142 2143
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2144

2145
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2146
	/*
2147 2148
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2149
	 */
2150
	if (ctx->is_active) {
2151
		raw_spin_unlock_irq(&ctx->lock);
2152 2153 2154 2155 2156
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2157 2158 2159 2160
		goto retry;
	}

	/*
2161 2162
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2163
	 */
2164
	add_event_to_ctx(event, ctx);
2165
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2166 2167
}

2168
/*
2169
 * Put a event into inactive state and update time fields.
2170 2171 2172 2173 2174 2175
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2176
static void __perf_event_mark_enabled(struct perf_event *event)
2177
{
2178
	struct perf_event *sub;
2179
	u64 tstamp = perf_event_time(event);
2180

2181
	event->state = PERF_EVENT_STATE_INACTIVE;
2182
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2183
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2184 2185
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2186
	}
2187 2188
}

2189
/*
2190
 * Cross CPU call to enable a performance event
2191
 */
2192
static int __perf_event_enable(void *info)
2193
{
2194 2195 2196
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2197
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2198
	int err;
2199

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2210
		return -EINVAL;
2211

2212
	raw_spin_lock(&ctx->lock);
2213
	update_context_time(ctx);
2214

2215
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2216
		goto unlock;
S
Stephane Eranian 已提交
2217 2218 2219 2220

	/*
	 * set current task's cgroup time reference point
	 */
2221
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2222

2223
	__perf_event_mark_enabled(event);
2224

S
Stephane Eranian 已提交
2225 2226 2227
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2228
		goto unlock;
S
Stephane Eranian 已提交
2229
	}
2230

2231
	/*
2232
	 * If the event is in a group and isn't the group leader,
2233
	 * then don't put it on unless the group is on.
2234
	 */
2235
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2236
		goto unlock;
2237

2238
	if (!group_can_go_on(event, cpuctx, 1)) {
2239
		err = -EEXIST;
2240
	} else {
2241
		if (event == leader)
2242
			err = group_sched_in(event, cpuctx, ctx);
2243
		else
2244
			err = event_sched_in(event, cpuctx, ctx);
2245
	}
2246 2247 2248

	if (err) {
		/*
2249
		 * If this event can't go on and it's part of a
2250 2251
		 * group, then the whole group has to come off.
		 */
2252
		if (leader != event) {
2253
			group_sched_out(leader, cpuctx, ctx);
2254 2255
			perf_cpu_hrtimer_restart(cpuctx);
		}
2256
		if (leader->attr.pinned) {
2257
			update_group_times(leader);
2258
			leader->state = PERF_EVENT_STATE_ERROR;
2259
		}
2260 2261
	}

P
Peter Zijlstra 已提交
2262
unlock:
2263
	raw_spin_unlock(&ctx->lock);
2264 2265

	return 0;
2266 2267 2268
}

/*
2269
 * Enable a event.
2270
 *
2271 2272
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2273
 * remains valid.  This condition is satisfied when called through
2274 2275
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2276
 */
P
Peter Zijlstra 已提交
2277
static void _perf_event_enable(struct perf_event *event)
2278
{
2279
	struct perf_event_context *ctx = event->ctx;
2280 2281 2282 2283
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2284
		 * Enable the event on the cpu that it's on
2285
		 */
2286
		cpu_function_call(event->cpu, __perf_event_enable, event);
2287 2288 2289
		return;
	}

2290
	raw_spin_lock_irq(&ctx->lock);
2291
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2292 2293 2294
		goto out;

	/*
2295 2296
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2297 2298 2299 2300
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2301 2302
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2303

P
Peter Zijlstra 已提交
2304
retry:
2305
	if (!ctx->is_active) {
2306
		__perf_event_mark_enabled(event);
2307 2308 2309
		goto out;
	}

2310
	raw_spin_unlock_irq(&ctx->lock);
2311 2312 2313

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2314

2315
	raw_spin_lock_irq(&ctx->lock);
2316 2317

	/*
2318
	 * If the context is active and the event is still off,
2319 2320
	 * we need to retry the cross-call.
	 */
2321 2322 2323 2324 2325 2326
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2327
		goto retry;
2328
	}
2329

P
Peter Zijlstra 已提交
2330
out:
2331
	raw_spin_unlock_irq(&ctx->lock);
2332
}
P
Peter Zijlstra 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2345
EXPORT_SYMBOL_GPL(perf_event_enable);
2346

P
Peter Zijlstra 已提交
2347
static int _perf_event_refresh(struct perf_event *event, int refresh)
2348
{
2349
	/*
2350
	 * not supported on inherited events
2351
	 */
2352
	if (event->attr.inherit || !is_sampling_event(event))
2353 2354
		return -EINVAL;

2355
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2356
	_perf_event_enable(event);
2357 2358

	return 0;
2359
}
P
Peter Zijlstra 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2375
EXPORT_SYMBOL_GPL(perf_event_refresh);
2376

2377 2378 2379
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2380
{
2381
	struct perf_event *event;
2382
	int is_active = ctx->is_active;
2383

2384
	ctx->is_active &= ~event_type;
2385
	if (likely(!ctx->nr_events))
2386 2387
		return;

2388
	update_context_time(ctx);
S
Stephane Eranian 已提交
2389
	update_cgrp_time_from_cpuctx(cpuctx);
2390
	if (!ctx->nr_active)
2391
		return;
2392

P
Peter Zijlstra 已提交
2393
	perf_pmu_disable(ctx->pmu);
2394
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2395 2396
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2397
	}
2398

2399
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2400
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2401
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2402
	}
P
Peter Zijlstra 已提交
2403
	perf_pmu_enable(ctx->pmu);
2404 2405
}

2406
/*
2407 2408 2409 2410 2411 2412
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2413
 */
2414 2415
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2416
{
2417 2418 2419
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2442 2443
}

2444 2445
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2446 2447 2448
{
	u64 value;

2449
	if (!event->attr.inherit_stat)
2450 2451 2452
		return;

	/*
2453
	 * Update the event value, we cannot use perf_event_read()
2454 2455
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2456
	 * we know the event must be on the current CPU, therefore we
2457 2458
	 * don't need to use it.
	 */
2459 2460
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2461 2462
		event->pmu->read(event);
		/* fall-through */
2463

2464 2465
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2466 2467 2468 2469 2470 2471 2472
		break;

	default:
		break;
	}

	/*
2473
	 * In order to keep per-task stats reliable we need to flip the event
2474 2475
	 * values when we flip the contexts.
	 */
2476 2477 2478
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2479

2480 2481
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2482

2483
	/*
2484
	 * Since we swizzled the values, update the user visible data too.
2485
	 */
2486 2487
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2488 2489
}

2490 2491
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2492
{
2493
	struct perf_event *event, *next_event;
2494 2495 2496 2497

	if (!ctx->nr_stat)
		return;

2498 2499
	update_context_time(ctx);

2500 2501
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2502

2503 2504
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2505

2506 2507
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2508

2509
		__perf_event_sync_stat(event, next_event);
2510

2511 2512
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2513 2514 2515
	}
}

2516 2517
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2518
{
P
Peter Zijlstra 已提交
2519
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2520
	struct perf_event_context *next_ctx;
2521
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2522
	struct perf_cpu_context *cpuctx;
2523
	int do_switch = 1;
T
Thomas Gleixner 已提交
2524

P
Peter Zijlstra 已提交
2525 2526
	if (likely(!ctx))
		return;
2527

P
Peter Zijlstra 已提交
2528 2529
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2530 2531
		return;

2532
	rcu_read_lock();
P
Peter Zijlstra 已提交
2533
	next_ctx = next->perf_event_ctxp[ctxn];
2534 2535 2536 2537 2538 2539 2540
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2541
	if (!parent && !next_parent)
2542 2543 2544
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2545 2546 2547 2548 2549 2550 2551 2552 2553
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2554 2555
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2556
		if (context_equiv(ctx, next_ctx)) {
2557 2558
			/*
			 * XXX do we need a memory barrier of sorts
2559
			 * wrt to rcu_dereference() of perf_event_ctxp
2560
			 */
P
Peter Zijlstra 已提交
2561 2562
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2563 2564
			ctx->task = next;
			next_ctx->task = task;
2565 2566 2567

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2568
			do_switch = 0;
2569

2570
			perf_event_sync_stat(ctx, next_ctx);
2571
		}
2572 2573
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2574
	}
2575
unlock:
2576
	rcu_read_unlock();
2577

2578
	if (do_switch) {
2579
		raw_spin_lock(&ctx->lock);
2580
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2581
		cpuctx->task_ctx = NULL;
2582
		raw_spin_unlock(&ctx->lock);
2583
	}
T
Thomas Gleixner 已提交
2584 2585
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2650 2651
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2652 2653 2654
{
	int ctxn;

2655 2656 2657
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2658 2659
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2660 2661 2662 2663 2664 2665

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2666
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2667
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2668 2669
}

2670
static void task_ctx_sched_out(struct perf_event_context *ctx)
2671
{
P
Peter Zijlstra 已提交
2672
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2673

2674 2675
	if (!cpuctx->task_ctx)
		return;
2676 2677 2678 2679

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2680
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2681 2682 2683
	cpuctx->task_ctx = NULL;
}

2684 2685 2686 2687 2688 2689 2690
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2691 2692
}

2693
static void
2694
ctx_pinned_sched_in(struct perf_event_context *ctx,
2695
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2696
{
2697
	struct perf_event *event;
T
Thomas Gleixner 已提交
2698

2699 2700
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2701
			continue;
2702
		if (!event_filter_match(event))
2703 2704
			continue;

S
Stephane Eranian 已提交
2705 2706 2707 2708
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2709
		if (group_can_go_on(event, cpuctx, 1))
2710
			group_sched_in(event, cpuctx, ctx);
2711 2712 2713 2714 2715

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2716 2717 2718
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2719
		}
2720
	}
2721 2722 2723 2724
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2725
		      struct perf_cpu_context *cpuctx)
2726 2727 2728
{
	struct perf_event *event;
	int can_add_hw = 1;
2729

2730 2731 2732
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2733
			continue;
2734 2735
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2736
		 * of events:
2737
		 */
2738
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2739 2740
			continue;

S
Stephane Eranian 已提交
2741 2742 2743 2744
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2745
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2746
			if (group_sched_in(event, cpuctx, ctx))
2747
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2748
		}
T
Thomas Gleixner 已提交
2749
	}
2750 2751 2752 2753 2754
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2755 2756
	     enum event_type_t event_type,
	     struct task_struct *task)
2757
{
S
Stephane Eranian 已提交
2758
	u64 now;
2759
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2760

2761
	ctx->is_active |= event_type;
2762
	if (likely(!ctx->nr_events))
2763
		return;
2764

S
Stephane Eranian 已提交
2765 2766
	now = perf_clock();
	ctx->timestamp = now;
2767
	perf_cgroup_set_timestamp(task, ctx);
2768 2769 2770 2771
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2772
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2773
		ctx_pinned_sched_in(ctx, cpuctx);
2774 2775

	/* Then walk through the lower prio flexible groups */
2776
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2777
		ctx_flexible_sched_in(ctx, cpuctx);
2778 2779
}

2780
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2781 2782
			     enum event_type_t event_type,
			     struct task_struct *task)
2783 2784 2785
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2786
	ctx_sched_in(ctx, cpuctx, event_type, task);
2787 2788
}

S
Stephane Eranian 已提交
2789 2790
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2791
{
P
Peter Zijlstra 已提交
2792
	struct perf_cpu_context *cpuctx;
2793

P
Peter Zijlstra 已提交
2794
	cpuctx = __get_cpu_context(ctx);
2795 2796 2797
	if (cpuctx->task_ctx == ctx)
		return;

2798
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2799
	perf_pmu_disable(ctx->pmu);
2800 2801 2802 2803 2804 2805 2806
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2807 2808
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2809

2810 2811
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2812 2813
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2814 2815
}

