core.c 253.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359 360
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
361 362 363 364
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
365 366 367 368 369 370 371

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
372
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
375

376 377 378
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
379
static atomic_t nr_freq_events __read_mostly;
380
static atomic_t nr_switch_events __read_mostly;
381

P
Peter Zijlstra 已提交
382 383 384 385
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

386
/*
387
 * perf event paranoia level:
388 389
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
390
 *   1 - disallow cpu events for unpriv
391
 *   2 - disallow kernel profiling for unpriv
392
 */
393
int sysctl_perf_event_paranoid __read_mostly = 2;
394

395 396
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 398

/*
399
 * max perf event sample rate
400
 */
401 402 403 404 405 406 407 408 409
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
410 411
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412

413
static void update_perf_cpu_limits(void)
414 415 416 417
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
418 419 420 421 422
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423
}
P
Peter Zijlstra 已提交
424

425 426
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
427 428 429 430
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
431
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
432 433 434 435

	if (ret || !write)
		return ret;

436 437 438 439 440 441 442
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
443
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

461 462
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
463 464 465 466 467 468
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
469 470 471

	return 0;
}
472

473 474 475 476 477 478 479
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
480
static DEFINE_PER_CPU(u64, running_sample_length);
481

482 483 484
static u64 __report_avg;
static u64 __report_allowed;

485
static void perf_duration_warn(struct irq_work *w)
486
{
487
	printk_ratelimited(KERN_INFO
488 489 490 491
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
492 493 494 495 496 497
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
498 499 500 501
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
502

503
	if (max_len == 0)
504 505
		return;

506 507 508 509 510
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
511 512

	/*
513 514
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 516
	 * from having to maintain a count.
	 */
517 518
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
519 520
		return;

521 522
	__report_avg = avg_len;
	__report_allowed = max_len;
523

524 525 526 527 528 529 530 531 532
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
533

534 535 536 537 538
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539

540
	if (!irq_work_queue(&perf_duration_work)) {
541
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542
			     "kernel.perf_event_max_sample_rate to %d\n",
543
			     __report_avg, __report_allowed,
544 545
			     sysctl_perf_event_sample_rate);
	}
546 547
}

548
static atomic64_t perf_event_id;
549

550 551 552 553
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
554 555 556 557 558
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
559

560
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
561

562
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
563
{
564
	return "pmu";
T
Thomas Gleixner 已提交
565 566
}

567 568 569 570 571
static inline u64 perf_clock(void)
{
	return local_clock();
}

572 573 574 575 576
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
601 602 603 604
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
605
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
644 645
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
646
	/*
647 648
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
649
	 */
650
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
651 652
		return;

653
	cgrp = perf_cgroup_from_task(current, event->ctx);
654 655 656 657 658
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
659 660 661
}

static inline void
662 663
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
664 665 666 667
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

668 669 670 671 672 673
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
674 675
		return;

676
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
677
	info = this_cpu_ptr(cgrp->info);
678
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
679 680 681 682 683 684 685 686 687 688 689
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
690
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 711
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
712 713 714 715 716 717 718 719 720

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
721 722
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
734
				WARN_ON_ONCE(cpuctx->cgrp);
735 736 737 738
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
739 740
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
741
				 */
742
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
743 744
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
745 746
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
747 748 749 750 751 752
		}
	}

	local_irq_restore(flags);
}

753 754
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
755
{
756 757 758
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

759
	rcu_read_lock();
760 761
	/*
	 * we come here when we know perf_cgroup_events > 0
762 763
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
764
	 */
765
	cgrp1 = perf_cgroup_from_task(task, NULL);
766
	cgrp2 = perf_cgroup_from_task(next, NULL);
767 768 769 770 771 772 773 774

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 776

	rcu_read_unlock();
S
Stephane Eranian 已提交
777 778
}

779 780
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
781
{
782 783 784
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

785
	rcu_read_lock();
786 787
	/*
	 * we come here when we know perf_cgroup_events > 0
788 789
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
790
	 */
791 792
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 794 795 796 797 798 799 800

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 802

	rcu_read_unlock();
S
Stephane Eranian 已提交
803 804 805 806 807 808 809 810
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
811 812
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
813

814
	if (!f.file)
S
Stephane Eranian 已提交
815 816
		return -EBADF;

A
Al Viro 已提交
817
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818
					 &perf_event_cgrp_subsys);
819 820 821 822
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
836
out:
837
	fdput(f);
S
Stephane Eranian 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
905 906 907 908 909 910 911 912 913 914 915

	/* Only set/clear cpuctx->cgrp if current task uses event->cgrp. */
	if (perf_cgroup_from_task(current, ctx) != event->cgrp) {
		/*
		 * We are removing the last cpu event in this context.
		 * If that event is not active in this cpu, cpuctx->cgrp
		 * should've been cleared by perf_cgroup_switch.
		 */
		WARN_ON_ONCE(!add && cpuctx->cgrp);
		return;
	}
916 917 918
	cpuctx->cgrp = add ? event->cgrp : NULL;
}

S
Stephane Eranian 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

948 949
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
950 951 952
{
}

953 954
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
955 956 957 958 959 960 961 962 963 964 965
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
966 967
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
996 997 998 999 1000 1001 1002

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
1003 1004
#endif

1005 1006 1007 1008 1009 1010 1011 1012
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
1013
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1014 1015 1016 1017 1018 1019 1020 1021 1022
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1023 1024
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1025
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1026 1027 1028
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1029

P
Peter Zijlstra 已提交
1030
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1031 1032
}

1033
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1034
{
1035
	struct hrtimer *timer = &cpuctx->hrtimer;
1036
	struct pmu *pmu = cpuctx->ctx.pmu;
1037
	u64 interval;
1038 1039 1040 1041 1042

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1043 1044 1045 1046
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1047 1048 1049
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1050

1051
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1052

P
Peter Zijlstra 已提交
1053 1054
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1055
	timer->function = perf_mux_hrtimer_handler;
1056 1057
}

1058
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1059
{
1060
	struct hrtimer *timer = &cpuctx->hrtimer;
1061
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1062
	unsigned long flags;
1063 1064 1065

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1066
		return 0;
1067

P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1075

1076
	return 0;
1077 1078
}

P
Peter Zijlstra 已提交
1079
void perf_pmu_disable(struct pmu *pmu)
1080
{
P
Peter Zijlstra 已提交
1081 1082 1083
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1084 1085
}

P
Peter Zijlstra 已提交
1086
void perf_pmu_enable(struct pmu *pmu)
1087
{
P
Peter Zijlstra 已提交
1088 1089 1090
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1091 1092
}

1093
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1094 1095

/*
1096 1097 1098 1099
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1100
 */
1101
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1102
{
1103
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1104

1105
	WARN_ON(!irqs_disabled());
1106

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1119 1120
}

1121
static void get_ctx(struct perf_event_context *ctx)
1122
{
1123
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1124 1125
}

1126 1127 1128 1129 1130 1131 1132 1133 1134
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1135
static void put_ctx(struct perf_event_context *ctx)
1136
{
1137 1138 1139
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1140
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1141
			put_task_struct(ctx->task);
1142
		call_rcu(&ctx->rcu_head, free_ctx);
1143
	}
1144 1145
}

P
Peter Zijlstra 已提交
1146 1147 1148 1149 1150 1151 1152
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1153 1154 1155 1156
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1157 1158
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1199
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1200 1201 1202
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1203
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1204 1205 1206
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1207 1208
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1221
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1231 1232 1233 1234 1235 1236
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1237 1238 1239 1240 1241 1242 1243
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1244 1245 1246 1247 1248 1249 1250
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1251
{
1252 1253 1254 1255 1256
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1257
		ctx->parent_ctx = NULL;
1258
	ctx->generation++;
1259 1260

	return parent_ctx;
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1285
/*
1286
 * If we inherit events we want to return the parent event id
1287 1288
 * to userspace.
 */
1289
static u64 primary_event_id(struct perf_event *event)
1290
{
1291
	u64 id = event->id;
1292

1293 1294
	if (event->parent)
		id = event->parent->id;
1295 1296 1297 1298

	return id;
}

1299
/*
1300
 * Get the perf_event_context for a task and lock it.
1301
 *
1302 1303 1304
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1305
static struct perf_event_context *
P
Peter Zijlstra 已提交
1306
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1307
{
1308
	struct perf_event_context *ctx;
1309

P
Peter Zijlstra 已提交
1310
retry:
1311 1312 1313
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1314
	 * part of the read side critical section was irqs-enabled -- see
1315 1316 1317
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1318
	 * side critical section has interrupts disabled.
1319
	 */
1320
	local_irq_save(*flags);
1321
	rcu_read_lock();
P
Peter Zijlstra 已提交
1322
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1323 1324 1325 1326
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1327
		 * perf_event_task_sched_out, though the
1328 1329 1330 1331 1332 1333
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1334
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1335
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1336
			raw_spin_unlock(&ctx->lock);
1337
			rcu_read_unlock();
1338
			local_irq_restore(*flags);
1339 1340
			goto retry;
		}
1341

1342 1343
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1344
			raw_spin_unlock(&ctx->lock);
1345
			ctx = NULL;
P
Peter Zijlstra 已提交
1346 1347
		} else {
			WARN_ON_ONCE(ctx->task != task);
1348
		}
1349 1350
	}
	rcu_read_unlock();
1351 1352
	if (!ctx)
		local_irq_restore(*flags);
1353 1354 1355 1356 1357 1358 1359 1360
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1361 1362
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1363
{
1364
	struct perf_event_context *ctx;
1365 1366
	unsigned long flags;

P
Peter Zijlstra 已提交
1367
	ctx = perf_lock_task_context(task, ctxn, &flags);
1368 1369
	if (ctx) {
		++ctx->pin_count;
1370
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 1372 1373 1374
	}
	return ctx;
}

1375
static void perf_unpin_context(struct perf_event_context *ctx)
1376 1377 1378
{
	unsigned long flags;

1379
	raw_spin_lock_irqsave(&ctx->lock, flags);
1380
	--ctx->pin_count;
1381
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1395 1396 1397
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1398 1399 1400 1401

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1402 1403 1404
	return ctx ? ctx->time : 0;
}

1405 1406 1407 1408 1409 1410 1411 1412
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1413 1414
	lockdep_assert_held(&ctx->lock);

1415 1416 1417
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1418

S
Stephane Eranian 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1430
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1431 1432
	else if (ctx->is_active)
		run_end = ctx->time;
1433 1434 1435 1436
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1437 1438 1439 1440

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1441
		run_end = perf_event_time(event);
1442 1443

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1444

1445 1446
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1459 1460 1461 1462 1463 1464 1465 1466 1467
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1468
/*
1469
 * Add a event from the lists for its context.
1470 1471
 * Must be called with ctx->mutex and ctx->lock held.
 */
1472
static void
1473
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474
{
1475

P
Peter Zijlstra 已提交
1476 1477
	lockdep_assert_held(&ctx->lock);

1478 1479
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1480 1481

	/*
1482 1483 1484
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1485
	 */
1486
	if (event->group_leader == event) {
1487 1488
		struct list_head *list;

1489
		event->group_caps = event->event_caps;
1490

1491 1492
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1493
	}
P
Peter Zijlstra 已提交
1494

1495
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1496

1497 1498 1499
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1500
		ctx->nr_stat++;
1501 1502

	ctx->generation++;
1503 1504
}

J
Jiri Olsa 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1514
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1530
		nr += nr_siblings;
1531 1532 1533 1534 1535 1536 1537
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1538
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1539 1540 1541 1542 1543 1544 1545
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1546 1547 1548 1549 1550 1551
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1552 1553 1554
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1555 1556 1557
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1558 1559 1560
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1561 1562 1563
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1564 1565 1566
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1578 1579 1580 1581 1582 1583
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1584 1585 1586 1587 1588 1589
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1590 1591 1592
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1602
	event->id_header_size = size;
1603 1604
}

P
Peter Zijlstra 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1626 1627
static void perf_group_attach(struct perf_event *event)
{
1628
	struct perf_event *group_leader = event->group_leader, *pos;
1629

P
Peter Zijlstra 已提交
1630 1631 1632 1633 1634 1635
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1636 1637 1638 1639 1640
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1641 1642
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1643
	group_leader->group_caps &= event->event_caps;
1644 1645 1646

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1647 1648 1649 1650 1651

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1652 1653
}

1654
/*
1655
 * Remove a event from the lists for its context.
1656
 * Must be called with ctx->mutex and ctx->lock held.
1657
 */
1658
static void
1659
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1660
{
P
Peter Zijlstra 已提交
1661 1662 1663
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1664 1665 1666 1667
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1668
		return;
1669 1670 1671

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1672
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1673

1674 1675
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1676
		ctx->nr_stat--;
1677

1678
	list_del_rcu(&event->event_entry);
1679

1680 1681
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1682

1683
	update_group_times(event);
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1694 1695

	ctx->generation++;
1696 1697
}

1698
static void perf_group_detach(struct perf_event *event)
1699 1700
{
	struct perf_event *sibling, *tmp;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1717
		goto out;
1718 1719 1720 1721
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1722

1723
	/*
1724 1725
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1726
	 * to whatever list we are on.
1727
	 */
1728
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729 1730
		if (list)
			list_move_tail(&sibling->group_entry, list);
1731
		sibling->group_leader = sibling;
1732 1733

		/* Inherit group flags from the previous leader */
1734
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1735 1736

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1737
	}
1738 1739 1740 1741 1742 1743

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1744 1745
}

1746 1747
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1748
	return event->state == PERF_EVENT_STATE_DEAD;
1749 1750
}

1751
static inline int __pmu_filter_match(struct perf_event *event)
1752 1753 1754 1755 1756
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1778 1779 1780
static inline int
event_filter_match(struct perf_event *event)
{
1781 1782
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1783 1784
}

1785 1786
static void
event_sched_out(struct perf_event *event,
1787
		  struct perf_cpu_context *cpuctx,
1788
		  struct perf_event_context *ctx)
1789
{
1790
	u64 tstamp = perf_event_time(event);
1791
	u64 delta;
P
Peter Zijlstra 已提交
1792 1793 1794 1795

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1796 1797 1798 1799 1800 1801
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1802 1803
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1804
		delta = tstamp - event->tstamp_stopped;
1805
		event->tstamp_running += delta;
1806
		event->tstamp_stopped = tstamp;
1807 1808
	}

1809
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1810
		return;
1811

1812 1813
	perf_pmu_disable(event->pmu);

1814 1815 1816
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1817 1818 1819 1820
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1821
	}
1822

1823
	if (!is_software_event(event))
1824
		cpuctx->active_oncpu--;
1825 1826
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1827 1828
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1829
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1830
		cpuctx->exclusive = 0;
1831 1832

	perf_pmu_enable(event->pmu);
1833 1834
}

1835
static void
1836
group_sched_out(struct perf_event *group_event,
1837
		struct perf_cpu_context *cpuctx,
1838
		struct perf_event_context *ctx)
1839
{
1840
	struct perf_event *event;
1841
	int state = group_event->state;
1842

1843 1844
	perf_pmu_disable(ctx->pmu);

1845
	event_sched_out(group_event, cpuctx, ctx);
1846 1847 1848 1849

	/*
	 * Schedule out siblings (if any):
	 */
1850 1851
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1852

1853 1854
	perf_pmu_enable(ctx->pmu);

1855
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856 1857 1858
		cpuctx->exclusive = 0;
}

1859
#define DETACH_GROUP	0x01UL
1860

T
Thomas Gleixner 已提交
1861
/*
1862
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1863
 *
1864
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1865 1866
 * remove it from the context list.
 */
1867 1868 1869 1870 1871
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1872
{
1873
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1874

1875
	event_sched_out(event, cpuctx, ctx);
1876
	if (flags & DETACH_GROUP)
1877
		perf_group_detach(event);
1878
	list_del_event(event, ctx);
1879 1880

	if (!ctx->nr_events && ctx->is_active) {
1881
		ctx->is_active = 0;
1882 1883 1884 1885
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1886
	}
T
Thomas Gleixner 已提交
1887 1888 1889
}

