core.c 252.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
47 48
#include <linux/namei.h>
#include <linux/parser.h>
T
Thomas Gleixner 已提交
49

50 51
#include "internal.h"

52 53
#include <asm/irq_regs.h>

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
69 70 71 72 73 74 75 76 77 78 79
		/* -EAGAIN */
		if (task_cpu(p) != smp_processor_id())
			return;

		/*
		 * Now that we're on right CPU with IRQs disabled, we can test
		 * if we hit the right task without races.
		 */

		tfc->ret = -ESRCH; /* No such (running) process */
		if (p != current)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
100
task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 102
{
	struct remote_function_call data = {
103 104 105
		.p	= p,
		.func	= func,
		.info	= info,
106
		.ret	= -EAGAIN,
107
	};
108
	int ret;
109

110 111 112 113 114
	do {
		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
		if (!ret)
			ret = data.ret;
	} while (ret == -EAGAIN);
115

116
	return ret;
117 118 119 120 121 122 123 124 125 126 127
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
128
static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 130
{
	struct remote_function_call data = {
131 132 133 134
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
135 136 137 138 139 140 141
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

142 143 144 145 146 147 148 149
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
150
{
151 152 153 154 155 156 157 158 159 160 161 162 163
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

164 165 166 167
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
168
	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
203
	struct perf_event_context *ctx = event->ctx;
204 205
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216
		if (ctx->task != current) {
217
			ret = -ESRCH;
218 219
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
246 247
{
	struct perf_event_context *ctx = event->ctx;
248
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 250 251 252 253
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
254

P
Peter Zijlstra 已提交
255 256 257 258 259 260 261 262
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}
263 264

	if (!task) {
265
		cpu_function_call(event->cpu, event_function, &efs);
266 267 268
		return;
	}

269 270 271
	if (task == TASK_TOMBSTONE)
		return;

272
again:
273
	if (!task_function_call(task, event_function, &efs))
274 275 276
		return;

	raw_spin_lock_irq(&ctx->lock);
277 278 279 280 281
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
282 283 284
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
285
	}
286 287 288 289 290
	if (ctx->is_active) {
		raw_spin_unlock_irq(&ctx->lock);
		goto again;
	}
	func(event, NULL, ctx, data);
291 292 293
	raw_spin_unlock_irq(&ctx->lock);
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 * are already disabled and we're on the right CPU.
 */
static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct task_struct *task = READ_ONCE(ctx->task);
	struct perf_event_context *task_ctx = NULL;

	WARN_ON_ONCE(!irqs_disabled());

	if (task) {
		if (task == TASK_TOMBSTONE)
			return;

		task_ctx = ctx;
	}

	perf_ctx_lock(cpuctx, task_ctx);

	task = ctx->task;
	if (task == TASK_TOMBSTONE)
		goto unlock;

	if (task) {
		/*
		 * We must be either inactive or active and the right task,
		 * otherwise we're screwed, since we cannot IPI to somewhere
		 * else.
		 */
		if (ctx->is_active) {
			if (WARN_ON_ONCE(task != current))
				goto unlock;

			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
				goto unlock;
		}
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
	}

	func(event, cpuctx, ctx, data);
unlock:
	perf_ctx_unlock(cpuctx, task_ctx);
}

S
Stephane Eranian 已提交
342 343
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
344 345
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
346

347 348 349 350 351 352 353
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

354 355 356
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
357
	EVENT_TIME = 0x4,
358 359 360
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
361 362 363 364
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
365 366 367 368 369 370 371

static void perf_sched_delayed(struct work_struct *work);
DEFINE_STATIC_KEY_FALSE(perf_sched_events);
static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
static DEFINE_MUTEX(perf_sched_mutex);
static atomic_t perf_sched_count;

S
Stephane Eranian 已提交
372
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374
static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
S
Stephane Eranian 已提交
375

376 377 378
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
379
static atomic_t nr_freq_events __read_mostly;
380
static atomic_t nr_switch_events __read_mostly;
381

P
Peter Zijlstra 已提交
382 383 384 385
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

386
/*
387
 * perf event paranoia level:
388 389
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
390
 *   1 - disallow cpu events for unpriv
391
 *   2 - disallow kernel profiling for unpriv
392
 */
393
int sysctl_perf_event_paranoid __read_mostly = 2;
394

395 396
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 398

/*
399
 * max perf event sample rate
400
 */
401 402 403 404 405 406 407 408 409
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
410 411
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412

413
static void update_perf_cpu_limits(void)
414 415 416 417
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
418 419 420 421 422
	tmp = div_u64(tmp, 100);
	if (!tmp)
		tmp = 1;

	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423
}
P
Peter Zijlstra 已提交
424

425 426
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
427 428 429 430
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
431
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
432 433 434 435

	if (ret || !write)
		return ret;

436 437 438 439 440 441 442
	/*
	 * If throttling is disabled don't allow the write:
	 */
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
443
	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

461 462
	if (sysctl_perf_cpu_time_max_percent == 100 ||
	    sysctl_perf_cpu_time_max_percent == 0) {
463 464 465 466 467 468
		printk(KERN_WARNING
		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
		WRITE_ONCE(perf_sample_allowed_ns, 0);
	} else {
		update_perf_cpu_limits();
	}
P
Peter Zijlstra 已提交
469 470 471

	return 0;
}
472

473 474 475 476 477 478 479
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
480
static DEFINE_PER_CPU(u64, running_sample_length);
481

482 483 484
static u64 __report_avg;
static u64 __report_allowed;

485
static void perf_duration_warn(struct irq_work *w)
486
{
487
	printk_ratelimited(KERN_INFO
488 489 490 491
		"perf: interrupt took too long (%lld > %lld), lowering "
		"kernel.perf_event_max_sample_rate to %d\n",
		__report_avg, __report_allowed,
		sysctl_perf_event_sample_rate);
492 493 494 495 496 497
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
498 499 500 501
	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
	u64 running_len;
	u64 avg_len;
	u32 max;
502

503
	if (max_len == 0)
504 505
		return;

506 507 508 509 510
	/* Decay the counter by 1 average sample. */
	running_len = __this_cpu_read(running_sample_length);
	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
	running_len += sample_len_ns;
	__this_cpu_write(running_sample_length, running_len);
511 512

	/*
513 514
	 * Note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 516
	 * from having to maintain a count.
	 */
517 518
	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
	if (avg_len <= max_len)
519 520
		return;

521 522
	__report_avg = avg_len;
	__report_allowed = max_len;
523

524 525 526 527 528 529 530 531 532
	/*
	 * Compute a throttle threshold 25% below the current duration.
	 */
	avg_len += avg_len / 4;
	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
	if (avg_len < max)
		max /= (u32)avg_len;
	else
		max = 1;
533

534 535 536 537 538
	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
	WRITE_ONCE(max_samples_per_tick, max);

	sysctl_perf_event_sample_rate = max * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539

540
	if (!irq_work_queue(&perf_duration_work)) {
541
		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542
			     "kernel.perf_event_max_sample_rate to %d\n",
543
			     __report_avg, __report_allowed,
544 545
			     sysctl_perf_event_sample_rate);
	}
546 547
}

548
static atomic64_t perf_event_id;
549

550 551 552 553
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
554 555 556 557 558
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
559

560
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
561

562
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
563
{
564
	return "pmu";
T
Thomas Gleixner 已提交
565 566
}

567 568 569 570 571
static inline u64 perf_clock(void)
{
	return local_clock();
}

572 573 574 575 576
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
577 578 579 580 581 582 583 584
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
601 602 603 604
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
605
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
644 645
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
646
	/*
647 648
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
649
	 */
650
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
651 652
		return;

653
	cgrp = perf_cgroup_from_task(current, event->ctx);
654 655 656 657 658
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
659 660 661
}

static inline void
662 663
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
664 665 666 667
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

668 669 670 671 672 673
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
674 675
		return;

676
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
677
	info = this_cpu_ptr(cgrp->info);
678
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
679 680 681 682 683 684 685 686 687 688 689
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
690
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 711
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
712 713 714 715 716 717 718 719 720

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
721 722
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
723 724 725 726 727 728 729 730 731 732 733

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
734
				WARN_ON_ONCE(cpuctx->cgrp);
735 736 737 738
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
739 740
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
741
				 */
742
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
743 744
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
745 746
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
747 748 749 750 751 752
		}
	}

	local_irq_restore(flags);
}

753 754
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
755
{
756 757 758
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

759
	rcu_read_lock();
760 761
	/*
	 * we come here when we know perf_cgroup_events > 0
762 763
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
764
	 */
765
	cgrp1 = perf_cgroup_from_task(task, NULL);
766
	cgrp2 = perf_cgroup_from_task(next, NULL);
767 768 769 770 771 772 773 774

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 776

	rcu_read_unlock();
S
Stephane Eranian 已提交
777 778
}

779 780
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
781
{
782 783 784
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

785
	rcu_read_lock();
786 787
	/*
	 * we come here when we know perf_cgroup_events > 0
788 789
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
790
	 */
791 792
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 794 795 796 797 798 799 800

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 802

	rcu_read_unlock();
S
Stephane Eranian 已提交
803 804 805 806 807 808 809 810
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
811 812
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
813

814
	if (!f.file)
S
Stephane Eranian 已提交
815 816
		return -EBADF;

A
Al Viro 已提交
817
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818
					 &perf_event_cgrp_subsys);
819 820 821 822
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
836
out:
837
	fdput(f);
S
Stephane Eranian 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

/*
 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
 * cleared when last cgroup event is removed.
 */
static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
	struct perf_cpu_context *cpuctx;

	if (!is_cgroup_event(event))
		return;

	if (add && ctx->nr_cgroups++)
		return;
	else if (!add && --ctx->nr_cgroups)
		return;
	/*
	 * Because cgroup events are always per-cpu events,
	 * this will always be called from the right CPU.
	 */
	cpuctx = __get_cpu_context(ctx);
905

906 907 908 909 910 911 912 913
	/*
	 * cpuctx->cgrp is NULL until a cgroup event is sched in or
	 * ctx->nr_cgroup == 0 .
	 */
	if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
		cpuctx->cgrp = event->cgrp;
	else if (!add)
		cpuctx->cgrp = NULL;
914 915
}

S
Stephane Eranian 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

945 946
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
947 948 949
{
}

950 951
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
952 953 954 955 956 957 958 959 960 961 962
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
963 964
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
993 994 995 996 997 998 999

static inline void
list_update_cgroup_event(struct perf_event *event,
			 struct perf_event_context *ctx, bool add)
{
}

S
Stephane Eranian 已提交
1000 1001
#endif

1002 1003 1004 1005 1006 1007 1008 1009
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
1010
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
1020 1021
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
1022
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
1023 1024 1025
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
1026

P
Peter Zijlstra 已提交
1027
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 1029
}

1030
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031
{
1032
	struct hrtimer *timer = &cpuctx->hrtimer;
1033
	struct pmu *pmu = cpuctx->ctx.pmu;
1034
	u64 interval;
1035 1036 1037 1038 1039

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

1040 1041 1042 1043
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
1044 1045 1046
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047

1048
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049

P
Peter Zijlstra 已提交
1050 1051
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052
	timer->function = perf_mux_hrtimer_handler;
1053 1054
}

1055
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056
{
1057
	struct hrtimer *timer = &cpuctx->hrtimer;
1058
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
1059
	unsigned long flags;
1060 1061 1062

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
1063
		return 0;
1064

P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072

1073
	return 0;
1074 1075
}

P
Peter Zijlstra 已提交
1076
void perf_pmu_disable(struct pmu *pmu)
1077
{
P
Peter Zijlstra 已提交
1078 1079 1080
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
1081 1082
}

P
Peter Zijlstra 已提交
1083
void perf_pmu_enable(struct pmu *pmu)
1084
{
P
Peter Zijlstra 已提交
1085 1086 1087
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
1088 1089
}

1090
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091 1092

/*
1093 1094 1095 1096
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
1097
 */
1098
static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099
{
1100
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101

1102
	WARN_ON(!irqs_disabled());
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1116 1117
}

1118
static void get_ctx(struct perf_event_context *ctx)
1119
{
1120
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1132
static void put_ctx(struct perf_event_context *ctx)
1133
{
1134 1135 1136
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1137
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138
			put_task_struct(ctx->task);
1139
		call_rcu(&ctx->rcu_head, free_ctx);
1140
	}
1141 1142
}

P
Peter Zijlstra 已提交
1143 1144 1145 1146 1147 1148 1149
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1150 1151 1152 1153
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
1154 1155
 *      perf_event_exit_event()
 *        put_event()			[ parent, 1 ]
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
1196
 *    cred_guard_mutex
P
Peter Zijlstra 已提交
1197 1198 1199
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event::child_mutex;
P
Peter Zijlstra 已提交
1200
 *	      perf_event_context::lock
P
Peter Zijlstra 已提交
1201 1202 1203
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1204 1205
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1218
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1228 1229 1230 1231 1232 1233
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1234 1235 1236 1237 1238 1239 1240
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1241 1242 1243 1244 1245 1246 1247
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1248
{
1249 1250 1251 1252 1253
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1254
		ctx->parent_ctx = NULL;
1255
	ctx->generation++;
1256 1257

	return parent_ctx;
1258 1259
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1282
/*
1283
 * If we inherit events we want to return the parent event id
1284 1285
 * to userspace.
 */
1286
static u64 primary_event_id(struct perf_event *event)
1287
{
1288
	u64 id = event->id;
1289

1290 1291
	if (event->parent)
		id = event->parent->id;
1292 1293 1294 1295

	return id;
}

1296
/*
1297
 * Get the perf_event_context for a task and lock it.
1298
 *
1299 1300 1301
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1302
static struct perf_event_context *
P
Peter Zijlstra 已提交
1303
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304
{
1305
	struct perf_event_context *ctx;
1306

P
Peter Zijlstra 已提交
1307
retry:
1308 1309 1310
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311
	 * part of the read side critical section was irqs-enabled -- see
1312 1313 1314
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315
	 * side critical section has interrupts disabled.
1316
	 */
1317
	local_irq_save(*flags);
1318
	rcu_read_lock();
P
Peter Zijlstra 已提交
1319
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 1321 1322 1323
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1324
		 * perf_event_task_sched_out, though the
1325 1326 1327 1328 1329 1330
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1331
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1332
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333
			raw_spin_unlock(&ctx->lock);
1334
			rcu_read_unlock();
1335
			local_irq_restore(*flags);
1336 1337
			goto retry;
		}
1338

1339 1340
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1341
			raw_spin_unlock(&ctx->lock);
1342
			ctx = NULL;
P
Peter Zijlstra 已提交
1343 1344
		} else {
			WARN_ON_ONCE(ctx->task != task);
1345
		}
1346 1347
	}
	rcu_read_unlock();
1348 1349
	if (!ctx)
		local_irq_restore(*flags);
1350 1351 1352 1353 1354 1355 1356 1357
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1358 1359
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1360
{
1361
	struct perf_event_context *ctx;
1362 1363
	unsigned long flags;

P
Peter Zijlstra 已提交
1364
	ctx = perf_lock_task_context(task, ctxn, &flags);
1365 1366
	if (ctx) {
		++ctx->pin_count;
1367
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 1369 1370 1371
	}
	return ctx;
}

1372
static void perf_unpin_context(struct perf_event_context *ctx)
1373 1374 1375
{
	unsigned long flags;

1376
	raw_spin_lock_irqsave(&ctx->lock, flags);
1377
	--ctx->pin_count;
1378
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 1380
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1392 1393 1394
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1395 1396 1397 1398

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1399 1400 1401
	return ctx ? ctx->time : 0;
}

1402 1403 1404 1405 1406 1407 1408 1409
/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

1410 1411
	lockdep_assert_held(&ctx->lock);

1412 1413 1414
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
1415

S
Stephane Eranian 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1427
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1428 1429
	else if (ctx->is_active)
		run_end = ctx->time;
1430 1431 1432 1433
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1434 1435 1436 1437

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1438
		run_end = perf_event_time(event);
1439 1440

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1441

1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1456 1457 1458 1459 1460 1461 1462 1463 1464
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1465
/*
1466
 * Add a event from the lists for its context.
1467 1468
 * Must be called with ctx->mutex and ctx->lock held.
 */
1469
static void
1470
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471
{
1472

P
Peter Zijlstra 已提交
1473 1474
	lockdep_assert_held(&ctx->lock);

1475 1476
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1477 1478

	/*
1479 1480 1481
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1482
	 */
1483
	if (event->group_leader == event) {
1484 1485
		struct list_head *list;

1486
		event->group_caps = event->event_caps;
1487

1488 1489
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1490
	}
P
Peter Zijlstra 已提交
1491

1492
	list_update_cgroup_event(event, ctx, true);
S
Stephane Eranian 已提交
1493

1494 1495 1496
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1497
		ctx->nr_stat++;
1498 1499

	ctx->generation++;
1500 1501
}

J
Jiri Olsa 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1511
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1527
		nr += nr_siblings;
1528 1529 1530 1531 1532 1533 1534
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1535
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 1537 1538 1539 1540 1541 1542
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1543 1544 1545 1546 1547 1548
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1549 1550 1551
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1552 1553 1554
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1555 1556 1557
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1558 1559 1560
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1561 1562 1563
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1575 1576 1577 1578 1579 1580
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1581 1582 1583 1584 1585 1586
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1587 1588 1589
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1590 1591 1592 1593 1594 1595 1596 1597 1598
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1599
	event->id_header_size = size;
1600 1601
}

P
Peter Zijlstra 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1623 1624
static void perf_group_attach(struct perf_event *event)
{
1625
	struct perf_event *group_leader = event->group_leader, *pos;
1626

P
Peter Zijlstra 已提交
1627 1628 1629 1630 1631 1632
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1633 1634 1635 1636 1637
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1638 1639
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1640
	group_leader->group_caps &= event->event_caps;
1641 1642 1643

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1644 1645 1646 1647 1648

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1649 1650
}

1651
/*
1652
 * Remove a event from the lists for its context.
1653
 * Must be called with ctx->mutex and ctx->lock held.
1654
 */
1655
static void
1656
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657
{
P
Peter Zijlstra 已提交
1658 1659 1660
	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1661 1662 1663 1664
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665
		return;
1666 1667 1668

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1669
	list_update_cgroup_event(event, ctx, false);
S
Stephane Eranian 已提交
1670

1671 1672
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1673
		ctx->nr_stat--;
1674

1675
	list_del_rcu(&event->event_entry);
1676

1677 1678
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1679

1680
	update_group_times(event);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1691 1692

	ctx->generation++;
1693 1694
}

1695
static void perf_group_detach(struct perf_event *event)
1696 1697
{
	struct perf_event *sibling, *tmp;
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1714
		goto out;
1715 1716 1717 1718
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1719

1720
	/*
1721 1722
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1723
	 * to whatever list we are on.
1724
	 */
1725
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726 1727
		if (list)
			list_move_tail(&sibling->group_entry, list);
1728
		sibling->group_leader = sibling;
1729 1730

		/* Inherit group flags from the previous leader */
1731
		sibling->group_caps = event->group_caps;
P
Peter Zijlstra 已提交
1732 1733

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1734
	}
1735 1736 1737 1738 1739 1740

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1741 1742
}

1743 1744
static bool is_orphaned_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
1745
	return event->state == PERF_EVENT_STATE_DEAD;
1746 1747
}

1748
static inline int __pmu_filter_match(struct perf_event *event)
1749 1750 1751 1752 1753
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
/*
 * Check whether we should attempt to schedule an event group based on
 * PMU-specific filtering. An event group can consist of HW and SW events,
 * potentially with a SW leader, so we must check all the filters, to
 * determine whether a group is schedulable:
 */
static inline int pmu_filter_match(struct perf_event *event)
{
	struct perf_event *child;

	if (!__pmu_filter_match(event))
		return 0;

	list_for_each_entry(child, &event->sibling_list, group_entry) {
		if (!__pmu_filter_match(child))
			return 0;
	}

	return 1;
}

1775 1776 1777
static inline int
event_filter_match(struct perf_event *event)
{
1778 1779
	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
	       perf_cgroup_match(event) && pmu_filter_match(event);
1780 1781
}

1782 1783
static void
event_sched_out(struct perf_event *event,
1784
		  struct perf_cpu_context *cpuctx,
1785
		  struct perf_event_context *ctx)
1786
{
1787
	u64 tstamp = perf_event_time(event);
1788
	u64 delta;
P
Peter Zijlstra 已提交
1789 1790 1791 1792

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1793 1794 1795 1796 1797 1798
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
1799 1800
	if (event->state == PERF_EVENT_STATE_INACTIVE &&
	    !event_filter_match(event)) {
S
Stephane Eranian 已提交
1801
		delta = tstamp - event->tstamp_stopped;
1802
		event->tstamp_running += delta;
1803
		event->tstamp_stopped = tstamp;
1804 1805
	}

1806
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1807
		return;
1808

1809 1810
	perf_pmu_disable(event->pmu);

1811 1812 1813
	event->tstamp_stopped = tstamp;
	event->pmu->del(event, 0);
	event->oncpu = -1;
1814 1815 1816 1817
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1818
	}
1819

1820
	if (!is_software_event(event))
1821
		cpuctx->active_oncpu--;
1822 1823
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1824 1825
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1826
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1827
		cpuctx->exclusive = 0;
1828 1829

	perf_pmu_enable(event->pmu);
1830 1831
}

1832
static void
1833
group_sched_out(struct perf_event *group_event,
1834
		struct perf_cpu_context *cpuctx,
1835
		struct perf_event_context *ctx)
1836
{
1837
	struct perf_event *event;
1838
	int state = group_event->state;
1839

1840 1841
	perf_pmu_disable(ctx->pmu);

