core.c 220.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/cgroup.h>
38
#include <linux/perf_event.h>
39
#include <linux/trace_events.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/mm_types.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
45 46
#include <linux/bpf.h>
#include <linux/filter.h>
T
Thomas Gleixner 已提交
47

48 49
#include "internal.h"

50 51
#include <asm/irq_regs.h>

52 53
static struct workqueue_struct *perf_wq;

54 55
typedef int (*remote_function_f)(void *);

56
struct remote_function_call {
57
	struct task_struct	*p;
58
	remote_function_f	func;
59 60
	void			*info;
	int			ret;
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
91
task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 93
{
	struct remote_function_call data = {
94 95 96 97
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
115
static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 117
{
	struct remote_function_call data = {
118 119 120 121
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
122 123 124 125 126 127 128
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

151 152 153 154 155 156 157
#define TASK_TOMBSTONE ((void *)-1L)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == TASK_TOMBSTONE;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * On task ctx scheduling...
 *
 * When !ctx->nr_events a task context will not be scheduled. This means
 * we can disable the scheduler hooks (for performance) without leaving
 * pending task ctx state.
 *
 * This however results in two special cases:
 *
 *  - removing the last event from a task ctx; this is relatively straight
 *    forward and is done in __perf_remove_from_context.
 *
 *  - adding the first event to a task ctx; this is tricky because we cannot
 *    rely on ctx->is_active and therefore cannot use event_function_call().
 *    See perf_install_in_context().
 *
 * This is because we need a ctx->lock serialized variable (ctx->is_active)
 * to reliably determine if a particular task/context is scheduled in. The
 * task_curr() use in task_function_call() is racy in that a remote context
 * switch is not a single atomic operation.
 *
 * As is, the situation is 'safe' because we set rq->curr before we do the
 * actual context switch. This means that task_curr() will fail early, but
 * we'll continue spinning on ctx->is_active until we've passed
 * perf_event_task_sched_out().
 *
 * Without this ctx->lock serialized variable we could have race where we find
 * the task (and hence the context) would not be active while in fact they are.
 *
 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 */

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
			struct perf_event_context *, void *);

struct event_function_struct {
	struct perf_event *event;
	event_f func;
	void *data;
};

static int event_function(void *info)
{
	struct event_function_struct *efs = info;
	struct perf_event *event = efs->event;
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206
	int ret = 0;
207 208 209

	WARN_ON_ONCE(!irqs_disabled());

210
	perf_ctx_lock(cpuctx, task_ctx);
211 212 213 214 215
	/*
	 * Since we do the IPI call without holding ctx->lock things can have
	 * changed, double check we hit the task we set out to hit.
	 */
	if (ctx->task) {
216 217 218 219
		if (ctx->task != current) {
			ret = -EAGAIN;
			goto unlock;
		}
220 221 222 223 224 225 226 227 228 229 230 231 232

		/*
		 * We only use event_function_call() on established contexts,
		 * and event_function() is only ever called when active (or
		 * rather, we'll have bailed in task_function_call() or the
		 * above ctx->task != current test), therefore we must have
		 * ctx->is_active here.
		 */
		WARN_ON_ONCE(!ctx->is_active);
		/*
		 * And since we have ctx->is_active, cpuctx->task_ctx must
		 * match.
		 */
233 234 235
		WARN_ON_ONCE(task_ctx != ctx);
	} else {
		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236
	}
237

238
	efs->func(event, cpuctx, ctx, efs->data);
239
unlock:
240 241
	perf_ctx_unlock(cpuctx, task_ctx);

242
	return ret;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
}

static void event_function_local(struct perf_event *event, event_f func, void *data)
{
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};

	int ret = event_function(&efs);
	WARN_ON_ONCE(ret);
}

static void event_function_call(struct perf_event *event, event_f func, void *data)
258 259
{
	struct perf_event_context *ctx = event->ctx;
260
	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 262 263 264 265
	struct event_function_struct efs = {
		.event = event,
		.func = func,
		.data = data,
	};
266

