core.c 169.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/vmalloc.h>
29 30
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
31 32 33
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
34
#include <linux/kernel_stat.h>
35
#include <linux/perf_event.h>
L
Li Zefan 已提交
36
#include <linux/ftrace_event.h>
37
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
38

39 40
#include <asm/irq_regs.h>

41
struct remote_function_call {
42 43 44 45
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
79 80 81 82
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
103 104 105 106
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
107 108 109 110 111 112 113
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
114 115 116 117
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

118 119 120 121 122 123
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
124 125 126 127
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
128
struct jump_label_key perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
129 130
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);

131 132 133
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
134

P
Peter Zijlstra 已提交
135 136 137 138
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

139
/*
140
 * perf event paranoia level:
141 142
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
143
 *   1 - disallow cpu events for unpriv
144
 *   2 - disallow kernel profiling for unpriv
145
 */
146
int sysctl_perf_event_paranoid __read_mostly = 1;
147

148 149
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150 151

/*
152
 * max perf event sample rate
153
 */
P
Peter Zijlstra 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
172

173
static atomic64_t perf_event_id;
174

175 176 177 178
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
179 180 181 182 183
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
184

185
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
186

187
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
188
{
189
	return "pmu";
T
Thomas Gleixner 已提交
190 191
}

192 193 194 195 196
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
197 198 199 200 201 202
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
219 220
#ifdef CONFIG_CGROUP_PERF

221 222 223 224 225
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

static inline void perf_get_cgroup(struct perf_event *event)
{
	css_get(&event->cgrp->css);
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
293 294
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
295
	/*
296 297
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
298
	 */
299
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
300 301
		return;

302 303 304 305 306 307
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
308 309 310
}

static inline void
311 312
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
313 314 315 316
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

317 318 319 320 321 322
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
323 324 325 326
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
327
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
369 370
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
371 372 373 374 375 376 377 378 379 380 381

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
382
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
383 384 385 386 387 388 389
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
390 391
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
	perf_cgroup_switch(task, PERF_CGROUP_SWIN);
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
424 425 426 427
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
428 429 430 431

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

432 433 434
	/* must be done before we fput() the file */
	perf_get_cgroup(event);

S
Stephane Eranian 已提交
435 436 437 438 439 440 441 442 443
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
444
out:
S
Stephane Eranian 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

static inline void perf_cgroup_sched_out(struct task_struct *task)
{
}

static inline void perf_cgroup_sched_in(struct task_struct *task)
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
535 536
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
567
void perf_pmu_disable(struct pmu *pmu)
568
{
P
Peter Zijlstra 已提交
569 570 571
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
572 573
}

P
Peter Zijlstra 已提交
574
void perf_pmu_enable(struct pmu *pmu)
575
{
P
Peter Zijlstra 已提交
576 577 578
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
579 580
}

581 582 583 584 585 586 587
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
588
static void perf_pmu_rotate_start(struct pmu *pmu)
589
{
P
Peter Zijlstra 已提交
590
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
591
	struct list_head *head = &__get_cpu_var(rotation_list);
592

593
	WARN_ON(!irqs_disabled());
594

595 596
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
597 598
}

599
static void get_ctx(struct perf_event_context *ctx)
600
{
601
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
602 603
}

604
static void put_ctx(struct perf_event_context *ctx)
605
{
606 607 608
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
609 610
		if (ctx->task)
			put_task_struct(ctx->task);
611
		kfree_rcu(ctx, rcu_head);
612
	}
613 614
}

615
static void unclone_ctx(struct perf_event_context *ctx)
616 617 618 619 620 621 622
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

645
/*
646
 * If we inherit events we want to return the parent event id
647 648
 * to userspace.
 */
649
static u64 primary_event_id(struct perf_event *event)
650
{
651
	u64 id = event->id;
652

653 654
	if (event->parent)
		id = event->parent->id;
655 656 657 658

	return id;
}

659
/*
660
 * Get the perf_event_context for a task and lock it.
661 662 663
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
664
static struct perf_event_context *
P
Peter Zijlstra 已提交
665
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
666
{
667
	struct perf_event_context *ctx;
668 669

	rcu_read_lock();
P
Peter Zijlstra 已提交
670
retry:
P
Peter Zijlstra 已提交
671
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
672 673 674 675
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
676
		 * perf_event_task_sched_out, though the
677 678 679 680 681 682
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
683
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
684
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
685
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
686 687
			goto retry;
		}
688 689

		if (!atomic_inc_not_zero(&ctx->refcount)) {
690
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
691 692
			ctx = NULL;
		}
693 694 695 696 697 698 699 700 701 702
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
703 704
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
705
{
706
	struct perf_event_context *ctx;
707 708
	unsigned long flags;

P
Peter Zijlstra 已提交
709
	ctx = perf_lock_task_context(task, ctxn, &flags);
710 711
	if (ctx) {
		++ctx->pin_count;
712
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
713 714 715 716
	}
	return ctx;
}

717
static void perf_unpin_context(struct perf_event_context *ctx)
718 719 720
{
	unsigned long flags;

721
	raw_spin_lock_irqsave(&ctx->lock, flags);
722
	--ctx->pin_count;
723
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

737 738 739
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
740 741 742 743

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

744 745 746
	return ctx ? ctx->time : 0;
}

747 748 749 750 751 752 753 754 755 756 757
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
758 759 760 761 762 763 764 765 766 767 768
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
769
		run_end = perf_event_time(event);
S
Stephane Eranian 已提交
770 771
	else if (ctx->is_active)
		run_end = ctx->time;
772 773 774 775
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
776 777 778 779

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
780
		run_end = perf_event_time(event);
781 782

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
783

784 785
}

786 787 788 789 790 791 792 793 794 795 796 797
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

798 799 800 801 802 803 804 805 806
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

807
/*
808
 * Add a event from the lists for its context.
809 810
 * Must be called with ctx->mutex and ctx->lock held.
 */
811
static void
812
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
813
{
814 815
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
816 817

	/*
818 819 820
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
821
	 */
822
	if (event->group_leader == event) {
823 824
		struct list_head *list;

825 826 827
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

828 829
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
830
	}
P
Peter Zijlstra 已提交
831

832
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
833 834
		ctx->nr_cgroups++;

835
	list_add_rcu(&event->event_entry, &ctx->event_list);
836
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
837
		perf_pmu_rotate_start(ctx->pmu);
838 839
	ctx->nr_events++;
	if (event->attr.inherit_stat)
840
		ctx->nr_stat++;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

915
	event->id_header_size = size;
916 917
}

918 919
static void perf_group_attach(struct perf_event *event)
{
920
	struct perf_event *group_leader = event->group_leader, *pos;
921

P
Peter Zijlstra 已提交
922 923 924 925 926 927
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

928 929 930 931 932 933 934 935 936 937 938
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
939 940 941 942 943

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
944 945
}

946
/*
947
 * Remove a event from the lists for its context.
948
 * Must be called with ctx->mutex and ctx->lock held.
949
 */
950
static void
951
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
952
{
953
	struct perf_cpu_context *cpuctx;
954 955 956 957
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
958
		return;
959 960 961

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

962
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
963
		ctx->nr_cgroups--;
964 965 966 967 968 969 970 971 972
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
973

974 975
	ctx->nr_events--;
	if (event->attr.inherit_stat)
976
		ctx->nr_stat--;
977

978
	list_del_rcu(&event->event_entry);
979

980 981
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
982

983
	update_group_times(event);
984 985 986 987 988 989 990 991 992 993

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
994 995
}

996
static void perf_group_detach(struct perf_event *event)
997 998
{
	struct perf_event *sibling, *tmp;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1015
		goto out;
1016 1017 1018 1019
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1020

1021
	/*
1022 1023
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1024
	 * to whatever list we are on.
1025
	 */
1026
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1027 1028
		if (list)
			list_move_tail(&sibling->group_entry, list);
1029
		sibling->group_leader = sibling;
1030 1031 1032

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1033
	}
1034 1035 1036 1037 1038 1039

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1040 1041
}

1042 1043 1044
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1045 1046
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1047 1048
}

1049 1050
static void
event_sched_out(struct perf_event *event,
1051
		  struct perf_cpu_context *cpuctx,
1052
		  struct perf_event_context *ctx)
1053
{
1054
	u64 tstamp = perf_event_time(event);
1055 1056 1057 1058 1059 1060 1061 1062 1063
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1064
		delta = tstamp - event->tstamp_stopped;
1065
		event->tstamp_running += delta;
1066
		event->tstamp_stopped = tstamp;
1067 1068
	}

1069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1070
		return;
1071

1072 1073 1074 1075
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1076
	}
1077
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1078
	event->pmu->del(event, 0);
1079
	event->oncpu = -1;
1080

1081
	if (!is_software_event(event))
1082 1083
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1084
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1085 1086 1087
		cpuctx->exclusive = 0;
}

1088
static void
1089
group_sched_out(struct perf_event *group_event,
1090
		struct perf_cpu_context *cpuctx,
1091
		struct perf_event_context *ctx)
1092
{
1093
	struct perf_event *event;
1094
	int state = group_event->state;
1095

1096
	event_sched_out(group_event, cpuctx, ctx);
1097 1098 1099 1100

	/*
	 * Schedule out siblings (if any):
	 */
1101 1102
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1103

1104
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1105 1106 1107
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1108
/*
1109
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1110
 *
1111
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1112 1113
 * remove it from the context list.
 */
1114
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1115
{
1116 1117
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1118
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1119

1120
	raw_spin_lock(&ctx->lock);
1121 1122
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1123
	raw_spin_unlock(&ctx->lock);
1124 1125

	return 0;
T
Thomas Gleixner 已提交
1126 1127 1128 1129
}


/*
1130
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1131
 *
1132
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1133
 * call when the task is on a CPU.
1134
 *
1135 1136
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1137 1138
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1139
 * When called from perf_event_exit_task, it's OK because the
1140
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1141
 */
1142
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1143
{
1144
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1145 1146
	struct task_struct *task = ctx->task;

1147 1148
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1149 1150
	if (!task) {
		/*
1151
		 * Per cpu events are removed via an smp call and
1152
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1153
		 */
1154
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1155 1156 1157 1158
		return;
	}

retry:
1159 1160
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1161

1162
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1163
	/*
1164 1165
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1166
	 */
1167
	if (ctx->is_active) {
1168
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1169 1170 1171 1172
		goto retry;
	}

	/*
1173 1174
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1175
	 */
1176
	list_del_event(event, ctx);
1177
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1178 1179
}

1180
/*
1181
 * Cross CPU call to disable a performance event
1182
 */
1183
static int __perf_event_disable(void *info)
1184
{
1185 1186
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1187
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188 1189

	/*
1190 1191
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1192 1193 1194
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1195
	 */
1196
	if (ctx->task && cpuctx->task_ctx != ctx)
1197
		return -EINVAL;
1198

1199
	raw_spin_lock(&ctx->lock);
1200 1201

	/*
1202
	 * If the event is on, turn it off.
1203 1204
	 * If it is in error state, leave it in error state.
	 */
1205
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1206
		update_context_time(ctx);
S
Stephane Eranian 已提交
1207
		update_cgrp_time_from_event(event);
1208 1209 1210
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1211
		else
1212 1213
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1214 1215
	}

1216
	raw_spin_unlock(&ctx->lock);
1217 1218

	return 0;
1219 1220 1221
}

/*
1222
 * Disable a event.
1223
 *
1224 1225
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1226
 * remains valid.  This condition is satisifed when called through
1227 1228 1229 1230
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1231
 * is the current context on this CPU and preemption is disabled,
1232
 * hence we can't get into perf_event_task_sched_out for this context.
1233
 */
1234
void perf_event_disable(struct perf_event *event)
1235
{
1236
	struct perf_event_context *ctx = event->ctx;
1237 1238 1239 1240
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1241
		 * Disable the event on the cpu that it's on
1242
		 */
1243
		cpu_function_call(event->cpu, __perf_event_disable, event);
1244 1245 1246
		return;
	}

P
Peter Zijlstra 已提交
1247
retry:
1248 1249
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1250

1251
	raw_spin_lock_irq(&ctx->lock);
1252
	/*
1253
	 * If the event is still active, we need to retry the cross-call.
1254
	 */
1255
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1256
		raw_spin_unlock_irq(&ctx->lock);
1257 1258 1259 1260 1261
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1262 1263 1264 1265 1266 1267 1268
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1269 1270 1271
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1272
	}
1273
	raw_spin_unlock_irq(&ctx->lock);
1274 1275
}

S
Stephane Eranian 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1311 1312 1313 1314
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1315
static int
1316
event_sched_in(struct perf_event *event,
1317
		 struct perf_cpu_context *cpuctx,
1318
		 struct perf_event_context *ctx)
1319
{
1320 1321
	u64 tstamp = perf_event_time(event);

1322
	if (event->state <= PERF_EVENT_STATE_OFF)
1323 1324
		return 0;

1325
	event->state = PERF_EVENT_STATE_ACTIVE;
1326
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1338 1339 1340 1341 1342
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1343
	if (event->pmu->add(event, PERF_EF_START)) {
1344 1345
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1346 1347 1348
		return -EAGAIN;
	}

1349
	event->tstamp_running += tstamp - event->tstamp_stopped;
1350

S
Stephane Eranian 已提交
1351
	perf_set_shadow_time(event, ctx, tstamp);
1352

1353
	if (!is_software_event(event))
1354
		cpuctx->active_oncpu++;
1355 1356
	ctx->nr_active++;

1357
	if (event->attr.exclusive)
1358 1359
		cpuctx->exclusive = 1;

1360 1361 1362
	return 0;
}

1363
static int
1364
group_sched_in(struct perf_event *group_event,
1365
	       struct perf_cpu_context *cpuctx,
1366
	       struct perf_event_context *ctx)
1367
{
1368
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1369
	struct pmu *pmu = group_event->pmu;
1370 1371
	u64 now = ctx->time;
	bool simulate = false;
1372