P
Peter Zijlstra 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2827 2828
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2838
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2839
	}
S
Stephane Eranian 已提交
2840 2841 2842 2843 2844
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2845
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2846
		perf_cgroup_sched_in(prev, task);
2847

2848 2849
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2879
#define REDUCE_FLS(a, b)		\
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2919 2920 2921
	if (!divisor)
		return dividend;

2922 2923 2924
	return div64_u64(dividend, divisor);
}

2925 2926 2927
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2928
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2929
{
2930
	struct hw_perf_event *hwc = &event->hw;
2931
	s64 period, sample_period;
2932 2933
	s64 delta;

2934
	period = perf_calculate_period(event, nsec, count);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2945

2946
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2947 2948 2949
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2950
		local64_set(&hwc->period_left, 0);
2951 2952 2953

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2954
	}
2955 2956
}

2957 2958 2959 2960 2961 2962 2963
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2964
{
2965 2966
	struct perf_event *event;
	struct hw_perf_event *hwc;
2967
	u64 now, period = TICK_NSEC;
2968
	s64 delta;
2969

2970 2971 2972 2973 2974 2975
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2976 2977
		return;

2978
	raw_spin_lock(&ctx->lock);
2979
	perf_pmu_disable(ctx->pmu);
2980

2981
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2982
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2983 2984
			continue;

2985
		if (!event_filter_match(event))
2986 2987
			continue;

2988 2989
		perf_pmu_disable(event->pmu);

2990
		hwc = &event->hw;
2991

2992
		if (hwc->interrupts == MAX_INTERRUPTS) {
2993
			hwc->interrupts = 0;
2994
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2995
			event->pmu->start(event, 0);
2996 2997
		}

2998
		if (!event->attr.freq || !event->attr.sample_freq)
2999
			goto next;
3000

3001 3002 3003 3004 3005
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3006
		now = local64_read(&event->count);
3007 3008
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3009

3010 3011 3012
		/*
		 * restart the event
		 * reload only if value has changed
3013 3014 3015
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3016
		 */
3017
		if (delta > 0)
3018
			perf_adjust_period(event, period, delta, false);
3019 3020

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3021 3022
	next:
		perf_pmu_enable(event->pmu);
3023
	}
3024

3025
	perf_pmu_enable(ctx->pmu);
3026
	raw_spin_unlock(&ctx->lock);
3027 3028
}

3029
/*
3030
 * Round-robin a context's events:
3031
 */
3032
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3033
{
3034 3035 3036 3037 3038 3039
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3040 3041
}

3042
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3043
{
P
Peter Zijlstra 已提交
3044
	struct perf_event_context *ctx = NULL;
3045
	int rotate = 0;
3046

3047 3048 3049 3050
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3051

P
Peter Zijlstra 已提交
3052
	ctx = cpuctx->task_ctx;
3053 3054 3055 3056
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3057

3058
	if (!rotate)
3059 3060
		goto done;

3061
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3062
	perf_pmu_disable(cpuctx->ctx.pmu);
3063

3064 3065 3066
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3067

3068 3069 3070
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3071

3072
	perf_event_sched_in(cpuctx, ctx, current);
3073

3074 3075
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3076
done:
3077 3078

	return rotate;
3079 3080
}

3081 3082 3083
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3084
	if (atomic_read(&nr_freq_events) ||
3085
	    __this_cpu_read(perf_throttled_count))
3086
		return false;
3087 3088
	else
		return true;
3089 3090 3091
}
#endif

3092 3093
void perf_event_task_tick(void)
{
3094 3095
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3096
	int throttled;
3097

3098 3099
	WARN_ON(!irqs_disabled());

3100 3101 3102
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3103
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3104
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3105 3106
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3117
	__perf_event_mark_enabled(event);
3118 3119 3120 3121

	return 1;
}

3122
/*
3123
 * Enable all of a task's events that have been marked enable-on-exec.
3124 3125
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3126
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3127
{
3128
	struct perf_event_context *clone_ctx = NULL;
3129
	struct perf_event *event;
3130 3131
	unsigned long flags;
	int enabled = 0;
3132
	int ret;
3133 3134

	local_irq_save(flags);
3135
	if (!ctx || !ctx->nr_events)
3136 3137
		goto out;

3138 3139 3140 3141 3142 3143 3144
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3145
	perf_cgroup_sched_out(current, NULL);
3146

3147
	raw_spin_lock(&ctx->lock);
3148
	task_ctx_sched_out(ctx);
3149

3150
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3151 3152 3153
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3154 3155 3156
	}

	/*
3157
	 * Unclone this context if we enabled any event.
3158
	 */
3159
	if (enabled)
3160
		clone_ctx = unclone_ctx(ctx);
3161

3162
	raw_spin_unlock(&ctx->lock);
3163

3164 3165 3166
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3167
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3168
out:
3169
	local_irq_restore(flags);
3170 3171 3172

	if (clone_ctx)
		put_ctx(clone_ctx);
3173 3174
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3191
/*
3192
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3193
 */
3194
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3195
{
3196 3197
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3198
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3199

3200 3201 3202 3203
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3204 3205
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3206 3207 3208 3209
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3210
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3211
	if (ctx->is_active) {
3212
		update_context_time(ctx);
S
Stephane Eranian 已提交
3213 3214
		update_cgrp_time_from_event(event);
	}
3215
	update_event_times(event);
3216 3217
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3218
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3219 3220
}

P
Peter Zijlstra 已提交
3221 3222
static inline u64 perf_event_count(struct perf_event *event)
{
3223
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3224 3225
}

3226
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3227 3228
{
	/*
3229 3230
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3231
	 */
3232 3233 3234 3235
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3236 3237 3238
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3239
		raw_spin_lock_irqsave(&ctx->lock, flags);
3240 3241 3242 3243 3244
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3245
		if (ctx->is_active) {
3246
			update_context_time(ctx);
S
Stephane Eranian 已提交
3247 3248
			update_cgrp_time_from_event(event);
		}
3249
		update_event_times(event);
3250
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3251 3252
	}

P
Peter Zijlstra 已提交
3253
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3254 3255
}

3256
/*
3257
 * Initialize the perf_event context in a task_struct:
3258
 */
3259
static void __perf_event_init_context(struct perf_event_context *ctx)
3260
{
3261
	raw_spin_lock_init(&ctx->lock);
3262
	mutex_init(&ctx->mutex);
3263
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3264 3265
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3266 3267
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3268
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3284
	}
3285 3286 3287
	ctx->pmu = pmu;

	return ctx;
3288 3289
}

3290 3291 3292 3293 3294
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3295 3296

	rcu_read_lock();
3297
	if (!vpid)
T
Thomas Gleixner 已提交
3298 3299
		task = current;
	else
3300
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3301 3302 3303 3304 3305 3306 3307 3308
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3309 3310 3311 3312
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3313 3314 3315 3316 3317 3318 3319
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3320 3321 3322
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3323
static struct perf_event_context *
3324 3325
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3326
{
3327
	struct perf_event_context *ctx, *clone_ctx = NULL;
3328
	struct perf_cpu_context *cpuctx;
3329
	void *task_ctx_data = NULL;
3330
	unsigned long flags;
P
Peter Zijlstra 已提交
3331
	int ctxn, err;
3332
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3333

3334
	if (!task) {
3335
		/* Must be root to operate on a CPU event: */
3336
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3337 3338 3339
			return ERR_PTR(-EACCES);

		/*
3340
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3341 3342 3343
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3344
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3345 3346
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3347
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3348
		ctx = &cpuctx->ctx;
3349
		get_ctx(ctx);
3350
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3351 3352 3353 3354

		return ctx;
	}

P
Peter Zijlstra 已提交
3355 3356 3357 3358 3359
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3360 3361 3362 3363 3364 3365 3366 3367
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3368
retry:
P
Peter Zijlstra 已提交
3369
	ctx = perf_lock_task_context(task, ctxn, &flags);
3370
	if (ctx) {
3371
		clone_ctx = unclone_ctx(ctx);
3372
		++ctx->pin_count;
3373 3374 3375 3376 3377

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3378
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3379 3380 3381

		if (clone_ctx)
			put_ctx(clone_ctx);
3382
	} else {
3383
		ctx = alloc_perf_context(pmu, task);
3384 3385 3386
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3387

3388 3389 3390 3391 3392
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3403
		else {
3404
			get_ctx(ctx);
3405
			++ctx->pin_count;
3406
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3407
		}
3408 3409 3410
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3411
			put_ctx(ctx);
3412 3413 3414 3415

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3416 3417 3418
		}
	}

3419
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3420
	return ctx;
3421

P
Peter Zijlstra 已提交
3422
errout:
3423
	kfree(task_ctx_data);
3424
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3425 3426
}

L
Li Zefan 已提交
3427 3428
static void perf_event_free_filter(struct perf_event *event);

3429
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3430
{
3431
	struct perf_event *event;
P
Peter Zijlstra 已提交
3432

3433 3434 3435
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3436
	perf_event_free_filter(event);
3437
	kfree(event);
P
Peter Zijlstra 已提交
3438 3439
}

3440
static void ring_buffer_put(struct ring_buffer *rb);
3441 3442
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3443

3444
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3445
{
3446 3447 3448 3449 3450 3451
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3466 3467
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3468 3469 3470 3471 3472 3473 3474
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3475

3476 3477
static void __free_event(struct perf_event *event)
{
3478
	if (!event->parent) {
3479 3480
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3481
	}
3482

3483 3484 3485 3486 3487 3488
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3489 3490 3491
	if (event->pmu)
		module_put(event->pmu->module);

3492 3493
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3494 3495

static void _free_event(struct perf_event *event)
3496
{
3497
	irq_work_sync(&event->pending);
3498

3499
	unaccount_event(event);
3500

3501
	if (event->rb) {
3502 3503 3504 3505 3506 3507 3508
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3509
		ring_buffer_attach(event, NULL);
3510
		mutex_unlock(&event->mmap_mutex);
3511 3512
	}

S
Stephane Eranian 已提交
3513 3514 3515
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3516
	__free_event(event);
3517 3518
}

P
Peter Zijlstra 已提交
3519 3520 3521 3522 3523
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3524
{
P
Peter Zijlstra 已提交
3525 3526 3527 3528 3529 3530
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3531

P
Peter Zijlstra 已提交
3532
	_free_event(event);
T
Thomas Gleixner 已提交
3533 3534
}

3535
/*
3536
 * Remove user event from the owner task.
3537
 */
3538
static void perf_remove_from_owner(struct perf_event *event)
3539
{
P
Peter Zijlstra 已提交
3540
	struct task_struct *owner;
3541

P
Peter Zijlstra 已提交
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3583 3584 3585 3586 3587 3588 3589
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3590
	struct perf_event_context *ctx;
3591 3592 3593 3594 3595 3596

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3597

P
Peter Zijlstra 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3610 3611
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3612 3613 3614 3615
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3616 3617
}

P
Peter Zijlstra 已提交
3618 3619 3620 3621 3622 3623 3624
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3625 3626 3627 3628
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3629 3630
}

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3667
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3668
{
3669
	struct perf_event *child;
3670 3671
	u64 total = 0;

3672 3673 3674
	*enabled = 0;
	*running = 0;

3675
	mutex_lock(&event->child_mutex);
3676
	total += perf_event_read(event);
3677 3678 3679 3680 3681 3682
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3683
		total += perf_event_read(child);
3684 3685 3686
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3687
	mutex_unlock(&event->child_mutex);
3688 3689 3690

	return total;
}
3691
EXPORT_SYMBOL_GPL(perf_event_read_value);
3692

3693
static int perf_event_read_group(struct perf_event *event,
3694 3695
				   u64 read_format, char __user *buf)
{
3696
	struct perf_event *leader = event->group_leader, *sub;
3697
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3698
	int n = 0, size = 0, ret;
3699
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3700 3701 3702
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3703

3704
	count = perf_event_read_value(leader, &enabled, &running);
3705 3706

	values[n++] = 1 + leader->nr_siblings;
3707 3708 3709 3710
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3711 3712 3713
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3714 3715 3716 3717