/*
1890
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1891
 *
1892 1893
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1894 1895
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1896
 * When called from perf_event_exit_task, it's OK because the
1897
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1898
 */
1899
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1900
{
1901
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1902

1903
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1904 1905
}

1906
/*
1907
 * Cross CPU call to disable a performance event
1908
 */
1909 1910 1911 1912
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1913
{
1914 1915
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1916

1917 1918 1919 1920 1921 1922 1923 1924
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1925 1926
}

1927
/*
1928
 * Disable a event.
1929
 *
1930 1931
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1932
 * remains valid.  This condition is satisifed when called through
1933 1934
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1935 1936
 * goes to exit will block in perf_event_exit_event().
 *
1937
 * When called from perf_pending_event it's OK because event->ctx
1938
 * is the current context on this CPU and preemption is disabled,
1939
 * hence we can't get into perf_event_task_sched_out for this context.
1940
 */
P
Peter Zijlstra 已提交
1941
static void _perf_event_disable(struct perf_event *event)
1942
{
1943
	struct perf_event_context *ctx = event->ctx;
1944

1945
	raw_spin_lock_irq(&ctx->lock);
1946
	if (event->state <= PERF_EVENT_STATE_OFF) {
1947
		raw_spin_unlock_irq(&ctx->lock);
1948
		return;
1949
	}
1950
	raw_spin_unlock_irq(&ctx->lock);
1951

1952 1953 1954 1955 1956 1957
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1958
}
P
Peter Zijlstra 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1972
EXPORT_SYMBOL_GPL(perf_event_disable);
1973

1974 1975 1976 1977 1978 1979
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2015 2016 2017
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2018
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2019

2020
static int
2021
event_sched_in(struct perf_event *event,
2022
		 struct perf_cpu_context *cpuctx,
2023
		 struct perf_event_context *ctx)
2024
{
2025
	u64 tstamp = perf_event_time(event);
2026
	int ret = 0;
2027

2028 2029
	lockdep_assert_held(&ctx->lock);

2030
	if (event->state <= PERF_EVENT_STATE_OFF)
2031 2032
		return 0;

2033 2034 2035 2036 2037 2038 2039
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2051 2052 2053 2054 2055
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2056 2057
	perf_pmu_disable(event->pmu);

2058 2059
	perf_set_shadow_time(event, ctx, tstamp);

2060 2061
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2062
	if (event->pmu->add(event, PERF_EF_START)) {
2063 2064
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2065 2066
		ret = -EAGAIN;
		goto out;
2067 2068
	}

2069 2070
	event->tstamp_running += tstamp - event->tstamp_stopped;

2071
	if (!is_software_event(event))
2072
		cpuctx->active_oncpu++;
2073 2074
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2075 2076
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2077

2078
	if (event->attr.exclusive)
2079 2080
		cpuctx->exclusive = 1;

2081 2082 2083 2084
out:
	perf_pmu_enable(event->pmu);

	return ret;
2085 2086
}

2087
static int
2088
group_sched_in(struct perf_event *group_event,
2089
	       struct perf_cpu_context *cpuctx,
2090
	       struct perf_event_context *ctx)
2091
{
2092
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2093
	struct pmu *pmu = ctx->pmu;
2094 2095
	u64 now = ctx->time;
	bool simulate = false;
2096

2097
	if (group_event->state == PERF_EVENT_STATE_OFF)
2098 2099
		return 0;

2100
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2101

2102
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2103
		pmu->cancel_txn(pmu);
2104
		perf_mux_hrtimer_restart(cpuctx);
2105
		return -EAGAIN;
2106
	}
2107 2108 2109 2110

	/*
	 * Schedule in siblings as one group (if any):
	 */
2111
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2112
		if (event_sched_in(event, cpuctx, ctx)) {
2113
			partial_group = event;
2114 2115 2116 2117
			goto group_error;
		}
	}

2118
	if (!pmu->commit_txn(pmu))
2119
		return 0;
2120

2121 2122 2123 2124
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2135
	 */
2136 2137
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2138 2139 2140 2141 2142 2143 2144 2145
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2146
	}
2147
	event_sched_out(group_event, cpuctx, ctx);
2148

P
Peter Zijlstra 已提交
2149
	pmu->cancel_txn(pmu);
2150

2151
	perf_mux_hrtimer_restart(cpuctx);
2152

2153 2154 2155
	return -EAGAIN;
}

2156
/*
2157
 * Work out whether we can put this event group on the CPU now.
2158
 */
2159
static int group_can_go_on(struct perf_event *event,
2160 2161 2162 2163
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2164
	 * Groups consisting entirely of software events can always go on.
2165
	 */
2166
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2167 2168 2169
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2170
	 * events can go on.
2171 2172 2173 2174 2175
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2176
	 * events on the CPU, it can't go on.
2177
	 */
2178
	if (event->attr.exclusive && cpuctx->active_oncpu)
2179 2180 2181 2182 2183 2184 2185 2186
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2187 2188
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2189
{
2190 2191
	u64 tstamp = perf_event_time(event);

2192
	list_add_event(event, ctx);
2193
	perf_group_attach(event);
2194 2195 2196
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2197 2198
}

2199 2200 2201
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2202 2203 2204 2205 2206
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2207

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2232 2233
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2234
{
2235 2236 2237 2238 2239 2240
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2241 2242
}

T
Thomas Gleixner 已提交
2243
/*
2244
 * Cross CPU call to install and enable a performance event
2245
 *
2246 2247
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2248
 */
2249
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2250
{
2251 2252
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2253
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2254
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2255 2256
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2257

2258
	raw_spin_lock(&cpuctx->ctx.lock);
2259
	if (ctx->task) {
2260 2261
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2262 2263 2264 2265

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2266
			goto unlock;
2267
		}
2268

2269
		/*
2270 2271 2272
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2273
		 */
2274 2275 2276 2277 2278
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2279 2280
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2281
	}
2282

2283 2284 2285 2286 2287 2288 2289 2290
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2291
unlock:
2292
	perf_ctx_unlock(cpuctx, task_ctx);
2293

2294
	return ret;
T
Thomas Gleixner 已提交
2295 2296 2297
}

/*
2298 2299 2300
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2301 2302
 */
static void
2303 2304
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2305 2306
			int cpu)
{
2307
	struct task_struct *task = READ_ONCE(ctx->task);
2308

2309 2310
	lockdep_assert_held(&ctx->mutex);

2311 2312
	if (event->cpu != -1)
		event->cpu = cpu;
2313

2314 2315 2316 2317 2318 2319
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2331 2332 2333 2334
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2335
again:
2336
	/*
2337 2338
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2339
	 */
2340 2341 2342 2343 2344
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2345
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2346 2347 2348 2349 2350
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2351 2352 2353
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2354 2355
	raw_spin_unlock_irq(&ctx->lock);
	/*
2356 2357
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2358
	 */
2359
	goto again;
T
Thomas Gleixner 已提交
2360 2361
}

2362
/*
2363
 * Put a event into inactive state and update time fields.
2364 2365 2366 2367 2368 2369
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2370
static void __perf_event_mark_enabled(struct perf_event *event)
2371
{
2372
	struct perf_event *sub;
2373
	u64 tstamp = perf_event_time(event);
2374

2375
	event->state = PERF_EVENT_STATE_INACTIVE;
2376
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2377
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2378 2379
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2380
	}
2381 2382
}

2383
/*
2384
 * Cross CPU call to enable a performance event
2385
 */
2386 2387 2388 2389
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2390
{
2391
	struct perf_event *leader = event->group_leader;
2392
	struct perf_event_context *task_ctx;
2393

P
Peter Zijlstra 已提交
2394 2395
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2396
		return;
2397

2398 2399 2400
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2401
	__perf_event_mark_enabled(event);
2402

2403 2404 2405
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2406
	if (!event_filter_match(event)) {
2407
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2408
			perf_cgroup_defer_enabled(event);
2409
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2410
		return;
S
Stephane Eranian 已提交
2411
	}
2412

2413
	/*
2414
	 * If the event is in a group and isn't the group leader,
2415
	 * then don't put it on unless the group is on.
2416
	 */
2417 2418
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2419
		return;
2420
	}
2421

2422 2423 2424
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2425

2426
	ctx_resched(cpuctx, task_ctx);
2427 2428
}

2429
/*
2430
 * Enable a event.
2431
 *
2432 2433
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2434
 * remains valid.  This condition is satisfied when called through
2435 2436
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2437
 */
P
Peter Zijlstra 已提交
2438
static void _perf_event_enable(struct perf_event *event)
2439
{
2440
	struct perf_event_context *ctx = event->ctx;
2441

2442
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2443 2444
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2445
		raw_spin_unlock_irq(&ctx->lock);
2446 2447 2448 2449
		return;
	}

	/*
2450
	 * If the event is in error state, clear that first.
2451 2452 2453 2454
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2455
	 */
2456 2457
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2458
	raw_spin_unlock_irq(&ctx->lock);
2459

2460
	event_function_call(event, __perf_event_enable, NULL);
2461
}
P
Peter Zijlstra 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2474
EXPORT_SYMBOL_GPL(perf_event_enable);
2475

2476 2477 2478 2479 2480
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2481 2482
static int __perf_event_stop(void *info)
{
2483 2484
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2485

2486
	/* if it's already INACTIVE, do nothing */
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2512
		event->pmu->start(event, 0);
2513

2514 2515 2516
	return 0;
}

2517
static int perf_event_stop(struct perf_event *event, int restart)
2518 2519 2520
{
	struct stop_event_data sd = {
		.event		= event,
2521
		.restart	= restart,
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2582
static int _perf_event_refresh(struct perf_event *event, int refresh)
2583
{
2584
	/*
2585
	 * not supported on inherited events
2586
	 */
2587
	if (event->attr.inherit || !is_sampling_event(event))
2588 2589
		return -EINVAL;

2590
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2591
	_perf_event_enable(event);
2592 2593

	return 0;
2594
}
P
Peter Zijlstra 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2610
EXPORT_SYMBOL_GPL(perf_event_refresh);
2611

2612 2613 2614
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2615
{
2616
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2617
	struct perf_event *event;
2618

P
Peter Zijlstra 已提交
2619
	lockdep_assert_held(&ctx->lock);
2620

2621 2622 2623 2624 2625 2626 2627
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2628
		return;
2629 2630
	}

2631
	ctx->is_active &= ~event_type;
2632 2633 2634
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2635 2636 2637 2638 2639
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2640

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2651 2652 2653 2654 2655 2656
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2657 2658
	is_active ^= ctx->is_active; /* changed bits */

2659
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2660
		return;
2661

P
Peter Zijlstra 已提交
2662
	perf_pmu_disable(ctx->pmu);
2663
	if (is_active & EVENT_PINNED) {
2664 2665
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2666
	}
2667

2668
	if (is_active & EVENT_FLEXIBLE) {
2669
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2670
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2671
	}
P
Peter Zijlstra 已提交
2672
	perf_pmu_enable(ctx->pmu);
2673 2674
}

2675
/*
2676 2677 2678 2679 2680 2681
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2682
 */
2683 2684
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2685
{
2686 2687 2688
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2711 2712
}

2713 2714
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2715 2716 2717
{
	u64 value;

2718
	if (!event->attr.inherit_stat)
2719 2720 2721
		return;

	/*
2722
	 * Update the event value, we cannot use perf_event_read()
2723 2724
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2725
	 * we know the event must be on the current CPU, therefore we
2726 2727
	 * don't need to use it.
	 */
2728 2729
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2730 2731
		event->pmu->read(event);
		/* fall-through */
2732

2733 2734
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2735 2736 2737 2738 2739 2740 2741
		break;

	default:
		break;
	}

	/*
2742
	 * In order to keep per-task stats reliable we need to flip the event
2743 2744
	 * values when we flip the contexts.
	 */
2745 2746 2747
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2748

2749 2750
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2751

2752
	/*
2753
	 * Since we swizzled the values, update the user visible data too.
2754
	 */
2755 2756
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2757 2758
}

2759 2760
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2761
{
2762
	struct perf_event *event, *next_event;
2763 2764 2765 2766

	if (!ctx->nr_stat)
		return;

2767 2768
	update_context_time(ctx);

2769 2770
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2771

2772 2773
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2774

2775 2776
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2777

2778
		__perf_event_sync_stat(event, next_event);
2779

2780 2781
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2782 2783 2784
	}
}

2785 2786
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2787
{
P
Peter Zijlstra 已提交
2788
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2789
	struct perf_event_context *next_ctx;
2790
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2791
	struct perf_cpu_context *cpuctx;
2792
	int do_switch = 1;
T
Thomas Gleixner 已提交
2793

P
Peter Zijlstra 已提交
2794 2795
	if (likely(!ctx))
		return;
2796

P
Peter Zijlstra 已提交
2797 2798
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2799 2800
		return;

2801
	rcu_read_lock();
P
Peter Zijlstra 已提交
2802
	next_ctx = next->perf_event_ctxp[ctxn];
2803 2804 2805 2806 2807 2808 2809
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2810
	if (!parent && !next_parent)
2811 2812 2813
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2814 2815 2816 2817 2818 2819 2820 2821 2822
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2823 2824
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2825
		if (context_equiv(ctx, next_ctx)) {
2826 2827
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2828 2829 2830

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2841
			do_switch = 0;
2842

2843
			perf_event_sync_stat(ctx, next_ctx);
2844
		}
2845 2846
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2847
	}
2848
unlock:
2849
	rcu_read_unlock();
2850

2851
	if (do_switch) {
2852
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2853
		task_ctx_sched_out(cpuctx, ctx);
2854
		raw_spin_unlock(&ctx->lock);
2855
	}
T
Thomas Gleixner 已提交
2856 2857
}

2858 2859
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2860 2861
void perf_sched_cb_dec(struct pmu *pmu)
{
2862 2863
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2864
	this_cpu_dec(perf_sched_cb_usages);
2865 2866 2867

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2868 2869
}

2870

2871 2872
void perf_sched_cb_inc(struct pmu *pmu)
{
2873 2874 2875 2876 2877
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2878 2879 2880 2881 2882 2883
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2884 2885 2886 2887
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2899 2900
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2901

2902 2903
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2904

2905 2906
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2907

2908
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2909

2910 2911
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2912 2913 2914
	}
}

2915 2916 2917
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2932 2933
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2934 2935 2936
{
	int ctxn;

2937 2938 2939
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2940 2941 2942
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2943 2944
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2945 2946 2947 2948 2949 2950

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2951
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2952
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2953 2954
}

2955 2956 2957 2958 2959 2960 2961
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2962 2963
}

2964
static void
2965
ctx_pinned_sched_in(struct perf_event_context *ctx,
2966
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2967
{
2968
	struct perf_event *event;
T
Thomas Gleixner 已提交
2969

2970 2971
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2972
			continue;
2973
		if (!event_filter_match(event))
2974 2975
			continue;

S
Stephane Eranian 已提交
2976 2977 2978 2979
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2980
		if (group_can_go_on(event, cpuctx, 1))
2981
			group_sched_in(event, cpuctx, ctx);
2982 2983 2984 2985 2986

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2987 2988 2989
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2990
		}
2991
	}
2992 2993 2994 2995
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2996
		      struct perf_cpu_context *cpuctx)
2997 2998 2999
{
	struct perf_event *event;
	int can_add_hw = 1;
3000

3001 3002 3003
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3004
			continue;
3005 3006
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3007
		 * of events:
3008
		 */
3009
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3010 3011
			continue;

S
Stephane Eranian 已提交
3012 3013 3014 3015
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3016
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3017
			if (group_sched_in(event, cpuctx, ctx))
3018
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3019
		}
T
Thomas Gleixner 已提交
3020
	}
3021 3022 3023 3024 3025
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3026 3027
	     enum event_type_t event_type,
	     struct task_struct *task)
3028
{
3029
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3030 3031 3032
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3033