1373
	if (group_event->state == PERF_EVENT_STATE_OFF)
1374 1375
		return 0;

P
Peter Zijlstra 已提交
1376
	pmu->start_txn(pmu);
1377

1378
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1379
		pmu->cancel_txn(pmu);
1380
		return -EAGAIN;
1381
	}
1382 1383 1384 1385

	/*
	 * Schedule in siblings as one group (if any):
	 */
1386
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1387
		if (event_sched_in(event, cpuctx, ctx)) {
1388
			partial_group = event;
1389 1390 1391 1392
			goto group_error;
		}
	}

1393
	if (!pmu->commit_txn(pmu))
1394
		return 0;
1395

1396 1397 1398 1399
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1410
	 */
1411 1412
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1413 1414 1415 1416 1417 1418 1419 1420
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1421
	}
1422
	event_sched_out(group_event, cpuctx, ctx);
1423

P
Peter Zijlstra 已提交
1424
	pmu->cancel_txn(pmu);
1425

1426 1427 1428
	return -EAGAIN;
}

1429
/*
1430
 * Work out whether we can put this event group on the CPU now.
1431
 */
1432
static int group_can_go_on(struct perf_event *event,
1433 1434 1435 1436
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1437
	 * Groups consisting entirely of software events can always go on.
1438
	 */
1439
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1440 1441 1442
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1443
	 * events can go on.
1444 1445 1446 1447 1448
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1449
	 * events on the CPU, it can't go on.
1450
	 */
1451
	if (event->attr.exclusive && cpuctx->active_oncpu)
1452 1453 1454 1455 1456 1457 1458 1459
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1460 1461
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1462
{
1463 1464
	u64 tstamp = perf_event_time(event);

1465
	list_add_event(event, ctx);
1466
	perf_group_attach(event);
1467 1468 1469
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1470 1471
}

1472 1473 1474 1475 1476 1477
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1491
/*
1492
 * Cross CPU call to install and enable a performance event
1493 1494
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1495
 */
1496
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1497
{
1498 1499
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1500
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1501 1502 1503 1504 1505
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1506 1507

	/*
1508
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1509
	 */
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	if (task_ctx) {
		task_ctx_sched_out(task_ctx);
		/*
		 * If the context we're installing events in is not the
		 * active task_ctx, flip them.
		 */
		if (ctx->task && task_ctx != ctx) {
			raw_spin_unlock(&cpuctx->ctx.lock);
			raw_spin_lock(&ctx->lock);
			cpuctx->task_ctx = task_ctx = ctx;
		}
		task = task_ctx->task;
	}
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1524

1525
	update_context_time(ctx);
S
Stephane Eranian 已提交
1526 1527 1528 1529 1530 1531
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1532

1533
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1534

1535
	/*
1536
	 * Schedule everything back in
1537
	 */
1538
	perf_event_sched_in(cpuctx, task_ctx, task);
1539 1540 1541

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1542 1543

	return 0;
T
Thomas Gleixner 已提交
1544 1545 1546
}

/*
1547
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1548
 *
1549 1550
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1551
 *
1552
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1553 1554 1555 1556
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1557 1558
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1559 1560 1561 1562
			int cpu)
{
	struct task_struct *task = ctx->task;

1563 1564
	lockdep_assert_held(&ctx->mutex);

1565 1566
	event->ctx = ctx;

T
Thomas Gleixner 已提交
1567 1568
	if (!task) {
		/*
1569
		 * Per cpu events are installed via an smp call and
1570
		 * the install is always successful.
T
Thomas Gleixner 已提交
1571
		 */
1572
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1573 1574 1575 1576
		return;
	}

retry:
1577 1578
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1579

1580
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1581
	/*
1582 1583
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1584
	 */
1585
	if (ctx->is_active) {
1586
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1587 1588 1589 1590
		goto retry;
	}

	/*
1591 1592
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1593
	 */
1594
	add_event_to_ctx(event, ctx);
1595
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1596 1597
}

1598
/*
1599
 * Put a event into inactive state and update time fields.
1600 1601 1602 1603 1604 1605
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1606 1607
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
1608
{
1609
	struct perf_event *sub;
1610
	u64 tstamp = perf_event_time(event);
1611

1612
	event->state = PERF_EVENT_STATE_INACTIVE;
1613
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1614
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1615 1616
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1617
	}
1618 1619
}

1620
/*
1621
 * Cross CPU call to enable a performance event
1622
 */
1623
static int __perf_event_enable(void *info)
1624
{
1625 1626 1627
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1628
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1629
	int err;
1630

1631 1632
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1633

1634
	raw_spin_lock(&ctx->lock);
1635
	update_context_time(ctx);
1636

1637
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1638
		goto unlock;
S
Stephane Eranian 已提交
1639 1640 1641 1642

	/*
	 * set current task's cgroup time reference point
	 */
1643
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1644

1645
	__perf_event_mark_enabled(event, ctx);
1646

S
Stephane Eranian 已提交
1647 1648 1649
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1650
		goto unlock;
S
Stephane Eranian 已提交
1651
	}
1652

1653
	/*
1654
	 * If the event is in a group and isn't the group leader,
1655
	 * then don't put it on unless the group is on.
1656
	 */
1657
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1658
		goto unlock;
1659

1660
	if (!group_can_go_on(event, cpuctx, 1)) {
1661
		err = -EEXIST;
1662
	} else {
1663
		if (event == leader)
1664
			err = group_sched_in(event, cpuctx, ctx);
1665
		else
1666
			err = event_sched_in(event, cpuctx, ctx);
1667
	}
1668 1669 1670

	if (err) {
		/*
1671
		 * If this event can't go on and it's part of a
1672 1673
		 * group, then the whole group has to come off.
		 */
1674
		if (leader != event)
1675
			group_sched_out(leader, cpuctx, ctx);
1676
		if (leader->attr.pinned) {
1677
			update_group_times(leader);
1678
			leader->state = PERF_EVENT_STATE_ERROR;
1679
		}
1680 1681
	}

P
Peter Zijlstra 已提交
1682
unlock:
1683
	raw_spin_unlock(&ctx->lock);
1684 1685

	return 0;
1686 1687 1688
}

/*
1689
 * Enable a event.
1690
 *
1691 1692
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1693
 * remains valid.  This condition is satisfied when called through
1694 1695
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1696
 */
1697
void perf_event_enable(struct perf_event *event)
1698
{
1699
	struct perf_event_context *ctx = event->ctx;
1700 1701 1702 1703
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1704
		 * Enable the event on the cpu that it's on
1705
		 */
1706
		cpu_function_call(event->cpu, __perf_event_enable, event);
1707 1708 1709
		return;
	}

1710
	raw_spin_lock_irq(&ctx->lock);
1711
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1712 1713 1714
		goto out;

	/*
1715 1716
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1717 1718 1719 1720
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1721 1722
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1723

P
Peter Zijlstra 已提交
1724
retry:
1725 1726 1727 1728 1729
	if (!ctx->is_active) {
		__perf_event_mark_enabled(event, ctx);
		goto out;
	}

1730
	raw_spin_unlock_irq(&ctx->lock);
1731 1732 1733

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1734

1735
	raw_spin_lock_irq(&ctx->lock);
1736 1737

	/*
1738
	 * If the context is active and the event is still off,
1739 1740
	 * we need to retry the cross-call.
	 */
1741 1742 1743 1744 1745 1746
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1747
		goto retry;
1748
	}
1749

P
Peter Zijlstra 已提交
1750
out:
1751
	raw_spin_unlock_irq(&ctx->lock);
1752 1753
}

1754
static int perf_event_refresh(struct perf_event *event, int refresh)
1755
{
1756
	/*
1757
	 * not supported on inherited events
1758
	 */
1759
	if (event->attr.inherit || !is_sampling_event(event))
1760 1761
		return -EINVAL;

1762 1763
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1764 1765

	return 0;
1766 1767
}

1768 1769 1770
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1771
{
1772
	struct perf_event *event;
1773
	int is_active = ctx->is_active;
1774

1775
	ctx->is_active &= ~event_type;
1776
	if (likely(!ctx->nr_events))
1777 1778
		return;

1779
	update_context_time(ctx);
S
Stephane Eranian 已提交
1780
	update_cgrp_time_from_cpuctx(cpuctx);
1781
	if (!ctx->nr_active)
1782
		return;
1783

P
Peter Zijlstra 已提交
1784
	perf_pmu_disable(ctx->pmu);
1785
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1786 1787
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1788
	}
1789

1790
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1791
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1792
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1793
	}
P
Peter Zijlstra 已提交
1794
	perf_pmu_enable(ctx->pmu);
1795 1796
}

1797 1798 1799
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1800 1801 1802 1803
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1804
 * in them directly with an fd; we can only enable/disable all
1805
 * events via prctl, or enable/disable all events in a family
1806 1807
 * via ioctl, which will have the same effect on both contexts.
 */
1808 1809
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1810 1811
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1812
		&& ctx1->parent_gen == ctx2->parent_gen
1813
		&& !ctx1->pin_count && !ctx2->pin_count;
1814 1815
}

1816 1817
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1818 1819 1820
{
	u64 value;

1821
	if (!event->attr.inherit_stat)
1822 1823 1824
		return;

	/*
1825
	 * Update the event value, we cannot use perf_event_read()
1826 1827
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1828
	 * we know the event must be on the current CPU, therefore we
1829 1830
	 * don't need to use it.
	 */
1831 1832
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1833 1834
		event->pmu->read(event);
		/* fall-through */
1835

1836 1837
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1838 1839 1840 1841 1842 1843 1844
		break;

	default:
		break;
	}

	/*
1845
	 * In order to keep per-task stats reliable we need to flip the event
1846 1847
	 * values when we flip the contexts.
	 */
1848 1849 1850
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1851

1852 1853
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1854

1855
	/*
1856
	 * Since we swizzled the values, update the user visible data too.
1857
	 */
1858 1859
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1860 1861 1862 1863 1864
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1865 1866
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1867
{
1868
	struct perf_event *event, *next_event;
1869 1870 1871 1872

	if (!ctx->nr_stat)
		return;

1873 1874
	update_context_time(ctx);

1875 1876
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1877

1878 1879
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1880

1881 1882
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1883

1884
		__perf_event_sync_stat(event, next_event);
1885

1886 1887
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1888 1889 1890
	}
}

1891 1892
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1893
{
P
Peter Zijlstra 已提交
1894
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1895 1896
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1897
	struct perf_cpu_context *cpuctx;
1898
	int do_switch = 1;
T
Thomas Gleixner 已提交
1899

P
Peter Zijlstra 已提交
1900 1901
	if (likely(!ctx))
		return;
1902

P
Peter Zijlstra 已提交
1903 1904
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1905 1906
		return;

1907 1908
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1909
	next_ctx = next->perf_event_ctxp[ctxn];
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1921 1922
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1923
		if (context_equiv(ctx, next_ctx)) {
1924 1925
			/*
			 * XXX do we need a memory barrier of sorts
1926
			 * wrt to rcu_dereference() of perf_event_ctxp
1927
			 */
P
Peter Zijlstra 已提交
1928 1929
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1930 1931 1932
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1933

1934
			perf_event_sync_stat(ctx, next_ctx);
1935
		}
1936 1937
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1938
	}
1939
	rcu_read_unlock();
1940

1941
	if (do_switch) {
1942
		raw_spin_lock(&ctx->lock);
1943
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1944
		cpuctx->task_ctx = NULL;
1945
		raw_spin_unlock(&ctx->lock);
1946
	}
T
Thomas Gleixner 已提交
1947 1948
}

P
Peter Zijlstra 已提交
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1963 1964
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1965 1966 1967 1968 1969
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
1970 1971 1972 1973 1974 1975 1976 1977

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_out(task);
P
Peter Zijlstra 已提交
1978 1979
}

1980
static void task_ctx_sched_out(struct perf_event_context *ctx)
1981
{
P
Peter Zijlstra 已提交
1982
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1983

1984 1985
	if (!cpuctx->task_ctx)
		return;
1986 1987 1988 1989

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1990
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1991 1992 1993
	cpuctx->task_ctx = NULL;
}

1994 1995 1996 1997 1998 1999 2000
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2001 2002
}

2003
static void
2004
ctx_pinned_sched_in(struct perf_event_context *ctx,
2005
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2006
{
2007
	struct perf_event *event;
T
Thomas Gleixner 已提交
2008

2009 2010
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2011
			continue;
2012
		if (!event_filter_match(event))
2013 2014
			continue;

S
Stephane Eranian 已提交
2015 2016 2017 2018
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2019
		if (group_can_go_on(event, cpuctx, 1))
2020
			group_sched_in(event, cpuctx, ctx);
2021 2022 2023 2024 2025

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2026 2027 2028
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2029
		}
2030
	}
2031 2032 2033 2034
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2035
		      struct perf_cpu_context *cpuctx)
2036 2037 2038
{
	struct perf_event *event;
	int can_add_hw = 1;
2039

2040 2041 2042
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2043
			continue;
2044 2045
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2046
		 * of events:
2047
		 */
2048
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2049 2050
			continue;

S
Stephane Eranian 已提交
2051 2052 2053 2054
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2055
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2056
			if (group_sched_in(event, cpuctx, ctx))
2057
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2058
		}
T
Thomas Gleixner 已提交
2059
	}
2060 2061 2062 2063 2064
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2065 2066
	     enum event_type_t event_type,
	     struct task_struct *task)
2067
{
S
Stephane Eranian 已提交
2068
	u64 now;
2069
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2070

2071
	ctx->is_active |= event_type;
2072
	if (likely(!ctx->nr_events))
2073
		return;
2074