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3718
		return -EFAULT;
3719

3720
	ret = size;
3721

3722
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3723
		n = 0;
3724

3725
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3726 3727 3728 3729 3730
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3731
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3732
			return -EFAULT;
3733
		}
3734 3735

		ret += size;
3736 3737
	}

3738
	return ret;
3739 3740
}

3741
static int perf_event_read_one(struct perf_event *event,
3742 3743
				 u64 read_format, char __user *buf)
{
3744
	u64 enabled, running;
3745 3746 3747
	u64 values[4];
	int n = 0;

3748 3749 3750 3751 3752
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3753
	if (read_format & PERF_FORMAT_ID)
3754
		values[n++] = primary_event_id(event);
3755 3756 3757 3758 3759 3760 3761

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3775
/*
3776
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3777 3778
 */
static ssize_t
3779
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3780
{
3781
	u64 read_format = event->attr.read_format;
3782
	int ret;
T
Thomas Gleixner 已提交
3783

3784
	/*
3785
	 * Return end-of-file for a read on a event that is in
3786 3787 3788
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3789
	if (event->state == PERF_EVENT_STATE_ERROR)
3790 3791
		return 0;

3792
	if (count < event->read_size)
3793 3794
		return -ENOSPC;

3795
	WARN_ON_ONCE(event->ctx->parent_ctx);
3796
	if (read_format & PERF_FORMAT_GROUP)
3797
		ret = perf_event_read_group(event, read_format, buf);
3798
	else
3799
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3800

3801
	return ret;
T
Thomas Gleixner 已提交
3802 3803 3804 3805 3806
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3807
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3808 3809
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3810

P
Peter Zijlstra 已提交
3811 3812 3813 3814 3815
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3816 3817 3818 3819
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3820
	struct perf_event *event = file->private_data;
3821
	struct ring_buffer *rb;
3822
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3823

3824
	poll_wait(file, &event->waitq, wait);
3825

3826
	if (is_event_hup(event))
3827
		return events;
P
Peter Zijlstra 已提交
3828

3829
	/*
3830 3831
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3832 3833
	 */
	mutex_lock(&event->mmap_mutex);
3834 3835
	rb = event->rb;
	if (rb)
3836
		events = atomic_xchg(&rb->poll, 0);
3837
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3838 3839 3840
	return events;
}

P
Peter Zijlstra 已提交
3841
static void _perf_event_reset(struct perf_event *event)
3842
{
3843
	(void)perf_event_read(event);
3844
	local64_set(&event->count, 0);
3845
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3846 3847
}

3848
/*
3849 3850 3851 3852
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3853
 */
3854 3855
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3856
{
3857
	struct perf_event *child;
P
Peter Zijlstra 已提交
3858

3859
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3860

3861 3862 3863
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3864
		func(child);
3865
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3866 3867
}

3868 3869
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3870
{
3871 3872
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3873

P
Peter Zijlstra 已提交
3874 3875
	lockdep_assert_held(&ctx->mutex);

3876
	event = event->group_leader;
3877

3878 3879
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3880
		perf_event_for_each_child(sibling, func);
3881 3882
}

3883
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3884
{
3885
	struct perf_event_context *ctx = event->ctx;
3886
	int ret = 0, active;
3887 3888
	u64 value;

3889
	if (!is_sampling_event(event))
3890 3891
		return -EINVAL;

3892
	if (copy_from_user(&value, arg, sizeof(value)))
3893 3894 3895 3896 3897
		return -EFAULT;

	if (!value)
		return -EINVAL;

3898
	raw_spin_lock_irq(&ctx->lock);
3899 3900
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3901 3902 3903 3904
			ret = -EINVAL;
			goto unlock;
		}

3905
		event->attr.sample_freq = value;
3906
	} else {
3907 3908
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3909
	}
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3924
unlock:
3925
	raw_spin_unlock_irq(&ctx->lock);
3926 3927 3928 3929

	return ret;
}

3930 3931
static const struct file_operations perf_fops;

3932
static inline int perf_fget_light(int fd, struct fd *p)
3933
{
3934 3935 3936
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3937

3938 3939 3940
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3941
	}
3942 3943
	*p = f;
	return 0;
3944 3945 3946 3947
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3948
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3949

P
Peter Zijlstra 已提交
3950
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3951
{
3952
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3953
	u32 flags = arg;
3954 3955

	switch (cmd) {
3956
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3957
		func = _perf_event_enable;
3958
		break;
3959
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3960
		func = _perf_event_disable;
3961
		break;
3962
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3963
		func = _perf_event_reset;
3964
		break;
P
Peter Zijlstra 已提交
3965

3966
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3967
		return _perf_event_refresh(event, arg);
3968

3969 3970
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3971

3972 3973 3974 3975 3976 3977 3978 3979 3980
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3981
	case PERF_EVENT_IOC_SET_OUTPUT:
3982 3983 3984
	{
		int ret;
		if (arg != -1) {
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3995 3996 3997
		}
		return ret;
	}
3998

L
Li Zefan 已提交
3999 4000 4001
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4002
	default:
P
Peter Zijlstra 已提交
4003
		return -ENOTTY;
4004
	}
P
Peter Zijlstra 已提交
4005 4006

	if (flags & PERF_IOC_FLAG_GROUP)
4007
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4008
	else
4009
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4010 4011

	return 0;
4012 4013
}

P
Peter Zijlstra 已提交
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4047
int perf_event_task_enable(void)
4048
{
P
Peter Zijlstra 已提交
4049
	struct perf_event_context *ctx;
4050
	struct perf_event *event;
4051

4052
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4053 4054 4055 4056 4057
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4058
	mutex_unlock(&current->perf_event_mutex);
4059 4060 4061 4062

	return 0;
}

4063
int perf_event_task_disable(void)
4064
{
P
Peter Zijlstra 已提交
4065
	struct perf_event_context *ctx;
4066
	struct perf_event *event;
4067

4068
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4069 4070 4071 4072 4073
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4074
	mutex_unlock(&current->perf_event_mutex);
4075 4076 4077 4078

	return 0;
}

4079
static int perf_event_index(struct perf_event *event)
4080
{
P
Peter Zijlstra 已提交
4081 4082 4083
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4084
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4085 4086
		return 0;

4087
	return event->pmu->event_idx(event);
4088 4089
}

4090
static void calc_timer_values(struct perf_event *event,
4091
				u64 *now,
4092 4093
				u64 *enabled,
				u64 *running)
4094
{
4095
	u64 ctx_time;
4096

4097 4098
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4099 4100 4101 4102
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4123 4124
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4125 4126 4127
{
}

4128 4129 4130 4131 4132
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4133
void perf_event_update_userpage(struct perf_event *event)
4134
{
4135
	struct perf_event_mmap_page *userpg;
4136
	struct ring_buffer *rb;
4137
	u64 enabled, running, now;
4138 4139

	rcu_read_lock();
4140 4141 4142 4143
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4144 4145 4146 4147 4148 4149 4150 4151 4152
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4153
	calc_timer_values(event, &now, &enabled, &running);
4154

4155
	userpg = rb->user_page;
4156 4157 4158 4159 4160
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4161
	++userpg->lock;
4162
	barrier();
4163
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4164
	userpg->offset = perf_event_count(event);
4165
	if (userpg->index)
4166
		userpg->offset -= local64_read(&event->hw.prev_count);
4167

4168
	userpg->time_enabled = enabled +
4169
			atomic64_read(&event->child_total_time_enabled);
4170

4171
	userpg->time_running = running +
4172
			atomic64_read(&event->child_total_time_running);
4173

4174
	arch_perf_update_userpage(event, userpg, now);
4175

4176
	barrier();
4177
	++userpg->lock;
4178
	preempt_enable();
4179
unlock:
4180
	rcu_read_unlock();
4181 4182
}

4183 4184 4185
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4186
	struct ring_buffer *rb;
4187 4188 4189 4190 4191 4192 4193 4194 4195
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4196 4197
	rb = rcu_dereference(event->rb);
	if (!rb)
4198 4199 4200 4201 4202
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4203
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4218 4219 4220
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4221
	struct ring_buffer *old_rb = NULL;
4222 4223
	unsigned long flags;

4224 4225 4226 4227 4228 4229
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4230

4231 4232 4233
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4234

4235 4236 4237 4238
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4239

4240 4241 4242 4243
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4244

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4262 4263 4264 4265 4266 4267 4268 4269
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4270 4271 4272 4273
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4274 4275 4276
	rcu_read_unlock();
}

4277
static void rb_free_rcu(struct rcu_head *rcu_head)
4278
{
4279
	struct ring_buffer *rb;
4280

4281 4282
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4283 4284
}

4285
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4286
{
4287
	struct ring_buffer *rb;
4288

4289
	rcu_read_lock();
4290 4291 4292 4293
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4294 4295 4296
	}
	rcu_read_unlock();

4297
	return rb;
4298 4299
}

4300
static void ring_buffer_put(struct ring_buffer *rb)
4301
{
4302
	if (!atomic_dec_and_test(&rb->refcount))
4303
		return;
4304

4305
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4306

4307
	call_rcu(&rb->rcu_head, rb_free_rcu);
4308 4309 4310 4311
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4312
	struct perf_event *event = vma->vm_file->private_data;
4313

4314
	atomic_inc(&event->mmap_count);
4315
	atomic_inc(&event->rb->mmap_count);
4316 4317 4318

	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4319 4320
}

4321 4322 4323 4324 4325 4326 4327 4328
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4329 4330
static void perf_mmap_close(struct vm_area_struct *vma)
{
4331
	struct perf_event *event = vma->vm_file->private_data;
4332

4333
	struct ring_buffer *rb = ring_buffer_get(event);
4334 4335 4336
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4337

4338 4339 4340
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4341 4342 4343
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4344
		goto out_put;
4345

4346
	ring_buffer_attach(event, NULL);
4347 4348 4349
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4350 4351
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4352

4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4369

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4381 4382 4383
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4384
		mutex_unlock(&event->mmap_mutex);
4385
		put_event(event);
4386

4387 4388 4389 4390 4391
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4392
	}
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4408
out_put:
4409
	ring_buffer_put(rb); /* could be last */
4410 4411
}

4412
static const struct vm_operations_struct perf_mmap_vmops = {
4413 4414 4415 4416
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4417 4418 4419 4420
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4421
	struct perf_event *event = file->private_data;
4422
	unsigned long user_locked, user_lock_limit;
4423
	struct user_struct *user = current_user();
4424
	unsigned long locked, lock_limit;
4425
	struct ring_buffer *rb;
4426 4427
	unsigned long vma_size;
	unsigned long nr_pages;
4428
	long user_extra, extra;
4429
	int ret = 0, flags = 0;
4430

4431 4432 4433
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4434
	 * same rb.
4435 4436 4437 4438
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4439
	if (!(vma->vm_flags & VM_SHARED))
4440
		return -EINVAL;
4441 4442 4443 4444

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4445
	/*
4446
	 * If we have rb pages ensure they're a power-of-two number, so we
4447 4448 4449
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4450 4451
		return -EINVAL;

4452
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4453 4454
		return -EINVAL;

4455 4456
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4457

4458
	WARN_ON_ONCE(event->ctx->parent_ctx);
4459
again:
4460
	mutex_lock(&event->mmap_mutex);
4461
	if (event->rb) {
4462
		if (event->rb->nr_pages != nr_pages) {
4463
			ret = -EINVAL;
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4477 4478 4479
		goto unlock;
	}

4480
	user_extra = nr_pages + 1;
4481
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4482 4483 4484 4485 4486 4487

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4488
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4489

4490 4491 4492
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4493

4494
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4495
	lock_limit >>= PAGE_SHIFT;
4496
	locked = vma->vm_mm->pinned_vm + extra;
4497

4498 4499
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4500 4501 4502
		ret = -EPERM;
		goto unlock;
	}
4503