3034
	if (likely(!ctx->nr_events))
3035
		return;
3036

3037
	ctx->is_active |= (event_type | EVENT_TIME);
3038 3039 3040 3041 3042 3043 3044
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3045 3046 3047 3048 3049 3050 3051 3052 3053
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3054 3055 3056 3057
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3058
	if (is_active & EVENT_PINNED)
3059
		ctx_pinned_sched_in(ctx, cpuctx);
3060 3061

	/* Then walk through the lower prio flexible groups */
3062
	if (is_active & EVENT_FLEXIBLE)
3063
		ctx_flexible_sched_in(ctx, cpuctx);
3064 3065
}

3066
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3067 3068
			     enum event_type_t event_type,
			     struct task_struct *task)
3069 3070 3071
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3072
	ctx_sched_in(ctx, cpuctx, event_type, task);
3073 3074
}

S
Stephane Eranian 已提交
3075 3076
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3077
{
P
Peter Zijlstra 已提交
3078
	struct perf_cpu_context *cpuctx;
3079

P
Peter Zijlstra 已提交
3080
	cpuctx = __get_cpu_context(ctx);
3081 3082 3083
	if (cpuctx->task_ctx == ctx)
		return;

3084
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3085
	perf_pmu_disable(ctx->pmu);
3086 3087 3088 3089 3090 3091
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3092
	perf_event_sched_in(cpuctx, ctx, task);
3093 3094
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3095 3096
}

P
Peter Zijlstra 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3108 3109
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3110 3111 3112 3113
{
	struct perf_event_context *ctx;
	int ctxn;

3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3124 3125 3126 3127 3128
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3129
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3130
	}
3131

3132 3133 3134
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3135 3136
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3137 3138
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3166
#define REDUCE_FLS(a, b)		\
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3206 3207 3208
	if (!divisor)
		return dividend;

3209 3210 3211
	return div64_u64(dividend, divisor);
}

3212 3213 3214
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3215
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3216
{
3217
	struct hw_perf_event *hwc = &event->hw;
3218
	s64 period, sample_period;
3219 3220
	s64 delta;

3221
	period = perf_calculate_period(event, nsec, count);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3232

3233
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3234 3235 3236
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3237
		local64_set(&hwc->period_left, 0);
3238 3239 3240

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3241
	}
3242 3243
}

3244 3245 3246 3247 3248 3249 3250
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3251
{
3252 3253
	struct perf_event *event;
	struct hw_perf_event *hwc;
3254
	u64 now, period = TICK_NSEC;
3255
	s64 delta;
3256

3257 3258 3259 3260 3261 3262
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3263 3264
		return;

3265
	raw_spin_lock(&ctx->lock);
3266
	perf_pmu_disable(ctx->pmu);
3267

3268
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3269
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3270 3271
			continue;

3272
		if (!event_filter_match(event))
3273 3274
			continue;

3275 3276
		perf_pmu_disable(event->pmu);

3277
		hwc = &event->hw;
3278

3279
		if (hwc->interrupts == MAX_INTERRUPTS) {
3280
			hwc->interrupts = 0;
3281
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3282
			event->pmu->start(event, 0);
3283 3284
		}

3285
		if (!event->attr.freq || !event->attr.sample_freq)
3286
			goto next;
3287

3288 3289 3290 3291 3292
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3293
		now = local64_read(&event->count);
3294 3295
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3296

3297 3298 3299
		/*
		 * restart the event
		 * reload only if value has changed
3300 3301 3302
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3303
		 */
3304
		if (delta > 0)
3305
			perf_adjust_period(event, period, delta, false);
3306 3307

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3308 3309
	next:
		perf_pmu_enable(event->pmu);
3310
	}
3311

3312
	perf_pmu_enable(ctx->pmu);
3313
	raw_spin_unlock(&ctx->lock);
3314 3315
}

3316
/*
3317
 * Round-robin a context's events:
3318
 */
3319
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3320
{
3321 3322 3323 3324 3325 3326
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3327 3328
}

3329
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3330
{
P
Peter Zijlstra 已提交
3331
	struct perf_event_context *ctx = NULL;
3332
	int rotate = 0;
3333

3334 3335 3336 3337
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3338

P
Peter Zijlstra 已提交
3339
	ctx = cpuctx->task_ctx;
3340 3341 3342 3343
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3344

3345
	if (!rotate)
3346 3347
		goto done;

3348
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3349
	perf_pmu_disable(cpuctx->ctx.pmu);
3350

3351 3352 3353
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3354

3355 3356 3357
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3358

3359
	perf_event_sched_in(cpuctx, ctx, current);
3360

3361 3362
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3363
done:
3364 3365

	return rotate;
3366 3367 3368 3369
}

void perf_event_task_tick(void)
{
3370 3371
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3372
	int throttled;
3373

3374 3375
	WARN_ON(!irqs_disabled());

3376 3377
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3378
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3379

3380
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3381
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3382 3383
}

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3394
	__perf_event_mark_enabled(event);
3395 3396 3397 3398

	return 1;
}

3399
/*
3400
 * Enable all of a task's events that have been marked enable-on-exec.
3401 3402
 * This expects task == current.
 */
3403
static void perf_event_enable_on_exec(int ctxn)
3404
{
3405
	struct perf_event_context *ctx, *clone_ctx = NULL;
3406
	struct perf_cpu_context *cpuctx;
3407
	struct perf_event *event;
3408 3409 3410 3411
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3412
	ctx = current->perf_event_ctxp[ctxn];
3413
	if (!ctx || !ctx->nr_events)
3414 3415
		goto out;

3416 3417
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3418
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3419 3420
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3421 3422

	/*
3423
	 * Unclone and reschedule this context if we enabled any event.
3424
	 */
3425
	if (enabled) {
3426
		clone_ctx = unclone_ctx(ctx);
3427 3428 3429
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3430

P
Peter Zijlstra 已提交
3431
out:
3432
	local_irq_restore(flags);
3433 3434 3435

	if (clone_ctx)
		put_ctx(clone_ctx);
3436 3437
}

3438 3439 3440
struct perf_read_data {
	struct perf_event *event;
	bool group;
3441
	int ret;
3442 3443
};

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
static int find_cpu_to_read(struct perf_event *event, int local_cpu)
{
	int event_cpu = event->oncpu;
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
		event_pkg =  topology_physical_package_id(event_cpu);
		local_pkg =  topology_physical_package_id(local_cpu);

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3460
/*
3461
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3462
 */
3463
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3464
{
3465 3466
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3467
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3468
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3469
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3470

3471 3472 3473 3474
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3475 3476
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3477 3478 3479 3480
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3481
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3482
	if (ctx->is_active) {
3483
		update_context_time(ctx);
S
Stephane Eranian 已提交
3484 3485
		update_cgrp_time_from_event(event);
	}
3486

3487
	update_event_times(event);
3488 3489
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3490

3491 3492 3493
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3494
		goto unlock;
3495 3496 3497 3498 3499
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3500 3501 3502

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3503 3504 3505 3506 3507
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3508
			sub->pmu->read(sub);
3509
		}
3510
	}
3511 3512

	data->ret = pmu->commit_txn(pmu);
3513 3514

unlock:
3515
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3516 3517
}

P
Peter Zijlstra 已提交
3518 3519
static inline u64 perf_event_count(struct perf_event *event)
{
3520 3521 3522 3523
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3524 3525
}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3579
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3580
{
3581
	int ret = 0, cpu_to_read, local_cpu;
3582

T
Thomas Gleixner 已提交
3583
	/*
3584 3585
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3586
	 */
3587
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3588 3589 3590
		struct perf_read_data data = {
			.event = event,
			.group = group,
3591
			.ret = 0,
3592
		};
3593 3594 3595 3596 3597

		local_cpu = get_cpu();
		cpu_to_read = find_cpu_to_read(event, local_cpu);
		put_cpu();

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
		 * If event->oncpu isn't a valid CPU it means the event got
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3608
		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3609
		ret = data.ret;
3610
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3611 3612 3613
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3614
		raw_spin_lock_irqsave(&ctx->lock, flags);
3615 3616 3617 3618 3619
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3620
		if (ctx->is_active) {
3621
			update_context_time(ctx);
S
Stephane Eranian 已提交
3622 3623
			update_cgrp_time_from_event(event);
		}
3624 3625 3626 3627
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3628
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3629
	}
3630 3631

	return ret;
T
Thomas Gleixner 已提交
3632 3633
}

3634
/*
3635
 * Initialize the perf_event context in a task_struct:
3636
 */
3637
static void __perf_event_init_context(struct perf_event_context *ctx)
3638
{
3639
	raw_spin_lock_init(&ctx->lock);
3640
	mutex_init(&ctx->mutex);
3641
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3642 3643
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3644 3645
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3661
	}
3662 3663 3664
	ctx->pmu = pmu;

	return ctx;
3665 3666
}

3667 3668 3669 3670
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3671 3672

	rcu_read_lock();
3673
	if (!vpid)
T
Thomas Gleixner 已提交
3674 3675
		task = current;
	else
3676
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3677 3678 3679 3680 3681 3682 3683
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3684 3685 3686
	return task;
}

3687 3688 3689
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3690
static struct perf_event_context *
3691 3692
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3693
{
3694
	struct perf_event_context *ctx, *clone_ctx = NULL;
3695
	struct perf_cpu_context *cpuctx;
3696
	void *task_ctx_data = NULL;
3697
	unsigned long flags;
P
Peter Zijlstra 已提交
3698
	int ctxn, err;
3699
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3700

3701
	if (!task) {
3702
		/* Must be root to operate on a CPU event: */
3703
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3704 3705 3706
			return ERR_PTR(-EACCES);

		/*
3707
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3708 3709 3710
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3711
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3712 3713
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3714
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3715
		ctx = &cpuctx->ctx;
3716
		get_ctx(ctx);
3717
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3718 3719 3720 3721

		return ctx;
	}

P
Peter Zijlstra 已提交
3722 3723 3724 3725 3726
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3727 3728 3729 3730 3731 3732 3733 3734
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3735
retry:
P
Peter Zijlstra 已提交
3736
	ctx = perf_lock_task_context(task, ctxn, &flags);
3737
	if (ctx) {
3738
		clone_ctx = unclone_ctx(ctx);
3739
		++ctx->pin_count;
3740 3741 3742 3743 3744

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3745
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3746 3747 3748

		if (clone_ctx)
			put_ctx(clone_ctx);
3749
	} else {
3750
		ctx = alloc_perf_context(pmu, task);
3751 3752 3753
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3754

3755 3756 3757 3758 3759
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3770
		else {
3771
			get_ctx(ctx);
3772
			++ctx->pin_count;
3773
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3774
		}
3775 3776 3777
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3778
			put_ctx(ctx);
3779 3780 3781 3782

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3783 3784 3785
		}
	}

3786
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3787
	return ctx;
3788

P
Peter Zijlstra 已提交
3789
errout:
3790
	kfree(task_ctx_data);
3791
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3792 3793
}

L
Li Zefan 已提交
3794
static void perf_event_free_filter(struct perf_event *event);
3795
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3796

3797
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3798
{
3799
	struct perf_event *event;
P
Peter Zijlstra 已提交
3800

3801 3802 3803
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3804
	perf_event_free_filter(event);
3805
	kfree(event);
P
Peter Zijlstra 已提交
3806 3807
}

3808 3809
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3820
static bool is_sb_event(struct perf_event *event)
3821
{
3822 3823
	struct perf_event_attr *attr = &event->attr;

3824
	if (event->parent)
3825
		return false;
3826 3827

	if (event->attach_state & PERF_ATTACH_TASK)
3828
		return false;
3829

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3842 3843
}

3844
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3845
{
3846 3847 3848 3849 3850 3851
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3852

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3875 3876
static void unaccount_event(struct perf_event *event)
{
3877 3878
	bool dec = false;

3879 3880 3881 3882
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3883
		dec = true;
3884 3885 3886 3887 3888 3889
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3890
	if (event->attr.freq)
3891
		unaccount_freq_event();
3892
	if (event->attr.context_switch) {
3893
		dec = true;
3894 3895
		atomic_dec(&nr_switch_events);
	}
3896
	if (is_cgroup_event(event))
3897
		dec = true;
3898
	if (has_branch_stack(event))
3899 3900
		dec = true;

3901 3902 3903 3904
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3905 3906

	unaccount_event_cpu(event, event->cpu);
3907 3908

	unaccount_pmu_sb_event(event);
3909
}
3910

3911 3912 3913 3914 3915 3916 3917 3918
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3929
 * _free_event()), the latter -- before the first perf_install_in_context().
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
3978
	if ((e1->pmu == e2->pmu) &&
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4004 4005 4006
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4007
static void _free_event(struct perf_event *event)
4008
{
4009
	irq_work_sync(&event->pending);
4010

4011
	unaccount_event(event);
4012

4013
	if (event->rb) {
4014 4015 4016 4017 4018 4019 4020
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4021
		ring_buffer_attach(event, NULL);
4022
		mutex_unlock(&event->mmap_mutex);
4023 4024
	}

S
Stephane Eranian 已提交
4025 4026 4027
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4028 4029 4030 4031 4032 4033
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4034 4035
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4036 4037 4038 4039 4040 4041 4042

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4043 4044
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4045 4046

	call_rcu(&event->rcu_head, free_event_rcu);
4047 4048
}

P
Peter Zijlstra 已提交
4049 4050 4051 4052 4053
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4054
{
P
Peter Zijlstra 已提交
4055 4056 4057 4058 4059 4060
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4061

P
Peter Zijlstra 已提交
4062
	_free_event(event);
T
Thomas Gleixner 已提交
4063 4064
}

4065
/*
4066
 * Remove user event from the owner task.
4067
 */
4068
static void perf_remove_from_owner(struct perf_event *event)
4069
{
P
Peter Zijlstra 已提交
4070
	struct task_struct *owner;
4071

P
Peter Zijlstra 已提交
4072 4073
	rcu_read_lock();
	/*
4074 4075 4076
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4077 4078
	 * owner->perf_event_mutex.
	 */
4079
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4101 4102 4103 4104 4105 4106
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4107
		if (event->owner) {
P
Peter Zijlstra 已提交
4108
			list_del_init(&event->owner_entry);
4109 4110
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4111 4112 4113
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4114 4115 4116 4117 4118 4119 4120
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4131
	struct perf_event_context *ctx = event->ctx;
4132 4133
	struct perf_event *child, *tmp;

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4144 4145
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4146

4147
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4148
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4149
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4150

P
Peter Zijlstra 已提交
4151
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4152
	/*
P
Peter Zijlstra 已提交
4153 4154
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4155
	 *
P
Peter Zijlstra 已提交
4156 4157 4158
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4159
	 *
4160 4161
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4162
	 */
P
Peter Zijlstra 已提交
4163 4164 4165 4166
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4167

4168 4169 4170
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4171

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4221 4222
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4223 4224 4225 4226
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4227 4228 4229
/*
 * Called when the last reference to the file is gone.
 */
4230 4231
static int perf_release(struct inode *inode, struct file *file)
{
4232
	perf_event_release_kernel(file->private_data);
4233
	return 0;
4234 4235
}

4236
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4237
{
4238
	struct perf_event *child;
4239 4240
	u64 total = 0;

4241 4242 4243
	*enabled = 0;
	*running = 0;

4244
	mutex_lock(&event->child_mutex);
4245

4246
	(void)perf_event_read(event, false);
4247 4248
	total += perf_event_count(event);

4249 4250 4251 4252 4253 4254
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4255
		(void)perf_event_read(child, false);
4256
		total += perf_event_count(child);
4257 4258 4259
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4260
	mutex_unlock(&event->child_mutex);
4261 4262 4263

	return total;
}
4264
EXPORT_SYMBOL_GPL(perf_event_read_value);
4265

4266
static int __perf_read_group_add(struct perf_event *leader,
4267
					u64 read_format, u64 *values)
4268
{
4269 4270
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4271
	int ret;
P
Peter Zijlstra 已提交
4272

4273 4274 4275
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4276

4277 4278 4279 4280 4281 4282 4283 4284 4285
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4296 4297
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4298