S
Stephane Eranian 已提交
2075 2076
	now = perf_clock();
	ctx->timestamp = now;
2077
	perf_cgroup_set_timestamp(task, ctx);
2078 2079 2080 2081
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2082
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2083
		ctx_pinned_sched_in(ctx, cpuctx);
2084 2085

	/* Then walk through the lower prio flexible groups */
2086
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2087
		ctx_flexible_sched_in(ctx, cpuctx);
2088 2089
}

2090
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2091 2092
			     enum event_type_t event_type,
			     struct task_struct *task)
2093 2094 2095
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2096
	ctx_sched_in(ctx, cpuctx, event_type, task);
2097 2098
}

S
Stephane Eranian 已提交
2099 2100
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2101
{
P
Peter Zijlstra 已提交
2102
	struct perf_cpu_context *cpuctx;
2103

P
Peter Zijlstra 已提交
2104
	cpuctx = __get_cpu_context(ctx);
2105 2106 2107
	if (cpuctx->task_ctx == ctx)
		return;

2108
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2109
	perf_pmu_disable(ctx->pmu);
2110 2111 2112 2113 2114 2115 2116
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2117
	perf_event_sched_in(cpuctx, ctx, task);
2118 2119

	cpuctx->task_ctx = ctx;
2120

2121 2122 2123
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2124 2125 2126 2127
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2128
	perf_pmu_rotate_start(ctx->pmu);
2129 2130
}

P
Peter Zijlstra 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2142
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2152
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2153
	}
S
Stephane Eranian 已提交
2154 2155 2156 2157 2158 2159 2160
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
		perf_cgroup_sched_in(task);
2161 2162
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2190
#define REDUCE_FLS(a, b)		\
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2230 2231 2232
	if (!divisor)
		return dividend;

2233 2234 2235 2236
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2237
{
2238
	struct hw_perf_event *hwc = &event->hw;
2239
	s64 period, sample_period;
2240 2241
	s64 delta;

2242
	period = perf_calculate_period(event, nsec, count);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2253

2254
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
2255
		event->pmu->stop(event, PERF_EF_UPDATE);
2256
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
2257
		event->pmu->start(event, PERF_EF_RELOAD);
2258
	}
2259 2260
}

2261
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2262
{
2263 2264
	struct perf_event *event;
	struct hw_perf_event *hwc;
2265 2266
	u64 interrupts, now;
	s64 delta;
2267

2268
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2269
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2270 2271
			continue;

2272
		if (!event_filter_match(event))
2273 2274
			continue;

2275
		hwc = &event->hw;
2276 2277 2278

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
2279

2280
		/*
2281
		 * unthrottle events on the tick
2282
		 */
2283
		if (interrupts == MAX_INTERRUPTS) {
2284
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2285
			event->pmu->start(event, 0);
2286 2287
		}

2288
		if (!event->attr.freq || !event->attr.sample_freq)
2289 2290
			continue;

2291
		event->pmu->read(event);
2292
		now = local64_read(&event->count);
2293 2294
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2295

2296
		if (delta > 0)
2297
			perf_adjust_period(event, period, delta);
2298 2299 2300
	}
}

2301
/*
2302
 * Round-robin a context's events:
2303
 */
2304
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2305
{
2306 2307 2308 2309 2310 2311
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2312 2313
}

2314
/*
2315 2316 2317
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2318
 */
2319
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2320
{
2321
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
2322
	struct perf_event_context *ctx = NULL;
2323
	int rotate = 0, remove = 1;
2324

2325
	if (cpuctx->ctx.nr_events) {
2326
		remove = 0;
2327 2328 2329
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2330

P
Peter Zijlstra 已提交
2331
	ctx = cpuctx->task_ctx;
2332
	if (ctx && ctx->nr_events) {
2333
		remove = 0;
2334 2335 2336
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2337

2338
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2339
	perf_pmu_disable(cpuctx->ctx.pmu);
2340
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2341
	if (ctx)
2342
		perf_ctx_adjust_freq(ctx, interval);
2343

2344
	if (!rotate)
2345
		goto done;
2346

2347
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
	if (ctx)
2349
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2350

2351
	rotate_ctx(&cpuctx->ctx);
2352 2353
	if (ctx)
		rotate_ctx(ctx);
2354

2355
	perf_event_sched_in(cpuctx, ctx, current);
2356 2357

done:
2358 2359 2360
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
2361
	perf_pmu_enable(cpuctx->ctx.pmu);
2362
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2363 2364 2365 2366 2367 2368
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2369

2370 2371 2372 2373 2374 2375 2376
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

2394
/*
2395
 * Enable all of a task's events that have been marked enable-on-exec.
2396 2397
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2398
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2399
{
2400
	struct perf_event *event;
2401 2402
	unsigned long flags;
	int enabled = 0;
2403
	int ret;
2404 2405

	local_irq_save(flags);
2406
	if (!ctx || !ctx->nr_events)
2407 2408
		goto out;

2409 2410 2411 2412 2413 2414 2415 2416
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
	perf_cgroup_sched_out(current);
2417

2418
	raw_spin_lock(&ctx->lock);
2419
	task_ctx_sched_out(ctx);
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2431 2432 2433
	}

	/*
2434
	 * Unclone this context if we enabled any event.
2435
	 */
2436 2437
	if (enabled)
		unclone_ctx(ctx);
2438

2439
	raw_spin_unlock(&ctx->lock);
2440

2441 2442 2443
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2444
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2445
out:
2446 2447 2448
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2449
/*
2450
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2451
 */
2452
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2453
{
2454 2455
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2456
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2457

2458 2459 2460 2461
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2462 2463
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2464 2465 2466 2467
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2468
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2469
	if (ctx->is_active) {
2470
		update_context_time(ctx);
S
Stephane Eranian 已提交
2471 2472
		update_cgrp_time_from_event(event);
	}
2473
	update_event_times(event);
2474 2475
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2476
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2477 2478
}

P
Peter Zijlstra 已提交
2479 2480
static inline u64 perf_event_count(struct perf_event *event)
{
2481
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2482 2483
}

2484
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2485 2486
{
	/*
2487 2488
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2489
	 */
2490 2491 2492 2493
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2494 2495 2496
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2497
		raw_spin_lock_irqsave(&ctx->lock, flags);
2498 2499 2500 2501 2502
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2503
		if (ctx->is_active) {
2504
			update_context_time(ctx);
S
Stephane Eranian 已提交
2505 2506
			update_cgrp_time_from_event(event);
		}
2507
		update_event_times(event);
2508
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2509 2510
	}

P
Peter Zijlstra 已提交
2511
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2512 2513
}

2514
/*
2515
 * Callchain support
2516
 */
2517 2518 2519 2520 2521 2522

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

2523
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2524 2525 2526 2527 2528 2529 2530
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
2531 2532 2533
{
}

2534 2535
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
2536
{
2537
}
T
Thomas Gleixner 已提交
2538

2539 2540 2541 2542
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
2543

2544
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
2545

2546 2547
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
2548

2549 2550
	kfree(entries);
}
T
Thomas Gleixner 已提交
2551

2552 2553 2554
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2555

2556 2557 2558 2559
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
2560

2561 2562 2563 2564 2565
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
2566

2567
	/*
2568 2569 2570
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
2571
	 */
2572
	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2573

2574 2575 2576
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
2577

2578
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
2579

2580 2581 2582 2583 2584
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
2585 2586
	}

2587
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
2588

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2723
/*
2724
 * Initialize the perf_event context in a task_struct:
2725
 */
2726
static void __perf_event_init_context(struct perf_event_context *ctx)
2727
{
2728
	raw_spin_lock_init(&ctx->lock);
2729
	mutex_init(&ctx->mutex);
2730 2731
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2732 2733
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2749
	}
2750 2751 2752
	ctx->pmu = pmu;

	return ctx;
2753 2754
}

2755 2756 2757 2758 2759
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2760 2761

	rcu_read_lock();
2762
	if (!vpid)
T
Thomas Gleixner 已提交
2763 2764
		task = current;
	else
2765
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2766 2767 2768 2769 2770 2771 2772 2773
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2774 2775 2776 2777
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2778 2779 2780 2781 2782 2783 2784
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2785 2786 2787
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2788
static struct perf_event_context *
M
Matt Helsley 已提交
2789
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2790
{
2791
	struct perf_event_context *ctx;
2792
	struct perf_cpu_context *cpuctx;
2793
	unsigned long flags;
P
Peter Zijlstra 已提交
2794
	int ctxn, err;
T
Thomas Gleixner 已提交
2795

2796
	if (!task) {
2797
		/* Must be root to operate on a CPU event: */
2798
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2799 2800 2801
			return ERR_PTR(-EACCES);

		/*
2802
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2803 2804 2805
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2806
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2807 2808
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2809
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2810
		ctx = &cpuctx->ctx;
2811
		get_ctx(ctx);
2812
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2813 2814 2815 2816

		return ctx;
	}

P
Peter Zijlstra 已提交
2817 2818 2819 2820 2821
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2822
retry:
P
Peter Zijlstra 已提交
2823
	ctx = perf_lock_task_context(task, ctxn, &flags);
2824
	if (ctx) {
2825
		unclone_ctx(ctx);
2826
		++ctx->pin_count;
2827
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2828
	} else {
2829
		ctx = alloc_perf_context(pmu, task);
2830 2831 2832
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2833

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2844
		else {
2845
			get_ctx(ctx);
2846
			++ctx->pin_count;
2847
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2848
		}
2849 2850 2851
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2852
			put_ctx(ctx);
2853 2854 2855 2856

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2857 2858 2859
		}
	}

T
Thomas Gleixner 已提交
2860
	return ctx;
2861

P
Peter Zijlstra 已提交
2862
errout:
2863
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2864 2865
}

L
Li Zefan 已提交
2866 2867
static void perf_event_free_filter(struct perf_event *event);

2868
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2869
{
2870
	struct perf_event *event;
P
Peter Zijlstra 已提交
2871

2872 2873 2874
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2875
	perf_event_free_filter(event);
2876
	kfree(event);
P
Peter Zijlstra 已提交
2877 2878
}

2879
static void perf_buffer_put(struct perf_buffer *buffer);
2880

2881
static void free_event(struct perf_event *event)
2882
{
2883
	irq_work_sync(&event->pending);
2884

2885
	if (!event->parent) {
2886
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
2887
			jump_label_dec(&perf_sched_events);
2888
		if (event->attr.mmap || event->attr.mmap_data)
2889 2890 2891 2892 2893
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2894 2895
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2896 2897 2898 2899
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
			jump_label_dec(&perf_sched_events);
		}
2900
	}
2901

2902 2903 2904
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2905 2906
	}

S
Stephane Eranian 已提交
2907 2908 2909
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2910 2911
	if (event->destroy)
		event->destroy(event);
2912

P
Peter Zijlstra 已提交
2913 2914 2915
	if (event->ctx)
		put_ctx(event->ctx);

2916
	call_rcu(&event->rcu_head, free_event_rcu);
2917 2918
}

2919
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2920
{
2921
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2922

2923
	WARN_ON_ONCE(ctx->parent_ctx);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2937
	raw_spin_lock_irq(&ctx->lock);
2938
	perf_group_detach(event);
2939
	raw_spin_unlock_irq(&ctx->lock);
2940
	perf_remove_from_context(event);
2941
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2942

2943
	free_event(event);
T
Thomas Gleixner 已提交
2944 2945 2946

	return 0;
}
2947
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2948

2949 2950 2951 2952
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2953
{
2954
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2955
	struct task_struct *owner;
2956

2957
	file->private_data = NULL;
2958

P
Peter Zijlstra 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2992
	return perf_event_release_kernel(event);
2993 2994
}

2995
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2996
{
2997
	struct perf_event *child;
2998 2999
	u64 total = 0;

3000 3001 3002
	*enabled = 0;
	*running = 0;

3003
	mutex_lock(&event->child_mutex);
3004
	total += perf_event_read(event);
3005 3006 3007 3008 3009 3010
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3011
		total += perf_event_read(child);
3012 3013 3014
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3015
	mutex_unlock(&event->child_mutex);
3016 3017 3018

	return total;
}
3019
EXPORT_SYMBOL_GPL(perf_event_read_value);
3020

3021
static int perf_event_read_group(struct perf_event *event,
3022 3023
				   u64 read_format, char __user *buf)
{
3024
	struct perf_event *leader = event->group_leader, *sub;
3025 3026
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3027
	u64 values[5];
3028
	u64 count, enabled, running;
3029

3030
	mutex_lock(&ctx->mutex);
3031
	count = perf_event_read_value(leader, &enabled, &running);
3032 3033

	values[n++] = 1 + leader->nr_siblings;
3034 3035 3036 3037
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3038 3039 3040
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3041 3042 3043 3044

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3045
		goto unlock;
3046

3047
	ret = size;
3048

3049
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3050
		n = 0;
3051

3052
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3053 3054 3055 3056 3057
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3058
		if (copy_to_user(buf + ret, values, size)) {
3059 3060 3061
			ret = -EFAULT;
			goto unlock;
		}
3062 3063

		ret += size;
3064
	}
3065 3066
unlock:
	mutex_unlock(&ctx->mutex);
3067

3068
	return ret;
3069 3070
}

3071
static int perf_event_read_one(struct perf_event *event,
3072 3073
				 u64 read_format, char __user *buf)
{
3074
	u64 enabled, running;
3075 3076 3077
	u64 values[4];
	int n = 0;

3078 3079 3080 3081 3082
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3083
	if (read_format & PERF_FORMAT_ID)
3084
		values[n++] = primary_event_id(event);
3085 3086 3087 3088 3089 3090 3091

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3092
/*
3093
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3094 3095
 */
static ssize_t
3096
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3097
{
3098
	u64 read_format = event->attr.read_format;
3099
	int ret;
T
Thomas Gleixner 已提交
3100