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275
	if (!event->parent) {
		/*
		 * If this is a !child event, we must hold ctx::mutex to
		 * stabilize the the event->ctx relation. See
		 * perf_event_ctx_lock().
		 */
		lockdep_assert_held(&ctx->mutex);
	}

276
	if (!task) {
277
		cpu_function_call(event->cpu, event_function, &efs);
278 279 280 281
		return;
	}

again:
282 283 284
	if (task == TASK_TOMBSTONE)
		return;

285
	if (!task_function_call(task, event_function, &efs))
286 287 288
		return;

	raw_spin_lock_irq(&ctx->lock);
289 290 291 292 293 294 295 296 297 298 299
	/*
	 * Reload the task pointer, it might have been changed by
	 * a concurrent perf_event_context_sched_out().
	 */
	task = ctx->task;
	if (task != TASK_TOMBSTONE) {
		if (ctx->is_active) {
			raw_spin_unlock_irq(&ctx->lock);
			goto again;
		}
		func(event, NULL, ctx, data);
300 301 302 303
	}
	raw_spin_unlock_irq(&ctx->lock);
}

S
Stephane Eranian 已提交
304 305
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
306 307
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
308

309 310 311 312 313 314 315
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

316 317 318 319 320 321
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
322 323 324 325
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
326
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
327
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
328
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
329

330 331 332
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
333
static atomic_t nr_freq_events __read_mostly;
334
static atomic_t nr_switch_events __read_mostly;
335

P
Peter Zijlstra 已提交
336 337 338 339
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

340
/*
341
 * perf event paranoia level:
342 343
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
344
 *   1 - disallow cpu events for unpriv
345
 *   2 - disallow kernel profiling for unpriv
346
 */
347
int sysctl_perf_event_paranoid __read_mostly = 1;
348

349 350
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
351 352

/*
353
 * max perf event sample rate
354
 */
355 356 357 358 359 360 361 362 363
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
364 365
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
366

367
static void update_perf_cpu_limits(void)
368 369 370 371
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
372
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
373
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
374
}
P
Peter Zijlstra 已提交
375

376 377
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
378 379 380 381
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
382
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
383 384 385 386 387

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
406 407 408

	return 0;
}
409

410 411 412 413 414 415 416
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
417
static DEFINE_PER_CPU(u64, running_sample_length);
418

419
static void perf_duration_warn(struct irq_work *w)
420
{
421
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
422
	u64 avg_local_sample_len;
423
	u64 local_samples_len;
424

425
	local_samples_len = __this_cpu_read(running_sample_length);
426 427 428 429 430
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
431
			avg_local_sample_len, allowed_ns >> 1,
432 433 434 435 436 437 438
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
439
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
440 441
	u64 avg_local_sample_len;
	u64 local_samples_len;
442

P
Peter Zijlstra 已提交
443
	if (allowed_ns == 0)
444 445 446
		return;

	/* decay the counter by 1 average sample */
447
	local_samples_len = __this_cpu_read(running_sample_length);
448 449
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
450
	__this_cpu_write(running_sample_length, local_samples_len);
451 452 453 454 455 456 457 458

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
459
	if (avg_local_sample_len <= allowed_ns)
460 461 462 463 464 465 466 467 468 469
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
470

471 472 473 474 475 476
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
477 478
}

479
static atomic64_t perf_event_id;
480

481 482 483 484
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
485 486 487 488 489
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
490

491
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
492

493
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
494
{
495
	return "pmu";
T
Thomas Gleixner 已提交
496 497
}

498 499 500 501 502
static inline u64 perf_clock(void)
{
	return local_clock();
}

503 504 505 506 507
static inline u64 perf_event_clock(struct perf_event *event)
{
	return event->clock();
}

S
Stephane Eranian 已提交
508 509 510 511 512 513 514 515
#ifdef CONFIG_CGROUP_PERF

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
532 533 534 535
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
536
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
575 576
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
577
	/*
578 579
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
580
	 */
581
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
582 583
		return;

584
	cgrp = perf_cgroup_from_task(current, event->ctx);
585 586 587 588 589
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
590 591 592
}

static inline void
593 594
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
595 596 597 598
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

599 600 601 602 603 604
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
605 606
		return;