4299 4300 4301 4302 4303
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4304 4305

	return 0;
4306
}
4307

4308 4309 4310 4311 4312
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4313
	int ret;
4314
	u64 *values;
4315

4316
	lockdep_assert_held(&ctx->mutex);
4317

4318 4319 4320
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4321

4322 4323 4324 4325 4326 4327 4328
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4329

4330 4331 4332 4333 4334 4335 4336 4337 4338
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4339

4340
	mutex_unlock(&leader->child_mutex);
4341

4342
	ret = event->read_size;
4343 4344
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4345
	goto out;
4346

4347 4348 4349
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4350
	kfree(values);
4351
	return ret;
4352 4353
}

4354
static int perf_read_one(struct perf_event *event,
4355 4356
				 u64 read_format, char __user *buf)
{
4357
	u64 enabled, running;
4358 4359 4360
	u64 values[4];
	int n = 0;

4361 4362 4363 4364 4365
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4366
	if (read_format & PERF_FORMAT_ID)
4367
		values[n++] = primary_event_id(event);
4368 4369 4370 4371 4372 4373 4374

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4375 4376 4377 4378
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4379
	if (event->state > PERF_EVENT_STATE_EXIT)
4380 4381 4382 4383 4384 4385 4386 4387
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4388
/*
4389
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4390 4391
 */
static ssize_t
4392
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4393
{
4394
	u64 read_format = event->attr.read_format;
4395
	int ret;
T
Thomas Gleixner 已提交
4396

4397
	/*
4398
	 * Return end-of-file for a read on a event that is in
4399 4400 4401
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4402
	if (event->state == PERF_EVENT_STATE_ERROR)
4403 4404
		return 0;

4405
	if (count < event->read_size)
4406 4407
		return -ENOSPC;

4408
	WARN_ON_ONCE(event->ctx->parent_ctx);
4409
	if (read_format & PERF_FORMAT_GROUP)
4410
		ret = perf_read_group(event, read_format, buf);
4411
	else
4412
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4413

4414
	return ret;
T
Thomas Gleixner 已提交
4415 4416 4417 4418 4419
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4420
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4421 4422
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4423

P
Peter Zijlstra 已提交
4424
	ctx = perf_event_ctx_lock(event);
4425
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4426 4427 4428
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4429 4430 4431 4432
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4433
	struct perf_event *event = file->private_data;
4434
	struct ring_buffer *rb;
4435
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4436

4437
	poll_wait(file, &event->waitq, wait);
4438

4439
	if (is_event_hup(event))
4440
		return events;
P
Peter Zijlstra 已提交
4441

4442
	/*
4443 4444
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4445 4446
	 */
	mutex_lock(&event->mmap_mutex);
4447 4448
	rb = event->rb;
	if (rb)
4449
		events = atomic_xchg(&rb->poll, 0);
4450
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4451 4452 4453
	return events;
}

P
Peter Zijlstra 已提交
4454
static void _perf_event_reset(struct perf_event *event)
4455
{
4456
	(void)perf_event_read(event, false);
4457
	local64_set(&event->count, 0);
4458
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4459 4460
}

4461
/*
4462 4463
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4464
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4465
 * task existence requirements of perf_event_enable/disable.
4466
 */
4467 4468
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4469
{
4470
	struct perf_event *child;
P
Peter Zijlstra 已提交
4471

4472
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4473

4474 4475 4476
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4477
		func(child);
4478
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4479 4480
}

4481 4482
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4483
{
4484 4485
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4486

P
Peter Zijlstra 已提交
4487 4488
	lockdep_assert_held(&ctx->mutex);

4489
	event = event->group_leader;
4490

4491 4492
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4493
		perf_event_for_each_child(sibling, func);
4494 4495
}

4496 4497 4498 4499
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4500
{
4501
	u64 value = *((u64 *)info);
4502
	bool active;
4503

4504 4505
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4506
	} else {
4507 4508
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4509
	}
4510 4511 4512 4513

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4514 4515 4516 4517 4518 4519 4520 4521
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4522 4523 4524 4525 4526 4527 4528 4529 4530
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4549
	event_function_call(event, __perf_event_period, &value);
4550

4551
	return 0;
4552 4553
}

4554 4555
static const struct file_operations perf_fops;

4556
static inline int perf_fget_light(int fd, struct fd *p)
4557
{
4558 4559 4560
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4561

4562 4563 4564
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4565
	}
4566 4567
	*p = f;
	return 0;
4568 4569 4570 4571
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4572
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4573
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4574

P
Peter Zijlstra 已提交
4575
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4576
{
4577
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4578
	u32 flags = arg;
4579 4580

	switch (cmd) {
4581
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4582
		func = _perf_event_enable;
4583
		break;
4584
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4585
		func = _perf_event_disable;
4586
		break;
4587
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4588
		func = _perf_event_reset;
4589
		break;
P
Peter Zijlstra 已提交
4590

4591
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4592
		return _perf_event_refresh(event, arg);
4593

4594 4595
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4596

4597 4598 4599 4600 4601 4602 4603 4604 4605
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4606
	case PERF_EVENT_IOC_SET_OUTPUT:
4607 4608 4609
	{
		int ret;
		if (arg != -1) {
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4620 4621 4622
		}
		return ret;
	}
4623

L
Li Zefan 已提交
4624 4625 4626
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4627 4628 4629
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4643
	default:
P
Peter Zijlstra 已提交
4644
		return -ENOTTY;
4645
	}
P
Peter Zijlstra 已提交
4646 4647

	if (flags & PERF_IOC_FLAG_GROUP)
4648
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4649
	else
4650
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4651 4652

	return 0;
4653 4654
}

P
Peter Zijlstra 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4688
int perf_event_task_enable(void)
4689
{
P
Peter Zijlstra 已提交
4690
	struct perf_event_context *ctx;
4691
	struct perf_event *event;
4692

4693
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4694 4695 4696 4697 4698
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4699
	mutex_unlock(&current->perf_event_mutex);
4700 4701 4702 4703

	return 0;
}

4704
int perf_event_task_disable(void)
4705
{
P
Peter Zijlstra 已提交
4706
	struct perf_event_context *ctx;
4707
	struct perf_event *event;
4708

4709
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4710 4711 4712 4713 4714
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4715
	mutex_unlock(&current->perf_event_mutex);
4716 4717 4718 4719

	return 0;
}

4720
static int perf_event_index(struct perf_event *event)
4721
{
P
Peter Zijlstra 已提交
4722 4723 4724
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4725
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4726 4727
		return 0;

4728
	return event->pmu->event_idx(event);
4729 4730
}

4731
static void calc_timer_values(struct perf_event *event,
4732
				u64 *now,
4733 4734
				u64 *enabled,
				u64 *running)
4735
{
4736
	u64 ctx_time;
4737

4738 4739
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4740 4741 4742 4743
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4759 4760
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4761 4762 4763 4764 4765

unlock:
	rcu_read_unlock();
}

4766 4767
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4768 4769 4770
{
}

4771 4772 4773 4774 4775
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4776
void perf_event_update_userpage(struct perf_event *event)
4777
{
4778
	struct perf_event_mmap_page *userpg;
4779
	struct ring_buffer *rb;
4780
	u64 enabled, running, now;
4781 4782

	rcu_read_lock();
4783 4784 4785 4786
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4787 4788 4789 4790 4791 4792 4793 4794 4795
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4796
	calc_timer_values(event, &now, &enabled, &running);
4797

4798
	userpg = rb->user_page;
4799 4800 4801 4802 4803
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4804
	++userpg->lock;
4805
	barrier();
4806
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4807
	userpg->offset = perf_event_count(event);
4808
	if (userpg->index)
4809
		userpg->offset -= local64_read(&event->hw.prev_count);
4810

4811
	userpg->time_enabled = enabled +
4812
			atomic64_read(&event->child_total_time_enabled);
4813

4814
	userpg->time_running = running +
4815
			atomic64_read(&event->child_total_time_running);
4816

4817
	arch_perf_update_userpage(event, userpg, now);
4818

4819
	barrier();
4820
	++userpg->lock;
4821
	preempt_enable();
4822
unlock:
4823
	rcu_read_unlock();
4824 4825
}

4826 4827 4828
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4829
	struct ring_buffer *rb;
4830 4831 4832 4833 4834 4835 4836 4837 4838
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4839 4840
	rb = rcu_dereference(event->rb);
	if (!rb)
4841 4842 4843 4844 4845
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4846
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4861 4862 4863
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4864
	struct ring_buffer *old_rb = NULL;
4865 4866
	unsigned long flags;

4867 4868 4869 4870 4871 4872
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4873

4874 4875 4876 4877
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4878

4879 4880
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4881
	}
4882

4883
	if (rb) {
4884 4885 4886 4887 4888
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4889 4890 4891 4892 4893
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4918 4919 4920 4921 4922 4923 4924 4925
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4926 4927 4928 4929
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4930 4931 4932
	rcu_read_unlock();
}

4933
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4934
{
4935
	struct ring_buffer *rb;
4936

4937
	rcu_read_lock();
4938 4939 4940 4941
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4942 4943 4944
	}
	rcu_read_unlock();

4945
	return rb;
4946 4947
}

4948
void ring_buffer_put(struct ring_buffer *rb)
4949
{
4950
	if (!atomic_dec_and_test(&rb->refcount))
4951
		return;
4952

4953
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4954

4955
	call_rcu(&rb->rcu_head, rb_free_rcu);
4956 4957 4958 4959
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4960
	struct perf_event *event = vma->vm_file->private_data;
4961

4962
	atomic_inc(&event->mmap_count);
4963
	atomic_inc(&event->rb->mmap_count);
4964

4965 4966 4967
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4968 4969
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4970 4971
}

4972 4973
static void perf_pmu_output_stop(struct perf_event *event);

4974 4975 4976 4977 4978 4979 4980 4981
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4982 4983
static void perf_mmap_close(struct vm_area_struct *vma)
{
4984
	struct perf_event *event = vma->vm_file->private_data;
4985

4986
	struct ring_buffer *rb = ring_buffer_get(event);
4987 4988 4989
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4990

4991 4992 4993
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4994 4995 4996 4997 4998 4999 5000
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5001 5002 5003 5004 5005 5006 5007 5008 5009
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5010 5011 5012
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5013
		/* this has to be the last one */
5014
		rb_free_aux(rb);
5015 5016
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5017 5018 5019
		mutex_unlock(&event->mmap_mutex);
	}

5020 5021 5022
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5023
		goto out_put;
5024

5025
	ring_buffer_attach(event, NULL);
5026 5027 5028
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5029 5030
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5031

5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5048

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5060 5061 5062
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5063
		mutex_unlock(&event->mmap_mutex);
5064
		put_event(event);
5065

5066 5067 5068 5069 5070
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5071
	}
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5087
out_put:
5088
	ring_buffer_put(rb); /* could be last */
5089 5090
}

5091
static const struct vm_operations_struct perf_mmap_vmops = {
5092
	.open		= perf_mmap_open,
5093
	.close		= perf_mmap_close, /* non mergable */
5094 5095
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5096 5097 5098 5099
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5100
	struct perf_event *event = file->private_data;
5101
	unsigned long user_locked, user_lock_limit;
5102
	struct user_struct *user = current_user();
5103
	unsigned long locked, lock_limit;
5104
	struct ring_buffer *rb = NULL;
5105 5106
	unsigned long vma_size;
	unsigned long nr_pages;
5107
	long user_extra = 0, extra = 0;
5108
	int ret = 0, flags = 0;
5109

5110 5111 5112
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5113
	 * same rb.
5114 5115 5116 5117
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5118
	if (!(vma->vm_flags & VM_SHARED))
5119
		return -EINVAL;
5120 5121

	vma_size = vma->vm_end - vma->vm_start;
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5182

5183
	/*
5184
	 * If we have rb pages ensure they're a power-of-two number, so we
5185 5186
	 * can do bitmasks instead of modulo.
	 */
5187
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5188 5189
		return -EINVAL;

5190
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5191 5192
		return -EINVAL;

5193
	WARN_ON_ONCE(event->ctx->parent_ctx);
5194
again:
5195
	mutex_lock(&event->mmap_mutex);
5196
	if (event->rb) {
5197
		if (event->rb->nr_pages != nr_pages) {
5198
			ret = -EINVAL;
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5212 5213 5214
		goto unlock;
	}

5215
	user_extra = nr_pages + 1;
5216 5217

accounting:
5218
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5219 5220 5221 5222 5223 5224

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5225
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5226

5227 5228
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5229

5230
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5231
	lock_limit >>= PAGE_SHIFT;
5232
	locked = vma->vm_mm->pinned_vm + extra;
5233

5234 5235
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5236 5237 5238
		ret = -EPERM;
		goto unlock;
	}
5239

5240
	WARN_ON(!rb && event->rb);
5241

5242
	if (vma->vm_flags & VM_WRITE)
5243
		flags |= RING_BUFFER_WRITABLE;
5244

5245
	if (!rb) {
5246 5247 5248
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5249

5250 5251 5252 5253
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5254

5255 5256 5257
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5258

5259
		ring_buffer_attach(event, rb);
5260

5261 5262 5263
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5264 5265
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5266 5267 5268
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5269

5270
unlock:
5271 5272 5273 5274
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5275
		atomic_inc(&event->mmap_count);
5276 5277 5278 5279
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5280
	mutex_unlock(&event->mmap_mutex);
5281

5282 5283 5284 5285
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5286
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5287
	vma->vm_ops = &perf_mmap_vmops;
5288

5289 5290 5291
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5292
	return ret;
5293 5294
}

P
Peter Zijlstra 已提交
5295 5296
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5297
	struct inode *inode = file_inode(filp);
5298
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5299 5300
	int retval;

A
Al Viro 已提交
5301
	inode_lock(inode);
5302
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5303
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5304 5305 5306 5307 5308 5309 5310

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5311
static const struct file_operations perf_fops = {
5312
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5313 5314 5315
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5316
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5317
	.compat_ioctl		= perf_compat_ioctl,
5318
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5319
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5320 5321
};

5322
/*
5323
 * Perf event wakeup
5324 5325 5326 5327 5328
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5329 5330 5331 5332 5333 5334 5335 5336
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5337
void perf_event_wakeup(struct perf_event *event)
5338
{
5339
	ring_buffer_wakeup(event);
5340

5341
	if (event->pending_kill) {
5342
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5343
		event->pending_kill = 0;
5344
	}
5345 5346
}

5347
static void perf_pending_event(struct irq_work *entry)
5348
{
5349 5350
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5351 5352 5353 5354 5355 5356 5357
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5358

5359 5360
	if (event->pending_disable) {
		event->pending_disable = 0;
5361
		perf_event_disable_local(event);
5362 5363
	}

5364 5365 5366
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5367
	}
5368 5369 5370

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5371 5372
}

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5394 5395 5396 5397 5398
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5399
	DECLARE_BITMAP(_mask, 64);
5400

5401 5402
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5403 5404 5405 5406 5407 5408 5409
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5410
static void perf_sample_regs_user(struct perf_regs *regs_user,
5411 5412
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5413
{
5414 5415
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5416
		regs_user->regs = regs;
5417 5418
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5419 5420 5421
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5422 5423 5424
	}
}

5425 5426 5427 5428 5429 5430 5431 5432
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5528 5529 5530
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5544
		data->time = perf_event_clock(event);
5545

5546
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5558 5559 5560
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5585 5586 5587

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5588 5589
}

5590 5591 5592
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5593 5594 5595 5596 5597
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5598
static void perf_output_read_one(struct perf_output_handle *handle,
5599 5600
				 struct perf_event *event,
				 u64 enabled, u64 running)
5601
{
5602
	u64 read_format = event->attr.read_format;
5603 5604 5605
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5606
	values[n++] = perf_event_count(event);
5607
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5608
		values[n++] = enabled +
5609
			atomic64_read(&event->child_total_time_enabled);
5610 5611
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5612
		values[n++] = running +
5613
			atomic64_read(&event->child_total_time_running);
5614 5615
	}
	if (read_format & PERF_FORMAT_ID)
5616
		values[n++] = primary_event_id(event);
5617