3101
	/*
3102
	 * Return end-of-file for a read on a event that is in
3103 3104 3105
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3106
	if (event->state == PERF_EVENT_STATE_ERROR)
3107 3108
		return 0;

3109
	if (count < event->read_size)
3110 3111
		return -ENOSPC;

3112
	WARN_ON_ONCE(event->ctx->parent_ctx);
3113
	if (read_format & PERF_FORMAT_GROUP)
3114
		ret = perf_event_read_group(event, read_format, buf);
3115
	else
3116
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3117

3118
	return ret;
T
Thomas Gleixner 已提交
3119 3120 3121 3122 3123
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3124
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3125

3126
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3127 3128 3129 3130
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3131
	struct perf_event *event = file->private_data;
3132
	struct perf_buffer *buffer;
3133
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3134 3135

	rcu_read_lock();
3136 3137 3138
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
3139
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3140

3141
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3142 3143 3144 3145

	return events;
}

3146
static void perf_event_reset(struct perf_event *event)
3147
{
3148
	(void)perf_event_read(event);
3149
	local64_set(&event->count, 0);
3150
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3151 3152
}

3153
/*
3154 3155 3156 3157
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3158
 */
3159 3160
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3161
{
3162
	struct perf_event *child;
P
Peter Zijlstra 已提交
3163

3164 3165 3166 3167
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3168
		func(child);
3169
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3170 3171
}

3172 3173
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3174
{
3175 3176
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3177

3178 3179
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3180
	event = event->group_leader;
3181

3182 3183 3184 3185
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
3186
	mutex_unlock(&ctx->mutex);
3187 3188
}

3189
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3190
{
3191
	struct perf_event_context *ctx = event->ctx;
3192 3193 3194
	int ret = 0;
	u64 value;

3195
	if (!is_sampling_event(event))
3196 3197
		return -EINVAL;

3198
	if (copy_from_user(&value, arg, sizeof(value)))
3199 3200 3201 3202 3203
		return -EFAULT;

	if (!value)
		return -EINVAL;

3204
	raw_spin_lock_irq(&ctx->lock);
3205 3206
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3207 3208 3209 3210
			ret = -EINVAL;
			goto unlock;
		}

3211
		event->attr.sample_freq = value;
3212
	} else {
3213 3214
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3215 3216
	}
unlock:
3217
	raw_spin_unlock_irq(&ctx->lock);
3218 3219 3220 3221

	return ret;
}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3243
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3244

3245 3246
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3247 3248
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3249
	u32 flags = arg;
3250 3251

	switch (cmd) {
3252 3253
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3254
		break;
3255 3256
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3257
		break;
3258 3259
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3260
		break;
P
Peter Zijlstra 已提交
3261

3262 3263
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3264

3265 3266
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3267

3268
	case PERF_EVENT_IOC_SET_OUTPUT:
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
3286

L
Li Zefan 已提交
3287 3288 3289
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3290
	default:
P
Peter Zijlstra 已提交
3291
		return -ENOTTY;
3292
	}
P
Peter Zijlstra 已提交
3293 3294

	if (flags & PERF_IOC_FLAG_GROUP)
3295
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3296
	else
3297
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3298 3299

	return 0;
3300 3301
}

3302
int perf_event_task_enable(void)
3303
{
3304
	struct perf_event *event;
3305

3306 3307 3308 3309
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3310 3311 3312 3313

	return 0;
}

3314
int perf_event_task_disable(void)
3315
{
3316
	struct perf_event *event;
3317

3318 3319 3320 3321
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3322 3323 3324 3325

	return 0;
}

3326 3327
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
3328 3329
#endif

3330
static int perf_event_index(struct perf_event *event)
3331
{
P
Peter Zijlstra 已提交
3332 3333 3334
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3335
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3336 3337
		return 0;

3338
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3339 3340
}

3341 3342 3343 3344 3345
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3346
void perf_event_update_userpage(struct perf_event *event)
3347
{
3348
	struct perf_event_mmap_page *userpg;
3349
	struct perf_buffer *buffer;
3350 3351

	rcu_read_lock();
3352 3353
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3354 3355
		goto unlock;

3356
	userpg = buffer->user_page;
3357

3358 3359 3360 3361 3362
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3363
	++userpg->lock;
3364
	barrier();
3365
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3366
	userpg->offset = perf_event_count(event);
3367
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3368
		userpg->offset -= local64_read(&event->hw.prev_count);
3369

3370 3371
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3372

3373 3374
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3375

3376
	barrier();
3377
	++userpg->lock;
3378
	preempt_enable();
3379
unlock:
3380
	rcu_read_unlock();
3381 3382
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

3402
#ifndef CONFIG_PERF_USE_VMALLOC
3403

3404 3405 3406
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
3407

3408
static struct page *
3409
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3410
{
3411
	if (pgoff > buffer->nr_pages)
3412
		return NULL;
3413

3414
	if (pgoff == 0)
3415
		return virt_to_page(buffer->user_page);
3416

3417
	return virt_to_page(buffer->data_pages[pgoff - 1]);
3418 3419
}

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

3433
static struct perf_buffer *
3434
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3435
{
3436
	struct perf_buffer *buffer;
3437 3438 3439
	unsigned long size;
	int i;

3440
	size = sizeof(struct perf_buffer);
3441 3442
	size += nr_pages * sizeof(void *);

3443 3444
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3445 3446
		goto fail;

3447
	buffer->user_page = perf_mmap_alloc_page(cpu);
3448
	if (!buffer->user_page)
3449 3450 3451
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
3452
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3453
		if (!buffer->data_pages[i])
3454 3455 3456
			goto fail_data_pages;
	}

3457
	buffer->nr_pages = nr_pages;
3458

3459 3460
	perf_buffer_init(buffer, watermark, flags);

3461
	return buffer;
3462 3463 3464

fail_data_pages:
	for (i--; i >= 0; i--)
3465
		free_page((unsigned long)buffer->data_pages[i]);
3466

3467
	free_page((unsigned long)buffer->user_page);
3468 3469

fail_user_page:
3470
	kfree(buffer);
3471 3472

fail:
3473
	return NULL;
3474 3475
}

3476 3477
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
3478
	struct page *page = virt_to_page((void *)addr);
3479 3480 3481 3482 3483

	page->mapping = NULL;
	__free_page(page);
}

3484
static void perf_buffer_free(struct perf_buffer *buffer)
3485 3486 3487
{
	int i;

3488 3489 3490 3491
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
3492 3493
}

3494
static inline int page_order(struct perf_buffer *buffer)
3495 3496 3497 3498
{
	return 0;
}

3499 3500 3501 3502 3503 3504 3505 3506
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

3507
static inline int page_order(struct perf_buffer *buffer)
3508
{
3509
	return buffer->page_order;
3510 3511
}

3512
static struct page *
3513
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3514
{
3515
	if (pgoff > (1UL << page_order(buffer)))
3516 3517
		return NULL;

3518
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3519 3520 3521 3522 3523 3524 3525 3526 3527
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

3528
static void perf_buffer_free_work(struct work_struct *work)
3529
{
3530
	struct perf_buffer *buffer;
3531 3532 3533
	void *base;
	int i, nr;

3534 3535
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
3536

3537
	base = buffer->user_page;
3538 3539 3540 3541
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
3542
	kfree(buffer);
3543 3544
}

3545
static void perf_buffer_free(struct perf_buffer *buffer)
3546
{
3547
	schedule_work(&buffer->work);
3548 3549
}

3550
static struct perf_buffer *
3551
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3552
{
3553
	struct perf_buffer *buffer;
3554 3555 3556
	unsigned long size;
	void *all_buf;

3557
	size = sizeof(struct perf_buffer);
3558 3559
	size += sizeof(void *);

3560 3561
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
3562 3563
		goto fail;

3564
	INIT_WORK(&buffer->work, perf_buffer_free_work);
3565 3566 3567 3568 3569

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

3570 3571 3572 3573
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
3574

3575 3576
	perf_buffer_init(buffer, watermark, flags);

3577
	return buffer;
3578 3579

fail_all_buf:
3580
	kfree(buffer);
3581 3582 3583 3584 3585 3586 3587

fail:
	return NULL;
}

#endif

3588
static unsigned long perf_data_size(struct perf_buffer *buffer)
3589
{
3590
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3591 3592
}

3593 3594 3595
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3596
	struct perf_buffer *buffer;
3597 3598 3599 3600 3601 3602 3603 3604 3605
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3606 3607
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3608 3609 3610 3611 3612
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3613
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3628
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3629
{
3630
	struct perf_buffer *buffer;
3631

3632 3633
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
3634 3635
}

3636
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3637
{
3638
	struct perf_buffer *buffer;
3639

3640
	rcu_read_lock();
3641 3642 3643 3644
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
3645 3646 3647
	}
	rcu_read_unlock();

3648
	return buffer;
3649 3650
}

3651
static void perf_buffer_put(struct perf_buffer *buffer)
3652
{
3653
	if (!atomic_dec_and_test(&buffer->refcount))
3654
		return;
3655

3656
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3657 3658 3659 3660
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3661
	struct perf_event *event = vma->vm_file->private_data;
3662

3663
	atomic_inc(&event->mmap_count);
3664 3665 3666 3667
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3668
	struct perf_event *event = vma->vm_file->private_data;
3669

3670
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3671
		unsigned long size = perf_data_size(event->buffer);
3672
		struct user_struct *user = event->mmap_user;
3673
		struct perf_buffer *buffer = event->buffer;
3674

3675
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3676
		vma->vm_mm->locked_vm -= event->mmap_locked;
3677
		rcu_assign_pointer(event->buffer, NULL);
3678
		mutex_unlock(&event->mmap_mutex);
3679

3680
		perf_buffer_put(buffer);
3681
		free_uid(user);
3682
	}
3683 3684
}

3685
static const struct vm_operations_struct perf_mmap_vmops = {
3686 3687 3688 3689
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3690 3691 3692 3693
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3694
	struct perf_event *event = file->private_data;
3695
	unsigned long user_locked, user_lock_limit;
3696
	struct user_struct *user = current_user();
3697
	unsigned long locked, lock_limit;
3698
	struct perf_buffer *buffer;
3699 3700
	unsigned long vma_size;
	unsigned long nr_pages;
3701
	long user_extra, extra;
3702
	int ret = 0, flags = 0;
3703

3704 3705 3706 3707 3708 3709 3710 3711
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3712
	if (!(vma->vm_flags & VM_SHARED))
3713
		return -EINVAL;
3714 3715 3716 3717

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3718
	/*
3719
	 * If we have buffer pages ensure they're a power-of-two number, so we
3720 3721 3722
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3723 3724
		return -EINVAL;

3725
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3726 3727
		return -EINVAL;

3728 3729
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3730

3731 3732
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3733 3734 3735
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3736
		else
3737 3738 3739 3740
			ret = -EINVAL;
		goto unlock;
	}

3741
	user_extra = nr_pages + 1;
3742
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3743 3744 3745 3746 3747 3748

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3749
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3750

3751 3752 3753
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3754

3755
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3756
	lock_limit >>= PAGE_SHIFT;
3757
	locked = vma->vm_mm->locked_vm + extra;
3758

3759 3760
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3761 3762 3763
		ret = -EPERM;
		goto unlock;
	}
3764

3765
	WARN_ON(event->buffer);
3766

3767 3768 3769 3770 3771
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3772
	if (!buffer) {
3773
		ret = -ENOMEM;
3774
		goto unlock;
3775
	}
3776
	rcu_assign_pointer(event->buffer, buffer);
3777

3778 3779 3780 3781 3782
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3783
unlock:
3784 3785
	if (!ret)
		atomic_inc(&event->mmap_count);
3786
	mutex_unlock(&event->mmap_mutex);
3787 3788 3789

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3790 3791

	return ret;
3792 3793
}

P
Peter Zijlstra 已提交
3794 3795 3796
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3797
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3798 3799 3800
	int retval;

	mutex_lock(&inode->i_mutex);
3801
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3802 3803 3804 3805 3806 3807 3808 3809
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3810
static const struct file_operations perf_fops = {
3811
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3812 3813 3814
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3815 3816
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3817
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3818
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3819 3820
};

3821
/*
3822
 * Perf event wakeup
3823 3824 3825 3826 3827
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3828
void perf_event_wakeup(struct perf_event *event)
3829
{
3830
	wake_up_all(&event->waitq);
3831

3832 3833 3834
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3835
	}
3836 3837
}

3838
static void perf_pending_event(struct irq_work *entry)
3839
{
3840 3841
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3842

3843 3844 3845
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3846 3847
	}

3848 3849 3850
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3851 3852 3853
	}
}

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3875 3876 3877
/*
 * Output
 */
3878
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3879
			      unsigned long offset, unsigned long head)
3880 3881 3882
{
	unsigned long mask;

3883
	if (!buffer->writable)
3884 3885
		return true;

3886
	mask = perf_data_size(buffer) - 1;
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3897
static void perf_output_wakeup(struct perf_output_handle *handle)
3898
{
3899
	atomic_set(&handle->buffer->poll, POLL_IN);
3900

3901
	if (handle->nmi) {
3902
		handle->event->pending_wakeup = 1;
3903
		irq_work_queue(&handle->event->pending);
3904
	} else
3905
		perf_event_wakeup(handle->event);
3906 3907
}

3908
/*
3909
 * We need to ensure a later event_id doesn't publish a head when a former
3910
 * event isn't done writing. However since we need to deal with NMIs we
3911 3912 3913
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3914
 * event completes.
3915
 */
3916
static void perf_output_get_handle(struct perf_output_handle *handle)
3917
{
3918
	struct perf_buffer *buffer = handle->buffer;
3919

3920
	preempt_disable();
3921 3922
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3923 3924
}