4504
	WARN_ON(event->rb);
4505

4506
	if (vma->vm_flags & VM_WRITE)
4507
		flags |= RING_BUFFER_WRITABLE;
4508

4509 4510 4511 4512
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4513
	if (!rb) {
4514
		ret = -ENOMEM;
4515
		goto unlock;
4516
	}
P
Peter Zijlstra 已提交
4517

4518
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4519 4520
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4521

4522
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4523 4524
	vma->vm_mm->pinned_vm += extra;

4525
	ring_buffer_attach(event, rb);
4526

4527
	perf_event_init_userpage(event);
4528 4529
	perf_event_update_userpage(event);

4530
unlock:
4531 4532
	if (!ret)
		atomic_inc(&event->mmap_count);
4533
	mutex_unlock(&event->mmap_mutex);
4534

4535 4536 4537 4538
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4539
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4540
	vma->vm_ops = &perf_mmap_vmops;
4541

4542 4543 4544
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4545
	return ret;
4546 4547
}

P
Peter Zijlstra 已提交
4548 4549
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4550
	struct inode *inode = file_inode(filp);
4551
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4552 4553 4554
	int retval;

	mutex_lock(&inode->i_mutex);
4555
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4556 4557 4558 4559 4560 4561 4562 4563
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4564
static const struct file_operations perf_fops = {
4565
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4566 4567 4568
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4569
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4570
	.compat_ioctl		= perf_compat_ioctl,
4571
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4572
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4573 4574
};

4575
/*
4576
 * Perf event wakeup
4577 4578 4579 4580 4581
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4582
void perf_event_wakeup(struct perf_event *event)
4583
{
4584
	ring_buffer_wakeup(event);
4585

4586 4587 4588
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4589
	}
4590 4591
}

4592
static void perf_pending_event(struct irq_work *entry)
4593
{
4594 4595
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4596

4597 4598 4599
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4600 4601
	}

4602 4603 4604
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4605 4606 4607
	}
}

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4644
static void perf_sample_regs_user(struct perf_regs *regs_user,
4645 4646
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4647
{
4648 4649
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4650
		regs_user->regs = regs;
4651 4652
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4653 4654 4655
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4656 4657 4658
	}
}

4659 4660 4661 4662 4663 4664 4665 4666
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4762 4763 4764
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4780
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4792 4793 4794
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4819 4820 4821

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4822 4823
}

4824 4825 4826
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4827 4828 4829 4830 4831
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4832
static void perf_output_read_one(struct perf_output_handle *handle,
4833 4834
				 struct perf_event *event,
				 u64 enabled, u64 running)
4835
{
4836
	u64 read_format = event->attr.read_format;
4837 4838 4839
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4840
	values[n++] = perf_event_count(event);
4841
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4842
		values[n++] = enabled +
4843
			atomic64_read(&event->child_total_time_enabled);
4844 4845
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4846
		values[n++] = running +
4847
			atomic64_read(&event->child_total_time_running);
4848 4849
	}
	if (read_format & PERF_FORMAT_ID)
4850
		values[n++] = primary_event_id(event);
4851

4852
	__output_copy(handle, values, n * sizeof(u64));
4853 4854 4855
}

/*
4856
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4857 4858
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4859 4860
			    struct perf_event *event,
			    u64 enabled, u64 running)
4861
{
4862 4863
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4864 4865 4866 4867 4868 4869
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4870
		values[n++] = enabled;
4871 4872

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4873
		values[n++] = running;
4874

4875
	if (leader != event)
4876 4877
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4878
	values[n++] = perf_event_count(leader);
4879
	if (read_format & PERF_FORMAT_ID)
4880
		values[n++] = primary_event_id(leader);
4881

4882
	__output_copy(handle, values, n * sizeof(u64));
4883

4884
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4885 4886
		n = 0;

4887 4888
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4889 4890
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4891
		values[n++] = perf_event_count(sub);
4892
		if (read_format & PERF_FORMAT_ID)
4893
			values[n++] = primary_event_id(sub);
4894

4895
		__output_copy(handle, values, n * sizeof(u64));
4896 4897 4898
	}
}

4899 4900 4901
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4902
static void perf_output_read(struct perf_output_handle *handle,
4903
			     struct perf_event *event)
4904
{
4905
	u64 enabled = 0, running = 0, now;
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4917
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4918
		calc_timer_values(event, &now, &enabled, &running);
4919

4920
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4921
		perf_output_read_group(handle, event, enabled, running);
4922
	else
4923
		perf_output_read_one(handle, event, enabled, running);
4924 4925
}

4926 4927 4928
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4929
			struct perf_event *event)
4930 4931 4932 4933 4934
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4935 4936 4937
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4963
		perf_output_read(handle, event);
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4974
			__output_copy(handle, data->callchain, size);
4975 4976 4977 4978 4979 4980 4981 4982 4983
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4984 4985
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4997

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5032

5033
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5034 5035 5036
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5037
	}
A
Andi Kleen 已提交
5038 5039 5040

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5041 5042 5043

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5044

A
Andi Kleen 已提交
5045 5046 5047
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5078 5079 5080 5081
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5082
			 struct perf_event *event,
5083
			 struct pt_regs *regs)
5084
{
5085
	u64 sample_type = event->attr.sample_type;
5086

5087
	header->type = PERF_RECORD_SAMPLE;
5088
	header->size = sizeof(*header) + event->header_size;
5089 5090 5091

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5092

5093
	__perf_event_header__init_id(header, data, event);
5094

5095
	if (sample_type & PERF_SAMPLE_IP)
5096 5097
		data->ip = perf_instruction_pointer(regs);

5098
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5099
		int size = 1;
5100

5101
		data->callchain = perf_callchain(event, regs);
5102 5103 5104 5105 5106

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5107 5108
	}

5109
	if (sample_type & PERF_SAMPLE_RAW) {
5110 5111 5112 5113 5114 5115 5116 5117
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5118
		header->size += size;
5119
	}
5120 5121 5122 5123 5124 5125 5126 5127 5128

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5129

5130
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5131 5132
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5133

5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5157
						     data->regs_user.regs);
5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5185
}
5186

5187
static void perf_event_output(struct perf_event *event,
5188 5189 5190 5191 5192
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5193

5194 5195 5196
	/* protect the callchain buffers */
	rcu_read_lock();

5197
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5198

5199
	if (perf_output_begin(&handle, event, header.size))
5200
		goto exit;
5201

5202
	perf_output_sample(&handle, &header, data, event);
5203

5204
	perf_output_end(&handle);
5205 5206 5207

exit:
	rcu_read_unlock();
5208 5209
}

5210
/*
5211
 * read event_id
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5222
perf_event_read_event(struct perf_event *event,
5223 5224 5225
			struct task_struct *task)
{
	struct perf_output_handle handle;
5226
	struct perf_sample_data sample;
5227
	struct perf_read_event read_event = {
5228
		.header = {
5229
			.type = PERF_RECORD_READ,
5230
			.misc = 0,
5231
			.size = sizeof(read_event) + event->read_size,
5232
		},
5233 5234
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5235
	};
5236
	int ret;
5237

5238
	perf_event_header__init_id(&read_event.header, &sample, event);
5239
	ret = perf_output_begin(&handle, event, read_event.header.size);
5240 5241 5242
	if (ret)
		return;

5243
	perf_output_put(&handle, read_event);
5244
	perf_output_read(&handle, event);
5245
	perf_event__output_id_sample(event, &handle, &sample);
5246

5247 5248 5249
	perf_output_end(&handle);
}

5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5264
		output(event, data);
5265 5266 5267 5268
	}
}

static void
5269
perf_event_aux(perf_event_aux_output_cb output, void *data,
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5282
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5283 5284 5285 5286 5287 5288 5289
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5290
			perf_event_aux_ctx(ctx, output, data);
5291 5292 5293 5294 5295 5296
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5297
		perf_event_aux_ctx(task_ctx, output, data);
5298 5299 5300 5301 5302
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5303
/*
P
Peter Zijlstra 已提交
5304 5305
 * task tracking -- fork/exit
 *
5306
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5307 5308
 */

P
Peter Zijlstra 已提交
5309
struct perf_task_event {
5310
	struct task_struct		*task;
5311
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5312 5313 5314 5315 5316 5317

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5318 5319
		u32				tid;
		u32				ptid;
5320
		u64				time;
5321
	} event_id;
P
Peter Zijlstra 已提交
5322 5323
};

5324 5325
static int perf_event_task_match(struct perf_event *event)
{
5326 5327 5328
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5329 5330
}

5331
static void perf_event_task_output(struct perf_event *event,
5332
				   void *data)
P
Peter Zijlstra 已提交
5333
{
5334
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5335
	struct perf_output_handle handle;
5336
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5337
	struct task_struct *task = task_event->task;
5338
	int ret, size = task_event->event_id.header.size;
5339

5340 5341 5342
	if (!perf_event_task_match(event))
		return;

5343
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5344

5345
	ret = perf_output_begin(&handle, event,
5346
				task_event->event_id.header.size);
5347
	if (ret)
5348
		goto out;
P
Peter Zijlstra 已提交
5349

5350 5351
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5352

5353 5354
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5355

5356
	perf_output_put(&handle, task_event->event_id);
5357

5358 5359
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5360
	perf_output_end(&handle);
5361 5362
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5363 5364
}

5365 5366
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5367
			      int new)
P
Peter Zijlstra 已提交
5368
{
P
Peter Zijlstra 已提交
5369
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5370

5371 5372 5373
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5374 5375
		return;

P
Peter Zijlstra 已提交
5376
	task_event = (struct perf_task_event){
5377 5378
		.task	  = task,
		.task_ctx = task_ctx,
5379
		.event_id    = {
P
Peter Zijlstra 已提交
5380
			.header = {
5381
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5382
				.misc = 0,
5383
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5384
			},
5385 5386
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5387 5388
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5389
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5390 5391 5392
		},
	};

5393
	perf_event_aux(perf_event_task_output,
5394 5395
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5396 5397
}

5398
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5399
{
5400
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5401 5402
}

5403 5404 5405 5406 5407
/*
 * comm tracking
 */

struct perf_comm_event {
5408 5409
	struct task_struct	*task;
	char			*comm;
5410 5411 5412 5413 5414 5415 5416
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5417
	} event_id;
5418 5419
};

5420 5421 5422 5423 5424
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5425
static void perf_event_comm_output(struct perf_event *event,
5426
				   void *data)
5427
{
5428
	struct perf_comm_event *comm_event = data;
5429
	struct perf_output_handle handle;
5430
	struct perf_sample_data sample;
5431
	int size = comm_event->event_id.header.size;
5432 5433
	int ret;

5434 5435 5436
	if (!perf_event_comm_match(event))
		return;

5437 5438
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5439
				comm_event->event_id.header.size);
5440 5441

	if (ret)
5442
		goto out;
5443

5444 5445
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5446

5447
	perf_output_put(&handle, comm_event->event_id);
5448
	__output_copy(&handle, comm_event->comm,
5449
				   comm_event->comm_size);
5450 5451 5452

	perf_event__output_id_sample(event, &handle, &sample);

5453
	perf_output_end(&handle);
5454 5455
out:
	comm_event->event_id.header.size = size;
5456 5457
}

5458
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5459
{
5460
	char comm[TASK_COMM_LEN];
5461 5462
	unsigned int size;

5463
	memset(comm, 0, sizeof(comm));
5464
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5465
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5466 5467 5468 5469

	comm_event->comm = comm;
	comm_event->comm_size = size;

5470
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5471

5472
	perf_event_aux(perf_event_comm_output,
5473 5474
		       comm_event,
		       NULL);
5475 5476
}

5477
void perf_event_comm(struct task_struct *task, bool exec)
5478
{
5479 5480
	struct perf_comm_event comm_event;