5618
	__output_copy(handle, values, n * sizeof(u64));
5619 5620 5621
}

/*
5622
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5623 5624
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5625 5626
			    struct perf_event *event,
			    u64 enabled, u64 running)
5627
{
5628 5629
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5630 5631 5632 5633 5634 5635
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5636
		values[n++] = enabled;
5637 5638

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639
		values[n++] = running;
5640

5641
	if (leader != event)
5642 5643
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5644
	values[n++] = perf_event_count(leader);
5645
	if (read_format & PERF_FORMAT_ID)
5646
		values[n++] = primary_event_id(leader);
5647

5648
	__output_copy(handle, values, n * sizeof(u64));
5649

5650
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5651 5652
		n = 0;

5653 5654
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5655 5656
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5657
		values[n++] = perf_event_count(sub);
5658
		if (read_format & PERF_FORMAT_ID)
5659
			values[n++] = primary_event_id(sub);
5660

5661
		__output_copy(handle, values, n * sizeof(u64));
5662 5663 5664
	}
}

5665 5666 5667
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5668
static void perf_output_read(struct perf_output_handle *handle,
5669
			     struct perf_event *event)
5670
{
5671
	u64 enabled = 0, running = 0, now;
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5683
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5684
		calc_timer_values(event, &now, &enabled, &running);
5685

5686
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5687
		perf_output_read_group(handle, event, enabled, running);
5688
	else
5689
		perf_output_read_one(handle, event, enabled, running);
5690 5691
}

5692 5693 5694
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5695
			struct perf_event *event)
5696 5697 5698 5699 5700
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5701 5702 5703
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5729
		perf_output_read(handle, event);
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5740
			__output_copy(handle, data->callchain, size);
5741 5742 5743 5744 5745 5746 5747
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5779

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5814

5815
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5816 5817 5818
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5819
	}
A
Andi Kleen 已提交
5820 5821 5822

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5823 5824 5825

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5826

A
Andi Kleen 已提交
5827 5828 5829
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5860 5861 5862 5863
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5864
			 struct perf_event *event,
5865
			 struct pt_regs *regs)
5866
{
5867
	u64 sample_type = event->attr.sample_type;
5868

5869
	header->type = PERF_RECORD_SAMPLE;
5870
	header->size = sizeof(*header) + event->header_size;
5871 5872 5873

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5874

5875
	__perf_event_header__init_id(header, data, event);
5876

5877
	if (sample_type & PERF_SAMPLE_IP)
5878 5879
		data->ip = perf_instruction_pointer(regs);

5880
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5881
		int size = 1;
5882

5883
		data->callchain = perf_callchain(event, regs);
5884 5885 5886 5887 5888

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5889 5890
	}

5891
	if (sample_type & PERF_SAMPLE_RAW) {
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
5912

5913
		header->size += size;
5914
	}
5915 5916 5917 5918 5919 5920 5921 5922 5923

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5924

5925
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5926 5927
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5928

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5952
						     data->regs_user.regs);
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5980
}
5981

5982 5983 5984 5985 5986 5987 5988
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
5989 5990 5991
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5992

5993 5994 5995
	/* protect the callchain buffers */
	rcu_read_lock();

5996
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5997

5998
	if (output_begin(&handle, event, header.size))
5999
		goto exit;
6000

6001
	perf_output_sample(&handle, &header, data, event);
6002

6003
	perf_output_end(&handle);
6004 6005 6006

exit:
	rcu_read_unlock();
6007 6008
}

6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6033
/*
6034
 * read event_id
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6045
perf_event_read_event(struct perf_event *event,
6046 6047 6048
			struct task_struct *task)
{
	struct perf_output_handle handle;
6049
	struct perf_sample_data sample;
6050
	struct perf_read_event read_event = {
6051
		.header = {
6052
			.type = PERF_RECORD_READ,
6053
			.misc = 0,
6054
			.size = sizeof(read_event) + event->read_size,
6055
		},
6056 6057
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6058
	};
6059
	int ret;
6060

6061
	perf_event_header__init_id(&read_event.header, &sample, event);
6062
	ret = perf_output_begin(&handle, event, read_event.header.size);
6063 6064 6065
	if (ret)
		return;

6066
	perf_output_put(&handle, read_event);
6067
	perf_output_read(&handle, event);
6068
	perf_event__output_id_sample(event, &handle, &sample);
6069

6070 6071 6072
	perf_output_end(&handle);
}

6073
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6074 6075

static void
6076 6077
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6078
		   void *data, bool all)
6079 6080 6081 6082
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6083 6084 6085 6086 6087 6088 6089
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6090
		output(event, data);
6091 6092 6093
	}
}

6094
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6095 6096 6097 6098 6099
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6100 6101 6102 6103 6104 6105 6106 6107
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6108 6109 6110 6111 6112 6113 6114 6115
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6116 6117 6118 6119 6120 6121
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6122
static void
6123
perf_iterate_sb(perf_iterate_f output, void *data,
6124 6125 6126 6127 6128
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6129 6130 6131
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6132
	/*
6133 6134
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6135 6136 6137
	 * context.
	 */
	if (task_ctx) {
6138 6139
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6140 6141
	}

6142
	perf_iterate_sb_cpu(output, data);
6143 6144

	for_each_task_context_nr(ctxn) {
6145 6146
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6147
			perf_iterate_ctx(ctx, output, data, false);
6148
	}
6149
done:
6150
	preempt_enable();
6151
	rcu_read_unlock();
6152 6153
}

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6183
		perf_event_stop(event, 1);
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6199
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6200 6201 6202 6203 6204
				   true);
	}
	rcu_read_unlock();
}

6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6215 6216 6217
	struct stop_event_data sd = {
		.event	= event,
	};
6218 6219 6220 6221 6222 6223 6224 6225 6226

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6227 6228 6229 6230 6231 6232 6233
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6234 6235
	 */
	if (rcu_dereference(parent->rb) == rb)
6236
		ro->err = __perf_event_stop(&sd);
6237 6238 6239 6240 6241 6242
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6243
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6244 6245 6246 6247 6248
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6249
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6250
	if (cpuctx->task_ctx)
6251
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6252
				   &ro, false);
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6286 6287
}

P
Peter Zijlstra 已提交
6288
/*
P
Peter Zijlstra 已提交
6289 6290
 * task tracking -- fork/exit
 *
6291
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6292 6293
 */

P
Peter Zijlstra 已提交
6294
struct perf_task_event {
6295
	struct task_struct		*task;
6296
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6297 6298 6299 6300 6301 6302

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6303 6304
		u32				tid;
		u32				ptid;
6305
		u64				time;
6306
	} event_id;
P
Peter Zijlstra 已提交
6307 6308
};

6309 6310
static int perf_event_task_match(struct perf_event *event)
{
6311 6312 6313
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6314 6315
}

6316
static void perf_event_task_output(struct perf_event *event,
6317
				   void *data)
P
Peter Zijlstra 已提交
6318
{
6319
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6320
	struct perf_output_handle handle;
6321
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6322
	struct task_struct *task = task_event->task;
6323
	int ret, size = task_event->event_id.header.size;
6324

6325 6326 6327
	if (!perf_event_task_match(event))
		return;

6328
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6329

6330
	ret = perf_output_begin(&handle, event,
6331
				task_event->event_id.header.size);
6332
	if (ret)
6333
		goto out;
P
Peter Zijlstra 已提交
6334

6335 6336
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6337

6338 6339
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6340

6341 6342
	task_event->event_id.time = perf_event_clock(event);

6343
	perf_output_put(&handle, task_event->event_id);
6344

6345 6346
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6347
	perf_output_end(&handle);
6348 6349
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6350 6351
}

6352 6353
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6354
			      int new)
P
Peter Zijlstra 已提交
6355
{
P
Peter Zijlstra 已提交
6356
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6357

6358 6359 6360
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6361 6362
		return;

P
Peter Zijlstra 已提交
6363
	task_event = (struct perf_task_event){
6364 6365
		.task	  = task,
		.task_ctx = task_ctx,
6366
		.event_id    = {
P
Peter Zijlstra 已提交
6367
			.header = {
6368
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6369
				.misc = 0,
6370
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6371
			},
6372 6373
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6374 6375
			/* .tid  */
			/* .ptid */
6376
			/* .time */
P
Peter Zijlstra 已提交
6377 6378 6379
		},
	};

6380
	perf_iterate_sb(perf_event_task_output,
6381 6382
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6383 6384
}

6385
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6386
{
6387
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6388 6389
}

6390 6391 6392 6393 6394
/*
 * comm tracking
 */

struct perf_comm_event {
6395 6396
	struct task_struct	*task;
	char			*comm;
6397 6398 6399 6400 6401 6402 6403
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6404
	} event_id;
6405 6406
};

6407 6408 6409 6410 6411
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6412
static void perf_event_comm_output(struct perf_event *event,
6413
				   void *data)
6414
{
6415
	struct perf_comm_event *comm_event = data;
6416
	struct perf_output_handle handle;
6417
	struct perf_sample_data sample;
6418
	int size = comm_event->event_id.header.size;
6419 6420
	int ret;

6421 6422 6423
	if (!perf_event_comm_match(event))
		return;

6424 6425
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6426
				comm_event->event_id.header.size);
6427 6428

	if (ret)
6429
		goto out;
6430

6431 6432
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6433

6434
	perf_output_put(&handle, comm_event->event_id);
6435
	__output_copy(&handle, comm_event->comm,
6436
				   comm_event->comm_size);
6437 6438 6439

	perf_event__output_id_sample(event, &handle, &sample);

6440
	perf_output_end(&handle);
6441 6442
out:
	comm_event->event_id.header.size = size;
6443 6444
}

6445
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6446
{
6447
	char comm[TASK_COMM_LEN];
6448 6449
	unsigned int size;

6450
	memset(comm, 0, sizeof(comm));
6451
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6452
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6453 6454 6455 6456

	comm_event->comm = comm;
	comm_event->comm_size = size;

6457
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6458

6459
	perf_iterate_sb(perf_event_comm_output,
6460 6461
		       comm_event,
		       NULL);
6462 6463
}

6464
void perf_event_comm(struct task_struct *task, bool exec)
6465
{
6466 6467
	struct perf_comm_event comm_event;

6468
	if (!atomic_read(&nr_comm_events))
6469
		return;
6470

6471
	comm_event = (struct perf_comm_event){
6472
		.task	= task,
6473 6474
		/* .comm      */
		/* .comm_size */
6475
		.event_id  = {
6476
			.header = {
6477
				.type = PERF_RECORD_COMM,
6478
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6479 6480 6481 6482
				/* .size */
			},
			/* .pid */
			/* .tid */
6483 6484 6485
		},
	};

6486
	perf_event_comm_event(&comm_event);
6487 6488
}

6489 6490 6491 6492 6493
/*
 * mmap tracking
 */

struct perf_mmap_event {
6494 6495 6496 6497
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6498 6499 6500
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6501
	u32			prot, flags;
6502 6503 6504 6505 6506 6507 6508 6509 6510

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6511
	} event_id;
6512 6513
};

6514 6515 6516 6517 6518 6519 6520 6521
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6522
	       (executable && (event->attr.mmap || event->attr.mmap2));
6523 6524
}

6525
static void perf_event_mmap_output(struct perf_event *event,
6526
				   void *data)
6527
{
6528
	struct perf_mmap_event *mmap_event = data;
6529
	struct perf_output_handle handle;
6530
	struct perf_sample_data sample;
6531
	int size = mmap_event->event_id.header.size;
6532
	int ret;
6533

6534 6535 6536
	if (!perf_event_mmap_match(event, data))
		return;

6537 6538 6539 6540 6541
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6542
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6543 6544
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6545 6546
	}

6547 6548
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6549
				mmap_event->event_id.header.size);
6550
	if (ret)
6551
		goto out;
6552

6553 6554
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6555

6556
	perf_output_put(&handle, mmap_event->event_id);
6557 6558 6559 6560 6561 6562

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6563 6564
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6565 6566
	}

6567
	__output_copy(&handle, mmap_event->file_name,
6568
				   mmap_event->file_size);
6569 6570 6571

	perf_event__output_id_sample(event, &handle, &sample);

6572
	perf_output_end(&handle);
6573 6574
out:
	mmap_event->event_id.header.size = size;
6575 6576
}

6577
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6578
{
6579 6580
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6581 6582
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6583
	u32 prot = 0, flags = 0;
6584 6585 6586
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6587
	char *name;
6588

6589
	if (file) {
6590 6591
		struct inode *inode;
		dev_t dev;
6592

6593
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6594
		if (!buf) {
6595 6596
			name = "//enomem";
			goto cpy_name;
6597
		}
6598
		/*
6599
		 * d_path() works from the end of the rb backwards, so we
6600 6601 6602
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6603
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6604
		if (IS_ERR(name)) {
6605 6606
			name = "//toolong";
			goto cpy_name;
6607
		}
6608 6609 6610 6611 6612 6613
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6636
		goto got_name;
6637
	} else {
6638 6639 6640 6641 6642 6643
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6644
		name = (char *)arch_vma_name(vma);
6645 6646
		if (name)
			goto cpy_name;
6647

6648
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6649
				vma->vm_end >= vma->vm_mm->brk) {
6650 6651
			name = "[heap]";
			goto cpy_name;
6652 6653
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6654
				vma->vm_end >= vma->vm_mm->start_stack) {
6655 6656
			name = "[stack]";
			goto cpy_name;
6657 6658
		}

6659 6660
		name = "//anon";
		goto cpy_name;
6661 6662
	}

6663 6664 6665
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6666
got_name:
6667 6668 6669 6670 6671 6672 6673 6674
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6675 6676 6677

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6678 6679 6680 6681
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6682 6683
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6684

6685 6686 6687
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6688
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6689

6690
	perf_iterate_sb(perf_event_mmap_output,
6691 6692
		       mmap_event,
		       NULL);
6693

6694 6695 6696
	kfree(buf);
}

6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
	if (filter->inode != file->f_inode)
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6747
		perf_event_stop(event, 1);
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6758 6759 6760 6761 6762 6763 6764
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6765 6766 6767 6768 6769 6770
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6771
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6772 6773 6774 6775
	}
	rcu_read_unlock();
}

6776
void perf_event_mmap(struct vm_area_struct *vma)
6777
{
6778 6779
	struct perf_mmap_event mmap_event;

6780
	if (!atomic_read(&nr_mmap_events))
6781 6782 6783
		return;

	mmap_event = (struct perf_mmap_event){
6784
		.vma	= vma,
6785 6786
		/* .file_name */
		/* .file_size */
6787
		.event_id  = {
6788
			.header = {
6789
				.type = PERF_RECORD_MMAP,
6790
				.misc = PERF_RECORD_MISC_USER,
6791 6792 6793 6794
				/* .size */
			},
			/* .pid */
			/* .tid */
6795 6796
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6797
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6798
		},
6799 6800 6801 6802
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6803 6804
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6805 6806
	};

6807
	perf_addr_filters_adjust(vma);
6808
	perf_event_mmap_event(&mmap_event);
6809 6810
}

A
Alexander Shishkin 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

6958
	perf_iterate_sb(perf_event_switch_output,
6959 6960 6961 6962
		       &switch_event,
		       NULL);
}

6963 6964 6965 6966
/*
 * IRQ throttle logging
 */

6967
static void perf_log_throttle(struct perf_event *event, int enable)
6968 6969
{
	struct perf_output_handle handle;
6970
	struct perf_sample_data sample;
6971 6972 6973 6974 6975
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6976
		u64				id;
6977
		u64				stream_id;
6978 6979
	} throttle_event = {
		.header = {
6980
			.type = PERF_RECORD_THROTTLE,
6981 6982 6983
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6984
		.time		= perf_event_clock(event),
6985 6986
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6987 6988
	};

6989
	if (enable)
6990
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6991

6992 6993 6994
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6995
				throttle_event.header.size);
6996 6997 6998 6999
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
7000
	perf_event__output_id_sample(event, &handle, &sample);
7001 7002 7003
	perf_output_end(&handle);
}