3925
static void perf_output_put_handle(struct perf_output_handle *handle)
3926
{
3927
	struct perf_buffer *buffer = handle->buffer;
3928
	unsigned long head;
3929 3930

again:
3931
	head = local_read(&buffer->head);
3932 3933

	/*
3934
	 * IRQ/NMI can happen here, which means we can miss a head update.
3935 3936
	 */

3937
	if (!local_dec_and_test(&buffer->nest))
3938
		goto out;
3939 3940

	/*
3941
	 * Publish the known good head. Rely on the full barrier implied
3942
	 * by atomic_dec_and_test() order the buffer->head read and this
3943
	 * write.
3944
	 */
3945
	buffer->user_page->data_head = head;
3946

3947 3948
	/*
	 * Now check if we missed an update, rely on the (compiler)
3949
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3950
	 */
3951 3952
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3953 3954 3955
		goto again;
	}

3956
	if (handle->wakeup != local_read(&buffer->wakeup))
3957
		perf_output_wakeup(handle);
3958

P
Peter Zijlstra 已提交
3959
out:
3960
	preempt_enable();
3961 3962
}

3963
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3964
		      const void *buf, unsigned int len)
3965
{
3966
	do {
3967
		unsigned long size = min_t(unsigned long, handle->size, len);
3968 3969 3970 3971 3972

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3973
		buf += size;
3974 3975
		handle->size -= size;
		if (!handle->size) {
3976
			struct perf_buffer *buffer = handle->buffer;
3977

3978
			handle->page++;
3979 3980 3981
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3982 3983
		}
	} while (len);
3984 3985
}

3986 3987 3988
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
static void perf_event_header__init_id(struct perf_event_header *header,
				       struct perf_sample_data *data,
				       struct perf_event *event)
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

static void perf_event__output_id_sample(struct perf_event *event,
					 struct perf_output_handle *handle,
					 struct perf_sample_data *sample)
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4053
int perf_output_begin(struct perf_output_handle *handle,
4054
		      struct perf_event *event, unsigned int size,
4055
		      int nmi, int sample)
4056
{
4057
	struct perf_buffer *buffer;
4058
	unsigned long tail, offset, head;
4059
	int have_lost;
4060
	struct perf_sample_data sample_data;
4061 4062 4063 4064 4065
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
4066

4067
	rcu_read_lock();
4068
	/*
4069
	 * For inherited events we send all the output towards the parent.
4070
	 */
4071 4072
	if (event->parent)
		event = event->parent;
4073

4074 4075
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
4076 4077
		goto out;

4078
	handle->buffer	= buffer;
4079
	handle->event	= event;
4080 4081
	handle->nmi	= nmi;
	handle->sample	= sample;
4082

4083
	if (!buffer->nr_pages)
4084
		goto out;
4085

4086
	have_lost = local_read(&buffer->lost);
4087 4088 4089 4090 4091 4092
	if (have_lost) {
		lost_event.header.size = sizeof(lost_event);
		perf_event_header__init_id(&lost_event.header, &sample_data,
					   event);
		size += lost_event.header.size;
	}
4093

4094
	perf_output_get_handle(handle);
4095

4096
	do {
4097 4098 4099 4100 4101
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
4102
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
4103
		smp_rmb();
4104
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
4105
		head += size;
4106
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4107
			goto fail;
4108
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
4109

4110 4111
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
4112

4113 4114 4115 4116
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
4117
	handle->addr += handle->size;
4118
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4119

4120
	if (have_lost) {
4121
		lost_event.header.type = PERF_RECORD_LOST;
4122
		lost_event.header.misc = 0;
4123
		lost_event.id          = event->id;
4124
		lost_event.lost        = local_xchg(&buffer->lost, 0);
4125 4126

		perf_output_put(handle, lost_event);
4127
		perf_event__output_id_sample(event, handle, &sample_data);
4128 4129
	}

4130
	return 0;
4131

4132
fail:
4133
	local_inc(&buffer->lost);
4134
	perf_output_put_handle(handle);
4135 4136
out:
	rcu_read_unlock();
4137

4138 4139
	return -ENOSPC;
}
4140

4141
void perf_output_end(struct perf_output_handle *handle)
4142
{
4143
	struct perf_event *event = handle->event;
4144
	struct perf_buffer *buffer = handle->buffer;
4145

4146
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
4147

4148
	if (handle->sample && wakeup_events) {
4149
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
4150
		if (events >= wakeup_events) {
4151 4152
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
4153
		}
4154 4155
	}

4156
	perf_output_put_handle(handle);
4157
	rcu_read_unlock();
4158 4159
}

4160
static void perf_output_read_one(struct perf_output_handle *handle,
4161 4162
				 struct perf_event *event,
				 u64 enabled, u64 running)
4163
{
4164
	u64 read_format = event->attr.read_format;
4165 4166 4167
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4168
	values[n++] = perf_event_count(event);
4169
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4170
		values[n++] = enabled +
4171
			atomic64_read(&event->child_total_time_enabled);
4172 4173
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4174
		values[n++] = running +
4175
			atomic64_read(&event->child_total_time_running);
4176 4177
	}
	if (read_format & PERF_FORMAT_ID)
4178
		values[n++] = primary_event_id(event);
4179 4180 4181 4182 4183

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
4184
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4185 4186
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4187 4188
			    struct perf_event *event,
			    u64 enabled, u64 running)
4189
{
4190 4191
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4192 4193 4194 4195 4196 4197
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4198
		values[n++] = enabled;
4199 4200

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4201
		values[n++] = running;
4202

4203
	if (leader != event)
4204 4205
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4206
	values[n++] = perf_event_count(leader);
4207
	if (read_format & PERF_FORMAT_ID)
4208
		values[n++] = primary_event_id(leader);
4209 4210 4211

	perf_output_copy(handle, values, n * sizeof(u64));

4212
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4213 4214
		n = 0;

4215
		if (sub != event)
4216 4217
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4218
		values[n++] = perf_event_count(sub);
4219
		if (read_format & PERF_FORMAT_ID)
4220
			values[n++] = primary_event_id(sub);
4221 4222 4223 4224 4225

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

4226 4227 4228
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4229
static void perf_output_read(struct perf_output_handle *handle,
4230
			     struct perf_event *event)
4231
{
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

4251
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4252
		perf_output_read_group(handle, event, enabled, running);
4253
	else
4254
		perf_output_read_one(handle, event, enabled, running);
4255 4256
}

4257 4258 4259
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4260
			struct perf_event *event)
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4291
		perf_output_read(handle, event);
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4329
			 struct perf_event *event,
4330
			 struct pt_regs *regs)
4331
{
4332
	u64 sample_type = event->attr.sample_type;
4333

4334
	header->type = PERF_RECORD_SAMPLE;
4335
	header->size = sizeof(*header) + event->header_size;
4336 4337 4338

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4339

4340
	__perf_event_header__init_id(header, data, event);
4341

4342
	if (sample_type & PERF_SAMPLE_IP)
4343 4344
		data->ip = perf_instruction_pointer(regs);

4345
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4346
		int size = 1;
4347

4348 4349 4350 4351 4352 4353
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4354 4355
	}

4356
	if (sample_type & PERF_SAMPLE_RAW) {
4357 4358 4359 4360 4361 4362 4363 4364
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4365
		header->size += size;
4366
	}
4367
}
4368

4369
static void perf_event_output(struct perf_event *event, int nmi,
4370 4371 4372 4373 4374
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4375

4376 4377 4378
	/* protect the callchain buffers */
	rcu_read_lock();

4379
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4380

4381
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
4382
		goto exit;
4383

4384
	perf_output_sample(&handle, &header, data, event);
4385

4386
	perf_output_end(&handle);
4387 4388 4389

exit:
	rcu_read_unlock();
4390 4391
}

4392
/*
4393
 * read event_id
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4404
perf_event_read_event(struct perf_event *event,
4405 4406 4407
			struct task_struct *task)
{
	struct perf_output_handle handle;
4408
	struct perf_sample_data sample;
4409
	struct perf_read_event read_event = {
4410
		.header = {
4411
			.type = PERF_RECORD_READ,
4412
			.misc = 0,
4413
			.size = sizeof(read_event) + event->read_size,
4414
		},
4415 4416
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4417
	};
4418
	int ret;
4419

4420
	perf_event_header__init_id(&read_event.header, &sample, event);
4421
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4422 4423 4424
	if (ret)
		return;

4425
	perf_output_put(&handle, read_event);
4426
	perf_output_read(&handle, event);
4427
	perf_event__output_id_sample(event, &handle, &sample);
4428

4429 4430 4431
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4432
/*
P
Peter Zijlstra 已提交
4433 4434
 * task tracking -- fork/exit
 *
4435
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4436 4437
 */

P
Peter Zijlstra 已提交
4438
struct perf_task_event {
4439
	struct task_struct		*task;
4440
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4441 4442 4443 4444 4445 4446

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4447 4448
		u32				tid;
		u32				ptid;
4449
		u64				time;
4450
	} event_id;
P
Peter Zijlstra 已提交
4451 4452
};

4453
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4454
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4455 4456
{
	struct perf_output_handle handle;
4457
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4458
	struct task_struct *task = task_event->task;
4459
	int ret, size = task_event->event_id.header.size;
4460

4461
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4462

4463 4464
	ret = perf_output_begin(&handle, event,
				task_event->event_id.header.size, 0, 0);
4465
	if (ret)
4466
		goto out;
P
Peter Zijlstra 已提交
4467

4468 4469
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4470

4471 4472
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4473

4474
	perf_output_put(&handle, task_event->event_id);
4475

4476 4477
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4478
	perf_output_end(&handle);
4479 4480
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4481 4482
}

4483
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4484
{
P
Peter Zijlstra 已提交
4485
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4486 4487
		return 0;

4488
	if (!event_filter_match(event))
4489 4490
		return 0;

4491 4492
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4493 4494 4495 4496 4497
		return 1;

	return 0;
}

4498
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4499
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4500
{
4501
	struct perf_event *event;
P
Peter Zijlstra 已提交
4502

4503 4504 4505
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4506 4507 4508
	}
}

4509
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4510 4511
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4512
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4513
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4514
	int ctxn;
P
Peter Zijlstra 已提交
4515

4516
	rcu_read_lock();
P
Peter Zijlstra 已提交
4517
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4518
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4519 4520
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4521
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4522 4523 4524 4525 4526

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4527
				goto next;
P
Peter Zijlstra 已提交
4528 4529 4530 4531
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4532 4533
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4534
	}
P
Peter Zijlstra 已提交
4535 4536 4537
	rcu_read_unlock();
}

4538 4539
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4540
			      int new)
P
Peter Zijlstra 已提交
4541
{
P
Peter Zijlstra 已提交
4542
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4543

4544 4545 4546
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4547 4548
		return;

P
Peter Zijlstra 已提交
4549
	task_event = (struct perf_task_event){
4550 4551
		.task	  = task,
		.task_ctx = task_ctx,
4552
		.event_id    = {
P
Peter Zijlstra 已提交
4553
			.header = {
4554
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4555
				.misc = 0,
4556
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4557
			},
4558 4559
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4560 4561
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4562
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4563 4564 4565
		},
	};

4566
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4567 4568
}

4569
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4570
{
4571
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4572 4573
}

4574 4575 4576 4577 4578
/*
 * comm tracking
 */

struct perf_comm_event {
4579 4580
	struct task_struct	*task;
	char			*comm;
4581 4582 4583 4584 4585 4586 4587
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4588
	} event_id;
4589 4590
};

4591
static void perf_event_comm_output(struct perf_event *event,
4592 4593 4594
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4595
	struct perf_sample_data sample;
4596
	int size = comm_event->event_id.header.size;
4597 4598 4599 4600 4601
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				comm_event->event_id.header.size, 0, 0);
4602 4603

	if (ret)
4604
		goto out;
4605

4606 4607
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4608

4609
	perf_output_put(&handle, comm_event->event_id);
4610 4611
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
4612 4613 4614

	perf_event__output_id_sample(event, &handle, &sample);

4615
	perf_output_end(&handle);
4616 4617
out:
	comm_event->event_id.header.size = size;
4618 4619
}

4620
static int perf_event_comm_match(struct perf_event *event)
4621
{
P
Peter Zijlstra 已提交
4622
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4623 4624
		return 0;

4625
	if (!event_filter_match(event))
4626 4627
		return 0;

4628
	if (event->attr.comm)
4629 4630 4631 4632 4633
		return 1;

	return 0;
}

4634
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4635 4636
				  struct perf_comm_event *comm_event)
{
4637
	struct perf_event *event;
4638

4639 4640 4641
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4642 4643 4644
	}
}

4645
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4646 4647
{
	struct perf_cpu_context *cpuctx;
4648
	struct perf_event_context *ctx;
4649
	char comm[TASK_COMM_LEN];
4650
	unsigned int size;
P
Peter Zijlstra 已提交
4651
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4652
	int ctxn;
4653

4654
	memset(comm, 0, sizeof(comm));
4655
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4656
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4657 4658 4659 4660

	comm_event->comm = comm;
	comm_event->comm_size = size;

4661
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4662
	rcu_read_lock();
P
Peter Zijlstra 已提交
4663
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4664
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4665 4666
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4667
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4668 4669 4670

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4671
			goto next;
P
Peter Zijlstra 已提交
4672 4673 4674 4675

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4676 4677
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4678
	}
4679
	rcu_read_unlock();
4680 4681
}

4682
void perf_event_comm(struct task_struct *task)
4683
{
4684
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4685 4686
	struct perf_event_context *ctx;
	int ctxn;
4687

P
Peter Zijlstra 已提交
4688 4689 4690 4691
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4692