1842
	event_sched_out(group_event, cpuctx, ctx);
1843 1844 1845 1846

	/*
	 * Schedule out siblings (if any):
	 */
1847 1848
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1849

1850 1851
	perf_pmu_enable(ctx->pmu);

1852
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853 1854 1855
		cpuctx->exclusive = 0;
}

1856
#define DETACH_GROUP	0x01UL
1857

T
Thomas Gleixner 已提交
1858
/*
1859
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1860
 *
1861
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1862 1863
 * remove it from the context list.
 */
1864 1865 1866 1867 1868
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1869
{
1870
	unsigned long flags = (unsigned long)info;
T
Thomas Gleixner 已提交
1871

1872
	event_sched_out(event, cpuctx, ctx);
1873
	if (flags & DETACH_GROUP)
1874
		perf_group_detach(event);
1875
	list_del_event(event, ctx);
1876 1877

	if (!ctx->nr_events && ctx->is_active) {
1878
		ctx->is_active = 0;
1879 1880 1881 1882
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1883
	}
T
Thomas Gleixner 已提交
1884 1885 1886
}

/*
1887
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1888
 *
1889 1890
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1891 1892
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1893
 * When called from perf_event_exit_task, it's OK because the
1894
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1895
 */
1896
static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
T
Thomas Gleixner 已提交
1897
{
1898
	lockdep_assert_held(&event->ctx->mutex);
T
Thomas Gleixner 已提交
1899

1900
	event_function_call(event, __perf_remove_from_context, (void *)flags);
T
Thomas Gleixner 已提交
1901 1902
}

1903
/*
1904
 * Cross CPU call to disable a performance event
1905
 */
1906 1907 1908 1909
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1910
{
1911 1912
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1913

1914 1915 1916 1917 1918 1919 1920 1921
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1922 1923
}

1924
/*
1925
 * Disable a event.
1926
 *
1927 1928
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1929
 * remains valid.  This condition is satisifed when called through
1930 1931
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
1932 1933
 * goes to exit will block in perf_event_exit_event().
 *
1934
 * When called from perf_pending_event it's OK because event->ctx
1935
 * is the current context on this CPU and preemption is disabled,
1936
 * hence we can't get into perf_event_task_sched_out for this context.
1937
 */
P
Peter Zijlstra 已提交
1938
static void _perf_event_disable(struct perf_event *event)
1939
{
1940
	struct perf_event_context *ctx = event->ctx;
1941

1942
	raw_spin_lock_irq(&ctx->lock);
1943
	if (event->state <= PERF_EVENT_STATE_OFF) {
1944
		raw_spin_unlock_irq(&ctx->lock);
1945
		return;
1946
	}
1947
	raw_spin_unlock_irq(&ctx->lock);
1948

1949 1950 1951 1952 1953 1954
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1955
}
P
Peter Zijlstra 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1969
EXPORT_SYMBOL_GPL(perf_event_disable);
1970

1971 1972 1973 1974 1975 1976
void perf_event_disable_inatomic(struct perf_event *event)
{
	event->pending_disable = 1;
	irq_work_queue(&event->pending);
}

S
Stephane Eranian 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
2012 2013 2014
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
2015
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
2016

2017
static int
2018
event_sched_in(struct perf_event *event,
2019
		 struct perf_cpu_context *cpuctx,
2020
		 struct perf_event_context *ctx)
2021
{
2022
	u64 tstamp = perf_event_time(event);
2023
	int ret = 0;
2024

2025 2026
	lockdep_assert_held(&ctx->lock);

2027
	if (event->state <= PERF_EVENT_STATE_OFF)
2028 2029
		return 0;

2030 2031 2032 2033 2034 2035 2036
	WRITE_ONCE(event->oncpu, smp_processor_id());
	/*
	 * Order event::oncpu write to happen before the ACTIVE state
	 * is visible.
	 */
	smp_wmb();
	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
P
Peter Zijlstra 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

2048 2049 2050 2051 2052
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

2053 2054
	perf_pmu_disable(event->pmu);

2055 2056
	perf_set_shadow_time(event, ctx, tstamp);

2057 2058
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
2059
	if (event->pmu->add(event, PERF_EF_START)) {
2060 2061
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
2062 2063
		ret = -EAGAIN;
		goto out;
2064 2065
	}

2066 2067
	event->tstamp_running += tstamp - event->tstamp_stopped;

2068
	if (!is_software_event(event))
2069
		cpuctx->active_oncpu++;
2070 2071
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
2072 2073
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
2074

2075
	if (event->attr.exclusive)
2076 2077
		cpuctx->exclusive = 1;

2078 2079 2080 2081
out:
	perf_pmu_enable(event->pmu);

	return ret;
2082 2083
}

2084
static int
2085
group_sched_in(struct perf_event *group_event,
2086
	       struct perf_cpu_context *cpuctx,
2087
	       struct perf_event_context *ctx)
2088
{
2089
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
2090
	struct pmu *pmu = ctx->pmu;
2091 2092
	u64 now = ctx->time;
	bool simulate = false;
2093

2094
	if (group_event->state == PERF_EVENT_STATE_OFF)
2095 2096
		return 0;

2097
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098

2099
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2100
		pmu->cancel_txn(pmu);
2101
		perf_mux_hrtimer_restart(cpuctx);
2102
		return -EAGAIN;
2103
	}
2104 2105 2106 2107

	/*
	 * Schedule in siblings as one group (if any):
	 */
2108
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109
		if (event_sched_in(event, cpuctx, ctx)) {
2110
			partial_group = event;
2111 2112 2113 2114
			goto group_error;
		}
	}

2115
	if (!pmu->commit_txn(pmu))
2116
		return 0;
2117

2118 2119 2120 2121
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2132
	 */
2133 2134
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2135 2136 2137 2138 2139 2140 2141 2142
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2143
	}
2144
	event_sched_out(group_event, cpuctx, ctx);
2145

P
Peter Zijlstra 已提交
2146
	pmu->cancel_txn(pmu);
2147

2148
	perf_mux_hrtimer_restart(cpuctx);
2149

2150 2151 2152
	return -EAGAIN;
}

2153
/*
2154
 * Work out whether we can put this event group on the CPU now.
2155
 */
2156
static int group_can_go_on(struct perf_event *event,
2157 2158 2159 2160
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2161
	 * Groups consisting entirely of software events can always go on.
2162
	 */
2163
	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164 2165 2166
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2167
	 * events can go on.
2168 2169 2170 2171 2172
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2173
	 * events on the CPU, it can't go on.
2174
	 */
2175
	if (event->attr.exclusive && cpuctx->active_oncpu)
2176 2177 2178 2179 2180 2181 2182 2183
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2184 2185
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2186
{
2187 2188
	u64 tstamp = perf_event_time(event);

2189
	list_add_event(event, ctx);
2190
	perf_group_attach(event);
2191 2192 2193
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2194 2195
}

2196 2197 2198
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type);
2199 2200 2201 2202 2203
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
{
	if (!cpuctx->task_ctx)
		return;

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2229 2230
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
2231
{
2232 2233 2234 2235 2236 2237
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
2238 2239
}

T
Thomas Gleixner 已提交
2240
/*
2241
 * Cross CPU call to install and enable a performance event
2242
 *
2243 2244
 * Very similar to remote_function() + event_function() but cannot assume that
 * things like ctx->is_active and cpuctx->task_ctx are set.
T
Thomas Gleixner 已提交
2245
 */
2246
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2247
{
2248 2249
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2250
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252 2253
	bool activate = true;
	int ret = 0;
T
Thomas Gleixner 已提交
2254

2255
	raw_spin_lock(&cpuctx->ctx.lock);
2256
	if (ctx->task) {
2257 2258
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
2259 2260 2261 2262

		/* If we're on the wrong CPU, try again */
		if (task_cpu(ctx->task) != smp_processor_id()) {
			ret = -ESRCH;
2263
			goto unlock;
2264
		}
2265

2266
		/*
2267 2268 2269
		 * If we're on the right CPU, see if the task we target is
		 * current, if not we don't have to activate the ctx, a future
		 * context switch will do that for us.
2270
		 */
2271 2272 2273 2274 2275
		if (ctx->task != current)
			activate = false;
		else
			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);

2276 2277
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2278
	}
2279

2280 2281 2282 2283 2284 2285 2286 2287
	if (activate) {
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
		add_event_to_ctx(event, ctx);
		ctx_resched(cpuctx, task_ctx);
	} else {
		add_event_to_ctx(event, ctx);
	}

2288
unlock:
2289
	perf_ctx_unlock(cpuctx, task_ctx);
2290

2291
	return ret;
T
Thomas Gleixner 已提交
2292 2293 2294
}

/*
2295 2296 2297
 * Attach a performance event to a context.
 *
 * Very similar to event_function_call, see comment there.
T
Thomas Gleixner 已提交
2298 2299
 */
static void
2300 2301
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2302 2303
			int cpu)
{
2304
	struct task_struct *task = READ_ONCE(ctx->task);
2305

2306 2307
	lockdep_assert_held(&ctx->mutex);

2308 2309
	if (event->cpu != -1)
		event->cpu = cpu;
2310

2311 2312 2313 2314 2315 2316
	/*
	 * Ensures that if we can observe event->ctx, both the event and ctx
	 * will be 'complete'. See perf_iterate_sb_cpu().
	 */
	smp_store_release(&event->ctx, ctx);

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	if (!task) {
		cpu_function_call(cpu, __perf_install_in_context, event);
		return;
	}

	/*
	 * Should not happen, we validate the ctx is still alive before calling.
	 */
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
		return;

2328 2329 2330 2331
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 */
2332
again:
2333
	/*
2334 2335
	 * Cannot use task_function_call() because we need to run on the task's
	 * CPU regardless of whether its current or not.
2336
	 */
2337 2338 2339 2340 2341
	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
		return;

	raw_spin_lock_irq(&ctx->lock);
	task = ctx->task;
2342
	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2343 2344 2345 2346 2347
		/*
		 * Cannot happen because we already checked above (which also
		 * cannot happen), and we hold ctx->mutex, which serializes us
		 * against perf_event_exit_task_context().
		 */
2348 2349 2350
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2351 2352
	raw_spin_unlock_irq(&ctx->lock);
	/*
2353 2354
	 * Since !ctx->is_active doesn't mean anything, we must IPI
	 * unconditionally.
2355
	 */
2356
	goto again;
T
Thomas Gleixner 已提交
2357 2358
}

2359
/*
2360
 * Put a event into inactive state and update time fields.
2361 2362 2363 2364 2365 2366
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2367
static void __perf_event_mark_enabled(struct perf_event *event)
2368
{
2369
	struct perf_event *sub;
2370
	u64 tstamp = perf_event_time(event);
2371

2372
	event->state = PERF_EVENT_STATE_INACTIVE;
2373
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2374
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2375 2376
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2377
	}
2378 2379
}

2380
/*
2381
 * Cross CPU call to enable a performance event
2382
 */
2383 2384 2385 2386
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2387
{
2388
	struct perf_event *leader = event->group_leader;
2389
	struct perf_event_context *task_ctx;
2390

P
Peter Zijlstra 已提交
2391 2392
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <= PERF_EVENT_STATE_ERROR)
2393
		return;
2394

2395 2396 2397
	if (ctx->is_active)
		ctx_sched_out(ctx, cpuctx, EVENT_TIME);

2398
	__perf_event_mark_enabled(event);
2399

2400 2401 2402
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2403
	if (!event_filter_match(event)) {
2404
		if (is_cgroup_event(event))
S
Stephane Eranian 已提交
2405
			perf_cgroup_defer_enabled(event);
2406
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2407
		return;
S
Stephane Eranian 已提交
2408
	}
2409

2410
	/*
2411
	 * If the event is in a group and isn't the group leader,
2412
	 * then don't put it on unless the group is on.
2413
	 */
2414 2415
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2416
		return;
2417
	}
2418

2419 2420 2421
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2422

2423
	ctx_resched(cpuctx, task_ctx);
2424 2425
}

2426
/*
2427
 * Enable a event.
2428
 *
2429 2430
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2431
 * remains valid.  This condition is satisfied when called through
2432 2433
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2434
 */
P
Peter Zijlstra 已提交
2435
static void _perf_event_enable(struct perf_event *event)
2436
{
2437
	struct perf_event_context *ctx = event->ctx;
2438

2439
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
2440 2441
	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
	    event->state <  PERF_EVENT_STATE_ERROR) {
2442
		raw_spin_unlock_irq(&ctx->lock);
2443 2444 2445 2446
		return;
	}

	/*
2447
	 * If the event is in error state, clear that first.
2448 2449 2450 2451
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2452
	 */
2453 2454
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2455
	raw_spin_unlock_irq(&ctx->lock);
2456

2457
	event_function_call(event, __perf_event_enable, NULL);
2458
}
P
Peter Zijlstra 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2471
EXPORT_SYMBOL_GPL(perf_event_enable);
2472

2473 2474 2475 2476 2477
struct stop_event_data {
	struct perf_event	*event;
	unsigned int		restart;
};

2478 2479
static int __perf_event_stop(void *info)
{
2480 2481
	struct stop_event_data *sd = info;
	struct perf_event *event = sd->event;
2482

2483
	/* if it's already INACTIVE, do nothing */
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
		return 0;

	/* matches smp_wmb() in event_sched_in() */
	smp_rmb();

	/*
	 * There is a window with interrupts enabled before we get here,
	 * so we need to check again lest we try to stop another CPU's event.
	 */
	if (READ_ONCE(event->oncpu) != smp_processor_id())
		return -EAGAIN;

	event->pmu->stop(event, PERF_EF_UPDATE);

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	/*
	 * May race with the actual stop (through perf_pmu_output_stop()),
	 * but it is only used for events with AUX ring buffer, and such
	 * events will refuse to restart because of rb::aux_mmap_count==0,
	 * see comments in perf_aux_output_begin().
	 *
	 * Since this is happening on a event-local CPU, no trace is lost
	 * while restarting.
	 */
	if (sd->restart)
2509
		event->pmu->start(event, 0);
2510

2511 2512 2513
	return 0;
}

2514
static int perf_event_stop(struct perf_event *event, int restart)
2515 2516 2517
{
	struct stop_event_data sd = {
		.event		= event,
2518
		.restart	= restart,
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	};
	int ret = 0;

	do {
		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
			return 0;

		/* matches smp_wmb() in event_sched_in() */
		smp_rmb();

		/*
		 * We only want to restart ACTIVE events, so if the event goes
		 * inactive here (event->oncpu==-1), there's nothing more to do;
		 * fall through with ret==-ENXIO.
		 */
		ret = cpu_function_call(READ_ONCE(event->oncpu),
					__perf_event_stop, &sd);
	} while (ret == -EAGAIN);

	return ret;
}

/*
 * In order to contain the amount of racy and tricky in the address filter
 * configuration management, it is a two part process:
 *
 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
 *      we update the addresses of corresponding vmas in
 *	event::addr_filters_offs array and bump the event::addr_filters_gen;
 * (p2) when an event is scheduled in (pmu::add), it calls
 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
 *      if the generation has changed since the previous call.
 *
 * If (p1) happens while the event is active, we restart it to force (p2).
 *
 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
 *     ioctl;
 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
 *     registered mapping, called for every new mmap(), with mm::mmap_sem down
 *     for reading;
 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
 *     of exec.
 */
void perf_event_addr_filters_sync(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);

	if (!has_addr_filter(event))
		return;

	raw_spin_lock(&ifh->lock);
	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
		event->pmu->addr_filters_sync(event);
		event->hw.addr_filters_gen = event->addr_filters_gen;
	}
	raw_spin_unlock(&ifh->lock);
}
EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);

P
Peter Zijlstra 已提交
2579
static int _perf_event_refresh(struct perf_event *event, int refresh)
2580
{
2581
	/*
2582
	 * not supported on inherited events
2583
	 */
2584
	if (event->attr.inherit || !is_sampling_event(event))
2585 2586
		return -EINVAL;

2587
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2588
	_perf_event_enable(event);
2589 2590

	return 0;
2591
}
P
Peter Zijlstra 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2607
EXPORT_SYMBOL_GPL(perf_event_refresh);
2608

2609 2610 2611
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2612
{
2613
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2614
	struct perf_event *event;
2615

P
Peter Zijlstra 已提交
2616
	lockdep_assert_held(&ctx->lock);
2617

2618 2619 2620 2621 2622 2623 2624
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
2625
		return;
2626 2627
	}

2628
	ctx->is_active &= ~event_type;
2629 2630 2631
	if (!(ctx->is_active & EVENT_ALL))
		ctx->is_active = 0;

2632 2633 2634 2635 2636
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}
2637

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	/*
	 * Always update time if it was set; not only when it changes.
	 * Otherwise we can 'forget' to update time for any but the last
	 * context we sched out. For example:
	 *
	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
	 *   ctx_sched_out(.event_type = EVENT_PINNED)
	 *
	 * would only update time for the pinned events.
	 */
2648 2649 2650 2651 2652 2653
	if (is_active & EVENT_TIME) {
		/* update (and stop) ctx time */
		update_context_time(ctx);
		update_cgrp_time_from_cpuctx(cpuctx);
	}

2654 2655
	is_active ^= ctx->is_active; /* changed bits */

2656
	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2657
		return;
2658

P
Peter Zijlstra 已提交
2659
	perf_pmu_disable(ctx->pmu);
2660
	if (is_active & EVENT_PINNED) {
2661 2662
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2663
	}
2664

2665
	if (is_active & EVENT_FLEXIBLE) {
2666
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2667
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2668
	}
P
Peter Zijlstra 已提交
2669
	perf_pmu_enable(ctx->pmu);
2670 2671
}

2672
/*
2673 2674 2675 2676 2677 2678
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2679
 */
2680 2681
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2682
{
2683 2684 2685
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2708 2709
}

2710 2711
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2712 2713 2714
{
	u64 value;

2715
	if (!event->attr.inherit_stat)
2716 2717 2718
		return;

	/*
2719
	 * Update the event value, we cannot use perf_event_read()
2720 2721
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2722
	 * we know the event must be on the current CPU, therefore we
2723 2724
	 * don't need to use it.
	 */
2725 2726
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2727 2728
		event->pmu->read(event);
		/* fall-through */
2729

2730 2731
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2732 2733 2734 2735 2736 2737 2738
		break;

	default:
		break;
	}

	/*
2739
	 * In order to keep per-task stats reliable we need to flip the event
2740 2741
	 * values when we flip the contexts.
	 */
2742 2743 2744
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2745

2746 2747
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2748

2749
	/*
2750
	 * Since we swizzled the values, update the user visible data too.
2751
	 */
2752 2753
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2754 2755
}

2756 2757
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2758
{
2759
	struct perf_event *event, *next_event;
2760 2761 2762 2763

	if (!ctx->nr_stat)
		return;

2764 2765
	update_context_time(ctx);

2766 2767
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2768

2769 2770
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2771

2772 2773
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2774

2775
		__perf_event_sync_stat(event, next_event);
2776

2777 2778
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2779 2780 2781
	}
}

2782 2783
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2784
{
P
Peter Zijlstra 已提交
2785
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2786
	struct perf_event_context *next_ctx;
2787
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2788
	struct perf_cpu_context *cpuctx;
2789
	int do_switch = 1;
T
Thomas Gleixner 已提交
2790

P
Peter Zijlstra 已提交
2791 2792
	if (likely(!ctx))
		return;
2793

P
Peter Zijlstra 已提交
2794 2795
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2796 2797
		return;

2798
	rcu_read_lock();
P
Peter Zijlstra 已提交
2799
	next_ctx = next->perf_event_ctxp[ctxn];
2800 2801 2802 2803 2804 2805 2806
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2807
	if (!parent && !next_parent)
2808 2809 2810
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2811 2812 2813 2814 2815 2816 2817 2818 2819
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2820 2821
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2822
		if (context_equiv(ctx, next_ctx)) {
2823 2824
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2825 2826 2827

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2838
			do_switch = 0;
2839

2840
			perf_event_sync_stat(ctx, next_ctx);
2841
		}
2842 2843
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2844
	}
2845
unlock:
2846
	rcu_read_unlock();
2847

2848
	if (do_switch) {
2849
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2850
		task_ctx_sched_out(cpuctx, ctx);
2851
		raw_spin_unlock(&ctx->lock);
2852
	}
T
Thomas Gleixner 已提交
2853 2854
}

2855 2856
static DEFINE_PER_CPU(struct list_head, sched_cb_list);

2857 2858
void perf_sched_cb_dec(struct pmu *pmu)
{
2859 2860
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

2861
	this_cpu_dec(perf_sched_cb_usages);
2862 2863 2864

	if (!--cpuctx->sched_cb_usage)
		list_del(&cpuctx->sched_cb_entry);
2865 2866
}

2867

2868 2869
void perf_sched_cb_inc(struct pmu *pmu)
{
2870 2871 2872 2873 2874
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	if (!cpuctx->sched_cb_usage++)
		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));

2875 2876 2877 2878 2879 2880
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
2881 2882 2883 2884
 *
 * This callback is relevant even to per-cpu events; for example multi event
 * PEBS requires this to provide PID/TID information. This requires we flush
 * all queued PEBS records before we context switch to a new task.
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;

	if (prev == next)
		return;

2896 2897
	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2898

2899 2900
		if (WARN_ON_ONCE(!pmu->sched_task))
			continue;
2901

2902 2903
		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
		perf_pmu_disable(pmu);
2904

2905
		pmu->sched_task(cpuctx->task_ctx, sched_in);
2906

2907 2908
		perf_pmu_enable(pmu);
		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2909 2910 2911
	}
}

2912 2913 2914
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2929 2930
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2931 2932 2933
{
	int ctxn;

2934 2935 2936
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2937 2938 2939
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2940 2941
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2942 2943 2944 2945 2946 2947