5481
	if (!atomic_read(&nr_comm_events))
5482
		return;
5483

5484
	comm_event = (struct perf_comm_event){
5485
		.task	= task,
5486 5487
		/* .comm      */
		/* .comm_size */
5488
		.event_id  = {
5489
			.header = {
5490
				.type = PERF_RECORD_COMM,
5491
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5492 5493 5494 5495
				/* .size */
			},
			/* .pid */
			/* .tid */
5496 5497 5498
		},
	};

5499
	perf_event_comm_event(&comm_event);
5500 5501
}

5502 5503 5504 5505 5506
/*
 * mmap tracking
 */

struct perf_mmap_event {
5507 5508 5509 5510
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5511 5512 5513
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5514
	u32			prot, flags;
5515 5516 5517 5518 5519 5520 5521 5522 5523

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5524
	} event_id;
5525 5526
};

5527 5528 5529 5530 5531 5532 5533 5534
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5535
	       (executable && (event->attr.mmap || event->attr.mmap2));
5536 5537
}

5538
static void perf_event_mmap_output(struct perf_event *event,
5539
				   void *data)
5540
{
5541
	struct perf_mmap_event *mmap_event = data;
5542
	struct perf_output_handle handle;
5543
	struct perf_sample_data sample;
5544
	int size = mmap_event->event_id.header.size;
5545
	int ret;
5546

5547 5548 5549
	if (!perf_event_mmap_match(event, data))
		return;

5550 5551 5552 5553 5554
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5555
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5556 5557
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5558 5559
	}

5560 5561
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5562
				mmap_event->event_id.header.size);
5563
	if (ret)
5564
		goto out;
5565

5566 5567
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5568

5569
	perf_output_put(&handle, mmap_event->event_id);
5570 5571 5572 5573 5574 5575

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5576 5577
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5578 5579
	}

5580
	__output_copy(&handle, mmap_event->file_name,
5581
				   mmap_event->file_size);
5582 5583 5584

	perf_event__output_id_sample(event, &handle, &sample);

5585
	perf_output_end(&handle);
5586 5587
out:
	mmap_event->event_id.header.size = size;
5588 5589
}

5590
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5591
{
5592 5593
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5594 5595
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5596
	u32 prot = 0, flags = 0;
5597 5598 5599
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5600
	char *name;
5601

5602
	if (file) {
5603 5604
		struct inode *inode;
		dev_t dev;
5605

5606
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5607
		if (!buf) {
5608 5609
			name = "//enomem";
			goto cpy_name;
5610
		}
5611
		/*
5612
		 * d_path() works from the end of the rb backwards, so we
5613 5614 5615
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5616
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5617
		if (IS_ERR(name)) {
5618 5619
			name = "//toolong";
			goto cpy_name;
5620
		}
5621 5622 5623 5624 5625 5626
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5649
		goto got_name;
5650
	} else {
5651 5652 5653 5654 5655 5656
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5657
		name = (char *)arch_vma_name(vma);
5658 5659
		if (name)
			goto cpy_name;
5660

5661
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5662
				vma->vm_end >= vma->vm_mm->brk) {
5663 5664
			name = "[heap]";
			goto cpy_name;
5665 5666
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5667
				vma->vm_end >= vma->vm_mm->start_stack) {
5668 5669
			name = "[stack]";
			goto cpy_name;
5670 5671
		}

5672 5673
		name = "//anon";
		goto cpy_name;
5674 5675
	}

5676 5677 5678
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5679
got_name:
5680 5681 5682 5683 5684 5685 5686 5687
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5688 5689 5690

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5691 5692 5693 5694
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5695 5696
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5697

5698 5699 5700
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5701
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5702

5703
	perf_event_aux(perf_event_mmap_output,
5704 5705
		       mmap_event,
		       NULL);
5706

5707 5708 5709
	kfree(buf);
}

5710
void perf_event_mmap(struct vm_area_struct *vma)
5711
{
5712 5713
	struct perf_mmap_event mmap_event;

5714
	if (!atomic_read(&nr_mmap_events))
5715 5716 5717
		return;

	mmap_event = (struct perf_mmap_event){
5718
		.vma	= vma,
5719 5720
		/* .file_name */
		/* .file_size */
5721
		.event_id  = {
5722
			.header = {
5723
				.type = PERF_RECORD_MMAP,
5724
				.misc = PERF_RECORD_MISC_USER,
5725 5726 5727 5728
				/* .size */
			},
			/* .pid */
			/* .tid */
5729 5730
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5731
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5732
		},
5733 5734 5735 5736
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5737 5738
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5739 5740
	};

5741
	perf_event_mmap_event(&mmap_event);
5742 5743
}

5744 5745 5746 5747
/*
 * IRQ throttle logging
 */

5748
static void perf_log_throttle(struct perf_event *event, int enable)
5749 5750
{
	struct perf_output_handle handle;
5751
	struct perf_sample_data sample;
5752 5753 5754 5755 5756
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5757
		u64				id;
5758
		u64				stream_id;
5759 5760
	} throttle_event = {
		.header = {
5761
			.type = PERF_RECORD_THROTTLE,
5762 5763 5764
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5765
		.time		= perf_clock(),
5766 5767
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5768 5769
	};

5770
	if (enable)
5771
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5772

5773 5774 5775
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5776
				throttle_event.header.size);
5777 5778 5779 5780
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5781
	perf_event__output_id_sample(event, &handle, &sample);
5782 5783 5784
	perf_output_end(&handle);
}

5785
/*
5786
 * Generic event overflow handling, sampling.
5787 5788
 */

5789
static int __perf_event_overflow(struct perf_event *event,
5790 5791
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5792
{
5793 5794
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5795
	u64 seq;
5796 5797
	int ret = 0;

5798 5799 5800 5801 5802 5803 5804
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5805 5806 5807 5808 5809 5810 5811 5812 5813
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5814 5815
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5816
			tick_nohz_full_kick();
5817 5818
			ret = 1;
		}
5819
	}
5820

5821
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5822
		u64 now = perf_clock();
5823
		s64 delta = now - hwc->freq_time_stamp;
5824

5825
		hwc->freq_time_stamp = now;
5826

5827
		if (delta > 0 && delta < 2*TICK_NSEC)
5828
			perf_adjust_period(event, delta, hwc->last_period, true);
5829 5830
	}

5831 5832
	/*
	 * XXX event_limit might not quite work as expected on inherited
5833
	 * events
5834 5835
	 */

5836 5837
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5838
		ret = 1;
5839
		event->pending_kill = POLL_HUP;
5840 5841
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5842 5843
	}

5844
	if (event->overflow_handler)
5845
		event->overflow_handler(event, data, regs);
5846
	else
5847
		perf_event_output(event, data, regs);
5848

P
Peter Zijlstra 已提交
5849
	if (event->fasync && event->pending_kill) {
5850 5851
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5852 5853
	}

5854
	return ret;
5855 5856
}

5857
int perf_event_overflow(struct perf_event *event,
5858 5859
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5860
{
5861
	return __perf_event_overflow(event, 1, data, regs);
5862 5863
}

5864
/*
5865
 * Generic software event infrastructure
5866 5867
 */

5868 5869 5870 5871 5872 5873 5874
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5875 5876 5877

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5878 5879 5880 5881
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5882
/*
5883 5884
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5885 5886 5887 5888
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5889
u64 perf_swevent_set_period(struct perf_event *event)
5890
{
5891
	struct hw_perf_event *hwc = &event->hw;
5892 5893 5894 5895 5896
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5897 5898

again:
5899
	old = val = local64_read(&hwc->period_left);
5900 5901
	if (val < 0)
		return 0;
5902

5903 5904 5905
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5906
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5907
		goto again;
5908

5909
	return nr;
5910 5911
}

5912
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5913
				    struct perf_sample_data *data,
5914
				    struct pt_regs *regs)
5915
{
5916
	struct hw_perf_event *hwc = &event->hw;
5917
	int throttle = 0;
5918

5919 5920
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5921

5922 5923
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5924

5925
	for (; overflow; overflow--) {
5926
		if (__perf_event_overflow(event, throttle,
5927
					    data, regs)) {
5928 5929 5930 5931 5932 5933
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5934
		throttle = 1;
5935
	}
5936 5937
}

P
Peter Zijlstra 已提交
5938
static void perf_swevent_event(struct perf_event *event, u64 nr,
5939
			       struct perf_sample_data *data,
5940
			       struct pt_regs *regs)
5941
{
5942
	struct hw_perf_event *hwc = &event->hw;
5943

5944
	local64_add(nr, &event->count);
5945

5946 5947 5948
	if (!regs)
		return;

5949
	if (!is_sampling_event(event))
5950
		return;
5951

5952 5953 5954 5955 5956 5957
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5958
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5959
		return perf_swevent_overflow(event, 1, data, regs);
5960

5961
	if (local64_add_negative(nr, &hwc->period_left))
5962
		return;
5963

5964
	perf_swevent_overflow(event, 0, data, regs);
5965 5966
}

5967 5968 5969
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5970
	if (event->hw.state & PERF_HES_STOPPED)
5971
		return 1;
P
Peter Zijlstra 已提交
5972

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5984
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5985
				enum perf_type_id type,
L
Li Zefan 已提交
5986 5987 5988
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5989
{
5990
	if (event->attr.type != type)
5991
		return 0;
5992

5993
	if (event->attr.config != event_id)
5994 5995
		return 0;

5996 5997
	if (perf_exclude_event(event, regs))
		return 0;
5998 5999 6000 6001

	return 1;
}

6002 6003 6004 6005 6006 6007 6008
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6009 6010
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6011
{
6012 6013 6014 6015
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6016

6017 6018
/* For the read side: events when they trigger */
static inline struct hlist_head *
6019
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6020 6021
{
	struct swevent_hlist *hlist;
6022

6023
	hlist = rcu_dereference(swhash->swevent_hlist);
6024 6025 6026
	if (!hlist)
		return NULL;

6027 6028 6029 6030 6031
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6032
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6043
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6044 6045 6046 6047 6048
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6049 6050 6051
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6052
				    u64 nr,
6053 6054
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6055
{
6056
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6057
	struct perf_event *event;
6058
	struct hlist_head *head;
6059

6060
	rcu_read_lock();
6061
	head = find_swevent_head_rcu(swhash, type, event_id);
6062 6063 6064
	if (!head)
		goto end;

6065
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6066
		if (perf_swevent_match(event, type, event_id, data, regs))
6067
			perf_swevent_event(event, nr, data, regs);
6068
	}
6069 6070
end:
	rcu_read_unlock();
6071 6072
}

6073 6074
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6075
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6076
{
6077
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6078

6079
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6080
}
I
Ingo Molnar 已提交
6081
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6082

6083
inline void perf_swevent_put_recursion_context(int rctx)
6084
{
6085
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6086

6087
	put_recursion_context(swhash->recursion, rctx);
6088
}
6089

6090
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6091
{
6092
	struct perf_sample_data data;
6093

6094
	if (WARN_ON_ONCE(!regs))
6095
		return;
6096

6097
	perf_sample_data_init(&data, addr, 0);
6098
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6111 6112

	perf_swevent_put_recursion_context(rctx);
6113
fail:
6114
	preempt_enable_notrace();
6115 6116
}

6117
static void perf_swevent_read(struct perf_event *event)
6118 6119 6120
{
}

P
Peter Zijlstra 已提交
6121
static int perf_swevent_add(struct perf_event *event, int flags)
6122
{
6123
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6124
	struct hw_perf_event *hwc = &event->hw;
6125 6126
	struct hlist_head *head;

6127
	if (is_sampling_event(event)) {
6128
		hwc->last_period = hwc->sample_period;
6129
		perf_swevent_set_period(event);
6130
	}
6131

P
Peter Zijlstra 已提交
6132 6133
	hwc->state = !(flags & PERF_EF_START);

6134
	head = find_swevent_head(swhash, event);
6135 6136 6137 6138 6139 6140
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6141
		return -EINVAL;
6142
	}
6143 6144

	hlist_add_head_rcu(&event->hlist_entry, head);
6145
	perf_event_update_userpage(event);
6146