607
	cgrp = perf_cgroup_from_task(task, ctx);
S
Stephane Eranian 已提交
608
	info = this_cpu_ptr(cgrp->info);
609
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618 619 620
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
621
static void perf_cgroup_switch(struct task_struct *task, int mode)
S
Stephane Eranian 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
641 642
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
643 644 645 646 647 648 649 650 651

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
652 653
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
654 655 656 657 658 659 660 661 662 663 664

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
665
				WARN_ON_ONCE(cpuctx->cgrp);
666 667 668 669
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
670 671
				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
				 * because cgorup events are only per-cpu
S
Stephane Eranian 已提交
672
				 */
673
				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
S
Stephane Eranian 已提交
674 675
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
676 677
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
678 679 680 681 682 683
		}
	}

	local_irq_restore(flags);
}

684 685
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
686
{
687 688 689
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

690
	rcu_read_lock();
691 692
	/*
	 * we come here when we know perf_cgroup_events > 0
693 694
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
695
	 */
696
	cgrp1 = perf_cgroup_from_task(task, NULL);
697
	cgrp2 = perf_cgroup_from_task(next, NULL);
698 699 700 701 702 703 704 705

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
706 707

	rcu_read_unlock();
S
Stephane Eranian 已提交
708 709
}

710 711
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
712
{
713 714 715
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

716
	rcu_read_lock();
717 718
	/*
	 * we come here when we know perf_cgroup_events > 0
719 720
	 * we do not need to pass the ctx here because we know
	 * we are holding the rcu lock
721
	 */
722 723
	cgrp1 = perf_cgroup_from_task(task, NULL);
	cgrp2 = perf_cgroup_from_task(prev, NULL);
724 725 726 727 728 729 730 731

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
732 733

	rcu_read_unlock();
S
Stephane Eranian 已提交
734 735 736 737 738 739 740 741
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
742 743
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
744

745
	if (!f.file)
S
Stephane Eranian 已提交
746 747
		return -EBADF;

A
Al Viro 已提交
748
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
749
					 &perf_event_cgrp_subsys);
750 751 752 753
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
767
out:
768
	fdput(f);
S
Stephane Eranian 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

842 843
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
844 845 846
{
}

847 848
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
849 850 851 852 853 854 855 856 857 858 859
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
860 861
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

892 893 894 895 896 897 898 899
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
900
static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
901 902 903 904 905 906 907 908 909
{
	struct perf_cpu_context *cpuctx;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
	rotations = perf_rotate_context(cpuctx);

P
Peter Zijlstra 已提交
910 911
	raw_spin_lock(&cpuctx->hrtimer_lock);
	if (rotations)
912
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
P
Peter Zijlstra 已提交
913 914 915
	else
		cpuctx->hrtimer_active = 0;
	raw_spin_unlock(&cpuctx->hrtimer_lock);
916

P
Peter Zijlstra 已提交
917
	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
918 919
}

920
static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
921
{
922
	struct hrtimer *timer = &cpuctx->hrtimer;
923
	struct pmu *pmu = cpuctx->ctx.pmu;
924
	u64 interval;
925 926 927 928 929

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

930 931 932 933
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
934 935 936
	interval = pmu->hrtimer_interval_ms;
	if (interval < 1)
		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
937

938
	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
939

P
Peter Zijlstra 已提交
940 941
	raw_spin_lock_init(&cpuctx->hrtimer_lock);
	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
942
	timer->function = perf_mux_hrtimer_handler;
943 944
}

945
static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
946
{
947
	struct hrtimer *timer = &cpuctx->hrtimer;
948
	struct pmu *pmu = cpuctx->ctx.pmu;
P
Peter Zijlstra 已提交
949
	unsigned long flags;
950 951 952

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
953
		return 0;
954

P
Peter Zijlstra 已提交
955 956 957 958 959 960 961
	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
	if (!cpuctx->hrtimer_active) {
		cpuctx->hrtimer_active = 1;
		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
	}
	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
962

963
	return 0;
964 965
}

P
Peter Zijlstra 已提交
966
void perf_pmu_disable(struct pmu *pmu)
967
{
P
Peter Zijlstra 已提交
968 969 970
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
971 972
}