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2948
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2949
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2950 2951
}

2952 2953 2954 2955 2956 2957 2958
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2959 2960
}

2961
static void
2962
ctx_pinned_sched_in(struct perf_event_context *ctx,
2963
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2964
{
2965
	struct perf_event *event;
T
Thomas Gleixner 已提交
2966

2967 2968
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2969
			continue;
2970
		if (!event_filter_match(event))
2971 2972
			continue;

S
Stephane Eranian 已提交
2973 2974 2975 2976
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2977
		if (group_can_go_on(event, cpuctx, 1))
2978
			group_sched_in(event, cpuctx, ctx);
2979 2980 2981 2982 2983

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2984 2985 2986
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2987
		}
2988
	}
2989 2990 2991 2992
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2993
		      struct perf_cpu_context *cpuctx)
2994 2995 2996
{
	struct perf_event *event;
	int can_add_hw = 1;
2997

2998 2999 3000
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
3001
			continue;
3002 3003
		/*
		 * Listen to the 'cpu' scheduling filter constraint
3004
		 * of events:
3005
		 */
3006
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
3007 3008
			continue;

S
Stephane Eranian 已提交
3009 3010 3011 3012
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
3013
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3014
			if (group_sched_in(event, cpuctx, ctx))
3015
				can_add_hw = 0;
P
Peter Zijlstra 已提交
3016
		}
T
Thomas Gleixner 已提交
3017
	}
3018 3019 3020 3021 3022
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3023 3024
	     enum event_type_t event_type,
	     struct task_struct *task)
3025
{
3026
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
3027 3028 3029
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
3030

3031
	if (likely(!ctx->nr_events))
3032
		return;
3033

3034
	ctx->is_active |= (event_type | EVENT_TIME);
3035 3036 3037 3038 3039 3040 3041
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

3042 3043 3044 3045 3046 3047 3048 3049 3050
	is_active ^= ctx->is_active; /* changed bits */

	if (is_active & EVENT_TIME) {
		/* start ctx time */
		now = perf_clock();
		ctx->timestamp = now;
		perf_cgroup_set_timestamp(task, ctx);
	}

3051 3052 3053 3054
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
3055
	if (is_active & EVENT_PINNED)
3056
		ctx_pinned_sched_in(ctx, cpuctx);
3057 3058

	/* Then walk through the lower prio flexible groups */
3059
	if (is_active & EVENT_FLEXIBLE)
3060
		ctx_flexible_sched_in(ctx, cpuctx);
3061 3062
}

3063
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
3064 3065
			     enum event_type_t event_type,
			     struct task_struct *task)
3066 3067 3068
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
3069
	ctx_sched_in(ctx, cpuctx, event_type, task);
3070 3071
}

S
Stephane Eranian 已提交
3072 3073
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
3074
{
P
Peter Zijlstra 已提交
3075
	struct perf_cpu_context *cpuctx;
3076

P
Peter Zijlstra 已提交
3077
	cpuctx = __get_cpu_context(ctx);
3078 3079 3080
	if (cpuctx->task_ctx == ctx)
		return;

3081
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
3082
	perf_pmu_disable(ctx->pmu);
3083 3084 3085 3086 3087 3088
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3089
	perf_event_sched_in(cpuctx, ctx, task);
3090 3091
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
3092 3093
}

P
Peter Zijlstra 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
3105 3106
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
3107 3108 3109 3110
{
	struct perf_event_context *ctx;
	int ctxn;

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
3121 3122 3123 3124 3125
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
3126
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
3127
	}
3128

3129 3130 3131
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

3132 3133
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
3134 3135
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
3163
#define REDUCE_FLS(a, b)		\
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

3203 3204 3205
	if (!divisor)
		return dividend;

3206 3207 3208
	return div64_u64(dividend, divisor);
}

3209 3210 3211
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

3212
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3213
{
3214
	struct hw_perf_event *hwc = &event->hw;
3215
	s64 period, sample_period;
3216 3217
	s64 delta;

3218
	period = perf_calculate_period(event, nsec, count);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
3229

3230
	if (local64_read(&hwc->period_left) > 8*sample_period) {
3231 3232 3233
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

3234
		local64_set(&hwc->period_left, 0);
3235 3236 3237

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
3238
	}
3239 3240
}

3241 3242 3243 3244 3245 3246 3247
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
3248
{
3249 3250
	struct perf_event *event;
	struct hw_perf_event *hwc;
3251
	u64 now, period = TICK_NSEC;
3252
	s64 delta;
3253

3254 3255 3256 3257 3258 3259
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
3260 3261
		return;

3262
	raw_spin_lock(&ctx->lock);
3263
	perf_pmu_disable(ctx->pmu);
3264

3265
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3266
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3267 3268
			continue;

3269
		if (!event_filter_match(event))
3270 3271
			continue;

3272 3273
		perf_pmu_disable(event->pmu);

3274
		hwc = &event->hw;
3275

3276
		if (hwc->interrupts == MAX_INTERRUPTS) {
3277
			hwc->interrupts = 0;
3278
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3279
			event->pmu->start(event, 0);
3280 3281
		}

3282
		if (!event->attr.freq || !event->attr.sample_freq)
3283
			goto next;
3284

3285 3286 3287 3288 3289
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3290
		now = local64_read(&event->count);
3291 3292
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3293

3294 3295 3296
		/*
		 * restart the event
		 * reload only if value has changed
3297 3298 3299
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3300
		 */
3301
		if (delta > 0)
3302
			perf_adjust_period(event, period, delta, false);
3303 3304

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3305 3306
	next:
		perf_pmu_enable(event->pmu);
3307
	}
3308

3309
	perf_pmu_enable(ctx->pmu);
3310
	raw_spin_unlock(&ctx->lock);
3311 3312
}

3313
/*
3314
 * Round-robin a context's events:
3315
 */
3316
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3317
{
3318 3319 3320 3321 3322 3323
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3324 3325
}

3326
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3327
{
P
Peter Zijlstra 已提交
3328
	struct perf_event_context *ctx = NULL;
3329
	int rotate = 0;
3330

3331 3332 3333 3334
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3335

P
Peter Zijlstra 已提交
3336
	ctx = cpuctx->task_ctx;
3337 3338 3339 3340
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3341

3342
	if (!rotate)
3343 3344
		goto done;

3345
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3346
	perf_pmu_disable(cpuctx->ctx.pmu);
3347

3348 3349 3350
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3351

3352 3353 3354
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3355

3356
	perf_event_sched_in(cpuctx, ctx, current);
3357

3358 3359
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3360
done:
3361 3362

	return rotate;
3363 3364 3365 3366
}

void perf_event_task_tick(void)
{
3367 3368
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3369
	int throttled;
3370

3371 3372
	WARN_ON(!irqs_disabled());

3373 3374
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3375
	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3376

3377
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3378
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3379 3380
}

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3391
	__perf_event_mark_enabled(event);
3392 3393 3394 3395

	return 1;
}

3396
/*
3397
 * Enable all of a task's events that have been marked enable-on-exec.
3398 3399
 * This expects task == current.
 */
3400
static void perf_event_enable_on_exec(int ctxn)
3401
{
3402
	struct perf_event_context *ctx, *clone_ctx = NULL;
3403
	struct perf_cpu_context *cpuctx;
3404
	struct perf_event *event;
3405 3406 3407 3408
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3409
	ctx = current->perf_event_ctxp[ctxn];
3410
	if (!ctx || !ctx->nr_events)
3411 3412
		goto out;

3413 3414
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
3415
	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3416 3417
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3418 3419

	/*
3420
	 * Unclone and reschedule this context if we enabled any event.
3421
	 */
3422
	if (enabled) {
3423
		clone_ctx = unclone_ctx(ctx);
3424 3425 3426
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3427

P
Peter Zijlstra 已提交
3428
out:
3429
	local_irq_restore(flags);
3430 3431 3432

	if (clone_ctx)
		put_ctx(clone_ctx);
3433 3434
}

3435 3436 3437
struct perf_read_data {
	struct perf_event *event;
	bool group;
3438
	int ret;
3439 3440
};

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
static int find_cpu_to_read(struct perf_event *event, int local_cpu)
{
	int event_cpu = event->oncpu;
	u16 local_pkg, event_pkg;

	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
		event_pkg =  topology_physical_package_id(event_cpu);
		local_pkg =  topology_physical_package_id(local_cpu);

		if (event_pkg == local_pkg)
			return local_cpu;
	}

	return event_cpu;
}

T
Thomas Gleixner 已提交
3457
/*
3458
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3459
 */
3460
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3461
{
3462 3463
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3464
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3465
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3466
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3467

3468 3469 3470 3471
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3472 3473
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3474 3475 3476 3477
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3478
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3479
	if (ctx->is_active) {
3480
		update_context_time(ctx);
S
Stephane Eranian 已提交
3481 3482
		update_cgrp_time_from_event(event);
	}
3483

3484
	update_event_times(event);
3485 3486
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3487

3488 3489 3490
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3491
		goto unlock;
3492 3493 3494 3495 3496
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3497 3498 3499

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3500 3501 3502 3503 3504
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3505
			sub->pmu->read(sub);
3506
		}
3507
	}
3508 3509

	data->ret = pmu->commit_txn(pmu);
3510 3511

unlock:
3512
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3513 3514
}

P
Peter Zijlstra 已提交
3515 3516
static inline u64 perf_event_count(struct perf_event *event)
{
3517 3518 3519 3520
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3521 3522
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3576
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3577
{
3578
	int ret = 0, cpu_to_read, local_cpu;
3579

T
Thomas Gleixner 已提交
3580
	/*
3581 3582
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3583
	 */
3584
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3585 3586 3587
		struct perf_read_data data = {
			.event = event,
			.group = group,
3588
			.ret = 0,
3589
		};
3590 3591 3592 3593 3594

		local_cpu = get_cpu();
		cpu_to_read = find_cpu_to_read(event, local_cpu);
		put_cpu();

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
		/*
		 * Purposely ignore the smp_call_function_single() return
		 * value.
		 *
		 * If event->oncpu isn't a valid CPU it means the event got
		 * scheduled out and that will have updated the event count.
		 *
		 * Therefore, either way, we'll have an up-to-date event count
		 * after this.
		 */
3605
		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3606
		ret = data.ret;
3607
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3608 3609 3610
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3611
		raw_spin_lock_irqsave(&ctx->lock, flags);
3612 3613 3614 3615 3616
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3617
		if (ctx->is_active) {
3618
			update_context_time(ctx);
S
Stephane Eranian 已提交
3619 3620
			update_cgrp_time_from_event(event);
		}
3621 3622 3623 3624
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3625
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3626
	}
3627 3628

	return ret;
T
Thomas Gleixner 已提交
3629 3630
}

3631
/*
3632
 * Initialize the perf_event context in a task_struct:
3633
 */
3634
static void __perf_event_init_context(struct perf_event_context *ctx)
3635
{
3636
	raw_spin_lock_init(&ctx->lock);
3637
	mutex_init(&ctx->mutex);
3638
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3639 3640
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3641 3642
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3658
	}
3659 3660 3661
	ctx->pmu = pmu;

	return ctx;
3662 3663
}

3664 3665 3666 3667
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
T
Thomas Gleixner 已提交
3668 3669

	rcu_read_lock();
3670
	if (!vpid)
T
Thomas Gleixner 已提交
3671 3672
		task = current;
	else
3673
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3674 3675 3676 3677 3678 3679 3680
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

3681 3682 3683
	return task;
}

3684 3685 3686
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3687
static struct perf_event_context *
3688 3689
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3690
{
3691
	struct perf_event_context *ctx, *clone_ctx = NULL;
3692
	struct perf_cpu_context *cpuctx;
3693
	void *task_ctx_data = NULL;
3694
	unsigned long flags;
P
Peter Zijlstra 已提交
3695
	int ctxn, err;
3696
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3697

3698
	if (!task) {
3699
		/* Must be root to operate on a CPU event: */
3700
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3701 3702 3703
			return ERR_PTR(-EACCES);

		/*
3704
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3705 3706 3707
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3708
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3709 3710
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3711
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3712
		ctx = &cpuctx->ctx;
3713
		get_ctx(ctx);
3714
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3715 3716 3717 3718

		return ctx;
	}

P
Peter Zijlstra 已提交
3719 3720 3721 3722 3723
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3724 3725 3726 3727 3728 3729 3730 3731
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3732
retry:
P
Peter Zijlstra 已提交
3733
	ctx = perf_lock_task_context(task, ctxn, &flags);
3734
	if (ctx) {
3735
		clone_ctx = unclone_ctx(ctx);
3736
		++ctx->pin_count;
3737 3738 3739 3740 3741

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3742
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3743 3744 3745

		if (clone_ctx)
			put_ctx(clone_ctx);
3746
	} else {
3747
		ctx = alloc_perf_context(pmu, task);
3748 3749 3750
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3751

3752 3753 3754 3755 3756
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3767
		else {
3768
			get_ctx(ctx);
3769
			++ctx->pin_count;
3770
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3771
		}
3772 3773 3774
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3775
			put_ctx(ctx);
3776 3777 3778 3779

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3780 3781 3782
		}
	}

3783
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3784
	return ctx;
3785

P
Peter Zijlstra 已提交
3786
errout:
3787
	kfree(task_ctx_data);
3788
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3789 3790
}

L
Li Zefan 已提交
3791
static void perf_event_free_filter(struct perf_event *event);
3792
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3793

3794
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3795
{
3796
	struct perf_event *event;
P
Peter Zijlstra 已提交
3797

3798 3799 3800
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3801
	perf_event_free_filter(event);
3802
	kfree(event);
P
Peter Zijlstra 已提交
3803 3804
}

3805 3806
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3807

3808 3809 3810 3811 3812 3813 3814 3815 3816
static void detach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_del_rcu(&event->sb_list);
	raw_spin_unlock(&pel->lock);
}

3817
static bool is_sb_event(struct perf_event *event)
3818
{
3819 3820
	struct perf_event_attr *attr = &event->attr;

3821
	if (event->parent)
3822
		return false;
3823 3824

	if (event->attach_state & PERF_ATTACH_TASK)
3825
		return false;
3826

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
	    attr->comm || attr->comm_exec ||
	    attr->task ||
	    attr->context_switch)
		return true;
	return false;
}

static void unaccount_pmu_sb_event(struct perf_event *event)
{
	if (is_sb_event(event))
		detach_sb_event(event);
3839 3840
}

3841
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3842
{
3843 3844 3845 3846 3847 3848
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3849

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
#ifdef CONFIG_NO_HZ_FULL
static DEFINE_SPINLOCK(nr_freq_lock);
#endif

static void unaccount_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	spin_lock(&nr_freq_lock);
	if (atomic_dec_and_test(&nr_freq_events))
		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void unaccount_freq_event(void)
{
	if (tick_nohz_full_enabled())
		unaccount_freq_event_nohz();
	else
		atomic_dec(&nr_freq_events);
}

3872 3873
static void unaccount_event(struct perf_event *event)
{
3874 3875
	bool dec = false;

3876 3877 3878 3879
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3880
		dec = true;
3881 3882 3883 3884 3885 3886
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3887
	if (event->attr.freq)
3888
		unaccount_freq_event();
3889
	if (event->attr.context_switch) {
3890
		dec = true;
3891 3892
		atomic_dec(&nr_switch_events);
	}
3893
	if (is_cgroup_event(event))
3894
		dec = true;
3895
	if (has_branch_stack(event))
3896 3897
		dec = true;

3898 3899 3900 3901
	if (dec) {
		if (!atomic_add_unless(&perf_sched_count, -1, 1))
			schedule_delayed_work(&perf_sched_work, HZ);
	}
3902 3903

	unaccount_event_cpu(event, event->cpu);
3904 3905

	unaccount_pmu_sb_event(event);
3906
}
3907

3908 3909 3910 3911 3912 3913 3914 3915
static void perf_sched_delayed(struct work_struct *work)
{
	mutex_lock(&perf_sched_mutex);
	if (atomic_dec_and_test(&perf_sched_count))
		static_branch_disable(&perf_sched_events);
	mutex_unlock(&perf_sched_mutex);
}

3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3926
 * _free_event()), the latter -- before the first perf_install_in_context().
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
3975
	if ((e1->pmu == e2->pmu) &&
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

4001 4002 4003
static void perf_addr_filters_splice(struct perf_event *event,
				       struct list_head *head);

P
Peter Zijlstra 已提交
4004
static void _free_event(struct perf_event *event)
4005
{
4006
	irq_work_sync(&event->pending);
4007

4008
	unaccount_event(event);
4009

4010
	if (event->rb) {
4011 4012 4013 4014 4015 4016 4017
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
4018
		ring_buffer_attach(event, NULL);
4019
		mutex_unlock(&event->mmap_mutex);
4020 4021
	}

S
Stephane Eranian 已提交
4022 4023 4024
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
4025 4026 4027 4028 4029 4030
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);
4031 4032
	perf_addr_filters_splice(event, NULL);
	kfree(event->addr_filters_offs);
P
Peter Zijlstra 已提交
4033 4034 4035 4036 4037 4038 4039

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

4040 4041
	exclusive_event_destroy(event);
	module_put(event->pmu->module);
P
Peter Zijlstra 已提交
4042 4043

	call_rcu(&event->rcu_head, free_event_rcu);
4044 4045
}

P
Peter Zijlstra 已提交
4046 4047 4048 4049 4050
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
4051
{
P
Peter Zijlstra 已提交
4052 4053 4054 4055 4056 4057
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
4058

P
Peter Zijlstra 已提交
4059
	_free_event(event);
T
Thomas Gleixner 已提交
4060 4061
}

4062
/*
4063
 * Remove user event from the owner task.
4064
 */
4065
static void perf_remove_from_owner(struct perf_event *event)
4066
{
P
Peter Zijlstra 已提交
4067
	struct task_struct *owner;
4068

P
Peter Zijlstra 已提交
4069 4070
	rcu_read_lock();
	/*
4071 4072 4073
	 * Matches the smp_store_release() in perf_event_exit_task(). If we
	 * observe !owner it means the list deletion is complete and we can
	 * indeed free this event, otherwise we need to serialize on
P
Peter Zijlstra 已提交
4074 4075
	 * owner->perf_event_mutex.
	 */
4076
	owner = lockless_dereference(event->owner);
P
Peter Zijlstra 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
4098 4099 4100 4101 4102 4103
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
4104
		if (event->owner) {
P
Peter Zijlstra 已提交
4105
			list_del_init(&event->owner_entry);
4106 4107
			smp_store_release(&event->owner, NULL);
		}
P
Peter Zijlstra 已提交
4108 4109 4110
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
4111 4112 4113 4114 4115 4116 4117
}

static void put_event(struct perf_event *event)
{
	if (!atomic_long_dec_and_test(&event->refcount))
		return;

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	_free_event(event);
}

/*
 * Kill an event dead; while event:refcount will preserve the event
 * object, it will not preserve its functionality. Once the last 'user'
 * gives up the object, we'll destroy the thing.
 */
int perf_event_release_kernel(struct perf_event *event)
{
4128
	struct perf_event_context *ctx = event->ctx;
4129 4130
	struct perf_event *child, *tmp;

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	/*
	 * If we got here through err_file: fput(event_file); we will not have
	 * attached to a context yet.
	 */
	if (!ctx) {
		WARN_ON_ONCE(event->attach_state &
				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
		goto no_ctx;
	}

4141 4142
	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
4143

4144
	ctx = perf_event_ctx_lock(event);
P
Peter Zijlstra 已提交
4145
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
4146
	perf_remove_from_context(event, DETACH_GROUP);
P
Peter Zijlstra 已提交
4147

P
Peter Zijlstra 已提交
4148
	raw_spin_lock_irq(&ctx->lock);
P
Peter Zijlstra 已提交
4149
	/*
P
Peter Zijlstra 已提交
4150 4151
	 * Mark this even as STATE_DEAD, there is no external reference to it
	 * anymore.
P
Peter Zijlstra 已提交
4152
	 *
P
Peter Zijlstra 已提交
4153 4154 4155
	 * Anybody acquiring event->child_mutex after the below loop _must_
	 * also see this, most importantly inherit_event() which will avoid
	 * placing more children on the list.
P
Peter Zijlstra 已提交
4156
	 *
4157 4158
	 * Thus this guarantees that we will in fact observe and kill _ALL_
	 * child events.
P
Peter Zijlstra 已提交
4159
	 */
P
Peter Zijlstra 已提交
4160 4161 4162 4163
	event->state = PERF_EVENT_STATE_DEAD;
	raw_spin_unlock_irq(&ctx->lock);

	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
4164

4165 4166 4167
again:
	mutex_lock(&event->child_mutex);
	list_for_each_entry(child, &event->child_list, child_list) {
4168

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
		/*
		 * Cannot change, child events are not migrated, see the
		 * comment with perf_event_ctx_lock_nested().
		 */
		ctx = lockless_dereference(child->ctx);
		/*
		 * Since child_mutex nests inside ctx::mutex, we must jump
		 * through hoops. We start by grabbing a reference on the ctx.
		 *
		 * Since the event cannot get freed while we hold the
		 * child_mutex, the context must also exist and have a !0
		 * reference count.
		 */
		get_ctx(ctx);

		/*
		 * Now that we have a ctx ref, we can drop child_mutex, and
		 * acquire ctx::mutex without fear of it going away. Then we
		 * can re-acquire child_mutex.
		 */
		mutex_unlock(&event->child_mutex);
		mutex_lock(&ctx->mutex);
		mutex_lock(&event->child_mutex);