6147 6148 6149
	return 0;
}

P
Peter Zijlstra 已提交
6150
static void perf_swevent_del(struct perf_event *event, int flags)
6151
{
6152
	hlist_del_rcu(&event->hlist_entry);
6153 6154
}

P
Peter Zijlstra 已提交
6155
static void perf_swevent_start(struct perf_event *event, int flags)
6156
{
P
Peter Zijlstra 已提交
6157
	event->hw.state = 0;
6158
}
I
Ingo Molnar 已提交
6159

P
Peter Zijlstra 已提交
6160
static void perf_swevent_stop(struct perf_event *event, int flags)
6161
{
P
Peter Zijlstra 已提交
6162
	event->hw.state = PERF_HES_STOPPED;
6163 6164
}

6165 6166
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6167
swevent_hlist_deref(struct swevent_htable *swhash)
6168
{
6169 6170
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6171 6172
}

6173
static void swevent_hlist_release(struct swevent_htable *swhash)
6174
{
6175
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6176

6177
	if (!hlist)
6178 6179
		return;

6180
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6181
	kfree_rcu(hlist, rcu_head);
6182 6183 6184 6185
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6186
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6187

6188
	mutex_lock(&swhash->hlist_mutex);
6189

6190 6191
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6192

6193
	mutex_unlock(&swhash->hlist_mutex);
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6206
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6207 6208
	int err = 0;

6209
	mutex_lock(&swhash->hlist_mutex);
6210

6211
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6212 6213 6214 6215 6216 6217 6218
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6219
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6220
	}
6221
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6222
exit:
6223
	mutex_unlock(&swhash->hlist_mutex);
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6244
fail:
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6255
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6256

6257 6258 6259
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6260

6261 6262
	WARN_ON(event->parent);

6263
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6264 6265 6266 6267 6268
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6269
	u64 event_id = event->attr.config;
6270 6271 6272 6273

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6274 6275 6276 6277 6278 6279
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6280 6281 6282 6283 6284 6285 6286 6287 6288
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6289
	if (event_id >= PERF_COUNT_SW_MAX)
6290 6291 6292 6293 6294 6295 6296 6297 6298
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6299
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6300 6301 6302 6303 6304 6305 6306
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6307
	.task_ctx_nr	= perf_sw_context,
6308

6309
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6310 6311 6312 6313
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6314 6315 6316
	.read		= perf_swevent_read,
};

6317 6318
#ifdef CONFIG_EVENT_TRACING

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6333 6334
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6335 6336 6337 6338
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6339 6340 6341 6342 6343 6344 6345 6346 6347
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6348 6349
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6350 6351
{
	struct perf_sample_data data;
6352 6353
	struct perf_event *event;

6354 6355 6356 6357 6358
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6359
	perf_sample_data_init(&data, addr, 0);
6360 6361
	data.raw = &raw;

6362
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6363
		if (perf_tp_event_match(event, &data, regs))
6364
			perf_swevent_event(event, count, &data, regs);
6365
	}
6366

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6392
	perf_swevent_put_recursion_context(rctx);
6393 6394 6395
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6396
static void tp_perf_event_destroy(struct perf_event *event)
6397
{
6398
	perf_trace_destroy(event);
6399 6400
}

6401
static int perf_tp_event_init(struct perf_event *event)
6402
{
6403 6404
	int err;

6405 6406 6407
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6408 6409 6410 6411 6412 6413
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6414 6415
	err = perf_trace_init(event);
	if (err)
6416
		return err;
6417

6418
	event->destroy = tp_perf_event_destroy;
6419

6420 6421 6422 6423
	return 0;
}

static struct pmu perf_tracepoint = {
6424 6425
	.task_ctx_nr	= perf_sw_context,

6426
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6427 6428 6429 6430
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6431 6432 6433 6434 6435
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6436
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6437
}
L
Li Zefan 已提交
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6462
#else
L
Li Zefan 已提交
6463

6464
static inline void perf_tp_register(void)
6465 6466
{
}
L
Li Zefan 已提交
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6477
#endif /* CONFIG_EVENT_TRACING */
6478

6479
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6480
void perf_bp_event(struct perf_event *bp, void *data)
6481
{
6482 6483 6484
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6485
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6486

P
Peter Zijlstra 已提交
6487
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6488
		perf_swevent_event(bp, 1, &sample, regs);
6489 6490 6491
}
#endif

6492 6493 6494
/*
 * hrtimer based swevent callback
 */
6495

6496
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6497
{
6498 6499 6500 6501 6502
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6503

6504
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6505 6506 6507 6508

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6509
	event->pmu->read(event);
6510

6511
	perf_sample_data_init(&data, 0, event->hw.last_period);
6512 6513 6514
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6515
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6516
			if (__perf_event_overflow(event, 1, &data, regs))
6517 6518
				ret = HRTIMER_NORESTART;
	}
6519

6520 6521
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6522

6523
	return ret;
6524 6525
}

6526
static void perf_swevent_start_hrtimer(struct perf_event *event)
6527
{
6528
	struct hw_perf_event *hwc = &event->hw;
6529 6530 6531 6532
	s64 period;

	if (!is_sampling_event(event))
		return;
6533

6534 6535 6536 6537
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6538

6539 6540 6541 6542 6543
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6544
				ns_to_ktime(period), 0,
6545
				HRTIMER_MODE_REL_PINNED, 0);
6546
}
6547 6548

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6549
{
6550 6551
	struct hw_perf_event *hwc = &event->hw;

6552
	if (is_sampling_event(event)) {
6553
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6554
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6555 6556 6557

		hrtimer_cancel(&hwc->hrtimer);
	}
6558 6559
}

P
Peter Zijlstra 已提交
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6580
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6581 6582 6583 6584
		event->attr.freq = 0;
	}
}

6585 6586 6587 6588 6589
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6590
{
6591 6592 6593
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6594
	now = local_clock();
6595 6596
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6597 6598
}

P
Peter Zijlstra 已提交
6599
static void cpu_clock_event_start(struct perf_event *event, int flags)
6600
{
P
Peter Zijlstra 已提交
6601
	local64_set(&event->hw.prev_count, local_clock());
6602 6603 6604
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6605
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6606
{
6607 6608 6609
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6610

P
Peter Zijlstra 已提交
6611 6612 6613 6614
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6615
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6616 6617 6618 6619 6620 6621 6622 6623 6624

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6625 6626 6627 6628
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6629

6630 6631 6632 6633 6634 6635 6636 6637
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6638 6639 6640 6641 6642 6643
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6644 6645
	perf_swevent_init_hrtimer(event);

6646
	return 0;
6647 6648
}

6649
static struct pmu perf_cpu_clock = {
6650 6651
	.task_ctx_nr	= perf_sw_context,

6652
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6653 6654 6655 6656
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6657 6658 6659 6660 6661 6662 6663 6664
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6665
{
6666 6667
	u64 prev;
	s64 delta;
6668

6669 6670 6671 6672
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6673

P
Peter Zijlstra 已提交
6674
static void task_clock_event_start(struct perf_event *event, int flags)
6675
{
P
Peter Zijlstra 已提交
6676
	local64_set(&event->hw.prev_count, event->ctx->time);
6677 6678 6679
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6680
static void task_clock_event_stop(struct perf_event *event, int flags)
6681 6682 6683
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6684 6685 6686 6687 6688 6689
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6690
	perf_event_update_userpage(event);
6691

P
Peter Zijlstra 已提交
6692 6693 6694 6695 6696 6697
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6698 6699 6700 6701
}

static void task_clock_event_read(struct perf_event *event)
{
6702 6703 6704
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6705 6706 6707 6708 6709

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6710
{
6711 6712 6713 6714 6715 6716
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6717 6718 6719 6720 6721 6722
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6723 6724
	perf_swevent_init_hrtimer(event);

6725
	return 0;
L
Li Zefan 已提交
6726 6727
}

6728
static struct pmu perf_task_clock = {
6729 6730
	.task_ctx_nr	= perf_sw_context,

6731
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6732 6733 6734 6735
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6736 6737
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6738

P
Peter Zijlstra 已提交
6739
static void perf_pmu_nop_void(struct pmu *pmu)
6740 6741
{
}
L
Li Zefan 已提交
6742

P
Peter Zijlstra 已提交
6743
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6744
{
P
Peter Zijlstra 已提交
6745
	return 0;
L
Li Zefan 已提交
6746 6747
}

P
Peter Zijlstra 已提交
6748
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6749
{
P
Peter Zijlstra 已提交
6750
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6751 6752
}

P
Peter Zijlstra 已提交
6753 6754 6755 6756 6757
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6758

P
Peter Zijlstra 已提交
6759
static void perf_pmu_cancel_txn(struct pmu *pmu)
6760
{
P
Peter Zijlstra 已提交
6761
	perf_pmu_enable(pmu);
6762 6763
}

6764 6765
static int perf_event_idx_default(struct perf_event *event)
{
6766
	return 0;
6767 6768
}

P
Peter Zijlstra 已提交
6769 6770 6771 6772
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6773
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6774
{
P
Peter Zijlstra 已提交
6775
	struct pmu *pmu;
6776

P
Peter Zijlstra 已提交
6777 6778
	if (ctxn < 0)
		return NULL;
6779

P
Peter Zijlstra 已提交
6780 6781 6782 6783
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6784

P
Peter Zijlstra 已提交
6785
	return NULL;
6786 6787
}

6788
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6789
{
6790 6791 6792 6793 6794 6795 6796
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6797 6798
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6799 6800 6801 6802 6803 6804
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6805

P
Peter Zijlstra 已提交
6806
	mutex_lock(&pmus_lock);
6807
	/*
P
Peter Zijlstra 已提交
6808
	 * Like a real lame refcount.
6809
	 */
6810 6811 6812
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6813
			goto out;
6814
		}
P
Peter Zijlstra 已提交
6815
	}
6816

6817
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6818 6819
out:
	mutex_unlock(&pmus_lock);
6820
}
P
Peter Zijlstra 已提交
6821
static struct idr pmu_idr;
6822

P
Peter Zijlstra 已提交
6823 6824 6825 6826 6827 6828 6829
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6830
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6831

6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6875
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6876

6877 6878 6879 6880
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6881
};
6882
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6883 6884 6885 6886

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6887
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6903
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6924
static struct lock_class_key cpuctx_mutex;
6925
static struct lock_class_key cpuctx_lock;
6926

6927
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6928
{
P
Peter Zijlstra 已提交
6929
	int cpu, ret;
6930

6931
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6932 6933 6934 6935
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6936

P
Peter Zijlstra 已提交
6937 6938 6939 6940 6941 6942
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6943 6944 6945
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6946 6947 6948 6949 6950
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6951 6952 6953 6954 6955 6956
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6957
skip_type:
P
Peter Zijlstra 已提交
6958 6959 6960
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6961

W
Wei Yongjun 已提交
6962
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6963 6964
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6965
		goto free_dev;
6966

P
Peter Zijlstra 已提交
6967 6968 6969 6970
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6971
		__perf_event_init_context(&cpuctx->ctx);
6972
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6973
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6974
		cpuctx->ctx.pmu = pmu;
6975 6976 6977

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6978
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6979
	}
6980

P
Peter Zijlstra 已提交
6981
got_cpu_context:
P
Peter Zijlstra 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6996
		}
6997
	}
6998

P
Peter Zijlstra 已提交
6999 7000 7001 7002 7003
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7004 7005 7006
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7007
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
7008 7009
	ret = 0;
unlock:
7010 7011
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7012
	return ret;
P
Peter Zijlstra 已提交
7013

P
Peter Zijlstra 已提交
7014 7015 7016 7017
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7018 7019 7020 7021
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7022 7023 7024
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7025
}
7026
EXPORT_SYMBOL_GPL(perf_pmu_register);
7027

7028
void perf_pmu_unregister(struct pmu *pmu)
7029
{
7030 7031 7032
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7033

7034
	/*
P
Peter Zijlstra 已提交
7035 7036
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7037
	 */
7038
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7039
	synchronize_rcu();
7040