7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7040
/*
7041
 * Generic event overflow handling, sampling.
7042 7043
 */

7044
static int __perf_event_overflow(struct perf_event *event,
7045 7046
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
7047
{
7048 7049
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
7050
	u64 seq;
7051 7052
	int ret = 0;

7053 7054 7055 7056 7057 7058 7059
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

7060 7061 7062 7063 7064 7065 7066 7067 7068
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7069
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7070 7071
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7072 7073
			ret = 1;
		}
7074
	}
7075

7076
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7077
		u64 now = perf_clock();
7078
		s64 delta = now - hwc->freq_time_stamp;
7079

7080
		hwc->freq_time_stamp = now;
7081

7082
		if (delta > 0 && delta < 2*TICK_NSEC)
7083
			perf_adjust_period(event, delta, hwc->last_period, true);
7084 7085
	}

7086 7087
	/*
	 * XXX event_limit might not quite work as expected on inherited
7088
	 * events
7089 7090
	 */

7091 7092
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7093
		ret = 1;
7094
		event->pending_kill = POLL_HUP;
7095 7096

		perf_event_disable_inatomic(event);
7097 7098
	}

7099
	READ_ONCE(event->overflow_handler)(event, data, regs);
7100

7101
	if (*perf_event_fasync(event) && event->pending_kill) {
7102 7103
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7104 7105
	}

7106
	return ret;
7107 7108
}

7109
int perf_event_overflow(struct perf_event *event,
7110 7111
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7112
{
7113
	return __perf_event_overflow(event, 1, data, regs);
7114 7115
}

7116
/*
7117
 * Generic software event infrastructure
7118 7119
 */

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7131
/*
7132 7133
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7134 7135 7136 7137
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7138
u64 perf_swevent_set_period(struct perf_event *event)
7139
{
7140
	struct hw_perf_event *hwc = &event->hw;
7141 7142 7143 7144 7145
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7146 7147

again:
7148
	old = val = local64_read(&hwc->period_left);
7149 7150
	if (val < 0)
		return 0;
7151

7152 7153 7154
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7155
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7156
		goto again;
7157

7158
	return nr;
7159 7160
}

7161
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7162
				    struct perf_sample_data *data,
7163
				    struct pt_regs *regs)
7164
{
7165
	struct hw_perf_event *hwc = &event->hw;
7166
	int throttle = 0;
7167

7168 7169
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7170

7171 7172
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7173

7174
	for (; overflow; overflow--) {
7175
		if (__perf_event_overflow(event, throttle,
7176
					    data, regs)) {
7177 7178 7179 7180 7181 7182
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7183
		throttle = 1;
7184
	}
7185 7186
}

P
Peter Zijlstra 已提交
7187
static void perf_swevent_event(struct perf_event *event, u64 nr,
7188
			       struct perf_sample_data *data,
7189
			       struct pt_regs *regs)
7190
{
7191
	struct hw_perf_event *hwc = &event->hw;
7192

7193
	local64_add(nr, &event->count);
7194

7195 7196 7197
	if (!regs)
		return;

7198
	if (!is_sampling_event(event))
7199
		return;
7200

7201 7202 7203 7204 7205 7206
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7207
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7208
		return perf_swevent_overflow(event, 1, data, regs);
7209

7210
	if (local64_add_negative(nr, &hwc->period_left))
7211
		return;
7212

7213
	perf_swevent_overflow(event, 0, data, regs);
7214 7215
}

7216 7217 7218
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7219
	if (event->hw.state & PERF_HES_STOPPED)
7220
		return 1;
P
Peter Zijlstra 已提交
7221

7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7233
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7234
				enum perf_type_id type,
L
Li Zefan 已提交
7235 7236 7237
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7238
{
7239
	if (event->attr.type != type)
7240
		return 0;
7241

7242
	if (event->attr.config != event_id)
7243 7244
		return 0;

7245 7246
	if (perf_exclude_event(event, regs))
		return 0;
7247 7248 7249 7250

	return 1;
}

7251 7252 7253 7254 7255 7256 7257
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7258 7259
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7260
{
7261 7262 7263 7264
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7265

7266 7267
/* For the read side: events when they trigger */
static inline struct hlist_head *
7268
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7269 7270
{
	struct swevent_hlist *hlist;
7271

7272
	hlist = rcu_dereference(swhash->swevent_hlist);
7273 7274 7275
	if (!hlist)
		return NULL;

7276 7277 7278 7279 7280
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7281
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7292
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7293 7294 7295 7296 7297
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7298 7299 7300
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7301
				    u64 nr,
7302 7303
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7304
{
7305
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7306
	struct perf_event *event;
7307
	struct hlist_head *head;
7308

7309
	rcu_read_lock();
7310
	head = find_swevent_head_rcu(swhash, type, event_id);
7311 7312 7313
	if (!head)
		goto end;

7314
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7315
		if (perf_swevent_match(event, type, event_id, data, regs))
7316
			perf_swevent_event(event, nr, data, regs);
7317
	}
7318 7319
end:
	rcu_read_unlock();
7320 7321
}

7322 7323
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7324
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7325
{
7326
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7327

7328
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7329
}
I
Ingo Molnar 已提交
7330
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7331

7332
void perf_swevent_put_recursion_context(int rctx)
7333
{
7334
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7335

7336
	put_recursion_context(swhash->recursion, rctx);
7337
}
7338

7339
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7340
{
7341
	struct perf_sample_data data;
7342

7343
	if (WARN_ON_ONCE(!regs))
7344
		return;
7345

7346
	perf_sample_data_init(&data, addr, 0);
7347
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7360 7361

	perf_swevent_put_recursion_context(rctx);
7362
fail:
7363
	preempt_enable_notrace();
7364 7365
}

7366
static void perf_swevent_read(struct perf_event *event)
7367 7368 7369
{
}

P
Peter Zijlstra 已提交
7370
static int perf_swevent_add(struct perf_event *event, int flags)
7371
{
7372
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7373
	struct hw_perf_event *hwc = &event->hw;
7374 7375
	struct hlist_head *head;

7376
	if (is_sampling_event(event)) {
7377
		hwc->last_period = hwc->sample_period;
7378
		perf_swevent_set_period(event);
7379
	}
7380

P
Peter Zijlstra 已提交
7381 7382
	hwc->state = !(flags & PERF_EF_START);

7383
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7384
	if (WARN_ON_ONCE(!head))
7385 7386 7387
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7388
	perf_event_update_userpage(event);
7389

7390 7391 7392
	return 0;
}

P
Peter Zijlstra 已提交
7393
static void perf_swevent_del(struct perf_event *event, int flags)
7394
{
7395
	hlist_del_rcu(&event->hlist_entry);
7396 7397
}

P
Peter Zijlstra 已提交
7398
static void perf_swevent_start(struct perf_event *event, int flags)
7399
{
P
Peter Zijlstra 已提交
7400
	event->hw.state = 0;
7401
}
I
Ingo Molnar 已提交
7402

P
Peter Zijlstra 已提交
7403
static void perf_swevent_stop(struct perf_event *event, int flags)
7404
{
P
Peter Zijlstra 已提交
7405
	event->hw.state = PERF_HES_STOPPED;
7406 7407
}

7408 7409
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7410
swevent_hlist_deref(struct swevent_htable *swhash)
7411
{
7412 7413
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7414 7415
}

7416
static void swevent_hlist_release(struct swevent_htable *swhash)
7417
{
7418
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7419

7420
	if (!hlist)
7421 7422
		return;

7423
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7424
	kfree_rcu(hlist, rcu_head);
7425 7426
}

7427
static void swevent_hlist_put_cpu(int cpu)
7428
{
7429
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7430

7431
	mutex_lock(&swhash->hlist_mutex);
7432

7433 7434
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7435

7436
	mutex_unlock(&swhash->hlist_mutex);
7437 7438
}

7439
static void swevent_hlist_put(void)
7440 7441 7442 7443
{
	int cpu;

	for_each_possible_cpu(cpu)
7444
		swevent_hlist_put_cpu(cpu);
7445 7446
}

7447
static int swevent_hlist_get_cpu(int cpu)
7448
{
7449
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7450 7451
	int err = 0;

7452 7453
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7454 7455 7456 7457 7458 7459 7460
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7461
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7462
	}
7463
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7464
exit:
7465
	mutex_unlock(&swhash->hlist_mutex);
7466 7467 7468 7469

	return err;
}

7470
static int swevent_hlist_get(void)
7471
{
7472
	int err, cpu, failed_cpu;
7473 7474 7475

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7476
		err = swevent_hlist_get_cpu(cpu);
7477 7478 7479 7480 7481 7482 7483 7484
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7485
fail:
7486 7487 7488
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7489
		swevent_hlist_put_cpu(cpu);
7490 7491 7492 7493 7494 7495
	}

	put_online_cpus();
	return err;
}

7496
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7497

7498 7499 7500
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7501

7502 7503
	WARN_ON(event->parent);

7504
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7505
	swevent_hlist_put();
7506 7507 7508 7509
}

static int perf_swevent_init(struct perf_event *event)
{
7510
	u64 event_id = event->attr.config;
7511 7512 7513 7514

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7515 7516 7517 7518 7519 7520
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7521 7522 7523 7524 7525 7526 7527 7528 7529
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7530
	if (event_id >= PERF_COUNT_SW_MAX)
7531 7532 7533 7534 7535
		return -ENOENT;

	if (!event->parent) {
		int err;

7536
		err = swevent_hlist_get();
7537 7538 7539
		if (err)
			return err;

7540
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7541 7542 7543 7544 7545 7546 7547
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7548
	.task_ctx_nr	= perf_sw_context,
7549

7550 7551
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7552
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7553 7554 7555 7556
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7557 7558 7559
	.read		= perf_swevent_read,
};

7560 7561
#ifdef CONFIG_EVENT_TRACING

7562 7563 7564
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7565
	void *record = data->raw->frag.data;
7566

7567 7568 7569 7570
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7571 7572 7573 7574 7575 7576 7577 7578 7579
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7580 7581
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7582 7583 7584 7585
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7586 7587 7588 7589 7590 7591 7592 7593
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7613
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7614 7615
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7616 7617
{
	struct perf_sample_data data;
7618 7619
	struct perf_event *event;

7620
	struct perf_raw_record raw = {
7621 7622 7623 7624
		.frag = {
			.size = entry_size,
			.data = record,
		},
7625 7626
	};

7627
	perf_sample_data_init(&data, 0, 0);
7628 7629
	data.raw = &raw;

7630 7631
	perf_trace_buf_update(record, event_type);

7632
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7633
		if (perf_tp_event_match(event, &data, regs))
7634
			perf_swevent_event(event, count, &data, regs);
7635
	}
7636

7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7662
	perf_swevent_put_recursion_context(rctx);
7663 7664 7665
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7666
static void tp_perf_event_destroy(struct perf_event *event)
7667
{
7668
	perf_trace_destroy(event);
7669 7670
}

7671
static int perf_tp_event_init(struct perf_event *event)
7672
{
7673 7674
	int err;

7675 7676 7677
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7678 7679 7680 7681 7682 7683
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7684 7685
	err = perf_trace_init(event);
	if (err)
7686
		return err;
7687

7688
	event->destroy = tp_perf_event_destroy;
7689

7690 7691 7692 7693
	return 0;
}

static struct pmu perf_tracepoint = {
7694 7695
	.task_ctx_nr	= perf_sw_context,

7696
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7697 7698 7699 7700
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7701 7702 7703 7704 7705
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7706
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7707
}
L
Li Zefan 已提交
7708 7709 7710 7711 7712 7713

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
	ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

7782 7783
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7784
	bool is_kprobe, is_tracepoint;
7785 7786
	struct bpf_prog *prog;

7787 7788 7789 7790
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

7791 7792 7793 7794 7795 7796
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7797 7798 7799 7800
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7801 7802 7803 7804 7805 7806
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7807 7808
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7809 7810 7811 7812 7813
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7814 7815 7816 7817 7818 7819 7820 7821
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7822 7823 7824 7825 7826 7827 7828 7829 7830
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

7831 7832
	perf_event_free_bpf_handler(event);

7833 7834 7835 7836 7837 7838
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7839
		bpf_prog_put(prog);
7840 7841 7842
	}
}

7843
#else
L
Li Zefan 已提交
7844

7845
static inline void perf_tp_register(void)
7846 7847
{
}
L
Li Zefan 已提交
7848 7849 7850 7851 7852

static void perf_event_free_filter(struct perf_event *event)
{
}

7853 7854 7855 7856 7857 7858 7859 7860
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7861
#endif /* CONFIG_EVENT_TRACING */
7862

7863
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7864
void perf_bp_event(struct perf_event *bp, void *data)
7865
{
7866 7867 7868
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7869
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7870

P
Peter Zijlstra 已提交
7871
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7872
		perf_swevent_event(bp, 1, &sample, regs);
7873 7874 7875
}
#endif

7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

7991 7992 7993 7994 7995
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8010
	perf_event_stop(event, 1);
8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8032
	IF_ACT_NONE = -1,
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8056
	{ IF_ACT_NONE,		NULL },
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8128 8129 8130 8131
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

8240 8241 8242 8243 8244
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8245 8246 8247
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8248 8249 8250 8251 8252 8253 8254 8255 8256 8257
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8258 8259
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8260 8261 8262 8263 8264

	kfree(filter_str);
	return ret;
}

8265 8266 8267
/*
 * hrtimer based swevent callback
 */
8268

8269
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8270
{
8271 8272 8273 8274 8275
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8276

8277
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8278 8279 8280 8281

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8282
	event->pmu->read(event);
8283

8284
	perf_sample_data_init(&data, 0, event->hw.last_period);
8285 8286 8287
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8288
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8289
			if (__perf_event_overflow(event, 1, &data, regs))
8290 8291
				ret = HRTIMER_NORESTART;
	}
8292

8293 8294
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8295

8296
	return ret;
8297 8298
}

8299
static void perf_swevent_start_hrtimer(struct perf_event *event)
8300
{
8301
	struct hw_perf_event *hwc = &event->hw;
8302 8303 8304 8305
	s64 period;

	if (!is_sampling_event(event))
		return;
8306

8307 8308 8309 8310
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8311

8312 8313 8314 8315
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8316 8317
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8318
}
8319 8320

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8321
{
8322 8323
	struct hw_perf_event *hwc = &event->hw;

8324
	if (is_sampling_event(event)) {
8325
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8326
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8327 8328 8329

		hrtimer_cancel(&hwc->hrtimer);
	}
8330 8331
}

P
Peter Zijlstra 已提交
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8352
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8353 8354 8355 8356
		event->attr.freq = 0;
	}
}

8357 8358 8359 8360 8361
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8362
{
8363 8364 8365
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8366
	now = local_clock();
8367 8368
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8369 8370
}

P
Peter Zijlstra 已提交
8371
static void cpu_clock_event_start(struct perf_event *event, int flags)
8372
{
P
Peter Zijlstra 已提交
8373
	local64_set(&event->hw.prev_count, local_clock());
8374 8375 8376
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8377
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8378
{
8379 8380 8381
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8382

P
Peter Zijlstra 已提交
8383 8384 8385 8386
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8387
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8388 8389 8390 8391 8392 8393 8394 8395 8396

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8397 8398 8399 8400
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8401

8402 8403 8404 8405 8406 8407 8408 8409
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8410 8411 8412 8413 8414 8415
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8416 8417
	perf_swevent_init_hrtimer(event);

8418
	return 0;
8419 8420
}

8421
static struct pmu perf_cpu_clock = {
8422 8423
	.task_ctx_nr	= perf_sw_context,

8424 8425
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8426
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8427 8428 8429 8430
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8431 8432 8433 8434 8435 8436 8437 8438
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8439
{
8440 8441
	u64 prev;
	s64 delta;
8442

8443 8444 8445 8446
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8447

P
Peter Zijlstra 已提交
8448
static void task_clock_event_start(struct perf_event *event, int flags)
8449
{
P
Peter Zijlstra 已提交
8450
	local64_set(&event->hw.prev_count, event->ctx->time);
8451 8452 8453
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8454
static void task_clock_event_stop(struct perf_event *event, int flags)
8455 8456 8457
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8458 8459 8460 8461 8462 8463
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8464
	perf_event_update_userpage(event);
8465