		/*
		 * Now that we hold ctx::mutex and child_mutex, revalidate our
		 * state, if child is still the first entry, it didn't get freed
		 * and we can continue doing so.
		 */
		tmp = list_first_entry_or_null(&event->child_list,
					       struct perf_event, child_list);
		if (tmp == child) {
			perf_remove_from_context(child, DETACH_GROUP);
			list_del(&child->child_list);
			free_event(child);
			/*
			 * This matches the refcount bump in inherit_event();
			 * this can't be the last reference.
			 */
			put_event(event);
		}

		mutex_unlock(&event->child_mutex);
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}
	mutex_unlock(&event->child_mutex);

4218 4219
no_ctx:
	put_event(event); /* Must be the 'last' reference */
P
Peter Zijlstra 已提交
4220 4221 4222 4223
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

4224 4225 4226
/*
 * Called when the last reference to the file is gone.
 */
4227 4228
static int perf_release(struct inode *inode, struct file *file)
{
4229
	perf_event_release_kernel(file->private_data);
4230
	return 0;
4231 4232
}

4233
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4234
{
4235
	struct perf_event *child;
4236 4237
	u64 total = 0;

4238 4239 4240
	*enabled = 0;
	*running = 0;

4241
	mutex_lock(&event->child_mutex);
4242

4243
	(void)perf_event_read(event, false);
4244 4245
	total += perf_event_count(event);

4246 4247 4248 4249 4250 4251
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
4252
		(void)perf_event_read(child, false);
4253
		total += perf_event_count(child);
4254 4255 4256
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
4257
	mutex_unlock(&event->child_mutex);
4258 4259 4260

	return total;
}
4261
EXPORT_SYMBOL_GPL(perf_event_read_value);
4262

4263
static int __perf_read_group_add(struct perf_event *leader,
4264
					u64 read_format, u64 *values)
4265
{
4266 4267
	struct perf_event *sub;
	int n = 1; /* skip @nr */
4268
	int ret;
P
Peter Zijlstra 已提交
4269

4270 4271 4272
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
4273

4274 4275 4276 4277 4278 4279 4280 4281 4282
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
4283

4284 4285 4286 4287 4288 4289 4290 4291 4292
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
4293 4294
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
4295

4296 4297 4298 4299 4300
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
4301 4302

	return 0;
4303
}
4304

4305 4306 4307 4308 4309
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
4310
	int ret;
4311
	u64 *values;
4312

4313
	lockdep_assert_held(&ctx->mutex);
4314

4315 4316 4317
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
4318

4319 4320 4321 4322 4323 4324 4325
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
4326

4327 4328 4329 4330 4331 4332 4333 4334 4335
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
4336

4337
	mutex_unlock(&leader->child_mutex);
4338

4339
	ret = event->read_size;
4340 4341
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
4342
	goto out;
4343

4344 4345 4346
unlock:
	mutex_unlock(&leader->child_mutex);
out:
4347
	kfree(values);
4348
	return ret;
4349 4350
}

4351
static int perf_read_one(struct perf_event *event,
4352 4353
				 u64 read_format, char __user *buf)
{
4354
	u64 enabled, running;
4355 4356 4357
	u64 values[4];
	int n = 0;

4358 4359 4360 4361 4362
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
4363
	if (read_format & PERF_FORMAT_ID)
4364
		values[n++] = primary_event_id(event);
4365 4366 4367 4368 4369 4370 4371

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

4372 4373 4374 4375
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

P
Peter Zijlstra 已提交
4376
	if (event->state > PERF_EVENT_STATE_EXIT)
4377 4378 4379 4380 4381 4382 4383 4384
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4385
/*
4386
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4387 4388
 */
static ssize_t
4389
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4390
{
4391
	u64 read_format = event->attr.read_format;
4392
	int ret;
T
Thomas Gleixner 已提交
4393

4394
	/*
4395
	 * Return end-of-file for a read on a event that is in
4396 4397 4398
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4399
	if (event->state == PERF_EVENT_STATE_ERROR)
4400 4401
		return 0;

4402
	if (count < event->read_size)
4403 4404
		return -ENOSPC;

4405
	WARN_ON_ONCE(event->ctx->parent_ctx);
4406
	if (read_format & PERF_FORMAT_GROUP)
4407
		ret = perf_read_group(event, read_format, buf);
4408
	else
4409
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4410

4411
	return ret;
T
Thomas Gleixner 已提交
4412 4413 4414 4415 4416
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4417
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4418 4419
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4420

P
Peter Zijlstra 已提交
4421
	ctx = perf_event_ctx_lock(event);
4422
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4423 4424 4425
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4426 4427 4428 4429
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4430
	struct perf_event *event = file->private_data;
4431
	struct ring_buffer *rb;
4432
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4433

4434
	poll_wait(file, &event->waitq, wait);
4435

4436
	if (is_event_hup(event))
4437
		return events;
P
Peter Zijlstra 已提交
4438

4439
	/*
4440 4441
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4442 4443
	 */
	mutex_lock(&event->mmap_mutex);
4444 4445
	rb = event->rb;
	if (rb)
4446
		events = atomic_xchg(&rb->poll, 0);
4447
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4448 4449 4450
	return events;
}

P
Peter Zijlstra 已提交
4451
static void _perf_event_reset(struct perf_event *event)
4452
{
4453
	(void)perf_event_read(event, false);
4454
	local64_set(&event->count, 0);
4455
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4456 4457
}

4458
/*
4459 4460
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
4461
 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4462
 * task existence requirements of perf_event_enable/disable.
4463
 */
4464 4465
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4466
{
4467
	struct perf_event *child;
P
Peter Zijlstra 已提交
4468

4469
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4470

4471 4472 4473
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4474
		func(child);
4475
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4476 4477
}

4478 4479
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4480
{
4481 4482
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4483

P
Peter Zijlstra 已提交
4484 4485
	lockdep_assert_held(&ctx->mutex);

4486
	event = event->group_leader;
4487

4488 4489
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4490
		perf_event_for_each_child(sibling, func);
4491 4492
}

4493 4494 4495 4496
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4497
{
4498
	u64 value = *((u64 *)info);
4499
	bool active;
4500

4501 4502
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4503
	} else {
4504 4505
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4506
	}
4507 4508 4509 4510

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
4511 4512 4513 4514 4515 4516 4517 4518
		/*
		 * We could be throttled; unthrottle now to avoid the tick
		 * trying to unthrottle while we already re-started the event.
		 */
		if (event->hw.interrupts == MAX_INTERRUPTS) {
			event->hw.interrupts = 0;
			perf_log_throttle(event, 1);
		}
4519 4520 4521 4522 4523 4524 4525 4526 4527
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4546
	event_function_call(event, __perf_event_period, &value);
4547

4548
	return 0;
4549 4550
}

4551 4552
static const struct file_operations perf_fops;

4553
static inline int perf_fget_light(int fd, struct fd *p)
4554
{
4555 4556 4557
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4558

4559 4560 4561
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4562
	}
4563 4564
	*p = f;
	return 0;
4565 4566 4567 4568
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4569
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4570
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4571

P
Peter Zijlstra 已提交
4572
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4573
{
4574
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4575
	u32 flags = arg;
4576 4577

	switch (cmd) {
4578
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4579
		func = _perf_event_enable;
4580
		break;
4581
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4582
		func = _perf_event_disable;
4583
		break;
4584
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4585
		func = _perf_event_reset;
4586
		break;
P
Peter Zijlstra 已提交
4587

4588
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4589
		return _perf_event_refresh(event, arg);
4590

4591 4592
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4593

4594 4595 4596 4597 4598 4599 4600 4601 4602
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4603
	case PERF_EVENT_IOC_SET_OUTPUT:
4604 4605 4606
	{
		int ret;
		if (arg != -1) {
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4617 4618 4619
		}
		return ret;
	}
4620

L
Li Zefan 已提交
4621 4622 4623
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4624 4625 4626
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
		struct ring_buffer *rb;

		rcu_read_lock();
		rb = rcu_dereference(event->rb);
		if (!rb || !rb->nr_pages) {
			rcu_read_unlock();
			return -EINVAL;
		}
		rb_toggle_paused(rb, !!arg);
		rcu_read_unlock();
		return 0;
	}
4640
	default:
P
Peter Zijlstra 已提交
4641
		return -ENOTTY;
4642
	}
P
Peter Zijlstra 已提交
4643 4644

	if (flags & PERF_IOC_FLAG_GROUP)
4645
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4646
	else
4647
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4648 4649

	return 0;
4650 4651
}

P
Peter Zijlstra 已提交
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4685
int perf_event_task_enable(void)
4686
{
P
Peter Zijlstra 已提交
4687
	struct perf_event_context *ctx;
4688
	struct perf_event *event;
4689

4690
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4691 4692 4693 4694 4695
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4696
	mutex_unlock(&current->perf_event_mutex);
4697 4698 4699 4700

	return 0;
}

4701
int perf_event_task_disable(void)
4702
{
P
Peter Zijlstra 已提交
4703
	struct perf_event_context *ctx;
4704
	struct perf_event *event;
4705

4706
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4707 4708 4709 4710 4711
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4712
	mutex_unlock(&current->perf_event_mutex);
4713 4714 4715 4716

	return 0;
}

4717
static int perf_event_index(struct perf_event *event)
4718
{
P
Peter Zijlstra 已提交
4719 4720 4721
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4722
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4723 4724
		return 0;

4725
	return event->pmu->event_idx(event);
4726 4727
}

4728
static void calc_timer_values(struct perf_event *event,
4729
				u64 *now,
4730 4731
				u64 *enabled,
				u64 *running)
4732
{
4733
	u64 ctx_time;
4734

4735 4736
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4737 4738 4739 4740
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4756 4757
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4758 4759 4760 4761 4762

unlock:
	rcu_read_unlock();
}

4763 4764
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4765 4766 4767
{
}

4768 4769 4770 4771 4772
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4773
void perf_event_update_userpage(struct perf_event *event)
4774
{
4775
	struct perf_event_mmap_page *userpg;
4776
	struct ring_buffer *rb;
4777
	u64 enabled, running, now;
4778 4779

	rcu_read_lock();
4780 4781 4782 4783
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4784 4785 4786 4787 4788 4789 4790 4791 4792
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4793
	calc_timer_values(event, &now, &enabled, &running);
4794

4795
	userpg = rb->user_page;
4796 4797 4798 4799 4800
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4801
	++userpg->lock;
4802
	barrier();
4803
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4804
	userpg->offset = perf_event_count(event);
4805
	if (userpg->index)
4806
		userpg->offset -= local64_read(&event->hw.prev_count);
4807

4808
	userpg->time_enabled = enabled +
4809
			atomic64_read(&event->child_total_time_enabled);
4810

4811
	userpg->time_running = running +
4812
			atomic64_read(&event->child_total_time_running);
4813

4814
	arch_perf_update_userpage(event, userpg, now);
4815

4816
	barrier();
4817
	++userpg->lock;
4818
	preempt_enable();
4819
unlock:
4820
	rcu_read_unlock();
4821 4822
}

4823 4824 4825
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4826
	struct ring_buffer *rb;
4827 4828 4829 4830 4831 4832 4833 4834 4835
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4836 4837
	rb = rcu_dereference(event->rb);
	if (!rb)
4838 4839 4840 4841 4842
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4843
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4858 4859 4860
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4861
	struct ring_buffer *old_rb = NULL;
4862 4863
	unsigned long flags;

4864 4865 4866 4867 4868 4869
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4870

4871 4872 4873 4874
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4875

4876 4877
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4878
	}
4879

4880
	if (rb) {
4881 4882 4883 4884 4885
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4886 4887 4888 4889 4890
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	/*
	 * Avoid racing with perf_mmap_close(AUX): stop the event
	 * before swizzling the event::rb pointer; if it's getting
	 * unmapped, its aux_mmap_count will be 0 and it won't
	 * restart. See the comment in __perf_pmu_output_stop().
	 *
	 * Data will inevitably be lost when set_output is done in
	 * mid-air, but then again, whoever does it like this is
	 * not in for the data anyway.
	 */
	if (has_aux(event))
		perf_event_stop(event, 0);

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4915 4916 4917 4918 4919 4920 4921 4922
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4923 4924 4925 4926
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4927 4928 4929
	rcu_read_unlock();
}

4930
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4931
{
4932
	struct ring_buffer *rb;
4933

4934
	rcu_read_lock();
4935 4936 4937 4938
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4939 4940 4941
	}
	rcu_read_unlock();

4942
	return rb;
4943 4944
}

4945
void ring_buffer_put(struct ring_buffer *rb)
4946
{
4947
	if (!atomic_dec_and_test(&rb->refcount))
4948
		return;
4949

4950
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4951

4952
	call_rcu(&rb->rcu_head, rb_free_rcu);
4953 4954 4955 4956
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4957
	struct perf_event *event = vma->vm_file->private_data;
4958

4959
	atomic_inc(&event->mmap_count);
4960
	atomic_inc(&event->rb->mmap_count);
4961

4962 4963 4964
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4965 4966
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4967 4968
}

4969 4970
static void perf_pmu_output_stop(struct perf_event *event);

4971 4972 4973 4974 4975 4976 4977 4978
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4979 4980
static void perf_mmap_close(struct vm_area_struct *vma)
{
4981
	struct perf_event *event = vma->vm_file->private_data;
4982

4983
	struct ring_buffer *rb = ring_buffer_get(event);
4984 4985 4986
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4987

4988 4989 4990
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4991 4992 4993 4994 4995 4996 4997
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4998 4999 5000 5001 5002 5003 5004 5005 5006
		/*
		 * Stop all AUX events that are writing to this buffer,
		 * so that we can free its AUX pages and corresponding PMU
		 * data. Note that after rb::aux_mmap_count dropped to zero,
		 * they won't start any more (see perf_aux_output_begin()).
		 */
		perf_pmu_output_stop(event);

		/* now it's safe to free the pages */
5007 5008 5009
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

5010
		/* this has to be the last one */
5011
		rb_free_aux(rb);
5012 5013
		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));

5014 5015 5016
		mutex_unlock(&event->mmap_mutex);
	}

5017 5018 5019
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5020
		goto out_put;
5021

5022
	ring_buffer_attach(event, NULL);
5023 5024 5025
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
5026 5027
	if (atomic_read(&rb->mmap_count))
		goto out_put;
5028

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
5045

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
5057 5058 5059
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

5060
		mutex_unlock(&event->mmap_mutex);
5061
		put_event(event);
5062

5063 5064 5065 5066 5067
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
5068
	}
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

5084
out_put:
5085
	ring_buffer_put(rb); /* could be last */
5086 5087
}

5088
static const struct vm_operations_struct perf_mmap_vmops = {
5089
	.open		= perf_mmap_open,
5090
	.close		= perf_mmap_close, /* non mergable */
5091 5092
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
5093 5094 5095 5096
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
5097
	struct perf_event *event = file->private_data;
5098
	unsigned long user_locked, user_lock_limit;
5099
	struct user_struct *user = current_user();
5100
	unsigned long locked, lock_limit;
5101
	struct ring_buffer *rb = NULL;
5102 5103
	unsigned long vma_size;
	unsigned long nr_pages;
5104
	long user_extra = 0, extra = 0;
5105
	int ret = 0, flags = 0;
5106

5107 5108 5109
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
5110
	 * same rb.
5111 5112 5113 5114
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

5115
	if (!(vma->vm_flags & VM_SHARED))
5116
		return -EINVAL;
5117 5118

	vma_size = vma->vm_end - vma->vm_start;
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
5179

5180
	/*
5181
	 * If we have rb pages ensure they're a power-of-two number, so we
5182 5183
	 * can do bitmasks instead of modulo.
	 */
5184
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5185 5186
		return -EINVAL;

5187
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5188 5189
		return -EINVAL;

5190
	WARN_ON_ONCE(event->ctx->parent_ctx);
5191
again:
5192
	mutex_lock(&event->mmap_mutex);
5193
	if (event->rb) {
5194
		if (event->rb->nr_pages != nr_pages) {
5195
			ret = -EINVAL;
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

5209 5210 5211
		goto unlock;
	}

5212
	user_extra = nr_pages + 1;
5213 5214

accounting:
5215
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
5216 5217 5218 5219 5220 5221

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

5222
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5223

5224 5225
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
5226

5227
	lock_limit = rlimit(RLIMIT_MEMLOCK);
5228
	lock_limit >>= PAGE_SHIFT;
5229
	locked = vma->vm_mm->pinned_vm + extra;
5230

5231 5232
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
5233 5234 5235
		ret = -EPERM;
		goto unlock;
	}
5236

5237
	WARN_ON(!rb && event->rb);
5238

5239
	if (vma->vm_flags & VM_WRITE)
5240
		flags |= RING_BUFFER_WRITABLE;
5241

5242
	if (!rb) {
5243 5244 5245
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
5246

5247 5248 5249 5250
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
5251

5252 5253 5254
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
5255

5256
		ring_buffer_attach(event, rb);
5257

5258 5259 5260
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
5261 5262
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
5263 5264 5265
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
5266

5267
unlock:
5268 5269 5270 5271
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

5272
		atomic_inc(&event->mmap_count);
5273 5274 5275 5276
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
5277
	mutex_unlock(&event->mmap_mutex);
5278

5279 5280 5281 5282
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
5283
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5284
	vma->vm_ops = &perf_mmap_vmops;
5285

5286 5287 5288
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

5289
	return ret;
5290 5291
}

P
Peter Zijlstra 已提交
5292 5293
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
5294
	struct inode *inode = file_inode(filp);
5295
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
5296 5297
	int retval;

A
Al Viro 已提交
5298
	inode_lock(inode);
5299
	retval = fasync_helper(fd, filp, on, &event->fasync);
A
Al Viro 已提交
5300
	inode_unlock(inode);
P
Peter Zijlstra 已提交
5301 5302 5303 5304 5305 5306 5307

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
5308
static const struct file_operations perf_fops = {
5309
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
5310 5311 5312
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
5313
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
5314
	.compat_ioctl		= perf_compat_ioctl,
5315
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
5316
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
5317 5318
};

5319
/*
5320
 * Perf event wakeup
5321 5322 5323 5324 5325
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

5326 5327 5328 5329 5330 5331 5332 5333
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

5334
void perf_event_wakeup(struct perf_event *event)
5335
{
5336
	ring_buffer_wakeup(event);
5337

5338
	if (event->pending_kill) {
5339
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5340
		event->pending_kill = 0;
5341
	}
5342 5343
}

5344
static void perf_pending_event(struct irq_work *entry)
5345
{
5346 5347
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
5348 5349 5350 5351 5352 5353 5354
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
5355

5356 5357
	if (event->pending_disable) {
		event->pending_disable = 0;
5358
		perf_event_disable_local(event);
5359 5360
	}

5361 5362 5363
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
5364
	}
5365 5366 5367

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
5368 5369
}

5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

5391 5392 5393 5394 5395
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;
5396
	DECLARE_BITMAP(_mask, 64);
5397

5398 5399
	bitmap_from_u64(_mask, mask);
	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5400 5401 5402 5403 5404 5405 5406
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

5407
static void perf_sample_regs_user(struct perf_regs *regs_user,
5408 5409
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
5410
{
5411 5412
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
5413
		regs_user->regs = regs;
5414 5415
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
5416 5417 5418
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
5419 5420 5421
	}
}

5422 5423 5424 5425 5426 5427 5428 5429
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5525 5526 5527
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5541
		data->time = perf_event_clock(event);
5542

5543
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5555 5556 5557
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5582 5583 5584

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5585 5586
}

5587 5588 5589
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5590 5591 5592 5593 5594
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5595
static void perf_output_read_one(struct perf_output_handle *handle,
5596 5597
				 struct perf_event *event,
				 u64 enabled, u64 running)
5598
{
5599
	u64 read_format = event->attr.read_format;
5600 5601 5602
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5603
	values[n++] = perf_event_count(event);
5604
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5605
		values[n++] = enabled +
5606
			atomic64_read(&event->child_total_time_enabled);
5607 5608
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5609
		values[n++] = running +
5610
			atomic64_read(&event->child_total_time_running);
5611 5612
	}
	if (read_format & PERF_FORMAT_ID)
5613
		values[n++] = primary_event_id(event);
5614

5615
	__output_copy(handle, values, n * sizeof(u64));
5616 5617 5618
}

/*
5619
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5620 5621
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5622 5623
			    struct perf_event *event,
			    u64 enabled, u64 running)
5624
{
5625 5626
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5627 5628 5629 5630 5631 5632
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5633
		values[n++] = enabled;
5634 5635

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5636
		values[n++] = running;
5637

5638
	if (leader != event)
5639 5640
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5641
	values[n++] = perf_event_count(leader);
5642
	if (read_format & PERF_FORMAT_ID)
5643
		values[n++] = primary_event_id(leader);
5644

5645
	__output_copy(handle, values, n * sizeof(u64));
5646

5647
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5648 5649
		n = 0;

5650 5651
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5652 5653
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5654
		values[n++] = perf_event_count(sub);
5655
		if (read_format & PERF_FORMAT_ID)
5656
			values[n++] = primary_event_id(sub);
5657

5658
		__output_copy(handle, values, n * sizeof(u64));
5659 5660 5661
	}
}

5662 5663 5664
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5665
static void perf_output_read(struct perf_output_handle *handle,
5666
			     struct perf_event *event)
5667
{
5668
	u64 enabled = 0, running = 0, now;
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5680
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5681
		calc_timer_values(event, &now, &enabled, &running);
5682

5683
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5684
		perf_output_read_group(handle, event, enabled, running);
5685
	else
5686
		perf_output_read_one(handle, event, enabled, running);
5687 5688
}