P
Peter Zijlstra 已提交
7041
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7042 7043
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7044 7045
	device_del(pmu->dev);
	put_device(pmu->dev);
7046
	free_pmu_context(pmu);
7047
}
7048
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7049

7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
	event->pmu = pmu;
	ret = pmu->event_init(event);
	if (ret)
		module_put(pmu->module);

	return ret;
}

7064 7065 7066 7067
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7068
	int ret;
7069 7070

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7071 7072 7073 7074

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7075
	if (pmu) {
7076
		ret = perf_try_init_event(pmu, event);
7077 7078
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7079
		goto unlock;
7080
	}
P
Peter Zijlstra 已提交
7081

7082
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7083
		ret = perf_try_init_event(pmu, event);
7084
		if (!ret)
P
Peter Zijlstra 已提交
7085
			goto unlock;
7086

7087 7088
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7089
			goto unlock;
7090
		}
7091
	}
P
Peter Zijlstra 已提交
7092 7093
	pmu = ERR_PTR(-ENOENT);
unlock:
7094
	srcu_read_unlock(&pmus_srcu, idx);
7095

7096
	return pmu;
7097 7098
}

7099 7100 7101 7102 7103 7104 7105 7106 7107
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7108 7109
static void account_event(struct perf_event *event)
{
7110 7111 7112
	if (event->parent)
		return;

7113 7114 7115 7116 7117 7118 7119 7120
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7121 7122 7123 7124
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7125
	if (has_branch_stack(event))
7126
		static_key_slow_inc(&perf_sched_events.key);
7127
	if (is_cgroup_event(event))
7128
		static_key_slow_inc(&perf_sched_events.key);
7129 7130

	account_event_cpu(event, event->cpu);
7131 7132
}

T
Thomas Gleixner 已提交
7133
/*
7134
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7135
 */
7136
static struct perf_event *
7137
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7138 7139 7140
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7141 7142
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7143
{
P
Peter Zijlstra 已提交
7144
	struct pmu *pmu;
7145 7146
	struct perf_event *event;
	struct hw_perf_event *hwc;
7147
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7148

7149 7150 7151 7152 7153
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7154
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7155
	if (!event)
7156
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7157

7158
	/*
7159
	 * Single events are their own group leaders, with an
7160 7161 7162
	 * empty sibling list:
	 */
	if (!group_leader)
7163
		group_leader = event;
7164

7165 7166
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7167

7168 7169 7170
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7171
	INIT_LIST_HEAD(&event->rb_entry);
7172
	INIT_LIST_HEAD(&event->active_entry);
7173 7174
	INIT_HLIST_NODE(&event->hlist_entry);

7175

7176
	init_waitqueue_head(&event->waitq);
7177
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7178

7179
	mutex_init(&event->mmap_mutex);
7180

7181
	atomic_long_set(&event->refcount, 1);
7182 7183 7184 7185 7186
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7187

7188
	event->parent		= parent_event;
7189

7190
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7191
	event->id		= atomic64_inc_return(&perf_event_id);
7192

7193
	event->state		= PERF_EVENT_STATE_INACTIVE;
7194

7195 7196
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7197 7198 7199

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7200 7201 7202 7203
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7204
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7205 7206 7207 7208
			event->hw.bp_target = task;
#endif
	}

7209
	if (!overflow_handler && parent_event) {
7210
		overflow_handler = parent_event->overflow_handler;
7211 7212
		context = parent_event->overflow_handler_context;
	}
7213

7214
	event->overflow_handler	= overflow_handler;
7215
	event->overflow_handler_context = context;
7216

J
Jiri Olsa 已提交
7217
	perf_event__state_init(event);
7218

7219
	pmu = NULL;
7220

7221
	hwc = &event->hw;
7222
	hwc->sample_period = attr->sample_period;
7223
	if (attr->freq && attr->sample_freq)
7224
		hwc->sample_period = 1;
7225
	hwc->last_period = hwc->sample_period;
7226

7227
	local64_set(&hwc->period_left, hwc->sample_period);
7228

7229
	/*
7230
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7231
	 */
7232
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7233
		goto err_ns;
7234

7235
	pmu = perf_init_event(event);
7236
	if (!pmu)
7237 7238
		goto err_ns;
	else if (IS_ERR(pmu)) {
7239
		err = PTR_ERR(pmu);
7240
		goto err_ns;
I
Ingo Molnar 已提交
7241
	}
7242

7243
	if (!event->parent) {
7244 7245
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7246 7247
			if (err)
				goto err_pmu;
7248
		}
7249
	}
7250

7251
	return event;
7252 7253 7254 7255

err_pmu:
	if (event->destroy)
		event->destroy(event);
7256
	module_put(pmu->module);
7257 7258 7259 7260 7261 7262
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7263 7264
}

7265 7266
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7267 7268
{
	u32 size;
7269
	int ret;
7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7294 7295 7296
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7297 7298
	 */
	if (size > sizeof(*attr)) {
7299 7300 7301
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7302

7303 7304
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7305

7306
		for (; addr < end; addr++) {
7307 7308 7309 7310 7311 7312
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7313
		size = sizeof(*attr);
7314 7315 7316 7317 7318 7319
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7320
	if (attr->__reserved_1)
7321 7322 7323 7324 7325 7326 7327 7328
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7357 7358
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7359 7360
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7361
	}
7362

7363
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7364
		ret = perf_reg_validate(attr->sample_regs_user);
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7383

7384 7385
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7386 7387 7388 7389 7390 7391 7392 7393 7394
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7395 7396
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7397
{
7398
	struct ring_buffer *rb = NULL;
7399 7400
	int ret = -EINVAL;

7401
	if (!output_event)
7402 7403
		goto set;

7404 7405
	/* don't allow circular references */
	if (event == output_event)
7406 7407
		goto out;

7408 7409 7410 7411 7412 7413 7414
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7415
	 * If its not a per-cpu rb, it must be the same task.
7416 7417 7418 7419
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7420
set:
7421
	mutex_lock(&event->mmap_mutex);
7422 7423 7424
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7425

7426
	if (output_event) {
7427 7428 7429
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7430
			goto unlock;
7431 7432
	}

7433
	ring_buffer_attach(event, rb);
7434

7435
	ret = 0;
7436 7437 7438
unlock:
	mutex_unlock(&event->mmap_mutex);

7439 7440 7441 7442
out:
	return ret;
}

P
Peter Zijlstra 已提交
7443 7444 7445 7446 7447 7448 7449 7450 7451
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7452
/**
7453
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7454
 *
7455
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7456
 * @pid:		target pid
I
Ingo Molnar 已提交
7457
 * @cpu:		target cpu
7458
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7459
 */
7460 7461
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7462
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7463
{
7464 7465
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7466
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7467
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7468
	struct file *event_file = NULL;
7469
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7470
	struct task_struct *task = NULL;
7471
	struct pmu *pmu;
7472
	int event_fd;
7473
	int move_group = 0;
7474
	int err;
7475
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7476

7477
	/* for future expandability... */
S
Stephane Eranian 已提交
7478
	if (flags & ~PERF_FLAG_ALL)
7479 7480
		return -EINVAL;

7481 7482 7483
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7484

7485 7486 7487 7488 7489
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7490
	if (attr.freq) {
7491
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7492
			return -EINVAL;
7493 7494 7495
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7496 7497
	}

S
Stephane Eranian 已提交
7498 7499 7500 7501 7502 7503 7504 7505 7506
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7507 7508 7509 7510
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7511 7512 7513
	if (event_fd < 0)
		return event_fd;

7514
	if (group_fd != -1) {
7515 7516
		err = perf_fget_light(group_fd, &group);
		if (err)
7517
			goto err_fd;
7518
		group_leader = group.file->private_data;
7519 7520 7521 7522 7523 7524
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7525
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7526 7527 7528 7529 7530 7531 7532
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7533 7534 7535 7536 7537 7538
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7539 7540
	get_online_cpus();

7541 7542
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7543 7544
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7545
		goto err_cpus;
7546 7547
	}

S
Stephane Eranian 已提交
7548 7549
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7550 7551
		if (err) {
			__free_event(event);
7552
			goto err_cpus;
7553
		}
S
Stephane Eranian 已提交
7554 7555
	}

7556 7557 7558 7559 7560 7561 7562
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7563 7564
	account_event(event);

7565 7566 7567 7568 7569
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7593 7594 7595 7596

	/*
	 * Get the target context (task or percpu):
	 */
7597
	ctx = find_get_context(pmu, task, event);
7598 7599
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7600
		goto err_alloc;
7601 7602
	}

7603 7604 7605 7606 7607
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7608
	/*
7609
	 * Look up the group leader (we will attach this event to it):
7610
	 */
7611
	if (group_leader) {
7612
		err = -EINVAL;
7613 7614

		/*
I
Ingo Molnar 已提交
7615 7616 7617 7618
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7619
			goto err_context;
I
Ingo Molnar 已提交
7620 7621 7622
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7623
		 */
7624
		if (move_group) {
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7638 7639 7640 7641 7642 7643
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7644 7645 7646
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7647
		if (attr.exclusive || attr.pinned)
7648
			goto err_context;
7649 7650 7651 7652 7653
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7654
			goto err_context;
7655
	}
T
Thomas Gleixner 已提交
7656

7657 7658
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7659 7660
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7661
		goto err_context;
7662
	}
7663

7664
	if (move_group) {
P
Peter Zijlstra 已提交
7665 7666 7667 7668 7669 7670 7671
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7672

7673
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7674

7675 7676
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7677
			perf_remove_from_context(sibling, false);
7678 7679
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7680 7681
	} else {
		mutex_lock(&ctx->mutex);
7682
	}
7683

7684
	WARN_ON_ONCE(ctx->parent_ctx);
7685 7686

	if (move_group) {
P
Peter Zijlstra 已提交
7687 7688 7689 7690
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7691
		synchronize_rcu();
P
Peter Zijlstra 已提交
7692

7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7703 7704
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7705
			perf_event__state_init(sibling);
7706
			perf_install_in_context(ctx, sibling, sibling->cpu);
7707 7708
			get_ctx(ctx);
		}
7709 7710 7711 7712 7713 7714 7715 7716 7717

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7718 7719
	}

7720
	perf_install_in_context(ctx, event, event->cpu);
7721
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7722 7723 7724 7725 7726

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7727
	mutex_unlock(&ctx->mutex);
7728

7729 7730
	put_online_cpus();

7731
	event->owner = current;
P
Peter Zijlstra 已提交
7732

7733 7734 7735
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7736

7737 7738 7739 7740
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7741
	perf_event__id_header_size(event);
7742

7743 7744 7745 7746 7747 7748
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7749
	fdput(group);
7750 7751
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7752

7753
err_context:
7754
	perf_unpin_context(ctx);
7755
	put_ctx(ctx);
7756
err_alloc:
7757
	free_event(event);
7758
err_cpus:
7759
	put_online_cpus();
7760
err_task:
P
Peter Zijlstra 已提交
7761 7762
	if (task)
		put_task_struct(task);
7763
err_group_fd:
7764
	fdput(group);
7765 7766
err_fd:
	put_unused_fd(event_fd);
7767
	return err;
T
Thomas Gleixner 已提交
7768 7769
}

7770 7771 7772 7773 7774
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7775
 * @task: task to profile (NULL for percpu)
7776 7777 7778
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7779
				 struct task_struct *task,
7780 7781
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7782 7783
{
	struct perf_event_context *ctx;
7784
	struct perf_event *event;
7785
	int err;
7786

7787 7788 7789
	/*
	 * Get the target context (task or percpu):
	 */
7790

7791 7792
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7793 7794 7795 7796
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7797

7798 7799 7800
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7801 7802
	account_event(event);

7803
	ctx = find_get_context(event->pmu, task, event);
7804 7805
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7806
		goto err_free;
7807
	}
7808 7809 7810 7811

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7812
	perf_unpin_context(ctx);
7813 7814 7815 7816
	mutex_unlock(&ctx->mutex);

	return event;