P
Peter Zijlstra 已提交
8466 8467 8468 8469 8470 8471
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8472 8473 8474 8475
}

static void task_clock_event_read(struct perf_event *event)
{
8476 8477 8478
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8479 8480 8481 8482 8483

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8484
{
8485 8486 8487 8488 8489 8490
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8491 8492 8493 8494 8495 8496
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8497 8498
	perf_swevent_init_hrtimer(event);

8499
	return 0;
L
Li Zefan 已提交
8500 8501
}

8502
static struct pmu perf_task_clock = {
8503 8504
	.task_ctx_nr	= perf_sw_context,

8505 8506
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8507
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8508 8509 8510 8511
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8512 8513
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8514

P
Peter Zijlstra 已提交
8515
static void perf_pmu_nop_void(struct pmu *pmu)
8516 8517
{
}
L
Li Zefan 已提交
8518

8519 8520 8521 8522
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8523
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8524
{
P
Peter Zijlstra 已提交
8525
	return 0;
L
Li Zefan 已提交
8526 8527
}

8528
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8529 8530

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8531
{
8532 8533 8534 8535 8536
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8537
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8538 8539
}

P
Peter Zijlstra 已提交
8540 8541
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8542 8543 8544 8545 8546 8547 8548
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8549 8550 8551
	perf_pmu_enable(pmu);
	return 0;
}
8552

P
Peter Zijlstra 已提交
8553
static void perf_pmu_cancel_txn(struct pmu *pmu)
8554
{
8555 8556 8557 8558 8559 8560 8561
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8562
	perf_pmu_enable(pmu);
8563 8564
}

8565 8566
static int perf_event_idx_default(struct perf_event *event)
{
8567
	return 0;
8568 8569
}

P
Peter Zijlstra 已提交
8570 8571 8572 8573
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8574
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8575
{
P
Peter Zijlstra 已提交
8576
	struct pmu *pmu;
8577

P
Peter Zijlstra 已提交
8578 8579
	if (ctxn < 0)
		return NULL;
8580

P
Peter Zijlstra 已提交
8581 8582 8583 8584
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8585

P
Peter Zijlstra 已提交
8586
	return NULL;
8587 8588
}

8589
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8590
{
8591 8592 8593 8594 8595 8596 8597
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

8598 8599
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
8600 8601 8602 8603 8604 8605
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
8606

P
Peter Zijlstra 已提交
8607
	mutex_lock(&pmus_lock);
8608
	/*
P
Peter Zijlstra 已提交
8609
	 * Like a real lame refcount.
8610
	 */
8611 8612 8613
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
8614
			goto out;
8615
		}
P
Peter Zijlstra 已提交
8616
	}
8617

8618
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8619 8620
out:
	mutex_unlock(&pmus_lock);
8621
}
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8636
static struct idr pmu_idr;
8637

P
Peter Zijlstra 已提交
8638 8639 8640 8641 8642 8643 8644
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8645
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8646

8647 8648 8649 8650 8651 8652 8653 8654 8655 8656
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8657 8658
static DEFINE_MUTEX(mux_interval_mutex);

8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8678
	mutex_lock(&mux_interval_mutex);
8679 8680 8681
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8682 8683
	get_online_cpus();
	for_each_online_cpu(cpu) {
8684 8685 8686 8687
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8688 8689
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8690
	}
8691 8692
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8693 8694 8695

	return count;
}
8696
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8697

8698 8699 8700 8701
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8702
};
8703
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8704 8705 8706 8707

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8708
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8724
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8737 8738 8739 8740 8741 8742 8743
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8744 8745 8746
out:
	return ret;

8747 8748 8749
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8750 8751 8752 8753 8754
free_dev:
	put_device(pmu->dev);
	goto out;
}

8755
static struct lock_class_key cpuctx_mutex;
8756
static struct lock_class_key cpuctx_lock;
8757

8758
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8759
{
P
Peter Zijlstra 已提交
8760
	int cpu, ret;
8761

8762
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8763 8764 8765 8766
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8767

P
Peter Zijlstra 已提交
8768 8769 8770 8771 8772 8773
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8774 8775 8776
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8777 8778 8779 8780 8781
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8782 8783 8784 8785 8786 8787
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8788
skip_type:
8789 8790 8791
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8792 8793 8794 8795 8796 8797 8798
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8799 8800 8801 8802 8803
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8804 8805 8806
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8807

W
Wei Yongjun 已提交
8808
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8809 8810
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8811
		goto free_dev;
8812

P
Peter Zijlstra 已提交
8813 8814 8815 8816
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8817
		__perf_event_init_context(&cpuctx->ctx);
8818
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8819
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8820
		cpuctx->ctx.pmu = pmu;
8821

8822
		__perf_mux_hrtimer_init(cpuctx, cpu);
8823

8824
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
8825
	}
8826

P
Peter Zijlstra 已提交
8827
got_cpu_context:
P
Peter Zijlstra 已提交
8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8839
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8840 8841
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8842
		}
8843
	}
8844

P
Peter Zijlstra 已提交
8845 8846 8847 8848 8849
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8850 8851 8852
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8853
	list_add_rcu(&pmu->entry, &pmus);
8854
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8855 8856
	ret = 0;
unlock:
8857 8858
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8859
	return ret;
P
Peter Zijlstra 已提交
8860

P
Peter Zijlstra 已提交
8861 8862 8863 8864
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8865 8866 8867 8868
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8869 8870 8871
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8872
}
8873
EXPORT_SYMBOL_GPL(perf_pmu_register);
8874

8875
void perf_pmu_unregister(struct pmu *pmu)
8876
{
8877 8878
	int remove_device;

8879
	mutex_lock(&pmus_lock);
8880
	remove_device = pmu_bus_running;
8881 8882
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8883

8884
	/*
P
Peter Zijlstra 已提交
8885 8886
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8887
	 */
8888
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8889
	synchronize_rcu();
8890

P
Peter Zijlstra 已提交
8891
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8892 8893
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8894 8895 8896 8897 8898 8899
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
8900
	free_pmu_context(pmu);
8901
}
8902
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8903

8904 8905
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8906
	struct perf_event_context *ctx = NULL;
8907 8908 8909 8910
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8911 8912

	if (event->group_leader != event) {
8913 8914 8915 8916 8917 8918
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
8919 8920 8921
		BUG_ON(!ctx);
	}

8922 8923
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
8924 8925 8926 8927

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

8928 8929 8930 8931 8932 8933
	if (ret)
		module_put(pmu->module);

	return ret;
}

8934
static struct pmu *perf_init_event(struct perf_event *event)
8935 8936 8937
{
	struct pmu *pmu = NULL;
	int idx;
8938
	int ret;
8939 8940

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
8941 8942 8943 8944

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
8945
	if (pmu) {
8946
		ret = perf_try_init_event(pmu, event);
8947 8948
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8949
		goto unlock;
8950
	}
P
Peter Zijlstra 已提交
8951

8952
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8953
		ret = perf_try_init_event(pmu, event);
8954
		if (!ret)
P
Peter Zijlstra 已提交
8955
			goto unlock;
8956

8957 8958
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8959
			goto unlock;
8960
		}
8961
	}
P
Peter Zijlstra 已提交
8962 8963
	pmu = ERR_PTR(-ENOENT);
unlock:
8964
	srcu_read_unlock(&pmus_srcu, idx);
8965

8966
	return pmu;
8967 8968
}

8969 8970 8971 8972 8973 8974 8975 8976 8977
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

8978 8979 8980 8981 8982 8983 8984
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
8985 8986
static void account_pmu_sb_event(struct perf_event *event)
{
8987
	if (is_sb_event(event))
8988 8989 8990
		attach_sb_event(event);
}

8991 8992 8993 8994 8995 8996 8997 8998 8999
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9021 9022
static void account_event(struct perf_event *event)
{
9023 9024
	bool inc = false;

9025 9026 9027
	if (event->parent)
		return;

9028
	if (event->attach_state & PERF_ATTACH_TASK)
9029
		inc = true;
9030 9031 9032 9033 9034 9035
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9036 9037
	if (event->attr.freq)
		account_freq_event();
9038 9039
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9040
		inc = true;
9041
	}
9042
	if (has_branch_stack(event))
9043
		inc = true;
9044
	if (is_cgroup_event(event))
9045 9046
		inc = true;

9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9069 9070

	account_event_cpu(event, event->cpu);
9071 9072

	account_pmu_sb_event(event);
9073 9074
}

T
Thomas Gleixner 已提交
9075
/*
9076
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9077
 */
9078
static struct perf_event *
9079
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9080 9081 9082
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9083
		 perf_overflow_handler_t overflow_handler,
9084
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9085
{
P
Peter Zijlstra 已提交
9086
	struct pmu *pmu;
9087 9088
	struct perf_event *event;
	struct hw_perf_event *hwc;
9089
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9090

9091 9092 9093 9094 9095
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9096
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9097
	if (!event)
9098
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9099

9100
	/*
9101
	 * Single events are their own group leaders, with an
9102 9103 9104
	 * empty sibling list:
	 */
	if (!group_leader)
9105
		group_leader = event;
9106

9107 9108
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9109

9110 9111 9112
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9113
	INIT_LIST_HEAD(&event->rb_entry);
9114
	INIT_LIST_HEAD(&event->active_entry);
9115
	INIT_LIST_HEAD(&event->addr_filters.list);
9116 9117
	INIT_HLIST_NODE(&event->hlist_entry);

9118

9119
	init_waitqueue_head(&event->waitq);
9120
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9121

9122
	mutex_init(&event->mmap_mutex);
9123
	raw_spin_lock_init(&event->addr_filters.lock);
9124

9125
	atomic_long_set(&event->refcount, 1);
9126 9127 9128 9129 9130
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9131

9132
	event->parent		= parent_event;
9133

9134
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9135
	event->id		= atomic64_inc_return(&perf_event_id);
9136

9137
	event->state		= PERF_EVENT_STATE_INACTIVE;
9138

9139 9140 9141
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9142 9143 9144
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9145
		 */
9146
		event->hw.target = task;
9147 9148
	}

9149 9150 9151 9152
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9153
	if (!overflow_handler && parent_event) {
9154
		overflow_handler = parent_event->overflow_handler;
9155
		context = parent_event->overflow_handler_context;
9156
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9169
	}
9170

9171 9172 9173
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9174 9175 9176
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9177
	} else {
9178
		event->overflow_handler = perf_event_output_forward;
9179 9180
		event->overflow_handler_context = NULL;
	}
9181

J
Jiri Olsa 已提交
9182
	perf_event__state_init(event);
9183

9184
	pmu = NULL;
9185

9186
	hwc = &event->hw;
9187
	hwc->sample_period = attr->sample_period;
9188
	if (attr->freq && attr->sample_freq)
9189
		hwc->sample_period = 1;
9190
	hwc->last_period = hwc->sample_period;
9191

9192
	local64_set(&hwc->period_left, hwc->sample_period);
9193

9194
	/*
9195
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9196
	 */
9197
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9198
		goto err_ns;
9199 9200 9201

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9202

9203 9204 9205 9206 9207 9208
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9209
	pmu = perf_init_event(event);
9210
	if (!pmu)
9211 9212
		goto err_ns;
	else if (IS_ERR(pmu)) {
9213
		err = PTR_ERR(pmu);
9214
		goto err_ns;
I
Ingo Molnar 已提交
9215
	}
9216

9217 9218 9219 9220
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9232
	if (!event->parent) {
9233
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9234
			err = get_callchain_buffers(attr->sample_max_stack);
9235
			if (err)
9236
				goto err_addr_filters;
9237
		}
9238
	}
9239

9240 9241 9242
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9243
	return event;
9244

9245 9246 9247
err_addr_filters:
	kfree(event->addr_filters_offs);

9248 9249 9250
err_per_task:
	exclusive_event_destroy(event);

9251 9252 9253
err_pmu:
	if (event->destroy)
		event->destroy(event);
9254
	module_put(pmu->module);
9255
err_ns:
9256 9257
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9258 9259 9260 9261 9262
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9263 9264
}

9265 9266
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9267 9268
{
	u32 size;
9269
	int ret;
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9294 9295 9296
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9297 9298
	 */
	if (size > sizeof(*attr)) {
9299 9300 9301
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9302

9303 9304
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9305

9306
		for (; addr < end; addr++) {
9307 9308 9309 9310 9311 9312
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9313
		size = sizeof(*attr);
9314 9315 9316 9317 9318 9319
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9320
	if (attr->__reserved_1)
9321 9322 9323 9324 9325 9326 9327 9328
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9357 9358
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9359 9360
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9361
	}
9362

9363
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9364
		ret = perf_reg_validate(attr->sample_regs_user);
9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9383

9384 9385
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9386 9387 9388 9389 9390 9391 9392 9393 9394
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9395 9396
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9397
{
9398
	struct ring_buffer *rb = NULL;
9399 9400
	int ret = -EINVAL;

9401
	if (!output_event)
9402 9403
		goto set;

9404 9405
	/* don't allow circular references */
	if (event == output_event)
9406 9407
		goto out;

9408 9409 9410 9411 9412 9413 9414
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9415
	 * If its not a per-cpu rb, it must be the same task.
9416 9417 9418 9419
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9420 9421 9422 9423 9424 9425
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9426 9427 9428 9429 9430 9431 9432
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9433 9434 9435 9436 9437 9438 9439
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9440
set:
9441
	mutex_lock(&event->mmap_mutex);
9442 9443 9444
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9445

9446
	if (output_event) {
9447 9448 9449
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9450
			goto unlock;
9451 9452
	}

9453
	ring_buffer_attach(event, rb);
9454

9455
	ret = 0;
9456 9457 9458
unlock:
	mutex_unlock(&event->mmap_mutex);

9459 9460 9461 9462
out:
	return ret;
}

P
Peter Zijlstra 已提交
9463 9464 9465 9466 9467 9468 9469 9470 9471
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
9509
/**
9510
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9511
 *
9512
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9513
 * @pid:		target pid
I
Ingo Molnar 已提交
9514
 * @cpu:		target cpu
9515
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9516
 */
9517 9518
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9519
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9520
{
9521 9522
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9523
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9524
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9525
	struct file *event_file = NULL;
9526
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9527
	struct task_struct *task = NULL;
9528
	struct pmu *pmu;
9529
	int event_fd;
9530
	int move_group = 0;
9531
	int err;
9532
	int f_flags = O_RDWR;
9533
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9534

9535
	/* for future expandability... */
S
Stephane Eranian 已提交
9536
	if (flags & ~PERF_FLAG_ALL)
9537 9538
		return -EINVAL;

9539 9540 9541
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9542

9543 9544 9545 9546 9547
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9548
	if (attr.freq) {
9549
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9550
			return -EINVAL;
9551 9552 9553
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9554 9555
	}

9556 9557 9558
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9559 9560 9561 9562 9563 9564 9565 9566 9567
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9568 9569 9570 9571
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9572 9573 9574
	if (event_fd < 0)
		return event_fd;

9575
	if (group_fd != -1) {
9576 9577
		err = perf_fget_light(group_fd, &group);
		if (err)
9578
			goto err_fd;
9579
		group_leader = group.file->private_data;
9580 9581 9582 9583 9584 9585
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9586
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9587 9588 9589 9590 9591 9592 9593
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9594 9595 9596 9597 9598 9599
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9600 9601
	get_online_cpus();

9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9620 9621 9622
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9623
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9624
				 NULL, NULL, cgroup_fd);
9625 9626
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9627
		goto err_cred;
9628 9629
	}

9630 9631
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9632
			err = -EOPNOTSUPP;
9633 9634 9635 9636
			goto err_alloc;
		}
	}

9637 9638 9639 9640 9641
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9642

9643 9644 9645 9646 9647 9648
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9649 9650 9651
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9665
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9666 9667 9668 9669 9670 9671 9672 9673
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9674 9675 9676 9677