5689 5690 5691
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5692
			struct perf_event *event)
5693 5694 5695 5696 5697
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5698 5699 5700
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5726
		perf_output_read(handle, event);
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5737
			__output_copy(handle, data->callchain, size);
5738 5739 5740 5741 5742 5743 5744
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
		struct perf_raw_record *raw = data->raw;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;

			perf_output_put(handle, raw->size);
			do {
				if (frag->copy) {
					__output_custom(handle, frag->copy,
							frag->data, frag->size);
				} else {
					__output_copy(handle, frag->data,
						      frag->size);
				}
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);
			if (frag->pad)
				__output_skip(handle, NULL, frag->pad);
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5776

5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5811

5812
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5813 5814 5815
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5816
	}
A
Andi Kleen 已提交
5817 5818 5819

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5820 5821 5822

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5823

A
Andi Kleen 已提交
5824 5825 5826
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5857 5858 5859 5860
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5861
			 struct perf_event *event,
5862
			 struct pt_regs *regs)
5863
{
5864
	u64 sample_type = event->attr.sample_type;
5865

5866
	header->type = PERF_RECORD_SAMPLE;
5867
	header->size = sizeof(*header) + event->header_size;
5868 5869 5870

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5871

5872
	__perf_event_header__init_id(header, data, event);
5873

5874
	if (sample_type & PERF_SAMPLE_IP)
5875 5876
		data->ip = perf_instruction_pointer(regs);

5877
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5878
		int size = 1;
5879

5880
		data->callchain = perf_callchain(event, regs);
5881 5882 5883 5884 5885

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5886 5887
	}

5888
	if (sample_type & PERF_SAMPLE_RAW) {
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908
		struct perf_raw_record *raw = data->raw;
		int size;

		if (raw) {
			struct perf_raw_frag *frag = &raw->frag;
			u32 sum = 0;

			do {
				sum += frag->size;
				if (perf_raw_frag_last(frag))
					break;
				frag = frag->next;
			} while (1);

			size = round_up(sum + sizeof(u32), sizeof(u64));
			raw->size = size - sizeof(u32);
			frag->pad = raw->size - sum;
		} else {
			size = sizeof(u64);
		}
5909

5910
		header->size += size;
5911
	}
5912 5913 5914 5915 5916 5917 5918 5919 5920

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5921

5922
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5923 5924
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5925

5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5949
						     data->regs_user.regs);
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5977
}
5978

5979 5980 5981 5982 5983 5984 5985
static void __always_inline
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_event *,
					unsigned int))
5986 5987 5988
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5989

5990 5991 5992
	/* protect the callchain buffers */
	rcu_read_lock();

5993
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5994

5995
	if (output_begin(&handle, event, header.size))
5996
		goto exit;
5997

5998
	perf_output_sample(&handle, &header, data, event);
5999

6000
	perf_output_end(&handle);
6001 6002 6003

exit:
	rcu_read_unlock();
6004 6005
}

6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

void
perf_event_output_backward(struct perf_event *event,
			   struct perf_sample_data *data,
			   struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_backward);
}

void
perf_event_output(struct perf_event *event,
		  struct perf_sample_data *data,
		  struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin);
}

6030
/*
6031
 * read event_id
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
6042
perf_event_read_event(struct perf_event *event,
6043 6044 6045
			struct task_struct *task)
{
	struct perf_output_handle handle;
6046
	struct perf_sample_data sample;
6047
	struct perf_read_event read_event = {
6048
		.header = {
6049
			.type = PERF_RECORD_READ,
6050
			.misc = 0,
6051
			.size = sizeof(read_event) + event->read_size,
6052
		},
6053 6054
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
6055
	};
6056
	int ret;
6057

6058
	perf_event_header__init_id(&read_event.header, &sample, event);
6059
	ret = perf_output_begin(&handle, event, read_event.header.size);
6060 6061 6062
	if (ret)
		return;

6063
	perf_output_put(&handle, read_event);
6064
	perf_output_read(&handle, event);
6065
	perf_event__output_id_sample(event, &handle, &sample);
6066

6067 6068 6069
	perf_output_end(&handle);
}

6070
typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6071 6072

static void
6073 6074
perf_iterate_ctx(struct perf_event_context *ctx,
		   perf_iterate_f output,
6075
		   void *data, bool all)
6076 6077 6078 6079
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6080 6081 6082 6083 6084 6085 6086
		if (!all) {
			if (event->state < PERF_EVENT_STATE_INACTIVE)
				continue;
			if (!event_filter_match(event))
				continue;
		}

6087
		output(event, data);
6088 6089 6090
	}
}

6091
static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6092 6093 6094 6095 6096
{
	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
	struct perf_event *event;

	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6097 6098 6099 6100 6101 6102 6103 6104
		/*
		 * Skip events that are not fully formed yet; ensure that
		 * if we observe event->ctx, both event and ctx will be
		 * complete enough. See perf_install_in_context().
		 */
		if (!smp_load_acquire(&event->ctx))
			continue;

6105 6106 6107 6108 6109 6110 6111 6112
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		output(event, data);
	}
}

6113 6114 6115 6116 6117 6118
/*
 * Iterate all events that need to receive side-band events.
 *
 * For new callers; ensure that account_pmu_sb_event() includes
 * your event, otherwise it might not get delivered.
 */
6119
static void
6120
perf_iterate_sb(perf_iterate_f output, void *data,
6121 6122 6123 6124 6125
	       struct perf_event_context *task_ctx)
{
	struct perf_event_context *ctx;
	int ctxn;

6126 6127 6128
	rcu_read_lock();
	preempt_disable();

J
Jiri Olsa 已提交
6129
	/*
6130 6131
	 * If we have task_ctx != NULL we only notify the task context itself.
	 * The task_ctx is set only for EXIT events before releasing task
J
Jiri Olsa 已提交
6132 6133 6134
	 * context.
	 */
	if (task_ctx) {
6135 6136
		perf_iterate_ctx(task_ctx, output, data, false);
		goto done;
J
Jiri Olsa 已提交
6137 6138
	}

6139
	perf_iterate_sb_cpu(output, data);
6140 6141

	for_each_task_context_nr(ctxn) {
6142 6143
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
6144
			perf_iterate_ctx(ctx, output, data, false);
6145
	}
6146
done:
6147
	preempt_enable();
6148
	rcu_read_unlock();
6149 6150
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
/*
 * Clear all file-based filters at exec, they'll have to be
 * re-instated when/if these objects are mmapped again.
 */
static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;
	unsigned long flags;

	if (!has_addr_filter(event))
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (filter->inode) {
			event->addr_filters_offs[count] = 0;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6180
		perf_event_stop(event, 1);
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
}

void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctxn);

6196
		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6197 6198 6199 6200 6201
				   true);
	}
	rcu_read_unlock();
}

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
struct remote_output {
	struct ring_buffer	*rb;
	int			err;
};

static void __perf_event_output_stop(struct perf_event *event, void *data)
{
	struct perf_event *parent = event->parent;
	struct remote_output *ro = data;
	struct ring_buffer *rb = ro->rb;
6212 6213 6214
	struct stop_event_data sd = {
		.event	= event,
	};
6215 6216 6217 6218 6219 6220 6221 6222 6223

	if (!has_aux(event))
		return;

	if (!parent)
		parent = event;

	/*
	 * In case of inheritance, it will be the parent that links to the
6224 6225 6226 6227 6228 6229 6230
	 * ring-buffer, but it will be the child that's actually using it.
	 *
	 * We are using event::rb to determine if the event should be stopped,
	 * however this may race with ring_buffer_attach() (through set_output),
	 * which will make us skip the event that actually needs to be stopped.
	 * So ring_buffer_attach() has to stop an aux event before re-assigning
	 * its rb pointer.
6231 6232
	 */
	if (rcu_dereference(parent->rb) == rb)
6233
		ro->err = __perf_event_stop(&sd);
6234 6235 6236 6237 6238 6239
}

static int __perf_pmu_output_stop(void *info)
{
	struct perf_event *event = info;
	struct pmu *pmu = event->pmu;
6240
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6241 6242 6243 6244 6245
	struct remote_output ro = {
		.rb	= event->rb,
	};

	rcu_read_lock();
6246
	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6247
	if (cpuctx->task_ctx)
6248
		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6249
				   &ro, false);
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
	rcu_read_unlock();

	return ro.err;
}

static void perf_pmu_output_stop(struct perf_event *event)
{
	struct perf_event *iter;
	int err, cpu;

restart:
	rcu_read_lock();
	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
		/*
		 * For per-CPU events, we need to make sure that neither they
		 * nor their children are running; for cpu==-1 events it's
		 * sufficient to stop the event itself if it's active, since
		 * it can't have children.
		 */
		cpu = iter->cpu;
		if (cpu == -1)
			cpu = READ_ONCE(iter->oncpu);

		if (cpu == -1)
			continue;

		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
		if (err == -EAGAIN) {
			rcu_read_unlock();
			goto restart;
		}
	}
	rcu_read_unlock();
6283 6284
}

P
Peter Zijlstra 已提交
6285
/*
P
Peter Zijlstra 已提交
6286 6287
 * task tracking -- fork/exit
 *
6288
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
6289 6290
 */

P
Peter Zijlstra 已提交
6291
struct perf_task_event {
6292
	struct task_struct		*task;
6293
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
6294 6295 6296 6297 6298 6299

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
6300 6301
		u32				tid;
		u32				ptid;
6302
		u64				time;
6303
	} event_id;
P
Peter Zijlstra 已提交
6304 6305
};

6306 6307
static int perf_event_task_match(struct perf_event *event)
{
6308 6309 6310
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
6311 6312
}

6313
static void perf_event_task_output(struct perf_event *event,
6314
				   void *data)
P
Peter Zijlstra 已提交
6315
{
6316
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
6317
	struct perf_output_handle handle;
6318
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
6319
	struct task_struct *task = task_event->task;
6320
	int ret, size = task_event->event_id.header.size;
6321

6322 6323 6324
	if (!perf_event_task_match(event))
		return;

6325
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
6326

6327
	ret = perf_output_begin(&handle, event,
6328
				task_event->event_id.header.size);
6329
	if (ret)
6330
		goto out;
P
Peter Zijlstra 已提交
6331

6332 6333
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
6334

6335 6336
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
6337

6338 6339
	task_event->event_id.time = perf_event_clock(event);

6340
	perf_output_put(&handle, task_event->event_id);
6341

6342 6343
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
6344
	perf_output_end(&handle);
6345 6346
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
6347 6348
}

6349 6350
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
6351
			      int new)
P
Peter Zijlstra 已提交
6352
{
P
Peter Zijlstra 已提交
6353
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
6354

6355 6356 6357
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
6358 6359
		return;

P
Peter Zijlstra 已提交
6360
	task_event = (struct perf_task_event){
6361 6362
		.task	  = task,
		.task_ctx = task_ctx,
6363
		.event_id    = {
P
Peter Zijlstra 已提交
6364
			.header = {
6365
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6366
				.misc = 0,
6367
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
6368
			},
6369 6370
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
6371 6372
			/* .tid  */
			/* .ptid */
6373
			/* .time */
P
Peter Zijlstra 已提交
6374 6375 6376
		},
	};

6377
	perf_iterate_sb(perf_event_task_output,
6378 6379
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
6380 6381
}

6382
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
6383
{
6384
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
6385 6386
}

6387 6388 6389 6390 6391
/*
 * comm tracking
 */

struct perf_comm_event {
6392 6393
	struct task_struct	*task;
	char			*comm;
6394 6395 6396 6397 6398 6399 6400
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
6401
	} event_id;
6402 6403
};

6404 6405 6406 6407 6408
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

6409
static void perf_event_comm_output(struct perf_event *event,
6410
				   void *data)
6411
{
6412
	struct perf_comm_event *comm_event = data;
6413
	struct perf_output_handle handle;
6414
	struct perf_sample_data sample;
6415
	int size = comm_event->event_id.header.size;
6416 6417
	int ret;

6418 6419 6420
	if (!perf_event_comm_match(event))
		return;

6421 6422
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6423
				comm_event->event_id.header.size);
6424 6425

	if (ret)
6426
		goto out;
6427

6428 6429
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6430

6431
	perf_output_put(&handle, comm_event->event_id);
6432
	__output_copy(&handle, comm_event->comm,
6433
				   comm_event->comm_size);
6434 6435 6436

	perf_event__output_id_sample(event, &handle, &sample);

6437
	perf_output_end(&handle);
6438 6439
out:
	comm_event->event_id.header.size = size;
6440 6441
}

6442
static void perf_event_comm_event(struct perf_comm_event *comm_event)
6443
{
6444
	char comm[TASK_COMM_LEN];
6445 6446
	unsigned int size;

6447
	memset(comm, 0, sizeof(comm));
6448
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6449
	size = ALIGN(strlen(comm)+1, sizeof(u64));
6450 6451 6452 6453

	comm_event->comm = comm;
	comm_event->comm_size = size;

6454
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
6455

6456
	perf_iterate_sb(perf_event_comm_output,
6457 6458
		       comm_event,
		       NULL);
6459 6460
}

6461
void perf_event_comm(struct task_struct *task, bool exec)
6462
{
6463 6464
	struct perf_comm_event comm_event;

6465
	if (!atomic_read(&nr_comm_events))
6466
		return;
6467

6468
	comm_event = (struct perf_comm_event){
6469
		.task	= task,
6470 6471
		/* .comm      */
		/* .comm_size */
6472
		.event_id  = {
6473
			.header = {
6474
				.type = PERF_RECORD_COMM,
6475
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6476 6477 6478 6479
				/* .size */
			},
			/* .pid */
			/* .tid */
6480 6481 6482
		},
	};

6483
	perf_event_comm_event(&comm_event);
6484 6485
}

6486 6487 6488 6489 6490
/*
 * mmap tracking
 */

struct perf_mmap_event {
6491 6492 6493 6494
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
6495 6496 6497
	int			maj, min;
	u64			ino;
	u64			ino_generation;
6498
	u32			prot, flags;
6499 6500 6501 6502 6503 6504 6505 6506 6507

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
6508
	} event_id;
6509 6510
};

6511 6512 6513 6514 6515 6516 6517 6518
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
6519
	       (executable && (event->attr.mmap || event->attr.mmap2));
6520 6521
}

6522
static void perf_event_mmap_output(struct perf_event *event,
6523
				   void *data)
6524
{
6525
	struct perf_mmap_event *mmap_event = data;
6526
	struct perf_output_handle handle;
6527
	struct perf_sample_data sample;
6528
	int size = mmap_event->event_id.header.size;
6529
	int ret;
6530

6531 6532 6533
	if (!perf_event_mmap_match(event, data))
		return;

6534 6535 6536 6537 6538
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6539
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6540 6541
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6542 6543
	}

6544 6545
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
6546
				mmap_event->event_id.header.size);
6547
	if (ret)
6548
		goto out;
6549

6550 6551
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
6552

6553
	perf_output_put(&handle, mmap_event->event_id);
6554 6555 6556 6557 6558 6559

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
6560 6561
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
6562 6563
	}

6564
	__output_copy(&handle, mmap_event->file_name,
6565
				   mmap_event->file_size);
6566 6567 6568

	perf_event__output_id_sample(event, &handle, &sample);

6569
	perf_output_end(&handle);
6570 6571
out:
	mmap_event->event_id.header.size = size;
6572 6573
}

6574
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6575
{
6576 6577
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
6578 6579
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
6580
	u32 prot = 0, flags = 0;
6581 6582 6583
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
6584
	char *name;
6585

6586
	if (file) {
6587 6588
		struct inode *inode;
		dev_t dev;
6589

6590
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6591
		if (!buf) {
6592 6593
			name = "//enomem";
			goto cpy_name;
6594
		}
6595
		/*
6596
		 * d_path() works from the end of the rb backwards, so we
6597 6598 6599
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
6600
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6601
		if (IS_ERR(name)) {
6602 6603
			name = "//toolong";
			goto cpy_name;
6604
		}
6605 6606 6607 6608 6609 6610
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6633
		goto got_name;
6634
	} else {
6635 6636 6637 6638 6639 6640
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6641
		name = (char *)arch_vma_name(vma);
6642 6643
		if (name)
			goto cpy_name;
6644

6645
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6646
				vma->vm_end >= vma->vm_mm->brk) {
6647 6648
			name = "[heap]";
			goto cpy_name;
6649 6650
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6651
				vma->vm_end >= vma->vm_mm->start_stack) {
6652 6653
			name = "[stack]";
			goto cpy_name;
6654 6655
		}

6656 6657
		name = "//anon";
		goto cpy_name;
6658 6659
	}

6660 6661 6662
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6663
got_name:
6664 6665 6666 6667 6668 6669 6670 6671
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6672 6673 6674

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6675 6676 6677 6678
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6679 6680
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6681

6682 6683 6684
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6685
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6686

6687
	perf_iterate_sb(perf_event_mmap_output,
6688 6689
		       mmap_event,
		       NULL);
6690

6691 6692 6693
	kfree(buf);
}

6694 6695 6696 6697 6698 6699 6700
/*
 * Check whether inode and address range match filter criteria.
 */
static bool perf_addr_filter_match(struct perf_addr_filter *filter,
				     struct file *file, unsigned long offset,
				     unsigned long size)
{
A
Al Viro 已提交
6701
	if (filter->inode != file_inode(file))
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
		return false;

	if (filter->offset > offset + size)
		return false;

	if (filter->offset + filter->size < offset)
		return false;

	return true;
}

static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct vm_area_struct *vma = data;
	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
	struct file *file = vma->vm_file;
	struct perf_addr_filter *filter;
	unsigned int restart = 0, count = 0;

	if (!has_addr_filter(event))
		return;

	if (!file)
		return;

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		if (perf_addr_filter_match(filter, file, off,
					     vma->vm_end - vma->vm_start)) {
			event->addr_filters_offs[count] = vma->vm_start;
			restart++;
		}

		count++;
	}

	if (restart)
		event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	if (restart)
6744
		perf_event_stop(event, 1);
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
}

/*
 * Adjust all task's events' filters to the new vma
 */
static void perf_addr_filters_adjust(struct vm_area_struct *vma)
{
	struct perf_event_context *ctx;
	int ctxn;

6755 6756 6757 6758 6759 6760 6761
	/*
	 * Data tracing isn't supported yet and as such there is no need
	 * to keep track of anything that isn't related to executable code:
	 */
	if (!(vma->vm_flags & VM_EXEC))
		return;

6762 6763 6764 6765 6766 6767
	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (!ctx)
			continue;

6768
		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6769 6770 6771 6772
	}
	rcu_read_unlock();
}

6773
void perf_event_mmap(struct vm_area_struct *vma)
6774
{
6775 6776
	struct perf_mmap_event mmap_event;

6777
	if (!atomic_read(&nr_mmap_events))
6778 6779 6780
		return;

	mmap_event = (struct perf_mmap_event){
6781
		.vma	= vma,
6782 6783
		/* .file_name */
		/* .file_size */
6784
		.event_id  = {
6785
			.header = {
6786
				.type = PERF_RECORD_MMAP,
6787
				.misc = PERF_RECORD_MISC_USER,
6788 6789 6790 6791
				/* .size */
			},
			/* .pid */
			/* .tid */
6792 6793
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6794
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6795
		},
6796 6797 6798 6799
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6800 6801
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6802 6803
	};

6804
	perf_addr_filters_adjust(vma);
6805
	perf_event_mmap_event(&mmap_event);
6806 6807
}

A
Alexander Shishkin 已提交
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

6955
	perf_iterate_sb(perf_event_switch_output,
6956 6957 6958 6959
		       &switch_event,
		       NULL);
}

6960 6961 6962 6963
/*
 * IRQ throttle logging
 */

6964
static void perf_log_throttle(struct perf_event *event, int enable)
6965 6966
{
	struct perf_output_handle handle;
6967
	struct perf_sample_data sample;
6968 6969 6970 6971 6972
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6973
		u64				id;
6974
		u64				stream_id;
6975 6976
	} throttle_event = {
		.header = {
6977
			.type = PERF_RECORD_THROTTLE,
6978 6979 6980
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6981
		.time		= perf_event_clock(event),
6982 6983
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6984 6985
	};

6986
	if (enable)
6987
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6988

6989 6990 6991
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6992
				throttle_event.header.size);
6993 6994 6995 6996
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6997
	perf_event__output_id_sample(event, &handle, &sample);
6998 6999 7000
	perf_output_end(&handle);
}

7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

7037
/*
7038
 * Generic event overflow handling, sampling.
7039 7040
 */

7041
static int __perf_event_overflow(struct perf_event *event,
7042 7043
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
7044
{
7045 7046
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
7047
	u64 seq;
7048 7049
	int ret = 0;

7050 7051 7052 7053 7054 7055 7056
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

7057 7058 7059 7060 7061 7062 7063 7064 7065
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
7066
			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
P
Peter Zijlstra 已提交
7067 7068
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
7069 7070
			ret = 1;
		}
7071
	}
7072

7073
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
7074
		u64 now = perf_clock();
7075
		s64 delta = now - hwc->freq_time_stamp;
7076

7077
		hwc->freq_time_stamp = now;
7078

7079
		if (delta > 0 && delta < 2*TICK_NSEC)
7080
			perf_adjust_period(event, delta, hwc->last_period, true);
7081 7082
	}

7083 7084
	/*
	 * XXX event_limit might not quite work as expected on inherited
7085
	 * events
7086 7087
	 */

7088 7089
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
7090
		ret = 1;
7091
		event->pending_kill = POLL_HUP;
7092 7093

		perf_event_disable_inatomic(event);
7094 7095
	}

7096
	READ_ONCE(event->overflow_handler)(event, data, regs);
7097

7098
	if (*perf_event_fasync(event) && event->pending_kill) {
7099 7100
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
7101 7102
	}

7103
	return ret;
7104 7105
}

7106
int perf_event_overflow(struct perf_event *event,
7107 7108
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
7109
{
7110
	return __perf_event_overflow(event, 1, data, regs);
7111 7112
}