7817 7818 7819
err_free:
	free_event(event);
err:
7820
	return ERR_PTR(err);
7821
}
7822
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7823

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7834 7835 7836 7837 7838
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7839 7840
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7841
		perf_remove_from_context(event, false);
7842
		unaccount_event_cpu(event, src_cpu);
7843
		put_ctx(src_ctx);
7844
		list_add(&event->migrate_entry, &events);
7845 7846
	}

7847 7848 7849
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7850 7851
	synchronize_rcu();

7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7876 7877
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7878 7879
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7880
		account_event_cpu(event, dst_cpu);
7881 7882 7883 7884
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7885
	mutex_unlock(&src_ctx->mutex);
7886 7887 7888
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7889
static void sync_child_event(struct perf_event *child_event,
7890
			       struct task_struct *child)
7891
{
7892
	struct perf_event *parent_event = child_event->parent;
7893
	u64 child_val;
7894

7895 7896
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7897

P
Peter Zijlstra 已提交
7898
	child_val = perf_event_count(child_event);
7899 7900 7901 7902

	/*
	 * Add back the child's count to the parent's count:
	 */
7903
	atomic64_add(child_val, &parent_event->child_count);
7904 7905 7906 7907
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7908 7909

	/*
7910
	 * Remove this event from the parent's list
7911
	 */
7912 7913 7914 7915
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7916

7917 7918 7919 7920 7921 7922
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7923
	/*
7924
	 * Release the parent event, if this was the last
7925 7926
	 * reference to it.
	 */
7927
	put_event(parent_event);
7928 7929
}

7930
static void
7931 7932
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7933
			 struct task_struct *child)
7934
{
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7948

7949
	/*
7950
	 * It can happen that the parent exits first, and has events
7951
	 * that are still around due to the child reference. These
7952
	 * events need to be zapped.
7953
	 */
7954
	if (child_event->parent) {
7955 7956
		sync_child_event(child_event, child);
		free_event(child_event);
7957 7958 7959
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7960
	}
7961 7962
}

P
Peter Zijlstra 已提交
7963
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7964
{
7965
	struct perf_event *child_event, *next;
7966
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7967
	unsigned long flags;
7968

P
Peter Zijlstra 已提交
7969
	if (likely(!child->perf_event_ctxp[ctxn])) {
7970
		perf_event_task(child, NULL, 0);
7971
		return;
P
Peter Zijlstra 已提交
7972
	}
7973

7974
	local_irq_save(flags);
7975 7976 7977 7978 7979 7980
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7981
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7982 7983 7984

	/*
	 * Take the context lock here so that if find_get_context is
7985
	 * reading child->perf_event_ctxp, we wait until it has
7986 7987
	 * incremented the context's refcount before we do put_ctx below.
	 */
7988
	raw_spin_lock(&child_ctx->lock);
7989
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7990
	child->perf_event_ctxp[ctxn] = NULL;
7991

7992 7993 7994
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7995
	 * the events from it.
7996
	 */
7997
	clone_ctx = unclone_ctx(child_ctx);
7998
	update_context_time(child_ctx);
7999
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8000

8001 8002
	if (clone_ctx)
		put_ctx(clone_ctx);
8003

P
Peter Zijlstra 已提交
8004
	/*
8005 8006 8007
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8008
	 */
8009
	perf_event_task(child, child_ctx, 0);
8010

8011 8012 8013
	/*
	 * We can recurse on the same lock type through:
	 *
8014 8015
	 *   __perf_event_exit_task()
	 *     sync_child_event()
8016 8017
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
8018 8019 8020
	 *
	 * But since its the parent context it won't be the same instance.
	 */
8021
	mutex_lock(&child_ctx->mutex);
8022

8023
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8024
		__perf_event_exit_task(child_event, child_ctx, child);
8025

8026 8027 8028
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8029 8030
}

P
Peter Zijlstra 已提交
8031 8032 8033 8034 8035
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8036
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8037 8038
	int ctxn;

P
Peter Zijlstra 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8054 8055 8056 8057
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8070
	put_event(parent);
8071

P
Peter Zijlstra 已提交
8072
	raw_spin_lock_irq(&ctx->lock);
8073
	perf_group_detach(event);
8074
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8075
	raw_spin_unlock_irq(&ctx->lock);
8076 8077 8078
	free_event(event);
}

8079
/*
P
Peter Zijlstra 已提交
8080
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8081
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8082 8083 8084
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8085
 */
8086
void perf_event_free_task(struct task_struct *task)
8087
{
P
Peter Zijlstra 已提交
8088
	struct perf_event_context *ctx;
8089
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8090
	int ctxn;
8091

P
Peter Zijlstra 已提交
8092 8093 8094 8095
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8096

P
Peter Zijlstra 已提交
8097
		mutex_lock(&ctx->mutex);
8098
again:
P
Peter Zijlstra 已提交
8099 8100 8101
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8102

P
Peter Zijlstra 已提交
8103 8104 8105
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8106

P
Peter Zijlstra 已提交
8107 8108 8109
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8110

P
Peter Zijlstra 已提交
8111
		mutex_unlock(&ctx->mutex);
8112

P
Peter Zijlstra 已提交
8113 8114
		put_ctx(ctx);
	}
8115 8116
}

8117 8118 8119 8120 8121 8122 8123 8124
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8136
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8137
	struct perf_event *child_event;
8138
	unsigned long flags;
P
Peter Zijlstra 已提交
8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8151
					   child,
P
Peter Zijlstra 已提交
8152
					   group_leader, parent_event,
8153
				           NULL, NULL);
P
Peter Zijlstra 已提交
8154 8155
	if (IS_ERR(child_event))
		return child_event;
8156

8157 8158
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8159 8160 8161 8162
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8163 8164 8165 8166 8167 8168 8169
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8170
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8187 8188
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8189

8190 8191 8192 8193
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8194
	perf_event__id_header_size(child_event);
8195

P
Peter Zijlstra 已提交
8196 8197 8198
	/*
	 * Link it up in the child's context:
	 */
8199
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8200
	add_event_to_ctx(child_event, child_ctx);
8201
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8235 8236 8237 8238 8239
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8240
		   struct task_struct *child, int ctxn,
8241 8242 8243
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8244
	struct perf_event_context *child_ctx;
8245 8246 8247 8248

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8249 8250
	}

8251
	child_ctx = child->perf_event_ctxp[ctxn];
8252 8253 8254 8255 8256 8257 8258
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8259

8260
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8261 8262
		if (!child_ctx)
			return -ENOMEM;
8263

P
Peter Zijlstra 已提交
8264
		child->perf_event_ctxp[ctxn] = child_ctx;
8265 8266 8267 8268 8269 8270 8271 8272 8273
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8274 8275
}

8276
/*
8277
 * Initialize the perf_event context in task_struct
8278
 */
8279
static int perf_event_init_context(struct task_struct *child, int ctxn)
8280
{
8281
	struct perf_event_context *child_ctx, *parent_ctx;
8282 8283
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8284
	struct task_struct *parent = current;
8285
	int inherited_all = 1;
8286
	unsigned long flags;
8287
	int ret = 0;
8288

P
Peter Zijlstra 已提交
8289
	if (likely(!parent->perf_event_ctxp[ctxn]))
8290 8291
		return 0;

8292
	/*
8293 8294
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8295
	 */
P
Peter Zijlstra 已提交
8296
	parent_ctx = perf_pin_task_context(parent, ctxn);
8297 8298
	if (!parent_ctx)
		return 0;
8299

8300 8301 8302 8303 8304 8305 8306
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8307 8308 8309 8310
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8311
	mutex_lock(&parent_ctx->mutex);
8312 8313 8314 8315 8316

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8317
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8318 8319
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8320 8321 8322
		if (ret)
			break;
	}
8323

8324 8325 8326 8327 8328 8329 8330 8331 8332
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8333
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8334 8335
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8336
		if (ret)
8337
			break;
8338 8339
	}

8340 8341 8342
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8343
	child_ctx = child->perf_event_ctxp[ctxn];
8344

8345
	if (child_ctx && inherited_all) {
8346 8347 8348
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8349 8350 8351
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8352
		 */
P
Peter Zijlstra 已提交
8353
		cloned_ctx = parent_ctx->parent_ctx;
8354 8355
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8356
			child_ctx->parent_gen = parent_ctx->parent_gen;
8357 8358 8359 8360 8361
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8362 8363
	}

P
Peter Zijlstra 已提交
8364
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8365
	mutex_unlock(&parent_ctx->mutex);
8366

8367
	perf_unpin_context(parent_ctx);
8368
	put_ctx(parent_ctx);
8369

8370
	return ret;
8371 8372
}

P
Peter Zijlstra 已提交
8373 8374 8375 8376 8377 8378 8379
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8380 8381 8382 8383
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8384 8385
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8386 8387
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8388
			return ret;
P
Peter Zijlstra 已提交
8389
		}
P
Peter Zijlstra 已提交
8390 8391 8392 8393 8394
	}

	return 0;
}

8395 8396
static void __init perf_event_init_all_cpus(void)
{
8397
	struct swevent_htable *swhash;
8398 8399 8400
	int cpu;

	for_each_possible_cpu(cpu) {
8401 8402
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8403
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8404 8405 8406
	}
}

8407
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8408
{
P
Peter Zijlstra 已提交
8409
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8410

8411
	mutex_lock(&swhash->hlist_mutex);
8412
	swhash->online = true;
8413
	if (swhash->hlist_refcount > 0) {
8414 8415
		struct swevent_hlist *hlist;

8416 8417 8418
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8419
	}
8420
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8421 8422
}

P
Peter Zijlstra 已提交
8423
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8424
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8425
{
8426
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8427
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8428

P
Peter Zijlstra 已提交
8429
	rcu_read_lock();
8430 8431
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8432
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8433
}
P
Peter Zijlstra 已提交
8434 8435 8436 8437 8438 8439 8440 8441 8442

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8443
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8444 8445 8446 8447 8448 8449 8450 8451

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8452
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8453
{
8454
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8455

P
Peter Zijlstra 已提交
8456 8457
	perf_event_exit_cpu_context(cpu);

8458
	mutex_lock(&swhash->hlist_mutex);
8459
	swhash->online = false;
8460 8461
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8462 8463
}
#else
8464
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8465 8466
#endif

P
Peter Zijlstra 已提交
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8487
static int
T
Thomas Gleixner 已提交
8488 8489 8490 8491
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8492
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8493 8494

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8495
	case CPU_DOWN_FAILED:
8496
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8497 8498
		break;

P
Peter Zijlstra 已提交
8499
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8500
	case CPU_DOWN_PREPARE:
8501
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8502 8503 8504 8505 8506 8507 8508 8509
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8510
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8511
{
8512 8513
	int ret;

P
Peter Zijlstra 已提交
8514 8515
	idr_init(&pmu_idr);

8516
	perf_event_init_all_cpus();
8517
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8518 8519 8520
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8521 8522
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8523
	register_reboot_notifier(&perf_reboot_notifier);
8524 8525 8526

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8527 8528 8529

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8530 8531 8532 8533 8534 8535 8536

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8537
}
P
Peter Zijlstra 已提交
8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8566 8567

#ifdef CONFIG_CGROUP_PERF
8568 8569
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8570 8571 8572
{
	struct perf_cgroup *jc;

8573
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8586
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8587
{
8588 8589
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8601 8602
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8603
{
8604 8605
	struct task_struct *task;

8606
	cgroup_taskset_for_each(task, tset)
8607
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8608 8609
}

8610 8611
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8612
			     struct task_struct *task)
S
Stephane Eranian 已提交
8613 8614 8615 8616 8617 8618 8619 8620 8621
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8622
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8623 8624
}

8625
struct cgroup_subsys perf_event_cgrp_subsys = {
8626 8627
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8628
	.exit		= perf_cgroup_exit,
8629
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8630 8631
};
#endif /* CONFIG_CGROUP_PERF */