P
Peter Zijlstra 已提交
973
void perf_pmu_enable(struct pmu *pmu)
974
{
P
Peter Zijlstra 已提交
975 976 977
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
978 979
}

980
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
981 982

/*
983 984 985 986
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
987
 */
988
static void perf_event_ctx_activate(struct perf_event_context *ctx)
989
{
990
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
991

992
	WARN_ON(!irqs_disabled());
993

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
1006 1007
}

1008
static void get_ctx(struct perf_event_context *ctx)
1009
{
1010
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021
static void free_ctx(struct rcu_head *head)
{
	struct perf_event_context *ctx;

	ctx = container_of(head, struct perf_event_context, rcu_head);
	kfree(ctx->task_ctx_data);
	kfree(ctx);
}

1022
static void put_ctx(struct perf_event_context *ctx)
1023
{
1024 1025 1026
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
1027
		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1028
			put_task_struct(ctx->task);
1029
		call_rcu(&ctx->rcu_head, free_ctx);
1030
	}
1031 1032
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
 * Lock ordering is by mutex address. There are two other sites where
 * perf_event_context::mutex nests and those are:
 *
 *  - perf_event_exit_task_context()	[ child , 0 ]
 *      __perf_event_exit_task()
 *        sync_child_event()
 *          put_event()			[ parent, 1 ]
 *
 *  - perf_event_init_context()		[ parent, 0 ]
 *      inherit_task_group()
 *        inherit_group()
 *          inherit_event()
 *            perf_event_alloc()
 *              perf_init_event()
 *                perf_try_init_event()	[ child , 1 ]
 *
 * While it appears there is an obvious deadlock here -- the parent and child
 * nesting levels are inverted between the two. This is in fact safe because
 * life-time rules separate them. That is an exiting task cannot fork, and a
 * spawning task cannot (yet) exit.
 *
 * But remember that that these are parent<->child context relations, and
 * migration does not affect children, therefore these two orderings should not
 * interact.
P
Peter Zijlstra 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
1094 1095
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
1108
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
1118 1119 1120 1121 1122 1123
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
1124 1125 1126 1127 1128 1129 1130
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

1131 1132 1133 1134 1135 1136 1137
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1138
{
1139 1140 1141 1142 1143
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1144
		ctx->parent_ctx = NULL;
1145
	ctx->generation++;
1146 1147

	return parent_ctx;
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1172
/*
1173
 * If we inherit events we want to return the parent event id
1174 1175
 * to userspace.
 */
1176
static u64 primary_event_id(struct perf_event *event)
1177
{
1178
	u64 id = event->id;
1179

1180 1181
	if (event->parent)
		id = event->parent->id;
1182 1183 1184 1185

	return id;
}

1186
/*
1187
 * Get the perf_event_context for a task and lock it.
1188
 *
1189 1190 1191
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1192
static struct perf_event_context *
P
Peter Zijlstra 已提交
1193
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1194
{
1195
	struct perf_event_context *ctx;
1196

P
Peter Zijlstra 已提交
1197
retry:
1198 1199 1200
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1201
	 * part of the read side critical section was irqs-enabled -- see
1202 1203 1204
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1205
	 * side critical section has interrupts disabled.
1206
	 */
1207
	local_irq_save(*flags);
1208
	rcu_read_lock();
P
Peter Zijlstra 已提交
1209
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1210 1211 1212 1213
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1214
		 * perf_event_task_sched_out, though the
1215 1216 1217 1218 1219 1220
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1221
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1222
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1223
			raw_spin_unlock(&ctx->lock);
1224
			rcu_read_unlock();
1225
			local_irq_restore(*flags);
1226 1227
			goto retry;
		}
1228

1229 1230
		if (ctx->task == TASK_TOMBSTONE ||
		    !atomic_inc_not_zero(&ctx->refcount)) {
1231
			raw_spin_unlock(&ctx->lock);
1232
			ctx = NULL;
P
Peter Zijlstra 已提交
1233 1234
		} else {
			WARN_ON_ONCE(ctx->task != task);
1235
		}
1236 1237
	}
	rcu_read_unlock();
1238 1239
	if (!ctx)
		local_irq_restore(*flags);
1240 1241 1242 1243 1244 1245 1246 1247
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1248 1249
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1250
{
1251
	struct perf_event_context *ctx;
1252 1253
	unsigned long flags;