7113
/*
7114
 * Generic software event infrastructure
7115 7116
 */

7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

7128
/*
7129 7130
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
7131 7132 7133 7134
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

7135
u64 perf_swevent_set_period(struct perf_event *event)
7136
{
7137
	struct hw_perf_event *hwc = &event->hw;
7138 7139 7140 7141 7142
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
7143 7144

again:
7145
	old = val = local64_read(&hwc->period_left);
7146 7147
	if (val < 0)
		return 0;
7148

7149 7150 7151
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
7152
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7153
		goto again;
7154

7155
	return nr;
7156 7157
}

7158
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7159
				    struct perf_sample_data *data,
7160
				    struct pt_regs *regs)
7161
{
7162
	struct hw_perf_event *hwc = &event->hw;
7163
	int throttle = 0;
7164

7165 7166
	if (!overflow)
		overflow = perf_swevent_set_period(event);
7167

7168 7169
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
7170

7171
	for (; overflow; overflow--) {
7172
		if (__perf_event_overflow(event, throttle,
7173
					    data, regs)) {
7174 7175 7176 7177 7178 7179
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
7180
		throttle = 1;
7181
	}
7182 7183
}

P
Peter Zijlstra 已提交
7184
static void perf_swevent_event(struct perf_event *event, u64 nr,
7185
			       struct perf_sample_data *data,
7186
			       struct pt_regs *regs)
7187
{
7188
	struct hw_perf_event *hwc = &event->hw;
7189

7190
	local64_add(nr, &event->count);
7191

7192 7193 7194
	if (!regs)
		return;

7195
	if (!is_sampling_event(event))
7196
		return;
7197

7198 7199 7200 7201 7202 7203
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

7204
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7205
		return perf_swevent_overflow(event, 1, data, regs);
7206

7207
	if (local64_add_negative(nr, &hwc->period_left))
7208
		return;
7209

7210
	perf_swevent_overflow(event, 0, data, regs);
7211 7212
}

7213 7214 7215
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
7216
	if (event->hw.state & PERF_HES_STOPPED)
7217
		return 1;
P
Peter Zijlstra 已提交
7218

7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

7230
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
7231
				enum perf_type_id type,
L
Li Zefan 已提交
7232 7233 7234
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
7235
{
7236
	if (event->attr.type != type)
7237
		return 0;
7238

7239
	if (event->attr.config != event_id)
7240 7241
		return 0;

7242 7243
	if (perf_exclude_event(event, regs))
		return 0;
7244 7245 7246 7247

	return 1;
}

7248 7249 7250 7251 7252 7253 7254
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

7255 7256
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7257
{
7258 7259 7260 7261
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
7262

7263 7264
/* For the read side: events when they trigger */
static inline struct hlist_head *
7265
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7266 7267
{
	struct swevent_hlist *hlist;
7268

7269
	hlist = rcu_dereference(swhash->swevent_hlist);
7270 7271 7272
	if (!hlist)
		return NULL;

7273 7274 7275 7276 7277
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
7278
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
7289
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7290 7291 7292 7293 7294
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
7295 7296 7297
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7298
				    u64 nr,
7299 7300
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
7301
{
7302
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7303
	struct perf_event *event;
7304
	struct hlist_head *head;
7305

7306
	rcu_read_lock();
7307
	head = find_swevent_head_rcu(swhash, type, event_id);
7308 7309 7310
	if (!head)
		goto end;

7311
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
7312
		if (perf_swevent_match(event, type, event_id, data, regs))
7313
			perf_swevent_event(event, nr, data, regs);
7314
	}
7315 7316
end:
	rcu_read_unlock();
7317 7318
}

7319 7320
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

7321
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
7322
{
7323
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
7324

7325
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
7326
}
I
Ingo Molnar 已提交
7327
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
7328

7329
void perf_swevent_put_recursion_context(int rctx)
7330
{
7331
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7332

7333
	put_recursion_context(swhash->recursion, rctx);
7334
}
7335

7336
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7337
{
7338
	struct perf_sample_data data;
7339

7340
	if (WARN_ON_ONCE(!regs))
7341
		return;
7342

7343
	perf_sample_data_init(&data, addr, 0);
7344
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
7357 7358

	perf_swevent_put_recursion_context(rctx);
7359
fail:
7360
	preempt_enable_notrace();
7361 7362
}

7363
static void perf_swevent_read(struct perf_event *event)
7364 7365 7366
{
}

P
Peter Zijlstra 已提交
7367
static int perf_swevent_add(struct perf_event *event, int flags)
7368
{
7369
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7370
	struct hw_perf_event *hwc = &event->hw;
7371 7372
	struct hlist_head *head;

7373
	if (is_sampling_event(event)) {
7374
		hwc->last_period = hwc->sample_period;
7375
		perf_swevent_set_period(event);
7376
	}
7377

P
Peter Zijlstra 已提交
7378 7379
	hwc->state = !(flags & PERF_EF_START);

7380
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
7381
	if (WARN_ON_ONCE(!head))
7382 7383 7384
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
7385
	perf_event_update_userpage(event);
7386

7387 7388 7389
	return 0;
}

P
Peter Zijlstra 已提交
7390
static void perf_swevent_del(struct perf_event *event, int flags)
7391
{
7392
	hlist_del_rcu(&event->hlist_entry);
7393 7394
}

P
Peter Zijlstra 已提交
7395
static void perf_swevent_start(struct perf_event *event, int flags)
7396
{
P
Peter Zijlstra 已提交
7397
	event->hw.state = 0;
7398
}
I
Ingo Molnar 已提交
7399

P
Peter Zijlstra 已提交
7400
static void perf_swevent_stop(struct perf_event *event, int flags)
7401
{
P
Peter Zijlstra 已提交
7402
	event->hw.state = PERF_HES_STOPPED;
7403 7404
}

7405 7406
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
7407
swevent_hlist_deref(struct swevent_htable *swhash)
7408
{
7409 7410
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
7411 7412
}

7413
static void swevent_hlist_release(struct swevent_htable *swhash)
7414
{
7415
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7416

7417
	if (!hlist)
7418 7419
		return;

7420
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7421
	kfree_rcu(hlist, rcu_head);
7422 7423
}

7424
static void swevent_hlist_put_cpu(int cpu)
7425
{
7426
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7427

7428
	mutex_lock(&swhash->hlist_mutex);
7429

7430 7431
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
7432

7433
	mutex_unlock(&swhash->hlist_mutex);
7434 7435
}

7436
static void swevent_hlist_put(void)
7437 7438 7439 7440
{
	int cpu;

	for_each_possible_cpu(cpu)
7441
		swevent_hlist_put_cpu(cpu);
7442 7443
}

7444
static int swevent_hlist_get_cpu(int cpu)
7445
{
7446
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7447 7448
	int err = 0;

7449 7450
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7451 7452 7453 7454 7455 7456 7457
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
7458
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7459
	}
7460
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
7461
exit:
7462
	mutex_unlock(&swhash->hlist_mutex);
7463 7464 7465 7466

	return err;
}

7467
static int swevent_hlist_get(void)
7468
{
7469
	int err, cpu, failed_cpu;
7470 7471 7472

	get_online_cpus();
	for_each_possible_cpu(cpu) {
7473
		err = swevent_hlist_get_cpu(cpu);
7474 7475 7476 7477 7478 7479 7480 7481
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
7482
fail:
7483 7484 7485
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
7486
		swevent_hlist_put_cpu(cpu);
7487 7488 7489 7490 7491 7492
	}

	put_online_cpus();
	return err;
}

7493
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7494

7495 7496 7497
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
7498

7499 7500
	WARN_ON(event->parent);

7501
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7502
	swevent_hlist_put();
7503 7504 7505 7506
}

static int perf_swevent_init(struct perf_event *event)
{
7507
	u64 event_id = event->attr.config;
7508 7509 7510 7511

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

7512 7513 7514 7515 7516 7517
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7518 7519 7520 7521 7522 7523 7524 7525 7526
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

7527
	if (event_id >= PERF_COUNT_SW_MAX)
7528 7529 7530 7531 7532
		return -ENOENT;

	if (!event->parent) {
		int err;

7533
		err = swevent_hlist_get();
7534 7535 7536
		if (err)
			return err;

7537
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7538 7539 7540 7541 7542 7543 7544
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
7545
	.task_ctx_nr	= perf_sw_context,
7546

7547 7548
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7549
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
7550 7551 7552 7553
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7554 7555 7556
	.read		= perf_swevent_read,
};

7557 7558
#ifdef CONFIG_EVENT_TRACING

7559 7560 7561
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
7562
	void *record = data->raw->frag.data;
7563

7564 7565 7566 7567
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

7568 7569 7570 7571 7572 7573 7574 7575 7576
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
7577 7578
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
7579 7580 7581 7582
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
7583 7584 7585 7586 7587 7588 7589 7590
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
			       struct trace_event_call *call, u64 count,
			       struct pt_regs *regs, struct hlist_head *head,
			       struct task_struct *task)
{
	struct bpf_prog *prog = call->prog;

	if (prog) {
		*(struct pt_regs **)raw_data = regs;
		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
			perf_swevent_put_recursion_context(rctx);
			return;
		}
	}
	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
		      rctx, task);
}
EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);

7610
void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7611 7612
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
7613 7614
{
	struct perf_sample_data data;
7615 7616
	struct perf_event *event;

7617
	struct perf_raw_record raw = {
7618 7619 7620 7621
		.frag = {
			.size = entry_size,
			.data = record,
		},
7622 7623
	};

7624
	perf_sample_data_init(&data, 0, 0);
7625 7626
	data.raw = &raw;

7627 7628
	perf_trace_buf_update(record, event_type);

7629
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7630
		if (perf_tp_event_match(event, &data, regs))
7631
			perf_swevent_event(event, count, &data, regs);
7632
	}
7633

7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

7659
	perf_swevent_put_recursion_context(rctx);
7660 7661 7662
}
EXPORT_SYMBOL_GPL(perf_tp_event);

7663
static void tp_perf_event_destroy(struct perf_event *event)
7664
{
7665
	perf_trace_destroy(event);
7666 7667
}

7668
static int perf_tp_event_init(struct perf_event *event)
7669
{
7670 7671
	int err;

7672 7673 7674
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

7675 7676 7677 7678 7679 7680
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

7681 7682
	err = perf_trace_init(event);
	if (err)
7683
		return err;
7684

7685
	event->destroy = tp_perf_event_destroy;
7686

7687 7688 7689 7690
	return 0;
}

static struct pmu perf_tracepoint = {
7691 7692
	.task_ctx_nr	= perf_sw_context,

7693
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
7694 7695 7696 7697
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
7698 7699 7700 7701 7702
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
7703
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7704
}
L
Li Zefan 已提交
7705 7706 7707 7708 7709 7710

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725
#ifdef CONFIG_BPF_SYSCALL
static void bpf_overflow_handler(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs)
{
	struct bpf_perf_event_data_kern ctx = {
		.data = data,
		.regs = regs,
	};
	int ret = 0;

	preempt_disable();
	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
		goto out;
	rcu_read_lock();
7726
	ret = BPF_PROG_RUN(event->prog, &ctx);
7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778
	rcu_read_unlock();
out:
	__this_cpu_dec(bpf_prog_active);
	preempt_enable();
	if (!ret)
		return;

	event->orig_overflow_handler(event, data, regs);
}

static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->overflow_handler_context)
		/* hw breakpoint or kernel counter */
		return -EINVAL;

	if (event->prog)
		return -EEXIST;

	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

	event->prog = prog;
	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
	return 0;
}

static void perf_event_free_bpf_handler(struct perf_event *event)
{
	struct bpf_prog *prog = event->prog;

	if (!prog)
		return;

	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
	event->prog = NULL;
	bpf_prog_put(prog);
}
#else
static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
{
	return -EOPNOTSUPP;
}
static void perf_event_free_bpf_handler(struct perf_event *event)
{
}
#endif

7779 7780
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
7781
	bool is_kprobe, is_tracepoint;
7782 7783
	struct bpf_prog *prog;

7784 7785 7786 7787
	if (event->attr.type == PERF_TYPE_HARDWARE ||
	    event->attr.type == PERF_TYPE_SOFTWARE)
		return perf_event_set_bpf_handler(event, prog_fd);

7788 7789 7790 7791 7792 7793
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7794 7795 7796 7797
	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
	if (!is_kprobe && !is_tracepoint)
		/* bpf programs can only be attached to u/kprobe or tracepoint */
7798 7799 7800 7801 7802 7803
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7804 7805
	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7806 7807 7808 7809 7810
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

7811 7812 7813 7814 7815 7816 7817 7818
	if (is_tracepoint) {
		int off = trace_event_get_offsets(event->tp_event);

		if (prog->aux->max_ctx_offset > off) {
			bpf_prog_put(prog);
			return -EACCES;
		}
	}
7819 7820 7821 7822 7823 7824 7825 7826 7827
	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

7828 7829
	perf_event_free_bpf_handler(event);

7830 7831 7832 7833 7834 7835
	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
7836
		bpf_prog_put(prog);
7837 7838 7839
	}
}

7840
#else
L
Li Zefan 已提交
7841

7842
static inline void perf_tp_register(void)
7843 7844
{
}
L
Li Zefan 已提交
7845 7846 7847 7848 7849

static void perf_event_free_filter(struct perf_event *event)
{
}

7850 7851 7852 7853 7854 7855 7856 7857
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7858
#endif /* CONFIG_EVENT_TRACING */
7859

7860
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7861
void perf_bp_event(struct perf_event *bp, void *data)
7862
{
7863 7864 7865
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7866
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7867

P
Peter Zijlstra 已提交
7868
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7869
		perf_swevent_event(bp, 1, &sample, regs);
7870 7871 7872
}
#endif

7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987
/*
 * Allocate a new address filter
 */
static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
{
	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
	struct perf_addr_filter *filter;

	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
	if (!filter)
		return NULL;

	INIT_LIST_HEAD(&filter->entry);
	list_add_tail(&filter->entry, filters);

	return filter;
}

static void free_filters_list(struct list_head *filters)
{
	struct perf_addr_filter *filter, *iter;

	list_for_each_entry_safe(filter, iter, filters, entry) {
		if (filter->inode)
			iput(filter->inode);
		list_del(&filter->entry);
		kfree(filter);
	}
}

/*
 * Free existing address filters and optionally install new ones
 */
static void perf_addr_filters_splice(struct perf_event *event,
				     struct list_head *head)
{
	unsigned long flags;
	LIST_HEAD(list);

	if (!has_addr_filter(event))
		return;

	/* don't bother with children, they don't have their own filters */
	if (event->parent)
		return;

	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);

	list_splice_init(&event->addr_filters.list, &list);
	if (head)
		list_splice(head, &event->addr_filters.list);

	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);

	free_filters_list(&list);
}

/*
 * Scan through mm's vmas and see if one of them matches the
 * @filter; if so, adjust filter's address range.
 * Called with mm::mmap_sem down for reading.
 */
static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
					    struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct file *file = vma->vm_file;
		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
		unsigned long vma_size = vma->vm_end - vma->vm_start;

		if (!file)
			continue;

		if (!perf_addr_filter_match(filter, file, off, vma_size))
			continue;

		return vma->vm_start;
	}

	return 0;
}

/*
 * Update event's address range filters based on the
 * task's existing mappings, if any.
 */
static void perf_event_addr_filters_apply(struct perf_event *event)
{
	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
	struct task_struct *task = READ_ONCE(event->ctx->task);
	struct perf_addr_filter *filter;
	struct mm_struct *mm = NULL;
	unsigned int count = 0;
	unsigned long flags;

	/*
	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
	 * will stop on the parent's child_mutex that our caller is also holding
	 */
	if (task == TASK_TOMBSTONE)
		return;

	mm = get_task_mm(event->ctx->task);
	if (!mm)
		goto restart;

	down_read(&mm->mmap_sem);

	raw_spin_lock_irqsave(&ifh->lock, flags);
	list_for_each_entry(filter, &ifh->list, entry) {
		event->addr_filters_offs[count] = 0;

7988 7989 7990 7991 7992
		/*
		 * Adjust base offset if the filter is associated to a binary
		 * that needs to be mapped:
		 */
		if (filter->inode)
7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006
			event->addr_filters_offs[count] =
				perf_addr_filter_apply(filter, mm);

		count++;
	}

	event->addr_filters_gen++;
	raw_spin_unlock_irqrestore(&ifh->lock, flags);

	up_read(&mm->mmap_sem);

	mmput(mm);

restart:
8007
	perf_event_stop(event, 1);
8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
}

/*
 * Address range filtering: limiting the data to certain
 * instruction address ranges. Filters are ioctl()ed to us from
 * userspace as ascii strings.
 *
 * Filter string format:
 *
 * ACTION RANGE_SPEC
 * where ACTION is one of the
 *  * "filter": limit the trace to this region
 *  * "start": start tracing from this address
 *  * "stop": stop tracing at this address/region;
 * RANGE_SPEC is
 *  * for kernel addresses: <start address>[/<size>]
 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
 *
 * if <size> is not specified, the range is treated as a single address.
 */
enum {
8029
	IF_ACT_NONE = -1,
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
	IF_ACT_FILTER,
	IF_ACT_START,
	IF_ACT_STOP,
	IF_SRC_FILE,
	IF_SRC_KERNEL,
	IF_SRC_FILEADDR,
	IF_SRC_KERNELADDR,
};

enum {
	IF_STATE_ACTION = 0,
	IF_STATE_SOURCE,
	IF_STATE_END,
};

static const match_table_t if_tokens = {
	{ IF_ACT_FILTER,	"filter" },
	{ IF_ACT_START,		"start" },
	{ IF_ACT_STOP,		"stop" },
	{ IF_SRC_FILE,		"%u/%u@%s" },
	{ IF_SRC_KERNEL,	"%u/%u" },
	{ IF_SRC_FILEADDR,	"%u@%s" },
	{ IF_SRC_KERNELADDR,	"%u" },
8053
	{ IF_ACT_NONE,		NULL },
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
};

/*
 * Address filter string parser
 */
static int
perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
			     struct list_head *filters)
{
	struct perf_addr_filter *filter = NULL;
	char *start, *orig, *filename = NULL;
	struct path path;
	substring_t args[MAX_OPT_ARGS];
	int state = IF_STATE_ACTION, token;
	unsigned int kernel = 0;
	int ret = -EINVAL;

	orig = fstr = kstrdup(fstr, GFP_KERNEL);
	if (!fstr)
		return -ENOMEM;

	while ((start = strsep(&fstr, " ,\n")) != NULL) {
		ret = -EINVAL;

		if (!*start)
			continue;

		/* filter definition begins */
		if (state == IF_STATE_ACTION) {
			filter = perf_addr_filter_new(event, filters);
			if (!filter)
				goto fail;
		}

		token = match_token(start, if_tokens, args);
		switch (token) {
		case IF_ACT_FILTER:
		case IF_ACT_START:
			filter->filter = 1;

		case IF_ACT_STOP:
			if (state != IF_STATE_ACTION)
				goto fail;

			state = IF_STATE_SOURCE;
			break;

		case IF_SRC_KERNELADDR:
		case IF_SRC_KERNEL:
			kernel = 1;

		case IF_SRC_FILEADDR:
		case IF_SRC_FILE:
			if (state != IF_STATE_SOURCE)
				goto fail;

			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
				filter->range = 1;

			*args[0].to = 0;
			ret = kstrtoul(args[0].from, 0, &filter->offset);
			if (ret)
				goto fail;

			if (filter->range) {
				*args[1].to = 0;
				ret = kstrtoul(args[1].from, 0, &filter->size);
				if (ret)
					goto fail;
			}

8125 8126 8127 8128
			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
				int fpos = filter->range ? 2 : 1;

				filename = match_strdup(&args[fpos]);
8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236
				if (!filename) {
					ret = -ENOMEM;
					goto fail;
				}
			}

			state = IF_STATE_END;
			break;

		default:
			goto fail;
		}

		/*
		 * Filter definition is fully parsed, validate and install it.
		 * Make sure that it doesn't contradict itself or the event's
		 * attribute.
		 */
		if (state == IF_STATE_END) {
			if (kernel && event->attr.exclude_kernel)
				goto fail;

			if (!kernel) {
				if (!filename)
					goto fail;

				/* look up the path and grab its inode */
				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
				if (ret)
					goto fail_free_name;

				filter->inode = igrab(d_inode(path.dentry));
				path_put(&path);
				kfree(filename);
				filename = NULL;

				ret = -EINVAL;
				if (!filter->inode ||
				    !S_ISREG(filter->inode->i_mode))
					/* free_filters_list() will iput() */
					goto fail;
			}

			/* ready to consume more filters */
			state = IF_STATE_ACTION;
			filter = NULL;
		}
	}

	if (state != IF_STATE_ACTION)
		goto fail;

	kfree(orig);

	return 0;

fail_free_name:
	kfree(filename);
fail:
	free_filters_list(filters);
	kfree(orig);

	return ret;
}

static int
perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
{
	LIST_HEAD(filters);
	int ret;

	/*
	 * Since this is called in perf_ioctl() path, we're already holding
	 * ctx::mutex.
	 */
	lockdep_assert_held(&event->ctx->mutex);

	if (WARN_ON_ONCE(event->parent))
		return -EINVAL;

	/*
	 * For now, we only support filtering in per-task events; doing so
	 * for CPU-wide events requires additional context switching trickery,
	 * since same object code will be mapped at different virtual
	 * addresses in different processes.
	 */
	if (!event->ctx->task)
		return -EOPNOTSUPP;

	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
	if (ret)
		return ret;

	ret = event->pmu->addr_filters_validate(&filters);
	if (ret) {
		free_filters_list(&filters);
		return ret;
	}