P
Peter Zijlstra 已提交
4693 4694
		perf_event_enable_on_exec(ctx);
	}
4695

4696
	if (!atomic_read(&nr_comm_events))
4697
		return;
4698

4699
	comm_event = (struct perf_comm_event){
4700
		.task	= task,
4701 4702
		/* .comm      */
		/* .comm_size */
4703
		.event_id  = {
4704
			.header = {
4705
				.type = PERF_RECORD_COMM,
4706 4707 4708 4709 4710
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4711 4712 4713
		},
	};

4714
	perf_event_comm_event(&comm_event);
4715 4716
}

4717 4718 4719 4720 4721
/*
 * mmap tracking
 */

struct perf_mmap_event {
4722 4723 4724 4725
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4726 4727 4728 4729 4730 4731 4732 4733 4734

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4735
	} event_id;
4736 4737
};

4738
static void perf_event_mmap_output(struct perf_event *event,
4739 4740 4741
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4742
	struct perf_sample_data sample;
4743
	int size = mmap_event->event_id.header.size;
4744
	int ret;
4745

4746 4747 4748
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
				mmap_event->event_id.header.size, 0, 0);
4749
	if (ret)
4750
		goto out;
4751

4752 4753
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4754

4755
	perf_output_put(&handle, mmap_event->event_id);
4756 4757
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4758 4759 4760

	perf_event__output_id_sample(event, &handle, &sample);

4761
	perf_output_end(&handle);
4762 4763
out:
	mmap_event->event_id.header.size = size;
4764 4765
}

4766
static int perf_event_mmap_match(struct perf_event *event,
4767 4768
				   struct perf_mmap_event *mmap_event,
				   int executable)
4769
{
P
Peter Zijlstra 已提交
4770
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4771 4772
		return 0;

4773
	if (!event_filter_match(event))
4774 4775
		return 0;

4776 4777
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4778 4779 4780 4781 4782
		return 1;

	return 0;
}

4783
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4784 4785
				  struct perf_mmap_event *mmap_event,
				  int executable)
4786
{
4787
	struct perf_event *event;
4788

4789
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4790
		if (perf_event_mmap_match(event, mmap_event, executable))
4791
			perf_event_mmap_output(event, mmap_event);
4792 4793 4794
	}
}

4795
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4796 4797
{
	struct perf_cpu_context *cpuctx;
4798
	struct perf_event_context *ctx;
4799 4800
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4801 4802 4803
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4804
	const char *name;
P
Peter Zijlstra 已提交
4805
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4806
	int ctxn;
4807

4808 4809
	memset(tmp, 0, sizeof(tmp));

4810
	if (file) {
4811 4812 4813 4814 4815 4816
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4817 4818 4819 4820
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4821
		name = d_path(&file->f_path, buf, PATH_MAX);
4822 4823 4824 4825 4826
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4827 4828 4829
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4830
			goto got_name;
4831
		}
4832 4833 4834 4835

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4836 4837 4838 4839 4840 4841 4842 4843
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4844 4845
		}

4846 4847 4848 4849 4850
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4851
	size = ALIGN(strlen(name)+1, sizeof(u64));
4852 4853 4854 4855

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4856
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4857

4858
	rcu_read_lock();
P
Peter Zijlstra 已提交
4859
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4860
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4861 4862
		if (cpuctx->active_pmu != pmu)
			goto next;
P
Peter Zijlstra 已提交
4863 4864
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4865 4866 4867

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4868
			goto next;
P
Peter Zijlstra 已提交
4869 4870 4871 4872 4873 4874

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4875 4876
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4877
	}
4878 4879
	rcu_read_unlock();

4880 4881 4882
	kfree(buf);
}

4883
void perf_event_mmap(struct vm_area_struct *vma)
4884
{
4885 4886
	struct perf_mmap_event mmap_event;

4887
	if (!atomic_read(&nr_mmap_events))
4888 4889 4890
		return;

	mmap_event = (struct perf_mmap_event){
4891
		.vma	= vma,
4892 4893
		/* .file_name */
		/* .file_size */
4894
		.event_id  = {
4895
			.header = {
4896
				.type = PERF_RECORD_MMAP,
4897
				.misc = PERF_RECORD_MISC_USER,
4898 4899 4900 4901
				/* .size */
			},
			/* .pid */
			/* .tid */
4902 4903
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4904
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4905 4906 4907
		},
	};

4908
	perf_event_mmap_event(&mmap_event);
4909 4910
}

4911 4912 4913 4914
/*
 * IRQ throttle logging
 */

4915
static void perf_log_throttle(struct perf_event *event, int enable)
4916 4917
{
	struct perf_output_handle handle;
4918
	struct perf_sample_data sample;
4919 4920 4921 4922 4923
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4924
		u64				id;
4925
		u64				stream_id;
4926 4927
	} throttle_event = {
		.header = {
4928
			.type = PERF_RECORD_THROTTLE,
4929 4930 4931
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4932
		.time		= perf_clock(),
4933 4934
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4935 4936
	};

4937
	if (enable)
4938
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4939

4940 4941 4942 4943
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				throttle_event.header.size, 1, 0);
4944 4945 4946 4947
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4948
	perf_event__output_id_sample(event, &handle, &sample);
4949 4950 4951
	perf_output_end(&handle);
}

4952
/*
4953
 * Generic event overflow handling, sampling.
4954 4955
 */

4956
static int __perf_event_overflow(struct perf_event *event, int nmi,
4957 4958
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4959
{
4960 4961
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4962 4963
	int ret = 0;

4964 4965 4966 4967 4968 4969 4970
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

P
Peter Zijlstra 已提交
4971 4972 4973 4974
	if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
		if (throttle) {
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4975 4976
			ret = 1;
		}
P
Peter Zijlstra 已提交
4977 4978
	} else
		hwc->interrupts++;
4979

4980
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4981
		u64 now = perf_clock();
4982
		s64 delta = now - hwc->freq_time_stamp;
4983

4984
		hwc->freq_time_stamp = now;
4985

4986 4987
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4988 4989
	}

4990 4991
	/*
	 * XXX event_limit might not quite work as expected on inherited
4992
	 * events
4993 4994
	 */

4995 4996
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4997
		ret = 1;
4998
		event->pending_kill = POLL_HUP;
4999
		if (nmi) {
5000
			event->pending_disable = 1;
5001
			irq_work_queue(&event->pending);
5002
		} else
5003
			perf_event_disable(event);
5004 5005
	}

5006 5007 5008 5009 5010
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

P
Peter Zijlstra 已提交
5011 5012 5013 5014 5015 5016 5017 5018
	if (event->fasync && event->pending_kill) {
		if (nmi) {
			event->pending_wakeup = 1;
			irq_work_queue(&event->pending);
		} else
			perf_event_wakeup(event);
	}

5019
	return ret;
5020 5021
}

5022
int perf_event_overflow(struct perf_event *event, int nmi,
5023 5024
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5025
{
5026
	return __perf_event_overflow(event, nmi, 1, data, regs);
5027 5028
}

5029
/*
5030
 * Generic software event infrastructure
5031 5032
 */

5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5044
/*
5045 5046
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5047 5048 5049 5050
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5051
static u64 perf_swevent_set_period(struct perf_event *event)
5052
{
5053
	struct hw_perf_event *hwc = &event->hw;
5054 5055 5056 5057 5058
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5059 5060

again:
5061
	old = val = local64_read(&hwc->period_left);
5062 5063
	if (val < 0)
		return 0;
5064

5065 5066 5067
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5068
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5069
		goto again;
5070

5071
	return nr;
5072 5073
}

5074
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5075 5076
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
5077
{
5078
	struct hw_perf_event *hwc = &event->hw;
5079
	int throttle = 0;
5080

5081
	data->period = event->hw.last_period;
5082 5083
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5084

5085 5086
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5087

5088
	for (; overflow; overflow--) {
5089
		if (__perf_event_overflow(event, nmi, throttle,
5090
					    data, regs)) {
5091 5092 5093 5094 5095 5096
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5097
		throttle = 1;
5098
	}
5099 5100
}

P
Peter Zijlstra 已提交
5101
static void perf_swevent_event(struct perf_event *event, u64 nr,
5102 5103
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
5104
{
5105
	struct hw_perf_event *hwc = &event->hw;
5106

5107
	local64_add(nr, &event->count);
5108

5109 5110 5111
	if (!regs)
		return;

5112
	if (!is_sampling_event(event))
5113
		return;
5114

5115 5116 5117
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

5118
	if (local64_add_negative(nr, &hwc->period_left))
5119
		return;
5120

5121
	perf_swevent_overflow(event, 0, nmi, data, regs);
5122 5123
}

5124 5125 5126
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5127
	if (event->hw.state & PERF_HES_STOPPED)
5128
		return 1;
P
Peter Zijlstra 已提交
5129

5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5141
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5142
				enum perf_type_id type,
L
Li Zefan 已提交
5143 5144 5145
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5146
{
5147
	if (event->attr.type != type)
5148
		return 0;
5149

5150
	if (event->attr.config != event_id)
5151 5152
		return 0;

5153 5154
	if (perf_exclude_event(event, regs))
		return 0;
5155 5156 5157 5158

	return 1;
}

5159 5160 5161 5162 5163 5164 5165
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5166 5167
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5168
{
5169 5170 5171 5172
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5173

5174 5175
/* For the read side: events when they trigger */
static inline struct hlist_head *
5176
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5177 5178
{
	struct swevent_hlist *hlist;
5179

5180
	hlist = rcu_dereference(swhash->swevent_hlist);
5181 5182 5183
	if (!hlist)
		return NULL;

5184 5185 5186 5187 5188
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5189
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5200
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5201 5202 5203 5204 5205
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5206 5207 5208 5209 5210 5211
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5212
{
5213
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5214
	struct perf_event *event;
5215 5216
	struct hlist_node *node;
	struct hlist_head *head;
5217

5218
	rcu_read_lock();
5219
	head = find_swevent_head_rcu(swhash, type, event_id);
5220 5221 5222 5223
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5224
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
5225
			perf_swevent_event(event, nr, nmi, data, regs);
5226
	}
5227 5228
end:
	rcu_read_unlock();
5229 5230
}

5231
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5232
{
5233
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5234

5235
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5236
}
I
Ingo Molnar 已提交
5237
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5238

5239
inline void perf_swevent_put_recursion_context(int rctx)
5240
{
5241
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5242

5243
	put_recursion_context(swhash->recursion, rctx);
5244
}
5245

5246
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5247
			    struct pt_regs *regs, u64 addr)
5248
{
5249
	struct perf_sample_data data;
5250 5251
	int rctx;

5252
	preempt_disable_notrace();
5253 5254 5255
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5256

5257
	perf_sample_data_init(&data, addr);
5258

5259
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5260 5261

	perf_swevent_put_recursion_context(rctx);
5262
	preempt_enable_notrace();
5263 5264
}

5265
static void perf_swevent_read(struct perf_event *event)
5266 5267 5268
{
}

P
Peter Zijlstra 已提交
5269
static int perf_swevent_add(struct perf_event *event, int flags)
5270
{
5271
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5272
	struct hw_perf_event *hwc = &event->hw;
5273 5274
	struct hlist_head *head;

5275
	if (is_sampling_event(event)) {
5276
		hwc->last_period = hwc->sample_period;
5277
		perf_swevent_set_period(event);
5278
	}
5279

P
Peter Zijlstra 已提交
5280 5281
	hwc->state = !(flags & PERF_EF_START);

5282
	head = find_swevent_head(swhash, event);
5283 5284 5285 5286 5287
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5288 5289 5290
	return 0;
}

P
Peter Zijlstra 已提交
5291
static void perf_swevent_del(struct perf_event *event, int flags)
5292
{
5293
	hlist_del_rcu(&event->hlist_entry);
5294 5295
}

P
Peter Zijlstra 已提交
5296
static void perf_swevent_start(struct perf_event *event, int flags)
5297
{
P
Peter Zijlstra 已提交
5298
	event->hw.state = 0;
5299
}
I
Ingo Molnar 已提交
5300

P
Peter Zijlstra 已提交
5301
static void perf_swevent_stop(struct perf_event *event, int flags)
5302
{
P
Peter Zijlstra 已提交
5303
	event->hw.state = PERF_HES_STOPPED;
5304 5305
}

5306 5307
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5308
swevent_hlist_deref(struct swevent_htable *swhash)
5309
{
5310 5311
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5312 5313
}

5314
static void swevent_hlist_release(struct swevent_htable *swhash)
5315
{
5316
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5317

5318
	if (!hlist)
5319 5320
		return;

5321
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5322
	kfree_rcu(hlist, rcu_head);
5323 5324 5325 5326
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5327
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5328

5329
	mutex_lock(&swhash->hlist_mutex);
5330

5331 5332
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5333

5334
	mutex_unlock(&swhash->hlist_mutex);
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5352
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5353 5354
	int err = 0;

5355
	mutex_lock(&swhash->hlist_mutex);
5356

5357
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5358 5359 5360 5361 5362 5363 5364
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5365
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5366
	}
5367
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5368
exit:
5369
	mutex_unlock(&swhash->hlist_mutex);
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5393
fail:
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5404
struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5405

5406 5407 5408
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5409

5410 5411
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
5412
	jump_label_dec(&perf_swevent_enabled[event_id]);
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5432
	if (event_id >= PERF_COUNT_SW_MAX)
5433 5434 5435 5436 5437 5438 5439 5440 5441
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
5442
		jump_label_inc(&perf_swevent_enabled[event_id]);
5443 5444 5445 5446 5447 5448 5449
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
5450
	.task_ctx_nr	= perf_sw_context,
5451

5452
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5453 5454 5455 5456
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5457 5458 5459
	.read		= perf_swevent_read,
};

5460 5461
#ifdef CONFIG_EVENT_TRACING

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5476 5477
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5478 5479 5480 5481
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5482 5483 5484 5485 5486 5487 5488 5489 5490
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5491
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5492 5493
{
	struct perf_sample_data data;
5494 5495 5496
	struct perf_event *event;
	struct hlist_node *node;