P
Peter Zijlstra 已提交
1254
	ctx = perf_lock_task_context(task, ctxn, &flags);
1255 1256
	if (ctx) {
		++ctx->pin_count;
1257
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1258 1259 1260 1261
	}
	return ctx;
}

1262
static void perf_unpin_context(struct perf_event_context *ctx)
1263 1264 1265
{
	unsigned long flags;

1266
	raw_spin_lock_irqsave(&ctx->lock, flags);
1267
	--ctx->pin_count;
1268
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1282 1283 1284
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1285 1286 1287 1288

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1289 1290 1291
	return ctx ? ctx->time : 0;
}

1292 1293
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1294
 * The caller of this function needs to hold the ctx->lock.
1295 1296 1297 1298 1299 1300 1301 1302 1303
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1315
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1316 1317
	else if (ctx->is_active)
		run_end = ctx->time;
1318 1319 1320 1321
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1322 1323 1324 1325

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1326
		run_end = perf_event_time(event);
1327 1328

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1329

1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1344 1345 1346 1347 1348 1349 1350 1351 1352
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1353
/*
1354
 * Add a event from the lists for its context.
1355 1356
 * Must be called with ctx->mutex and ctx->lock held.
 */
1357
static void
1358
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1359
{
P
Peter Zijlstra 已提交
1360 1361
	lockdep_assert_held(&ctx->lock);

1362 1363
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1364 1365

	/*
1366 1367 1368
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1369
	 */
1370
	if (event->group_leader == event) {
1371 1372
		struct list_head *list;

1373 1374 1375
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1376 1377
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1378
	}
P
Peter Zijlstra 已提交
1379

1380
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1381 1382
		ctx->nr_cgroups++;

1383 1384 1385
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1386
		ctx->nr_stat++;
1387 1388

	ctx->generation++;
1389 1390
}

J
Jiri Olsa 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

P
Peter Zijlstra 已提交
1400
static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
P
Peter Zijlstra 已提交
1416
		nr += nr_siblings;
1417 1418 1419 1420 1421 1422 1423
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

P
Peter Zijlstra 已提交
1424
static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1425 1426 1427 1428 1429 1430 1431
{
	struct perf_sample_data *data;
	u16 size = 0;

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1432 1433 1434 1435 1436 1437
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1438 1439 1440
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1441 1442 1443
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1444 1445 1446
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1447 1448 1449
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1450 1451 1452
	event->header_size = size;
}

P
Peter Zijlstra 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__header_size(struct perf_event *event)
{
	__perf_event_read_size(event,
			       event->group_leader->nr_siblings);
	__perf_event_header_size(event, event->attr.sample_type);
}

1464 1465 1466 1467 1468 1469
static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1470 1471 1472 1473 1474 1475
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1476 1477 1478
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1479 1480 1481 1482 1483 1484 1485 1486 1487
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1488
	event->id_header_size = size;
1489 1490
}

P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static bool perf_event_validate_size(struct perf_event *event)
{
	/*
	 * The values computed here will be over-written when we actually
	 * attach the event.
	 */
	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
	perf_event__id_header_size(event);

	/*
	 * Sum the lot; should not exceed the 64k limit we have on records.
	 * Conservative limit to allow for callchains and other variable fields.
	 */
	if (event->read_size + event->header_size +
	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
		return false;

	return true;
}

1512 1513
static void perf_group_attach(struct perf_event *event)
{
1514
	struct perf_event *group_leader = event->group_leader, *pos;
1515

P
Peter Zijlstra 已提交
1516 1517 1518 1519 1520 1521
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1522 1523 1524 1525 1526
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1527 1528
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1529 1530 1531 1532 1533 1534
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1535 1536 1537 1538 1539

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1540 1541
}

1542
/*
1543
 * Remove a event from the lists for its context.
1544
 * Must be called with ctx->mutex and ctx->lock held.
1545
 */
1546
static void
1547
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1548
{
1549
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1550 1551 1552 1553