	/*
	 * Get the target context (task or percpu):
	 */
9678
	ctx = find_get_context(pmu, task, event);
9679 9680
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9681
		goto err_alloc;
9682 9683
	}

9684 9685 9686 9687 9688
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9689
	/*
9690
	 * Look up the group leader (we will attach this event to it):
9691
	 */
9692
	if (group_leader) {
9693
		err = -EINVAL;
9694 9695

		/*
I
Ingo Molnar 已提交
9696 9697 9698 9699
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9700
			goto err_context;
9701 9702 9703 9704 9705

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9706 9707 9708
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9709
		 */
9710
		if (move_group) {
9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9724 9725 9726 9727 9728 9729
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9730 9731 9732
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9733
		if (attr.exclusive || attr.pinned)
9734
			goto err_context;
9735 9736 9737 9738 9739
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9740
			goto err_context;
9741
	}
T
Thomas Gleixner 已提交
9742

9743 9744
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9745 9746
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9747
		event_file = NULL;
9748
		goto err_context;
9749
	}
9750

9751
	if (move_group) {
P
Peter Zijlstra 已提交
9752
		gctx = group_leader->ctx;
9753
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9754 9755 9756 9757
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9758 9759 9760 9761
	} else {
		mutex_lock(&ctx->mutex);
	}

9762 9763 9764 9765 9766
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9767 9768 9769 9770 9771
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9772 9773 9774 9775 9776 9777 9778
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9779

9780 9781 9782
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9783

9784 9785
	WARN_ON_ONCE(ctx->parent_ctx);

9786 9787 9788 9789 9790
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9791
	if (move_group) {
P
Peter Zijlstra 已提交
9792 9793 9794 9795
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9796
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9797

9798 9799
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9800
			perf_remove_from_context(sibling, 0);
9801 9802 9803
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9804 9805 9806 9807
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9808
		synchronize_rcu();
P
Peter Zijlstra 已提交
9809

9810 9811 9812 9813 9814 9815 9816 9817 9818 9819
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9820 9821
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9822
			perf_event__state_init(sibling);
9823
			perf_install_in_context(ctx, sibling, sibling->cpu);
9824 9825
			get_ctx(ctx);
		}
9826 9827 9828 9829 9830 9831 9832 9833 9834

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9835

9836 9837 9838 9839 9840 9841
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9842 9843
	}

9844 9845 9846 9847 9848 9849 9850 9851 9852
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9853 9854
	event->owner = current;

9855
	perf_install_in_context(ctx, event, event->cpu);
9856
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9857

9858
	if (move_group)
P
Peter Zijlstra 已提交
9859
		mutex_unlock(&gctx->mutex);
9860
	mutex_unlock(&ctx->mutex);
9861

9862 9863 9864 9865 9866
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

9867 9868
	put_online_cpus();

9869 9870 9871
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
9872

9873 9874 9875 9876 9877 9878
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
9879
	fdput(group);
9880 9881
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
9882

9883 9884 9885 9886 9887 9888
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
9889
err_context:
9890
	perf_unpin_context(ctx);
9891
	put_ctx(ctx);
9892
err_alloc:
P
Peter Zijlstra 已提交
9893 9894 9895 9896 9897 9898
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
9899 9900 9901
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
9902
err_cpus:
9903
	put_online_cpus();
9904
err_task:
P
Peter Zijlstra 已提交
9905 9906
	if (task)
		put_task_struct(task);
9907
err_group_fd:
9908
	fdput(group);
9909 9910
err_fd:
	put_unused_fd(event_fd);
9911
	return err;
T
Thomas Gleixner 已提交
9912 9913
}

9914 9915 9916 9917 9918
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
9919
 * @task: task to profile (NULL for percpu)
9920 9921 9922
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
9923
				 struct task_struct *task,
9924 9925
				 perf_overflow_handler_t overflow_handler,
				 void *context)
9926 9927
{
	struct perf_event_context *ctx;
9928
	struct perf_event *event;
9929
	int err;
9930

9931 9932 9933
	/*
	 * Get the target context (task or percpu):
	 */
9934

9935
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9936
				 overflow_handler, context, -1);
9937 9938 9939 9940
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
9941

9942
	/* Mark owner so we could distinguish it from user events. */
9943
	event->owner = TASK_TOMBSTONE;
9944

9945
	ctx = find_get_context(event->pmu, task, event);
9946 9947
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9948
		goto err_free;
9949
	}
9950 9951 9952

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
9953 9954 9955 9956 9957
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

9958 9959
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
9960
		goto err_unlock;
9961 9962
	}

9963
	perf_install_in_context(ctx, event, cpu);
9964
	perf_unpin_context(ctx);
9965 9966 9967 9968
	mutex_unlock(&ctx->mutex);

	return event;

9969 9970 9971 9972
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
9973 9974 9975
err_free:
	free_event(event);
err:
9976
	return ERR_PTR(err);
9977
}
9978
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9979

9980 9981 9982 9983 9984 9985 9986 9987 9988 9989
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
9990 9991 9992 9993 9994
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9995 9996
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
9997
		perf_remove_from_context(event, 0);
9998
		unaccount_event_cpu(event, src_cpu);
9999
		put_ctx(src_ctx);
10000
		list_add(&event->migrate_entry, &events);
10001 10002
	}

10003 10004 10005
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10006 10007
	synchronize_rcu();

10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10032 10033
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10034 10035
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10036
		account_event_cpu(event, dst_cpu);
10037 10038 10039 10040
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10041
	mutex_unlock(&src_ctx->mutex);
10042 10043 10044
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10045
static void sync_child_event(struct perf_event *child_event,
10046
			       struct task_struct *child)
10047
{
10048
	struct perf_event *parent_event = child_event->parent;
10049
	u64 child_val;
10050

10051 10052
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10053

P
Peter Zijlstra 已提交
10054
	child_val = perf_event_count(child_event);
10055 10056 10057 10058

	/*
	 * Add back the child's count to the parent's count:
	 */
10059
	atomic64_add(child_val, &parent_event->child_count);
10060 10061 10062 10063
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10064 10065
}

10066
static void
10067 10068 10069
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10070
{
10071 10072
	struct perf_event *parent_event = child_event->parent;

10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10085 10086 10087
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10088
	if (parent_event)
10089 10090
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10091
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10092
	raw_spin_unlock_irq(&child_ctx->lock);
10093

10094
	/*
10095
	 * Parent events are governed by their filedesc, retain them.
10096
	 */
10097
	if (!parent_event) {
10098
		perf_event_wakeup(child_event);
10099
		return;
10100
	}
10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10121 10122
}

P
Peter Zijlstra 已提交
10123
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10124
{
10125
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10126 10127 10128
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10129

10130
	child_ctx = perf_pin_task_context(child, ctxn);
10131
	if (!child_ctx)
10132 10133
		return;

10134
	/*
10135 10136 10137 10138 10139 10140 10141 10142
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10143
	 */
10144
	mutex_lock(&child_ctx->mutex);
10145 10146

	/*
10147 10148 10149
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10150
	 */
10151
	raw_spin_lock_irq(&child_ctx->lock);
10152
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10153

10154
	/*
10155 10156
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10157
	 */
10158 10159 10160 10161
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10162

10163
	clone_ctx = unclone_ctx(child_ctx);
10164
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10165

10166 10167
	if (clone_ctx)
		put_ctx(clone_ctx);
10168

P
Peter Zijlstra 已提交
10169
	/*
10170 10171 10172
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10173
	 */
10174
	perf_event_task(child, child_ctx, 0);
10175

10176
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10177
		perf_event_exit_event(child_event, child_ctx, child);
10178

10179 10180 10181
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10182 10183
}

P
Peter Zijlstra 已提交
10184 10185
/*
 * When a child task exits, feed back event values to parent events.
10186 10187 10188
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10189 10190 10191
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10192
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10193 10194
	int ctxn;

P
Peter Zijlstra 已提交
10195 10196 10197 10198 10199 10200 10201 10202 10203 10204
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10205
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10206 10207 10208
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10209 10210
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10211 10212 10213 10214 10215 10216 10217 10218

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10219 10220
}

10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10233
	put_event(parent);
10234

P
Peter Zijlstra 已提交
10235
	raw_spin_lock_irq(&ctx->lock);
10236
	perf_group_detach(event);
10237
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10238
	raw_spin_unlock_irq(&ctx->lock);
10239 10240 10241
	free_event(event);
}

10242
/*
P
Peter Zijlstra 已提交
10243
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10244
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10245 10246 10247
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10248
 */
10249
void perf_event_free_task(struct task_struct *task)
10250
{
P
Peter Zijlstra 已提交
10251
	struct perf_event_context *ctx;
10252
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10253
	int ctxn;
10254

P
Peter Zijlstra 已提交
10255 10256 10257 10258
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10259

P
Peter Zijlstra 已提交
10260
		mutex_lock(&ctx->mutex);
10261
again:
P
Peter Zijlstra 已提交
10262 10263 10264
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10265

P
Peter Zijlstra 已提交
10266 10267 10268
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10269

P
Peter Zijlstra 已提交
10270 10271 10272
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10273

P
Peter Zijlstra 已提交
10274
		mutex_unlock(&ctx->mutex);
10275

P
Peter Zijlstra 已提交
10276 10277
		put_ctx(ctx);
	}
10278 10279
}

10280 10281 10282 10283 10284 10285 10286 10287
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10288
struct file *perf_event_get(unsigned int fd)
10289
{
10290
	struct file *file;
10291

10292 10293 10294
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10295

10296 10297 10298 10299
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10300

10301
	return file;
10302 10303 10304 10305 10306 10307 10308 10309 10310 10311
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10323
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10324
	struct perf_event *child_event;
10325
	unsigned long flags;
P
Peter Zijlstra 已提交
10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10338
					   child,
P
Peter Zijlstra 已提交
10339
					   group_leader, parent_event,
10340
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10341 10342
	if (IS_ERR(child_event))
		return child_event;
10343

10344 10345 10346 10347 10348 10349 10350
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10351 10352
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10353
		mutex_unlock(&parent_event->child_mutex);
10354 10355 10356 10357
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10358 10359 10360 10361 10362 10363 10364
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10365
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10382 10383
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10384

10385 10386 10387 10388
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10389
	perf_event__id_header_size(child_event);
10390

P
Peter Zijlstra 已提交
10391 10392 10393
	/*
	 * Link it up in the child's context:
	 */
10394
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10395
	add_event_to_ctx(child_event, child_ctx);
10396
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10428 10429 10430 10431 10432
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10433
		   struct task_struct *child, int ctxn,
10434 10435 10436
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10437
	struct perf_event_context *child_ctx;
10438 10439 10440 10441

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10442 10443
	}

10444
	child_ctx = child->perf_event_ctxp[ctxn];
10445 10446 10447 10448 10449 10450 10451
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10452

10453
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10454 10455
		if (!child_ctx)
			return -ENOMEM;
10456

P
Peter Zijlstra 已提交
10457
		child->perf_event_ctxp[ctxn] = child_ctx;
10458 10459 10460 10461 10462 10463 10464 10465 10466
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10467 10468
}

10469
/*
10470
 * Initialize the perf_event context in task_struct
10471
 */
10472
static int perf_event_init_context(struct task_struct *child, int ctxn)
10473
{
10474
	struct perf_event_context *child_ctx, *parent_ctx;
10475 10476
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10477
	struct task_struct *parent = current;
10478
	int inherited_all = 1;
10479
	unsigned long flags;
10480
	int ret = 0;
10481

P
Peter Zijlstra 已提交
10482
	if (likely(!parent->perf_event_ctxp[ctxn]))
10483 10484
		return 0;

10485
	/*
10486 10487
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10488
	 */
P
Peter Zijlstra 已提交
10489
	parent_ctx = perf_pin_task_context(parent, ctxn);
10490 10491
	if (!parent_ctx)
		return 0;
10492

10493 10494 10495 10496 10497 10498 10499
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10500 10501 10502 10503
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10504
	mutex_lock(&parent_ctx->mutex);
10505 10506 10507 10508 10509

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10510
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10511 10512
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10513 10514 10515
		if (ret)
			break;
	}
10516

10517 10518 10519 10520 10521 10522 10523 10524 10525
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10526
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10527 10528
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10529
		if (ret)
10530
			break;
10531 10532
	}

10533 10534 10535
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10536
	child_ctx = child->perf_event_ctxp[ctxn];
10537

10538
	if (child_ctx && inherited_all) {
10539 10540 10541
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10542 10543 10544
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10545
		 */
P
Peter Zijlstra 已提交
10546
		cloned_ctx = parent_ctx->parent_ctx;
10547 10548
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10549
			child_ctx->parent_gen = parent_ctx->parent_gen;
10550 10551 10552 10553 10554
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10555 10556
	}

P
Peter Zijlstra 已提交
10557
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10558
	mutex_unlock(&parent_ctx->mutex);
10559

10560
	perf_unpin_context(parent_ctx);
10561
	put_ctx(parent_ctx);
10562

10563
	return ret;
10564 10565
}

P
Peter Zijlstra 已提交
10566 10567 10568 10569 10570 10571 10572
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10573 10574 10575 10576
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10577 10578
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10579 10580
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10581
			return ret;
P
Peter Zijlstra 已提交
10582
		}
P
Peter Zijlstra 已提交
10583 10584 10585 10586 10587
	}

	return 0;
}

10588 10589
static void __init perf_event_init_all_cpus(void)
{
10590
	struct swevent_htable *swhash;
10591 10592 10593
	int cpu;

	for_each_possible_cpu(cpu) {
10594 10595
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10596
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10597 10598 10599

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10600 10601

		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10602 10603 10604
	}
}

10605
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10606
{
P
Peter Zijlstra 已提交
10607
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10608

10609
	mutex_lock(&swhash->hlist_mutex);
10610
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10611 10612
		struct swevent_hlist *hlist;

10613 10614 10615
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10616
	}
10617
	mutex_unlock(&swhash->hlist_mutex);
10618
	return 0;
T
Thomas Gleixner 已提交
10619 10620
}

10621
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10622
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10623
{
P
Peter Zijlstra 已提交
10624
	struct perf_event_context *ctx = __info;
10625 10626
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10627

10628 10629
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10630
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10631
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10632
}
P
Peter Zijlstra 已提交
10633 10634 10635 10636 10637 10638 10639 10640 10641

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10642
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10643 10644 10645 10646 10647 10648 10649

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10650 10651 10652 10653 10654
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10655

10656
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10657
{
P
Peter Zijlstra 已提交
10658
	perf_event_exit_cpu_context(cpu);
10659
	return 0;
T
Thomas Gleixner 已提交
10660 10661
}

P
Peter Zijlstra 已提交
10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10682
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10683
{
10684 10685
	int ret;

P
Peter Zijlstra 已提交
10686 10687
	idr_init(&pmu_idr);

10688
	perf_event_init_all_cpus();
10689
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10690 10691 10692
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10693
	perf_tp_register();
10694
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10695
	register_reboot_notifier(&perf_reboot_notifier);
10696 10697 10698

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10699

10700 10701 10702 10703 10704 10705
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10706
}
P
Peter Zijlstra 已提交
10707

10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10719
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10720

P
Peter Zijlstra 已提交
10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10748 10749

#ifdef CONFIG_CGROUP_PERF
10750 10751
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10752 10753 10754
{
	struct perf_cgroup *jc;

10755
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10768
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10769
{
10770 10771
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10772 10773 10774 10775 10776 10777 10778
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10779
	rcu_read_lock();
S
Stephane Eranian 已提交
10780
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10781
	rcu_read_unlock();
S
Stephane Eranian 已提交
10782 10783 10784
	return 0;
}

10785
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10786
{
10787
	struct task_struct *task;
10788
	struct cgroup_subsys_state *css;
10789

10790
	cgroup_taskset_for_each(task, css, tset)
10791
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10792 10793
}

10794
struct cgroup_subsys perf_event_cgrp_subsys = {
10795 10796
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10797
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10798 10799
};
#endif /* CONFIG_CGROUP_PERF */