5497 5498 5499 5500 5501 5502 5503 5504
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

5505 5506
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
5507
			perf_swevent_event(event, count, 1, &data, regs);
5508
	}
5509 5510

	perf_swevent_put_recursion_context(rctx);
5511 5512 5513
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5514
static void tp_perf_event_destroy(struct perf_event *event)
5515
{
5516
	perf_trace_destroy(event);
5517 5518
}

5519
static int perf_tp_event_init(struct perf_event *event)
5520
{
5521 5522
	int err;

5523 5524 5525
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5526 5527
	err = perf_trace_init(event);
	if (err)
5528
		return err;
5529

5530
	event->destroy = tp_perf_event_destroy;
5531

5532 5533 5534 5535
	return 0;
}

static struct pmu perf_tracepoint = {
5536 5537
	.task_ctx_nr	= perf_sw_context,

5538
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5539 5540 5541 5542
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5543 5544 5545 5546 5547
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5548
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5549
}
L
Li Zefan 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5574
#else
L
Li Zefan 已提交
5575

5576
static inline void perf_tp_register(void)
5577 5578
{
}
L
Li Zefan 已提交
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5589
#endif /* CONFIG_EVENT_TRACING */
5590

5591
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5592
void perf_bp_event(struct perf_event *bp, void *data)
5593
{
5594 5595 5596
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5597
	perf_sample_data_init(&sample, bp->attr.bp_addr);
5598

P
Peter Zijlstra 已提交
5599 5600
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
5601 5602 5603
}
#endif

5604 5605 5606
/*
 * hrtimer based swevent callback
 */
5607

5608
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5609
{
5610 5611 5612 5613 5614
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5615

5616
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5617 5618 5619 5620

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5621
	event->pmu->read(event);
5622

5623 5624 5625 5626 5627 5628 5629 5630 5631
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
5632

5633 5634
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5635

5636
	return ret;
5637 5638
}

5639
static void perf_swevent_start_hrtimer(struct perf_event *event)
5640
{
5641
	struct hw_perf_event *hwc = &event->hw;
5642 5643 5644 5645
	s64 period;

	if (!is_sampling_event(event))
		return;
5646

5647 5648 5649 5650
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5651

5652 5653 5654 5655 5656
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5657
				ns_to_ktime(period), 0,
5658
				HRTIMER_MODE_REL_PINNED, 0);
5659
}
5660 5661

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5662
{
5663 5664
	struct hw_perf_event *hwc = &event->hw;

5665
	if (is_sampling_event(event)) {
5666
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5667
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5668 5669 5670

		hrtimer_cancel(&hwc->hrtimer);
	}
5671 5672
}

P
Peter Zijlstra 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5697 5698 5699 5700 5701
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5702
{
5703 5704 5705
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5706
	now = local_clock();
5707 5708
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5709 5710
}

P
Peter Zijlstra 已提交
5711
static void cpu_clock_event_start(struct perf_event *event, int flags)
5712
{
P
Peter Zijlstra 已提交
5713
	local64_set(&event->hw.prev_count, local_clock());
5714 5715 5716
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5717
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5718
{
5719 5720 5721
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5722

P
Peter Zijlstra 已提交
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5736 5737 5738 5739
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5740

5741 5742 5743 5744 5745 5746 5747 5748
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5749 5750
	perf_swevent_init_hrtimer(event);

5751
	return 0;
5752 5753
}

5754
static struct pmu perf_cpu_clock = {
5755 5756
	.task_ctx_nr	= perf_sw_context,

5757
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5758 5759 5760 5761
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5762 5763 5764 5765 5766 5767 5768 5769
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5770
{
5771 5772
	u64 prev;
	s64 delta;
5773

5774 5775 5776 5777
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5778

P
Peter Zijlstra 已提交
5779
static void task_clock_event_start(struct perf_event *event, int flags)
5780
{
P
Peter Zijlstra 已提交
5781
	local64_set(&event->hw.prev_count, event->ctx->time);
5782 5783 5784
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5785
static void task_clock_event_stop(struct perf_event *event, int flags)
5786 5787 5788
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5789 5790 5791 5792 5793 5794
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5795

P
Peter Zijlstra 已提交
5796 5797 5798 5799 5800 5801
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5802 5803 5804 5805
}

static void task_clock_event_read(struct perf_event *event)
{
5806 5807 5808
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5809 5810 5811 5812 5813

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5814
{
5815 5816 5817 5818 5819 5820
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

P
Peter Zijlstra 已提交
5821 5822
	perf_swevent_init_hrtimer(event);

5823
	return 0;
L
Li Zefan 已提交
5824 5825
}

5826
static struct pmu perf_task_clock = {
5827 5828
	.task_ctx_nr	= perf_sw_context,

5829
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5830 5831 5832 5833
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5834 5835
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5836

P
Peter Zijlstra 已提交
5837
static void perf_pmu_nop_void(struct pmu *pmu)
5838 5839
{
}
L
Li Zefan 已提交
5840

P
Peter Zijlstra 已提交
5841
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5842
{
P
Peter Zijlstra 已提交
5843
	return 0;
L
Li Zefan 已提交
5844 5845
}

P
Peter Zijlstra 已提交
5846
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5847
{
P
Peter Zijlstra 已提交
5848
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5849 5850
}

P
Peter Zijlstra 已提交
5851 5852 5853 5854 5855
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5856

P
Peter Zijlstra 已提交
5857
static void perf_pmu_cancel_txn(struct pmu *pmu)
5858
{
P
Peter Zijlstra 已提交
5859
	perf_pmu_enable(pmu);
5860 5861
}

P
Peter Zijlstra 已提交
5862 5863 5864 5865 5866
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5867
{
P
Peter Zijlstra 已提交
5868
	struct pmu *pmu;
5869

P
Peter Zijlstra 已提交
5870 5871
	if (ctxn < 0)
		return NULL;
5872

P
Peter Zijlstra 已提交
5873 5874 5875 5876
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5877

P
Peter Zijlstra 已提交
5878
	return NULL;
5879 5880
}

5881
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5882
{
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

		if (cpuctx->active_pmu == old_pmu)
			cpuctx->active_pmu = pmu;
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5898

P
Peter Zijlstra 已提交
5899
	mutex_lock(&pmus_lock);
5900
	/*
P
Peter Zijlstra 已提交
5901
	 * Like a real lame refcount.
5902
	 */
5903 5904 5905
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5906
			goto out;
5907
		}
P
Peter Zijlstra 已提交
5908
	}
5909

5910
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5911 5912
out:
	mutex_unlock(&pmus_lock);
5913
}
P
Peter Zijlstra 已提交
5914
static struct idr pmu_idr;
5915

P
Peter Zijlstra 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5968
static struct lock_class_key cpuctx_mutex;
5969
static struct lock_class_key cpuctx_lock;
5970

P
Peter Zijlstra 已提交
5971
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5972
{
P
Peter Zijlstra 已提交
5973
	int cpu, ret;
5974

5975
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5976 5977 5978 5979
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5980

P
Peter Zijlstra 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5999 6000 6001 6002 6003 6004
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6005
skip_type:
P
Peter Zijlstra 已提交
6006 6007 6008
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6009

P
Peter Zijlstra 已提交
6010 6011
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6012
		goto free_dev;
6013

P
Peter Zijlstra 已提交
6014 6015 6016 6017
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6018
		__perf_event_init_context(&cpuctx->ctx);
6019
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6020
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6021
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6022
		cpuctx->ctx.pmu = pmu;
6023 6024
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6025
		cpuctx->active_pmu = pmu;
P
Peter Zijlstra 已提交
6026
	}
6027

P
Peter Zijlstra 已提交
6028
got_cpu_context:
P
Peter Zijlstra 已提交
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6043
		}
6044
	}
6045

P
Peter Zijlstra 已提交
6046 6047 6048 6049 6050
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6051
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6052 6053
	ret = 0;
unlock:
6054 6055
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6056
	return ret;
P
Peter Zijlstra 已提交
6057

P
Peter Zijlstra 已提交
6058 6059 6060 6061
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6062 6063 6064 6065
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6066 6067 6068
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6069 6070
}

6071
void perf_pmu_unregister(struct pmu *pmu)
6072
{
6073 6074 6075
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6076

6077
	/*
P
Peter Zijlstra 已提交
6078 6079
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6080
	 */
6081
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6082
	synchronize_rcu();
6083

P
Peter Zijlstra 已提交
6084
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6085 6086
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6087 6088
	device_del(pmu->dev);
	put_device(pmu->dev);
6089
	free_pmu_context(pmu);
6090
}
6091

6092 6093 6094 6095
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6096
	int ret;
6097 6098

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6099 6100 6101 6102

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6103 6104 6105 6106
	if (pmu) {
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6107
		goto unlock;
6108
	}
P
Peter Zijlstra 已提交
6109

6110
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6111
		ret = pmu->event_init(event);
6112
		if (!ret)
P
Peter Zijlstra 已提交
6113
			goto unlock;
6114

6115 6116
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6117
			goto unlock;
6118
		}
6119
	}
P
Peter Zijlstra 已提交
6120 6121
	pmu = ERR_PTR(-ENOENT);
unlock:
6122
	srcu_read_unlock(&pmus_srcu, idx);
6123

6124
	return pmu;
6125 6126
}

T
Thomas Gleixner 已提交
6127
/*
6128
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6129
 */
6130
static struct perf_event *
6131
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6132 6133 6134 6135
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
6136
{
P
Peter Zijlstra 已提交
6137
	struct pmu *pmu;
6138 6139
	struct perf_event *event;
	struct hw_perf_event *hwc;
6140
	long err;
T
Thomas Gleixner 已提交
6141

6142 6143 6144 6145 6146
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6147
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6148
	if (!event)
6149
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6150

6151
	/*
6152
	 * Single events are their own group leaders, with an
6153 6154 6155
	 * empty sibling list:
	 */
	if (!group_leader)
6156
		group_leader = event;
6157

6158 6159
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6160

6161 6162 6163 6164
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
6165
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6166

6167
	mutex_init(&event->mmap_mutex);
6168

6169 6170 6171 6172 6173
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6174

6175
	event->parent		= parent_event;
6176

6177 6178
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6179

6180
	event->state		= PERF_EVENT_STATE_INACTIVE;
6181

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6193 6194
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
6195

6196
	event->overflow_handler	= overflow_handler;
6197

6198
	if (attr->disabled)
6199
		event->state = PERF_EVENT_STATE_OFF;
6200

6201
	pmu = NULL;
6202

6203
	hwc = &event->hw;
6204
	hwc->sample_period = attr->sample_period;
6205
	if (attr->freq && attr->sample_freq)
6206
		hwc->sample_period = 1;
6207
	hwc->last_period = hwc->sample_period;
6208

6209
	local64_set(&hwc->period_left, hwc->sample_period);
6210

6211
	/*
6212
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6213
	 */
6214
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6215 6216
		goto done;

6217
	pmu = perf_init_event(event);
6218

6219 6220
done:
	err = 0;
6221
	if (!pmu)
6222
		err = -EINVAL;
6223 6224
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6225

6226
	if (err) {
6227 6228 6229
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6230
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6231
	}
6232

6233
	event->pmu = pmu;
T
Thomas Gleixner 已提交
6234

6235
	if (!event->parent) {
6236
		if (event->attach_state & PERF_ATTACH_TASK)
S
Stephane Eranian 已提交
6237
			jump_label_inc(&perf_sched_events);
6238
		if (event->attr.mmap || event->attr.mmap_data)
6239 6240 6241 6242 6243
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6244 6245 6246 6247 6248 6249 6250
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6251
	}
6252

6253
	return event;
T
Thomas Gleixner 已提交
6254 6255
}

6256 6257
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6258 6259
{
	u32 size;
6260
	int ret;
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6285 6286 6287
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6288 6289
	 */
	if (size > sizeof(*attr)) {
6290 6291 6292
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6293

6294 6295
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6296

6297
		for (; addr < end; addr++) {
6298 6299 6300 6301 6302 6303
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6304
		size = sizeof(*attr);
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

6318
	if (attr->__reserved_1)
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6336 6337
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6338
{
6339
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6340 6341
	int ret = -EINVAL;

6342
	if (!output_event)
6343 6344
		goto set;

6345 6346
	/* don't allow circular references */
	if (event == output_event)
6347 6348
		goto out;

6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6361
set:
6362
	mutex_lock(&event->mmap_mutex);
6363 6364 6365
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6366

6367 6368
	if (output_event) {
		/* get the buffer we want to redirect to */
6369 6370
		buffer = perf_buffer_get(output_event);
		if (!buffer)
6371
			goto unlock;
6372 6373
	}

6374 6375
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
6376
	ret = 0;
6377 6378 6379
unlock:
	mutex_unlock(&event->mmap_mutex);

6380 6381
	if (old_buffer)
		perf_buffer_put(old_buffer);
6382 6383 6384 6385
out:
	return ret;
}

T
Thomas Gleixner 已提交
6386
/**
6387
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6388
 *
6389
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6390
 * @pid:		target pid
I
Ingo Molnar 已提交
6391
 * @cpu:		target cpu
6392
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6393
 */
6394 6395
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6396
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6397
{
6398 6399
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6400 6401 6402
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6403
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6404
	struct task_struct *task = NULL;
6405
	struct pmu *pmu;
6406
	int event_fd;
6407
	int move_group = 0;
6408
	int fput_needed = 0;
6409
	int err;
T
Thomas Gleixner 已提交
6410

6411
	/* for future expandability... */
S
Stephane Eranian 已提交
6412
	if (flags & ~PERF_FLAG_ALL)
6413 6414
		return -EINVAL;