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1554 1555 1556 1557
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1558
		return;
1559 1560 1561

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1562
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1563
		ctx->nr_cgroups--;
1564 1565 1566 1567
		/*
		 * Because cgroup events are always per-cpu events, this will
		 * always be called from the right CPU.
		 */
1568 1569
		cpuctx = __get_cpu_context(ctx);
		/*
1570 1571
		 * If there are no more cgroup events then clear cgrp to avoid
		 * stale pointer in update_cgrp_time_from_cpuctx().
1572 1573 1574 1575
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1576

1577 1578
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1579
		ctx->nr_stat--;
1580

1581
	list_del_rcu(&event->event_entry);
1582

1583 1584
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1585

1586
	update_group_times(event);
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1597 1598

	ctx->generation++;
1599 1600
}

1601
static void perf_group_detach(struct perf_event *event)
1602 1603
{
	struct perf_event *sibling, *tmp;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1620
		goto out;
1621 1622 1623 1624
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1625

1626
	/*
1627 1628
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1629
	 * to whatever list we are on.
1630
	 */
1631
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1632 1633
		if (list)
			list_move_tail(&sibling->group_entry, list);
1634
		sibling->group_leader = sibling;
1635 1636 1637

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1638 1639

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1640
	}
1641 1642 1643 1644 1645 1646

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1647 1648
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1688 1689 1690 1691 1692 1693
static inline int pmu_filter_match(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;
	return pmu->filter_match ? pmu->filter_match(event) : 1;
}

1694 1695 1696
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1697
	return (event->cpu == -1 || event->cpu == smp_processor_id())
1698
	    && perf_cgroup_match(event) && pmu_filter_match(event);
1699 1700
}

1701 1702
static void
event_sched_out(struct perf_event *event,
1703
		  struct perf_cpu_context *cpuctx,
1704
		  struct perf_event_context *ctx)
1705
{
1706
	u64 tstamp = perf_event_time(event);
1707
	u64 delta;
P
Peter Zijlstra 已提交
1708 1709 1710 1711

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1712 1713 1714 1715 1716 1717 1718 1719
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1720
		delta = tstamp - event->tstamp_stopped;
1721
		event->tstamp_running += delta;
1722
		event->tstamp_stopped = tstamp;
1723 1724
	}

1725
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1726
		return;
1727

1728 1729
	perf_pmu_disable(event->pmu);

1730 1731 1732 1733
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1734
	}
1735
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1736
	event->pmu->del(event, 0);
1737
	event->oncpu = -1;
1738

1739
	if (!is_software_event(event))
1740
		cpuctx->active_oncpu--;
1741 1742
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1743 1744
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1745
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1746
		cpuctx->exclusive = 0;
1747

1748 1749 1750
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1751
	perf_pmu_enable(event->pmu);
1752 1753
}

1754
static void
1755
group_sched_out(struct perf_event *group_event,
1756
		struct perf_cpu_context *cpuctx,
1757
		struct perf_event_context *ctx)
1758
{
1759
	struct perf_event *event;
1760
	int state = group_event->state;
1761

1762
	event_sched_out(group_event, cpuctx, ctx);
1763 1764 1765 1766

	/*
	 * Schedule out siblings (if any):
	 */
1767 1768
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1769

1770
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1771 1772 1773
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1774
/*
1775
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1776
 *
1777
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1778 1779
 * remove it from the context list.
 */
1780 1781 1782 1783 1784
static void
__perf_remove_from_context(struct perf_event *event,
			   struct perf_cpu_context *cpuctx,
			   struct perf_event_context *ctx,
			   void *info)
T
Thomas Gleixner 已提交
1785
{
1786
	bool detach_group = (unsigned long)info;
T
Thomas Gleixner 已提交
1787

1788
	event_sched_out(event, cpuctx, ctx);
1789
	if (detach_group)
1790
		perf_group_detach(event);
1791
	list_del_event(event, ctx);
1792 1793

	if (!ctx->nr_events && ctx->is_active) {
1794
		ctx->is_active = 0;
1795 1796 1797 1798
		if (ctx->task) {
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
			cpuctx->task_ctx = NULL;
		}
1799
	}
T
Thomas Gleixner 已提交
1800 1801 1802
}