	/* remove existing filters, if any */
	perf_addr_filters_splice(event, &filters);

	/* install new filters */
	perf_event_for_each_child(event, perf_event_addr_filters_apply);

	return ret;
}

8237 8238 8239 8240 8241
static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret = -EINVAL;

8242 8243 8244
	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
	    !has_addr_filter(event))
8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
	    event->attr.type == PERF_TYPE_TRACEPOINT)
		ret = ftrace_profile_set_filter(event, event->attr.config,
						filter_str);
8255 8256
	else if (has_addr_filter(event))
		ret = perf_event_set_addr_filter(event, filter_str);
8257 8258 8259 8260 8261

	kfree(filter_str);
	return ret;
}

8262 8263 8264
/*
 * hrtimer based swevent callback
 */
8265

8266
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8267
{
8268 8269 8270 8271 8272
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
8273

8274
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
8275 8276 8277 8278

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

8279
	event->pmu->read(event);
8280

8281
	perf_sample_data_init(&data, 0, event->hw.last_period);
8282 8283 8284
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
8285
		if (!(event->attr.exclude_idle && is_idle_task(current)))
8286
			if (__perf_event_overflow(event, 1, &data, regs))
8287 8288
				ret = HRTIMER_NORESTART;
	}
8289

8290 8291
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8292

8293
	return ret;
8294 8295
}

8296
static void perf_swevent_start_hrtimer(struct perf_event *event)
8297
{
8298
	struct hw_perf_event *hwc = &event->hw;
8299 8300 8301 8302
	s64 period;

	if (!is_sampling_event(event))
		return;
8303

8304 8305 8306 8307
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
8308

8309 8310 8311 8312
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
8313 8314
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
8315
}
8316 8317

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8318
{
8319 8320
	struct hw_perf_event *hwc = &event->hw;

8321
	if (is_sampling_event(event)) {
8322
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
8323
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8324 8325 8326

		hrtimer_cancel(&hwc->hrtimer);
	}
8327 8328
}

P
Peter Zijlstra 已提交
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
8349
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
8350 8351 8352 8353
		event->attr.freq = 0;
	}
}

8354 8355 8356 8357 8358
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
8359
{
8360 8361 8362
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
8363
	now = local_clock();
8364 8365
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
8366 8367
}

P
Peter Zijlstra 已提交
8368
static void cpu_clock_event_start(struct perf_event *event, int flags)
8369
{
P
Peter Zijlstra 已提交
8370
	local64_set(&event->hw.prev_count, local_clock());
8371 8372 8373
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8374
static void cpu_clock_event_stop(struct perf_event *event, int flags)
8375
{
8376 8377 8378
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
8379

P
Peter Zijlstra 已提交
8380 8381 8382 8383
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
8384
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
8385 8386 8387 8388 8389 8390 8391 8392 8393

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

8394 8395 8396 8397
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
8398

8399 8400 8401 8402 8403 8404 8405 8406
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

8407 8408 8409 8410 8411 8412
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8413 8414
	perf_swevent_init_hrtimer(event);

8415
	return 0;
8416 8417
}

8418
static struct pmu perf_cpu_clock = {
8419 8420
	.task_ctx_nr	= perf_sw_context,

8421 8422
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8423
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
8424 8425 8426 8427
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
8428 8429 8430 8431 8432 8433 8434 8435
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
8436
{
8437 8438
	u64 prev;
	s64 delta;
8439

8440 8441 8442 8443
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
8444

P
Peter Zijlstra 已提交
8445
static void task_clock_event_start(struct perf_event *event, int flags)
8446
{
P
Peter Zijlstra 已提交
8447
	local64_set(&event->hw.prev_count, event->ctx->time);
8448 8449 8450
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
8451
static void task_clock_event_stop(struct perf_event *event, int flags)
8452 8453 8454
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
8455 8456 8457 8458 8459 8460
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
8461
	perf_event_update_userpage(event);
8462

P
Peter Zijlstra 已提交
8463 8464 8465 8466 8467 8468
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
8469 8470 8471 8472
}

static void task_clock_event_read(struct perf_event *event)
{
8473 8474 8475
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
8476 8477 8478 8479 8480

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
8481
{
8482 8483 8484 8485 8486 8487
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

8488 8489 8490 8491 8492 8493
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
8494 8495
	perf_swevent_init_hrtimer(event);

8496
	return 0;
L
Li Zefan 已提交
8497 8498
}

8499
static struct pmu perf_task_clock = {
8500 8501
	.task_ctx_nr	= perf_sw_context,

8502 8503
	.capabilities	= PERF_PMU_CAP_NO_NMI,

8504
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
8505 8506 8507 8508
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
8509 8510
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
8511

P
Peter Zijlstra 已提交
8512
static void perf_pmu_nop_void(struct pmu *pmu)
8513 8514
{
}
L
Li Zefan 已提交
8515

8516 8517 8518 8519
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
8520
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
8521
{
P
Peter Zijlstra 已提交
8522
	return 0;
L
Li Zefan 已提交
8523 8524
}

8525
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8526 8527

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
8528
{
8529 8530 8531 8532 8533
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8534
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
8535 8536
}

P
Peter Zijlstra 已提交
8537 8538
static int perf_pmu_commit_txn(struct pmu *pmu)
{
8539 8540 8541 8542 8543 8544 8545
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
8546 8547 8548
	perf_pmu_enable(pmu);
	return 0;
}
8549

P
Peter Zijlstra 已提交
8550
static void perf_pmu_cancel_txn(struct pmu *pmu)
8551
{
8552 8553 8554 8555 8556 8557 8558
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
8559
	perf_pmu_enable(pmu);
8560 8561
}

8562 8563
static int perf_event_idx_default(struct perf_event *event)
{
8564
	return 0;
8565 8566
}

P
Peter Zijlstra 已提交
8567 8568 8569 8570
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
8571
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8572
{
P
Peter Zijlstra 已提交
8573
	struct pmu *pmu;
8574

P
Peter Zijlstra 已提交
8575 8576
	if (ctxn < 0)
		return NULL;
8577

P
Peter Zijlstra 已提交
8578 8579 8580 8581
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
8582

P
Peter Zijlstra 已提交
8583
	return NULL;
8584 8585
}

8586
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8587
{
8588 8589 8590 8591 8592 8593 8594
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

8595 8596
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
8597 8598 8599 8600 8601 8602
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
8603

P
Peter Zijlstra 已提交
8604
	mutex_lock(&pmus_lock);
8605
	/*
P
Peter Zijlstra 已提交
8606
	 * Like a real lame refcount.
8607
	 */
8608 8609 8610
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
8611
			goto out;
8612
		}
P
Peter Zijlstra 已提交
8613
	}
8614

8615
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
8616 8617
out:
	mutex_unlock(&pmus_lock);
8618
}
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632

/*
 * Let userspace know that this PMU supports address range filtering:
 */
static ssize_t nr_addr_filters_show(struct device *dev,
				    struct device_attribute *attr,
				    char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
}
DEVICE_ATTR_RO(nr_addr_filters);

P
Peter Zijlstra 已提交
8633
static struct idr pmu_idr;
8634

P
Peter Zijlstra 已提交
8635 8636 8637 8638 8639 8640 8641
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
8642
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
8643

8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

8654 8655
static DEFINE_MUTEX(mux_interval_mutex);

8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

8675
	mutex_lock(&mux_interval_mutex);
8676 8677 8678
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
8679 8680
	get_online_cpus();
	for_each_online_cpu(cpu) {
8681 8682 8683 8684
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

8685 8686
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8687
	}
8688 8689
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
8690 8691 8692

	return count;
}
8693
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8694

8695 8696 8697 8698
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
8699
};
8700
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
8701 8702 8703 8704

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
8705
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

8721
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

8734 8735 8736 8737 8738 8739 8740
	/* For PMUs with address filters, throw in an extra attribute: */
	if (pmu->nr_addr_filters)
		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);

	if (ret)
		goto del_dev;

P
Peter Zijlstra 已提交
8741 8742 8743
out:
	return ret;

8744 8745 8746
del_dev:
	device_del(pmu->dev);

P
Peter Zijlstra 已提交
8747 8748 8749 8750 8751
free_dev:
	put_device(pmu->dev);
	goto out;
}

8752
static struct lock_class_key cpuctx_mutex;
8753
static struct lock_class_key cpuctx_lock;
8754

8755
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8756
{
P
Peter Zijlstra 已提交
8757
	int cpu, ret;
8758

8759
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
8760 8761 8762 8763
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
8764

P
Peter Zijlstra 已提交
8765 8766 8767 8768 8769 8770
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
8771 8772 8773
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
8774 8775 8776 8777 8778
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
8779 8780 8781 8782 8783 8784
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
8785
skip_type:
8786 8787 8788
	if (pmu->task_ctx_nr == perf_hw_context) {
		static int hw_context_taken = 0;

8789 8790 8791 8792 8793 8794 8795
		/*
		 * Other than systems with heterogeneous CPUs, it never makes
		 * sense for two PMUs to share perf_hw_context. PMUs which are
		 * uncore must use perf_invalid_context.
		 */
		if (WARN_ON_ONCE(hw_context_taken &&
		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8796 8797 8798 8799 8800
			pmu->task_ctx_nr = perf_invalid_context;

		hw_context_taken = 1;
	}

P
Peter Zijlstra 已提交
8801 8802 8803
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
8804

W
Wei Yongjun 已提交
8805
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
8806 8807
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
8808
		goto free_dev;
8809

P
Peter Zijlstra 已提交
8810 8811 8812 8813
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8814
		__perf_event_init_context(&cpuctx->ctx);
8815
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8816
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
8817
		cpuctx->ctx.pmu = pmu;
8818

8819
		__perf_mux_hrtimer_init(cpuctx, cpu);
8820

8821
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
8822
	}
8823

P
Peter Zijlstra 已提交
8824
got_cpu_context:
P
Peter Zijlstra 已提交
8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
8836
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
8837 8838
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
8839
		}
8840
	}
8841

P
Peter Zijlstra 已提交
8842 8843 8844 8845 8846
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

8847 8848 8849
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

8850
	list_add_rcu(&pmu->entry, &pmus);
8851
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
8852 8853
	ret = 0;
unlock:
8854 8855
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
8856
	return ret;
P
Peter Zijlstra 已提交
8857

P
Peter Zijlstra 已提交
8858 8859 8860 8861
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
8862 8863 8864 8865
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
8866 8867 8868
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
8869
}
8870
EXPORT_SYMBOL_GPL(perf_pmu_register);
8871

8872
void perf_pmu_unregister(struct pmu *pmu)
8873
{
8874 8875
	int remove_device;

8876
	mutex_lock(&pmus_lock);
8877
	remove_device = pmu_bus_running;
8878 8879
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
8880

8881
	/*
P
Peter Zijlstra 已提交
8882 8883
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
8884
	 */
8885
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
8886
	synchronize_rcu();
8887

P
Peter Zijlstra 已提交
8888
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
8889 8890
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
8891 8892 8893 8894 8895 8896
	if (remove_device) {
		if (pmu->nr_addr_filters)
			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
		device_del(pmu->dev);
		put_device(pmu->dev);
	}
8897
	free_pmu_context(pmu);
8898
}
8899
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8900

8901 8902
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
8903
	struct perf_event_context *ctx = NULL;
8904 8905 8906 8907
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
8908 8909

	if (event->group_leader != event) {
8910 8911 8912 8913 8914 8915
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
8916 8917 8918
		BUG_ON(!ctx);
	}

8919 8920
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
8921 8922 8923 8924

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

8925 8926 8927 8928 8929 8930
	if (ret)
		module_put(pmu->module);

	return ret;
}

8931
static struct pmu *perf_init_event(struct perf_event *event)
8932 8933 8934
{
	struct pmu *pmu = NULL;
	int idx;
8935
	int ret;
8936 8937

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
8938 8939 8940 8941

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
8942
	if (pmu) {
8943
		ret = perf_try_init_event(pmu, event);
8944 8945
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8946
		goto unlock;
8947
	}
P
Peter Zijlstra 已提交
8948

8949
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8950
		ret = perf_try_init_event(pmu, event);
8951
		if (!ret)
P
Peter Zijlstra 已提交
8952
			goto unlock;
8953

8954 8955
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
8956
			goto unlock;
8957
		}
8958
	}
P
Peter Zijlstra 已提交
8959 8960
	pmu = ERR_PTR(-ENOENT);
unlock:
8961
	srcu_read_unlock(&pmus_srcu, idx);
8962

8963
	return pmu;
8964 8965
}

8966 8967 8968 8969 8970 8971 8972 8973 8974
static void attach_sb_event(struct perf_event *event)
{
	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);

	raw_spin_lock(&pel->lock);
	list_add_rcu(&event->sb_list, &pel->list);
	raw_spin_unlock(&pel->lock);
}

8975 8976 8977 8978 8979 8980 8981
/*
 * We keep a list of all !task (and therefore per-cpu) events
 * that need to receive side-band records.
 *
 * This avoids having to scan all the various PMU per-cpu contexts
 * looking for them.
 */
8982 8983
static void account_pmu_sb_event(struct perf_event *event)
{
8984
	if (is_sb_event(event))
8985 8986 8987
		attach_sb_event(event);
}

8988 8989 8990 8991 8992 8993 8994 8995 8996
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017
/* Freq events need the tick to stay alive (see perf_event_task_tick). */
static void account_freq_event_nohz(void)
{
#ifdef CONFIG_NO_HZ_FULL
	/* Lock so we don't race with concurrent unaccount */
	spin_lock(&nr_freq_lock);
	if (atomic_inc_return(&nr_freq_events) == 1)
		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
	spin_unlock(&nr_freq_lock);
#endif
}

static void account_freq_event(void)
{
	if (tick_nohz_full_enabled())
		account_freq_event_nohz();
	else
		atomic_inc(&nr_freq_events);
}


9018 9019
static void account_event(struct perf_event *event)
{
9020 9021
	bool inc = false;

9022 9023 9024
	if (event->parent)
		return;

9025
	if (event->attach_state & PERF_ATTACH_TASK)
9026
		inc = true;
9027 9028 9029 9030 9031 9032
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
9033 9034
	if (event->attr.freq)
		account_freq_event();
9035 9036
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
9037
		inc = true;
9038
	}
9039
	if (has_branch_stack(event))
9040
		inc = true;
9041
	if (is_cgroup_event(event))
9042 9043
		inc = true;

9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065
	if (inc) {
		if (atomic_inc_not_zero(&perf_sched_count))
			goto enabled;

		mutex_lock(&perf_sched_mutex);
		if (!atomic_read(&perf_sched_count)) {
			static_branch_enable(&perf_sched_events);
			/*
			 * Guarantee that all CPUs observe they key change and
			 * call the perf scheduling hooks before proceeding to
			 * install events that need them.
			 */
			synchronize_sched();
		}
		/*
		 * Now that we have waited for the sync_sched(), allow further
		 * increments to by-pass the mutex.
		 */
		atomic_inc(&perf_sched_count);
		mutex_unlock(&perf_sched_mutex);
	}
enabled:
9066 9067

	account_event_cpu(event, event->cpu);
9068 9069

	account_pmu_sb_event(event);
9070 9071
}

T
Thomas Gleixner 已提交
9072
/*
9073
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
9074
 */
9075
static struct perf_event *
9076
perf_event_alloc(struct perf_event_attr *attr, int cpu,
9077 9078 9079
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
9080
		 perf_overflow_handler_t overflow_handler,
9081
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
9082
{
P
Peter Zijlstra 已提交
9083
	struct pmu *pmu;
9084 9085
	struct perf_event *event;
	struct hw_perf_event *hwc;
9086
	long err = -EINVAL;
T
Thomas Gleixner 已提交
9087

9088 9089 9090 9091 9092
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

9093
	event = kzalloc(sizeof(*event), GFP_KERNEL);
9094
	if (!event)
9095
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
9096

9097
	/*
9098
	 * Single events are their own group leaders, with an
9099 9100 9101
	 * empty sibling list:
	 */
	if (!group_leader)
9102
		group_leader = event;
9103

9104 9105
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
9106

9107 9108 9109
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
9110
	INIT_LIST_HEAD(&event->rb_entry);
9111
	INIT_LIST_HEAD(&event->active_entry);
9112
	INIT_LIST_HEAD(&event->addr_filters.list);
9113 9114
	INIT_HLIST_NODE(&event->hlist_entry);

9115

9116
	init_waitqueue_head(&event->waitq);
9117
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
9118

9119
	mutex_init(&event->mmap_mutex);
9120
	raw_spin_lock_init(&event->addr_filters.lock);
9121

9122
	atomic_long_set(&event->refcount, 1);
9123 9124 9125 9126 9127
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
9128

9129
	event->parent		= parent_event;
9130

9131
	event->ns		= get_pid_ns(task_active_pid_ns(current));
9132
	event->id		= atomic64_inc_return(&perf_event_id);
9133

9134
	event->state		= PERF_EVENT_STATE_INACTIVE;
9135

9136 9137 9138
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
9139 9140 9141
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
9142
		 */
9143
		event->hw.target = task;
9144 9145
	}

9146 9147 9148 9149
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

9150
	if (!overflow_handler && parent_event) {
9151
		overflow_handler = parent_event->overflow_handler;
9152
		context = parent_event->overflow_handler_context;
9153
#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165
		if (overflow_handler == bpf_overflow_handler) {
			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);

			if (IS_ERR(prog)) {
				err = PTR_ERR(prog);
				goto err_ns;
			}
			event->prog = prog;
			event->orig_overflow_handler =
				parent_event->orig_overflow_handler;
		}
#endif
9166
	}
9167

9168 9169 9170
	if (overflow_handler) {
		event->overflow_handler	= overflow_handler;
		event->overflow_handler_context = context;
9171 9172 9173
	} else if (is_write_backward(event)){
		event->overflow_handler = perf_event_output_backward;
		event->overflow_handler_context = NULL;
9174
	} else {
9175
		event->overflow_handler = perf_event_output_forward;
9176 9177
		event->overflow_handler_context = NULL;
	}
9178

J
Jiri Olsa 已提交
9179
	perf_event__state_init(event);
9180

9181
	pmu = NULL;
9182

9183
	hwc = &event->hw;
9184
	hwc->sample_period = attr->sample_period;
9185
	if (attr->freq && attr->sample_freq)
9186
		hwc->sample_period = 1;
9187
	hwc->last_period = hwc->sample_period;
9188

9189
	local64_set(&hwc->period_left, hwc->sample_period);
9190

9191
	/*
9192
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9193
	 */
9194
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9195
		goto err_ns;
9196 9197 9198

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
9199

9200 9201 9202 9203 9204 9205
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

9206
	pmu = perf_init_event(event);
9207
	if (!pmu)
9208 9209
		goto err_ns;
	else if (IS_ERR(pmu)) {
9210
		err = PTR_ERR(pmu);
9211
		goto err_ns;
I
Ingo Molnar 已提交
9212
	}
9213

9214 9215 9216 9217
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228
	if (has_addr_filter(event)) {
		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
						   sizeof(unsigned long),
						   GFP_KERNEL);
		if (!event->addr_filters_offs)
			goto err_per_task;

		/* force hw sync on the address filters */
		event->addr_filters_gen = 1;
	}

9229
	if (!event->parent) {
9230
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9231
			err = get_callchain_buffers(attr->sample_max_stack);
9232
			if (err)
9233
				goto err_addr_filters;
9234
		}
9235
	}
9236

9237 9238 9239
	/* symmetric to unaccount_event() in _free_event() */
	account_event(event);

9240
	return event;
9241

9242 9243 9244
err_addr_filters:
	kfree(event->addr_filters_offs);

9245 9246 9247
err_per_task:
	exclusive_event_destroy(event);

9248 9249 9250
err_pmu:
	if (event->destroy)
		event->destroy(event);
9251
	module_put(pmu->module);
9252
err_ns:
9253 9254
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
9255 9256 9257 9258 9259
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
9260 9261
}

9262 9263
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
9264 9265
{
	u32 size;
9266
	int ret;
9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
9291 9292 9293
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
9294 9295
	 */
	if (size > sizeof(*attr)) {
9296 9297 9298
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
9299

9300 9301
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
9302

9303
		for (; addr < end; addr++) {
9304 9305 9306 9307 9308 9309
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
9310
		size = sizeof(*attr);
9311 9312 9313 9314 9315 9316
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

9317
	if (attr->__reserved_1)
9318 9319 9320 9321 9322 9323 9324 9325
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
9354 9355
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9356 9357
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
9358
	}
9359

9360
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9361
		ret = perf_reg_validate(attr->sample_regs_user);
9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
9380

9381 9382
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
9383 9384 9385 9386 9387 9388 9389 9390 9391
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

9392 9393
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9394
{
9395
	struct ring_buffer *rb = NULL;
9396 9397
	int ret = -EINVAL;

9398
	if (!output_event)
9399 9400
		goto set;

9401 9402
	/* don't allow circular references */
	if (event == output_event)
9403 9404
		goto out;

9405 9406 9407 9408 9409 9410 9411
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
9412
	 * If its not a per-cpu rb, it must be the same task.
9413 9414 9415 9416
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

9417 9418 9419 9420 9421 9422
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

9423 9424 9425 9426 9427 9428 9429
	/*
	 * Either writing ring buffer from beginning or from end.
	 * Mixing is not allowed.
	 */
	if (is_write_backward(output_event) != is_write_backward(event))
		goto out;

9430 9431 9432 9433 9434 9435 9436
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

9437
set:
9438
	mutex_lock(&event->mmap_mutex);
9439 9440 9441
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
9442

9443
	if (output_event) {
9444 9445 9446
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
9447
			goto unlock;
9448 9449
	}