6415 6416 6417
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6418

6419 6420 6421 6422 6423
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6424
	if (attr.freq) {
6425
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6426 6427 6428
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6438 6439 6440 6441
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6442 6443 6444 6445
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
6446
			goto err_fd;
6447 6448 6449 6450 6451 6452 6453 6454
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6455
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6456 6457 6458 6459 6460 6461 6462
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6463
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6464 6465
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6466
		goto err_task;
6467 6468
	}

S
Stephane Eranian 已提交
6469 6470 6471 6472
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6473 6474 6475 6476 6477 6478 6479
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
		jump_label_inc(&perf_sched_events);
S
Stephane Eranian 已提交
6480 6481
	}

6482 6483 6484 6485 6486
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6510 6511 6512 6513

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
6514
	ctx = find_get_context(pmu, task, cpu);
6515 6516
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6517
		goto err_alloc;
6518 6519
	}

6520 6521 6522 6523 6524
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6525
	/*
6526
	 * Look up the group leader (we will attach this event to it):
6527
	 */
6528
	if (group_leader) {
6529
		err = -EINVAL;
6530 6531

		/*
I
Ingo Molnar 已提交
6532 6533 6534 6535
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6536
			goto err_context;
I
Ingo Molnar 已提交
6537 6538 6539
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6540
		 */
6541 6542 6543 6544 6545 6546 6547 6548
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6549 6550 6551
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6552
		if (attr.exclusive || attr.pinned)
6553
			goto err_context;
6554 6555 6556 6557 6558
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6559
			goto err_context;
6560
	}
T
Thomas Gleixner 已提交
6561

6562 6563 6564
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6565
		goto err_context;
6566
	}
6567

6568 6569 6570 6571
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6572
		perf_remove_from_context(group_leader);
6573 6574
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6575
			perf_remove_from_context(sibling);
6576 6577 6578 6579
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6580
	}
6581

6582
	event->filp = event_file;
6583
	WARN_ON_ONCE(ctx->parent_ctx);
6584
	mutex_lock(&ctx->mutex);
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

6596
	perf_install_in_context(ctx, event, cpu);
6597
	++ctx->generation;
6598
	perf_unpin_context(ctx);
6599
	mutex_unlock(&ctx->mutex);
6600

6601
	event->owner = current;
P
Peter Zijlstra 已提交
6602

6603 6604 6605
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6606

6607 6608 6609 6610
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6611
	perf_event__id_header_size(event);
6612

6613 6614 6615 6616 6617 6618
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6619 6620 6621
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6622

6623
err_context:
6624
	perf_unpin_context(ctx);
6625
	put_ctx(ctx);
6626
err_alloc:
6627
	free_event(event);
P
Peter Zijlstra 已提交
6628 6629 6630
err_task:
	if (task)
		put_task_struct(task);
6631
err_group_fd:
6632
	fput_light(group_file, fput_needed);
6633 6634
err_fd:
	put_unused_fd(event_fd);
6635
	return err;
T
Thomas Gleixner 已提交
6636 6637
}

6638 6639 6640 6641 6642
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6643
 * @task: task to profile (NULL for percpu)
6644 6645 6646
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6647
				 struct task_struct *task,
6648
				 perf_overflow_handler_t overflow_handler)
6649 6650
{
	struct perf_event_context *ctx;
6651
	struct perf_event *event;
6652
	int err;
6653

6654 6655 6656
	/*
	 * Get the target context (task or percpu):
	 */
6657

6658
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6659 6660 6661 6662
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6663

M
Matt Helsley 已提交
6664
	ctx = find_get_context(event->pmu, task, cpu);
6665 6666
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6667
		goto err_free;
6668
	}
6669 6670 6671 6672 6673 6674

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6675
	perf_unpin_context(ctx);
6676 6677 6678 6679
	mutex_unlock(&ctx->mutex);

	return event;

6680 6681 6682
err_free:
	free_event(event);
err:
6683
	return ERR_PTR(err);
6684
}
6685
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6686

6687
static void sync_child_event(struct perf_event *child_event,
6688
			       struct task_struct *child)
6689
{
6690
	struct perf_event *parent_event = child_event->parent;
6691
	u64 child_val;
6692

6693 6694
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6695

P
Peter Zijlstra 已提交
6696
	child_val = perf_event_count(child_event);
6697 6698 6699 6700

	/*
	 * Add back the child's count to the parent's count:
	 */
6701
	atomic64_add(child_val, &parent_event->child_count);
6702 6703 6704 6705
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6706 6707

	/*
6708
	 * Remove this event from the parent's list
6709
	 */
6710 6711 6712 6713
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6714 6715

	/*
6716
	 * Release the parent event, if this was the last
6717 6718
	 * reference to it.
	 */
6719
	fput(parent_event->filp);
6720 6721
}

6722
static void
6723 6724
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6725
			 struct task_struct *child)
6726
{
6727 6728 6729 6730 6731
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6732

6733
	perf_remove_from_context(child_event);
6734

6735
	/*
6736
	 * It can happen that the parent exits first, and has events
6737
	 * that are still around due to the child reference. These
6738
	 * events need to be zapped.
6739
	 */
6740
	if (child_event->parent) {
6741 6742
		sync_child_event(child_event, child);
		free_event(child_event);
6743
	}
6744 6745
}

P
Peter Zijlstra 已提交
6746
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6747
{
6748 6749
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6750
	unsigned long flags;
6751

P
Peter Zijlstra 已提交
6752
	if (likely(!child->perf_event_ctxp[ctxn])) {
6753
		perf_event_task(child, NULL, 0);
6754
		return;
P
Peter Zijlstra 已提交
6755
	}
6756

6757
	local_irq_save(flags);
6758 6759 6760 6761 6762 6763
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6764
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6765 6766 6767

	/*
	 * Take the context lock here so that if find_get_context is
6768
	 * reading child->perf_event_ctxp, we wait until it has
6769 6770
	 * incremented the context's refcount before we do put_ctx below.
	 */
6771
	raw_spin_lock(&child_ctx->lock);
6772
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6773
	child->perf_event_ctxp[ctxn] = NULL;
6774 6775 6776
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6777
	 * the events from it.
6778 6779
	 */
	unclone_ctx(child_ctx);
6780
	update_context_time(child_ctx);
6781
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6782 6783

	/*
6784 6785 6786
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6787
	 */
6788
	perf_event_task(child, child_ctx, 0);
6789

6790 6791 6792
	/*
	 * We can recurse on the same lock type through:
	 *
6793 6794 6795
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
6796 6797 6798 6799 6800
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6801
	mutex_lock(&child_ctx->mutex);
6802

6803
again:
6804 6805 6806 6807 6808
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6809
				 group_entry)
6810
		__perf_event_exit_task(child_event, child_ctx, child);
6811 6812

	/*
6813
	 * If the last event was a group event, it will have appended all
6814 6815 6816
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6817 6818
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6819
		goto again;
6820 6821 6822 6823

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6824 6825
}

P
Peter Zijlstra 已提交
6826 6827 6828 6829 6830
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6831
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6832 6833
	int ctxn;

P
Peter Zijlstra 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6849 6850 6851 6852
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

6867
	perf_group_detach(event);
6868 6869 6870 6871
	list_del_event(event, ctx);
	free_event(event);
}

6872 6873
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6874
 * perf_event_init_task below, used by fork() in case of fail.
6875
 */
6876
void perf_event_free_task(struct task_struct *task)
6877
{
P
Peter Zijlstra 已提交
6878
	struct perf_event_context *ctx;
6879
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6880
	int ctxn;
6881

P
Peter Zijlstra 已提交
6882 6883 6884 6885
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6886

P
Peter Zijlstra 已提交
6887
		mutex_lock(&ctx->mutex);
6888
again:
P
Peter Zijlstra 已提交
6889 6890 6891
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6892

P
Peter Zijlstra 已提交
6893 6894 6895
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6896

P
Peter Zijlstra 已提交
6897 6898 6899
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6900

P
Peter Zijlstra 已提交
6901
		mutex_unlock(&ctx->mutex);
6902

P
Peter Zijlstra 已提交
6903 6904
		put_ctx(ctx);
	}
6905 6906
}

6907 6908 6909 6910 6911 6912 6913 6914
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6927
	unsigned long flags;
P
Peter Zijlstra 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6940
					   child,
P
Peter Zijlstra 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

6970 6971 6972 6973
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
6974
	perf_event__id_header_size(child_event);
6975

P
Peter Zijlstra 已提交
6976 6977 6978
	/*
	 * Link it up in the child's context:
	 */
6979
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6980
	add_event_to_ctx(child_event, child_ctx);
6981
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7023 7024 7025 7026 7027
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7028
		   struct task_struct *child, int ctxn,
7029 7030 7031
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7032
	struct perf_event_context *child_ctx;
7033 7034 7035 7036

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7037 7038
	}

7039
	child_ctx = child->perf_event_ctxp[ctxn];
7040 7041 7042 7043 7044 7045 7046
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7047

7048
		child_ctx = alloc_perf_context(event->pmu, child);
7049 7050
		if (!child_ctx)
			return -ENOMEM;
7051

P
Peter Zijlstra 已提交
7052
		child->perf_event_ctxp[ctxn] = child_ctx;
7053 7054 7055 7056 7057 7058 7059 7060 7061
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7062 7063
}

7064
/*
7065
 * Initialize the perf_event context in task_struct
7066
 */
P
Peter Zijlstra 已提交
7067
int perf_event_init_context(struct task_struct *child, int ctxn)
7068
{
7069
	struct perf_event_context *child_ctx, *parent_ctx;
7070 7071
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7072
	struct task_struct *parent = current;
7073
	int inherited_all = 1;
7074
	unsigned long flags;
7075
	int ret = 0;
7076

P
Peter Zijlstra 已提交
7077
	if (likely(!parent->perf_event_ctxp[ctxn]))
7078 7079
		return 0;

7080
	/*
7081 7082
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7083
	 */
P
Peter Zijlstra 已提交
7084
	parent_ctx = perf_pin_task_context(parent, ctxn);
7085

7086 7087 7088 7089 7090 7091 7092
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7093 7094 7095 7096
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7097
	mutex_lock(&parent_ctx->mutex);
7098 7099 7100 7101 7102

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7103
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7104 7105
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7106 7107 7108
		if (ret)
			break;
	}
7109

7110 7111 7112 7113 7114 7115 7116 7117 7118
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7119
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7120 7121
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7122
		if (ret)
7123
			break;
7124 7125
	}

7126 7127 7128
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7129
	child_ctx = child->perf_event_ctxp[ctxn];
7130

7131
	if (child_ctx && inherited_all) {
7132 7133 7134
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7135 7136 7137
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7138
		 */
P
Peter Zijlstra 已提交
7139
		cloned_ctx = parent_ctx->parent_ctx;
7140 7141
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7142
			child_ctx->parent_gen = parent_ctx->parent_gen;
7143 7144 7145 7146 7147
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7148 7149
	}

P
Peter Zijlstra 已提交
7150
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7151
	mutex_unlock(&parent_ctx->mutex);
7152

7153
	perf_unpin_context(parent_ctx);
7154
	put_ctx(parent_ctx);
7155

7156
	return ret;
7157 7158
}

P
Peter Zijlstra 已提交
7159 7160 7161 7162 7163 7164 7165
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7166 7167 7168 7169
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7179 7180
static void __init perf_event_init_all_cpus(void)
{
7181
	struct swevent_htable *swhash;
7182 7183 7184
	int cpu;

	for_each_possible_cpu(cpu) {
7185 7186
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7187
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7188 7189 7190
	}
}

7191
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7192
{
P
Peter Zijlstra 已提交
7193
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7194

7195 7196
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
7197 7198
		struct swevent_hlist *hlist;

7199 7200 7201
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7202
	}
7203
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7204 7205
}

P
Peter Zijlstra 已提交
7206
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7207
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7208
{
7209 7210 7211 7212 7213 7214 7215
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7216
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7217
{
P
Peter Zijlstra 已提交
7218
	struct perf_event_context *ctx = __info;
7219
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7220

P
Peter Zijlstra 已提交
7221
	perf_pmu_rotate_stop(ctx->pmu);
7222

7223
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7224
		__perf_remove_from_context(event);
7225
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7226
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7227
}
P
Peter Zijlstra 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7237
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7238 7239 7240 7241 7242 7243 7244 7245

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7246
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7247
{
7248
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7249

7250 7251 7252
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7253

P
Peter Zijlstra 已提交
7254
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7255 7256
}
#else
7257
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7258 7259
#endif

P
Peter Zijlstra 已提交
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7280 7281 7282 7283 7284
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
7285
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7286 7287

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7288
	case CPU_DOWN_FAILED:
7289
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7290 7291
		break;

P
Peter Zijlstra 已提交
7292
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7293
	case CPU_DOWN_PREPARE:
7294
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7295 7296 7297 7298 7299 7300 7301 7302 7303
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7304
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7305
{
7306 7307
	int ret;

P
Peter Zijlstra 已提交
7308 7309
	idr_init(&pmu_idr);

7310
	perf_event_init_all_cpus();
7311
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7312 7313 7314
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7315 7316
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7317
	register_reboot_notifier(&perf_reboot_notifier);
7318 7319 7320

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
7321
}
P
Peter Zijlstra 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7350 7351 7352 7353 7354 7355 7356

#ifdef CONFIG_CGROUP_PERF
static struct cgroup_subsys_state *perf_cgroup_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct perf_cgroup *jc;

7357
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

static void perf_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

static void perf_cgroup_move(struct task_struct *task)
{
	task_function_call(task, __perf_cgroup_move, task);
}

static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task,
		bool threadgroup)
{
	perf_cgroup_move(task);
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
			perf_cgroup_move(c);
		}
		rcu_read_unlock();
	}
}

static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	perf_cgroup_move(task);
}

struct cgroup_subsys perf_subsys = {
7422 7423 7424 7425 7426 7427
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7428 7429
};
#endif /* CONFIG_CGROUP_PERF */