/*
1803
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1804
 *
1805 1806
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1807 1808
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1809
 * When called from perf_event_exit_task, it's OK because the
1810
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1811
 */
1812
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1813
{
1814
	lockdep_assert_held(&event->ctx->mutex);
1815

1816
	event_function_call(event, __perf_remove_from_context,
1817
			    (void *)(unsigned long)detach_group);
T
Thomas Gleixner 已提交
1818 1819
}

1820
/*
1821
 * Cross CPU call to disable a performance event
1822
 */
1823 1824 1825 1826
static void __perf_event_disable(struct perf_event *event,
				 struct perf_cpu_context *cpuctx,
				 struct perf_event_context *ctx,
				 void *info)
1827
{
1828 1829
	if (event->state < PERF_EVENT_STATE_INACTIVE)
		return;
1830

1831 1832 1833 1834 1835 1836 1837 1838
	update_context_time(ctx);
	update_cgrp_time_from_event(event);
	update_group_times(event);
	if (event == event->group_leader)
		group_sched_out(event, cpuctx, ctx);
	else
		event_sched_out(event, cpuctx, ctx);
	event->state = PERF_EVENT_STATE_OFF;
1839 1840
}

1841
/*
1842
 * Disable a event.
1843
 *
1844 1845
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1846
 * remains valid.  This condition is satisifed when called through
1847 1848 1849 1850
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1851
 * is the current context on this CPU and preemption is disabled,
1852
 * hence we can't get into perf_event_task_sched_out for this context.
1853
 */
P
Peter Zijlstra 已提交
1854
static void _perf_event_disable(struct perf_event *event)
1855
{
1856
	struct perf_event_context *ctx = event->ctx;
1857

1858
	raw_spin_lock_irq(&ctx->lock);
1859
	if (event->state <= PERF_EVENT_STATE_OFF) {
1860
		raw_spin_unlock_irq(&ctx->lock);
1861
		return;
1862
	}
1863
	raw_spin_unlock_irq(&ctx->lock);
1864

1865 1866 1867 1868 1869 1870
	event_function_call(event, __perf_event_disable, NULL);
}

void perf_event_disable_local(struct perf_event *event)
{
	event_function_local(event, __perf_event_disable, NULL);
1871
}
P
Peter Zijlstra 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1885
EXPORT_SYMBOL_GPL(perf_event_disable);
1886

S
Stephane Eranian 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1922 1923 1924
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);
1925
static void perf_log_itrace_start(struct perf_event *event);
P
Peter Zijlstra 已提交
1926

1927
static int
1928
event_sched_in(struct perf_event *event,
1929
		 struct perf_cpu_context *cpuctx,
1930
		 struct perf_event_context *ctx)
1931
{
1932
	u64 tstamp = perf_event_time(event);
1933
	int ret = 0;
1934

1935 1936
	lockdep_assert_held(&ctx->lock);

1937
	if (event->state <= PERF_EVENT_STATE_OFF)
1938 1939
		return 0;

1940
	event->state = PERF_EVENT_STATE_ACTIVE;
1941
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1953 1954 1955 1956 1957
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1958 1959
	perf_pmu_disable(event->pmu);

1960 1961
	perf_set_shadow_time(event, ctx, tstamp);

1962 1963
	perf_log_itrace_start(event);

P
Peter Zijlstra 已提交
1964
	if (event->pmu->add(event, PERF_EF_START)) {
1965 1966
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1967 1968
		ret = -EAGAIN;
		goto out;
1969 1970
	}

1971 1972
	event->tstamp_running += tstamp - event->tstamp_stopped;

1973
	if (!is_software_event(event))
1974
		cpuctx->active_oncpu++;
1975 1976
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1977 1978
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1979

1980
	if (event->attr.exclusive)
1981 1982
		cpuctx->exclusive = 1;