9450
	ring_buffer_attach(event, rb);
9451

9452
	ret = 0;
9453 9454 9455
unlock:
	mutex_unlock(&event->mmap_mutex);

9456 9457 9458 9459
out:
	return ret;
}

P
Peter Zijlstra 已提交
9460 9461 9462 9463 9464 9465 9466 9467 9468
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
9506
/**
9507
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
9508
 *
9509
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
9510
 * @pid:		target pid
I
Ingo Molnar 已提交
9511
 * @cpu:		target cpu
9512
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
9513
 */
9514 9515
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
9516
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
9517
{
9518 9519
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
9520
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
9521
	struct perf_event_context *ctx, *uninitialized_var(gctx);
9522
	struct file *event_file = NULL;
9523
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
9524
	struct task_struct *task = NULL;
9525
	struct pmu *pmu;
9526
	int event_fd;
9527
	int move_group = 0;
9528
	int err;
9529
	int f_flags = O_RDWR;
9530
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
9531

9532
	/* for future expandability... */
S
Stephane Eranian 已提交
9533
	if (flags & ~PERF_FLAG_ALL)
9534 9535
		return -EINVAL;

9536 9537 9538
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
9539

9540 9541 9542 9543 9544
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

9545
	if (attr.freq) {
9546
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9547
			return -EINVAL;
9548 9549 9550
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
9551 9552
	}

9553 9554 9555
	if (!attr.sample_max_stack)
		attr.sample_max_stack = sysctl_perf_event_max_stack;

S
Stephane Eranian 已提交
9556 9557 9558 9559 9560 9561 9562 9563 9564
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

9565 9566 9567 9568
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
9569 9570 9571
	if (event_fd < 0)
		return event_fd;

9572
	if (group_fd != -1) {
9573 9574
		err = perf_fget_light(group_fd, &group);
		if (err)
9575
			goto err_fd;
9576
		group_leader = group.file->private_data;
9577 9578 9579 9580 9581 9582
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
9583
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9584 9585 9586 9587 9588 9589 9590
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

9591 9592 9593 9594 9595 9596
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

9597 9598
	get_online_cpus();

9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616
	if (task) {
		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
		if (err)
			goto err_cpus;

		/*
		 * Reuse ptrace permission checks for now.
		 *
		 * We must hold cred_guard_mutex across this and any potential
		 * perf_install_in_context() call for this new event to
		 * serialize against exec() altering our credentials (and the
		 * perf_event_exit_task() that could imply).
		 */
		err = -EACCES;
		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
			goto err_cred;
	}

9617 9618 9619
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

9620
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9621
				 NULL, NULL, cgroup_fd);
9622 9623
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
9624
		goto err_cred;
9625 9626
	}

9627 9628
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9629
			err = -EOPNOTSUPP;
9630 9631 9632 9633
			goto err_alloc;
		}
	}

9634 9635 9636 9637 9638
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
9639

9640 9641 9642 9643 9644 9645
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

9646 9647 9648
	if (pmu->task_ctx_nr == perf_sw_context)
		event->event_caps |= PERF_EV_CAP_SOFTWARE;

9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
9662
			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9663 9664 9665 9666 9667 9668 9669 9670
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
9671 9672 9673 9674

	/*
	 * Get the target context (task or percpu):
	 */
9675
	ctx = find_get_context(pmu, task, event);
9676 9677
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9678
		goto err_alloc;
9679 9680
	}

9681 9682 9683 9684 9685
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

I
Ingo Molnar 已提交
9686
	/*
9687
	 * Look up the group leader (we will attach this event to it):
9688
	 */
9689
	if (group_leader) {
9690
		err = -EINVAL;
9691 9692

		/*
I
Ingo Molnar 已提交
9693 9694 9695 9696
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
9697
			goto err_context;
9698 9699 9700 9701 9702

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
9703 9704 9705
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
9706
		 */
9707
		if (move_group) {
9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
9721 9722 9723 9724 9725 9726
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

9727 9728 9729
		/*
		 * Only a group leader can be exclusive or pinned
		 */
9730
		if (attr.exclusive || attr.pinned)
9731
			goto err_context;
9732 9733 9734 9735 9736
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
9737
			goto err_context;
9738
	}
T
Thomas Gleixner 已提交
9739

9740 9741
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
9742 9743
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
9744
		event_file = NULL;
9745
		goto err_context;
9746
	}
9747

9748
	if (move_group) {
P
Peter Zijlstra 已提交
9749
		gctx = group_leader->ctx;
9750
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9751 9752 9753 9754
		if (gctx->task == TASK_TOMBSTONE) {
			err = -ESRCH;
			goto err_locked;
		}
9755 9756 9757 9758
	} else {
		mutex_lock(&ctx->mutex);
	}

9759 9760 9761 9762 9763
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_locked;
	}

P
Peter Zijlstra 已提交
9764 9765 9766 9767 9768
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

9769 9770 9771 9772 9773 9774 9775
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
9776

9777 9778 9779
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
9780

9781 9782
	WARN_ON_ONCE(ctx->parent_ctx);

9783 9784 9785 9786 9787
	/*
	 * This is the point on no return; we cannot fail hereafter. This is
	 * where we start modifying current state.
	 */

9788
	if (move_group) {
P
Peter Zijlstra 已提交
9789 9790 9791 9792
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
9793
		perf_remove_from_context(group_leader, 0);
J
Jiri Olsa 已提交
9794

9795 9796
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9797
			perf_remove_from_context(sibling, 0);
9798 9799 9800
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
9801 9802 9803 9804
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
9805
		synchronize_rcu();
P
Peter Zijlstra 已提交
9806

9807 9808 9809 9810 9811 9812 9813 9814 9815 9816
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
9817 9818
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
9819
			perf_event__state_init(sibling);
9820
			perf_install_in_context(ctx, sibling, sibling->cpu);
9821 9822
			get_ctx(ctx);
		}
9823 9824 9825 9826 9827 9828 9829 9830 9831

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
9832

9833 9834 9835 9836 9837 9838
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
9839 9840
	}

9841 9842 9843 9844 9845 9846 9847 9848 9849
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
9850 9851
	event->owner = current;

9852
	perf_install_in_context(ctx, event, event->cpu);
9853
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
9854

9855
	if (move_group)
P
Peter Zijlstra 已提交
9856
		mutex_unlock(&gctx->mutex);
9857
	mutex_unlock(&ctx->mutex);
9858

9859 9860 9861 9862 9863
	if (task) {
		mutex_unlock(&task->signal->cred_guard_mutex);
		put_task_struct(task);
	}

9864 9865
	put_online_cpus();

9866 9867 9868
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
9869

9870 9871 9872 9873 9874 9875
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
9876
	fdput(group);
9877 9878
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
9879

9880 9881 9882 9883 9884 9885
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
9886
err_context:
9887
	perf_unpin_context(ctx);
9888
	put_ctx(ctx);
9889
err_alloc:
P
Peter Zijlstra 已提交
9890 9891 9892 9893 9894 9895
	/*
	 * If event_file is set, the fput() above will have called ->release()
	 * and that will take care of freeing the event.
	 */
	if (!event_file)
		free_event(event);
9896 9897 9898
err_cred:
	if (task)
		mutex_unlock(&task->signal->cred_guard_mutex);
9899
err_cpus:
9900
	put_online_cpus();
9901
err_task:
P
Peter Zijlstra 已提交
9902 9903
	if (task)
		put_task_struct(task);
9904
err_group_fd:
9905
	fdput(group);
9906 9907
err_fd:
	put_unused_fd(event_fd);
9908
	return err;
T
Thomas Gleixner 已提交
9909 9910
}

9911 9912 9913 9914 9915
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
9916
 * @task: task to profile (NULL for percpu)
9917 9918 9919
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
9920
				 struct task_struct *task,
9921 9922
				 perf_overflow_handler_t overflow_handler,
				 void *context)
9923 9924
{
	struct perf_event_context *ctx;
9925
	struct perf_event *event;
9926
	int err;
9927

9928 9929 9930
	/*
	 * Get the target context (task or percpu):
	 */
9931

9932
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9933
				 overflow_handler, context, -1);
9934 9935 9936 9937
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
9938

9939
	/* Mark owner so we could distinguish it from user events. */
9940
	event->owner = TASK_TOMBSTONE;
9941

9942
	ctx = find_get_context(event->pmu, task, event);
9943 9944
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
9945
		goto err_free;
9946
	}
9947 9948 9949

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
9950 9951 9952 9953 9954
	if (ctx->task == TASK_TOMBSTONE) {
		err = -ESRCH;
		goto err_unlock;
	}

9955 9956
	if (!exclusive_event_installable(event, ctx)) {
		err = -EBUSY;
9957
		goto err_unlock;
9958 9959
	}

9960
	perf_install_in_context(ctx, event, cpu);
9961
	perf_unpin_context(ctx);
9962 9963 9964 9965
	mutex_unlock(&ctx->mutex);

	return event;

9966 9967 9968 9969
err_unlock:
	mutex_unlock(&ctx->mutex);
	perf_unpin_context(ctx);
	put_ctx(ctx);
9970 9971 9972
err_free:
	free_event(event);
err:
9973
	return ERR_PTR(err);
9974
}
9975
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9976

9977 9978 9979 9980 9981 9982 9983 9984 9985 9986
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
9987 9988 9989 9990 9991
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9992 9993
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
9994
		perf_remove_from_context(event, 0);
9995
		unaccount_event_cpu(event, src_cpu);
9996
		put_ctx(src_ctx);
9997
		list_add(&event->migrate_entry, &events);
9998 9999
	}

10000 10001 10002
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
10003 10004
	synchronize_rcu();

10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
10029 10030
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
10031 10032
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
10033
		account_event_cpu(event, dst_cpu);
10034 10035 10036 10037
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
10038
	mutex_unlock(&src_ctx->mutex);
10039 10040 10041
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

10042
static void sync_child_event(struct perf_event *child_event,
10043
			       struct task_struct *child)
10044
{
10045
	struct perf_event *parent_event = child_event->parent;
10046
	u64 child_val;
10047

10048 10049
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
10050

P
Peter Zijlstra 已提交
10051
	child_val = perf_event_count(child_event);
10052 10053 10054 10055

	/*
	 * Add back the child's count to the parent's count:
	 */
10056
	atomic64_add(child_val, &parent_event->child_count);
10057 10058 10059 10060
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
10061 10062
}

10063
static void
10064 10065 10066
perf_event_exit_event(struct perf_event *child_event,
		      struct perf_event_context *child_ctx,
		      struct task_struct *child)
10067
{
10068 10069
	struct perf_event *parent_event = child_event->parent;

10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
10082 10083 10084
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

10085
	if (parent_event)
10086 10087
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
P
Peter Zijlstra 已提交
10088
	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10089
	raw_spin_unlock_irq(&child_ctx->lock);
10090

10091
	/*
10092
	 * Parent events are governed by their filedesc, retain them.
10093
	 */
10094
	if (!parent_event) {
10095
		perf_event_wakeup(child_event);
10096
		return;
10097
	}
10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117
	/*
	 * Child events can be cleaned up.
	 */

	sync_child_event(child_event, child);

	/*
	 * Remove this event from the parent's list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	/*
	 * Kick perf_poll() for is_event_hup().
	 */
	perf_event_wakeup(parent_event);
	free_event(child_event);
	put_event(parent_event);
10118 10119
}

P
Peter Zijlstra 已提交
10120
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10121
{
10122
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10123 10124 10125
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
10126

10127
	child_ctx = perf_pin_task_context(child, ctxn);
10128
	if (!child_ctx)
10129 10130
		return;

10131
	/*
10132 10133 10134 10135 10136 10137 10138 10139
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
10140
	 */
10141
	mutex_lock(&child_ctx->mutex);
10142 10143

	/*
10144 10145 10146
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
10147
	 */
10148
	raw_spin_lock_irq(&child_ctx->lock);
10149
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10150

10151
	/*
10152 10153
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
10154
	 */
10155 10156 10157 10158
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
10159

10160
	clone_ctx = unclone_ctx(child_ctx);
10161
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
10162

10163 10164
	if (clone_ctx)
		put_ctx(clone_ctx);
10165

P
Peter Zijlstra 已提交
10166
	/*
10167 10168 10169
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
10170
	 */
10171
	perf_event_task(child, child_ctx, 0);
10172

10173
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10174
		perf_event_exit_event(child_event, child_ctx, child);
10175

10176 10177 10178
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
10179 10180
}

P
Peter Zijlstra 已提交
10181 10182
/*
 * When a child task exits, feed back event values to parent events.
10183 10184 10185
 *
 * Can be called with cred_guard_mutex held when called from
 * install_exec_creds().
P
Peter Zijlstra 已提交
10186 10187 10188
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
10189
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10190 10191
	int ctxn;

P
Peter Zijlstra 已提交
10192 10193 10194 10195 10196 10197 10198 10199 10200 10201
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
10202
		smp_store_release(&event->owner, NULL);
P
Peter Zijlstra 已提交
10203 10204 10205
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
10206 10207
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
10208 10209 10210 10211 10212 10213 10214 10215

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
10216 10217
}

10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

10230
	put_event(parent);
10231

P
Peter Zijlstra 已提交
10232
	raw_spin_lock_irq(&ctx->lock);
10233
	perf_group_detach(event);
10234
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
10235
	raw_spin_unlock_irq(&ctx->lock);
10236 10237 10238
	free_event(event);
}

10239
/*
P
Peter Zijlstra 已提交
10240
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
10241
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
10242 10243 10244
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
10245
 */
10246
void perf_event_free_task(struct task_struct *task)
10247
{
P
Peter Zijlstra 已提交
10248
	struct perf_event_context *ctx;
10249
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
10250
	int ctxn;
10251

P
Peter Zijlstra 已提交
10252 10253 10254 10255
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
10256

P
Peter Zijlstra 已提交
10257
		mutex_lock(&ctx->mutex);
10258
again:
P
Peter Zijlstra 已提交
10259 10260 10261
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
10262

P
Peter Zijlstra 已提交
10263 10264 10265
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
10266

P
Peter Zijlstra 已提交
10267 10268 10269
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
10270

P
Peter Zijlstra 已提交
10271
		mutex_unlock(&ctx->mutex);
10272

P
Peter Zijlstra 已提交
10273 10274
		put_ctx(ctx);
	}
10275 10276
}

10277 10278 10279 10280 10281 10282 10283 10284
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

10285
struct file *perf_event_get(unsigned int fd)
10286
{
10287
	struct file *file;
10288

10289 10290 10291
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
10292

10293 10294 10295 10296
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
10297

10298
	return file;
10299 10300 10301 10302 10303 10304 10305 10306 10307 10308
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
10320
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
10321
	struct perf_event *child_event;
10322
	unsigned long flags;
P
Peter Zijlstra 已提交
10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
10335
					   child,
P
Peter Zijlstra 已提交
10336
					   group_leader, parent_event,
10337
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
10338 10339
	if (IS_ERR(child_event))
		return child_event;
10340

10341 10342 10343 10344 10345 10346 10347
	/*
	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
	 * must be under the same lock in order to serialize against
	 * perf_event_release_kernel(), such that either we must observe
	 * is_orphaned_event() or they will observe us on the child_list.
	 */
	mutex_lock(&parent_event->child_mutex);
10348 10349
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10350
		mutex_unlock(&parent_event->child_mutex);
10351 10352 10353 10354
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
10355 10356 10357 10358 10359 10360 10361
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
10362
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
10379 10380
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
10381

10382 10383 10384 10385
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
10386
	perf_event__id_header_size(child_event);
10387

P
Peter Zijlstra 已提交
10388 10389 10390
	/*
	 * Link it up in the child's context:
	 */
10391
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10392
	add_event_to_ctx(child_event, child_ctx);
10393
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424

	/*
	 * Link this into the parent event's child list
	 */
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
10425 10426 10427 10428 10429
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
10430
		   struct task_struct *child, int ctxn,
10431 10432 10433
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
10434
	struct perf_event_context *child_ctx;
10435 10436 10437 10438

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
10439 10440
	}

10441
	child_ctx = child->perf_event_ctxp[ctxn];
10442 10443 10444 10445 10446 10447 10448
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
10449

10450
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10451 10452
		if (!child_ctx)
			return -ENOMEM;
10453

P
Peter Zijlstra 已提交
10454
		child->perf_event_ctxp[ctxn] = child_ctx;
10455 10456 10457 10458 10459 10460 10461 10462 10463
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
10464 10465
}

10466
/*
10467
 * Initialize the perf_event context in task_struct
10468
 */
10469
static int perf_event_init_context(struct task_struct *child, int ctxn)
10470
{
10471
	struct perf_event_context *child_ctx, *parent_ctx;
10472 10473
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
10474
	struct task_struct *parent = current;
10475
	int inherited_all = 1;
10476
	unsigned long flags;
10477
	int ret = 0;
10478

P
Peter Zijlstra 已提交
10479
	if (likely(!parent->perf_event_ctxp[ctxn]))
10480 10481
		return 0;

10482
	/*
10483 10484
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
10485
	 */
P
Peter Zijlstra 已提交
10486
	parent_ctx = perf_pin_task_context(parent, ctxn);
10487 10488
	if (!parent_ctx)
		return 0;
10489

10490 10491 10492 10493 10494 10495 10496
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

10497 10498 10499 10500
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
10501
	mutex_lock(&parent_ctx->mutex);
10502 10503 10504 10505 10506

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
10507
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
10508 10509
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10510 10511 10512
		if (ret)
			break;
	}
10513

10514 10515 10516 10517 10518 10519 10520 10521 10522
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

10523
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
10524 10525
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
10526
		if (ret)
10527
			break;
10528 10529
	}

10530 10531 10532
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
10533
	child_ctx = child->perf_event_ctxp[ctxn];
10534

10535
	if (child_ctx && inherited_all) {
10536 10537 10538
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
10539 10540 10541
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
10542
		 */
P
Peter Zijlstra 已提交
10543
		cloned_ctx = parent_ctx->parent_ctx;
10544 10545
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
10546
			child_ctx->parent_gen = parent_ctx->parent_gen;
10547 10548 10549 10550 10551
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
10552 10553
	}

P
Peter Zijlstra 已提交
10554
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10555
	mutex_unlock(&parent_ctx->mutex);
10556

10557
	perf_unpin_context(parent_ctx);
10558
	put_ctx(parent_ctx);
10559

10560
	return ret;
10561 10562
}

P
Peter Zijlstra 已提交
10563 10564 10565 10566 10567 10568 10569
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

10570 10571 10572 10573
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
10574 10575
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
10576 10577
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
10578
			return ret;
P
Peter Zijlstra 已提交
10579
		}
P
Peter Zijlstra 已提交
10580 10581 10582 10583 10584
	}

	return 0;
}

10585 10586
static void __init perf_event_init_all_cpus(void)
{
10587
	struct swevent_htable *swhash;
10588 10589 10590
	int cpu;

	for_each_possible_cpu(cpu) {
10591 10592
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
10593
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10594 10595 10596

		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10597 10598

		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10599 10600 10601
	}
}

10602
int perf_event_init_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10603
{
P
Peter Zijlstra 已提交
10604
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
10605

10606
	mutex_lock(&swhash->hlist_mutex);
10607
	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10608 10609
		struct swevent_hlist *hlist;

10610 10611 10612
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10613
	}
10614
	mutex_unlock(&swhash->hlist_mutex);
10615
	return 0;
T
Thomas Gleixner 已提交
10616 10617
}

10618
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
10619
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
10620
{
P
Peter Zijlstra 已提交
10621
	struct perf_event_context *ctx = __info;
10622 10623
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
10624

10625 10626
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
10627
		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10628
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
10629
}
P
Peter Zijlstra 已提交
10630 10631 10632 10633 10634 10635 10636 10637 10638

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
10639
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
10640 10641 10642 10643 10644 10645 10646

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}
10647 10648 10649 10650 10651
#else

static void perf_event_exit_cpu_context(int cpu) { }

#endif
P
Peter Zijlstra 已提交
10652

10653
int perf_event_exit_cpu(unsigned int cpu)
T
Thomas Gleixner 已提交
10654
{
P
Peter Zijlstra 已提交
10655
	perf_event_exit_cpu_context(cpu);
10656
	return 0;
T
Thomas Gleixner 已提交
10657 10658
}

P
Peter Zijlstra 已提交
10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

10679
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
10680
{
10681 10682
	int ret;

P
Peter Zijlstra 已提交
10683 10684
	idr_init(&pmu_idr);

10685
	perf_event_init_all_cpus();
10686
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
10687 10688 10689
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
10690
	perf_tp_register();
10691
	perf_event_init_cpu(smp_processor_id());
P
Peter Zijlstra 已提交
10692
	register_reboot_notifier(&perf_reboot_notifier);
10693 10694 10695

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10696

10697 10698 10699 10700 10701 10702
	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
10703
}
P
Peter Zijlstra 已提交
10704

10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}
10716
EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10717

P
Peter Zijlstra 已提交
10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
10745 10746

#ifdef CONFIG_CGROUP_PERF
10747 10748
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
10749 10750 10751
{
	struct perf_cgroup *jc;

10752
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

10765
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
10766
{
10767 10768
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
10769 10770 10771 10772 10773 10774 10775
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
10776
	rcu_read_lock();
S
Stephane Eranian 已提交
10777
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10778
	rcu_read_unlock();
S
Stephane Eranian 已提交
10779 10780 10781
	return 0;
}

10782
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
10783
{
10784
	struct task_struct *task;
10785
	struct cgroup_subsys_state *css;
10786

10787
	cgroup_taskset_for_each(task, css, tset)
10788
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
10789 10790
}

10791
struct cgroup_subsys perf_event_cgrp_subsys = {
10792 10793
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
10794
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
10795 10796
};
#endif /* CONFIG_CGROUP_PERF */