1983 1984 1985
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1986 1987 1988 1989
out:
	perf_pmu_enable(event->pmu);

	return ret;
1990 1991
}

1992
static int
1993
group_sched_in(struct perf_event *group_event,
1994
	       struct perf_cpu_context *cpuctx,
1995
	       struct perf_event_context *ctx)
1996
{
1997
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1998
	struct pmu *pmu = ctx->pmu;
1999 2000
	u64 now = ctx->time;
	bool simulate = false;
2001

2002
	if (group_event->state == PERF_EVENT_STATE_OFF)
2003 2004
		return 0;

2005
	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2006

2007
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
2008
		pmu->cancel_txn(pmu);
2009
		perf_mux_hrtimer_restart(cpuctx);
2010
		return -EAGAIN;
2011
	}
2012 2013 2014 2015

	/*
	 * Schedule in siblings as one group (if any):
	 */
2016
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2017
		if (event_sched_in(event, cpuctx, ctx)) {
2018
			partial_group = event;
2019 2020 2021 2022
			goto group_error;
		}
	}

2023
	if (!pmu->commit_txn(pmu))
2024
		return 0;
2025

2026 2027 2028 2029
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
2040
	 */
2041 2042
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
2043 2044 2045 2046 2047 2048 2049 2050
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
2051
	}
2052
	event_sched_out(group_event, cpuctx, ctx);
2053

P
Peter Zijlstra 已提交
2054
	pmu->cancel_txn(pmu);
2055

2056
	perf_mux_hrtimer_restart(cpuctx);
2057

2058 2059 2060
	return -EAGAIN;
}

2061
/*
2062
 * Work out whether we can put this event group on the CPU now.
2063
 */
2064
static int group_can_go_on(struct perf_event *event,
2065 2066 2067 2068
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
2069
	 * Groups consisting entirely of software events can always go on.
2070
	 */
2071
	if (event->group_flags & PERF_GROUP_SOFTWARE)
2072 2073 2074
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
2075
	 * events can go on.
2076 2077 2078 2079 2080
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
2081
	 * events on the CPU, it can't go on.
2082
	 */
2083
	if (event->attr.exclusive && cpuctx->active_oncpu)
2084 2085 2086 2087 2088 2089 2090 2091
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2092 2093
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2094
{
2095 2096
	u64 tstamp = perf_event_time(event);

2097
	list_add_event(event, ctx);
2098
	perf_group_attach(event);
2099 2100 2101
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2102 2103
}

2104 2105
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx);
2106 2107 2108 2109 2110
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static void ctx_resched(struct perf_cpu_context *cpuctx,
			struct perf_event_context *task_ctx)
{
	perf_pmu_disable(cpuctx->ctx.pmu);
	if (task_ctx)
		task_ctx_sched_out(cpuctx, task_ctx);
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
	perf_event_sched_in(cpuctx, task_ctx, current);
	perf_pmu_enable(cpuctx->ctx.pmu);
}

T
Thomas Gleixner 已提交
2135
/*
2136
 * Cross CPU call to install and enable a performance event
2137 2138
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2139
 */
2140
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2141
{
2142
	struct perf_event_context *ctx = info;
P
Peter Zijlstra 已提交
2143
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 2145
	struct perf_event_context *task_ctx = cpuctx->task_ctx;

2146
	raw_spin_lock(&cpuctx->ctx.lock);
2147
	if (ctx->task) {
2148
		raw_spin_lock(&ctx->lock);
2149 2150 2151 2152
		/*
		 * If we hit the 'wrong' task, we've since scheduled and
		 * everything should be sorted, nothing to do!
		 */
2153
		task_ctx = ctx;
2154
		if (ctx->task != current)
2155
			goto unlock;
2156

2157 2158 2159 2160
		/*
		 * If task_ctx is set, it had better be to us.
		 */
		WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2161 2162
	} else if (task_ctx) {
		raw_spin_lock(&task_ctx->lock);
2163 2164
	}

2165
	ctx_resched(cpuctx, task_ctx);
2166
unlock:
2167
	perf_ctx_unlock(cpuctx, task_ctx);
2168 2169

	return 0;
T
Thomas Gleixner 已提交
2170 2171 2172
}

/*
2173
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2174 2175
 */
static void
2176 2177
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2178 2179
			int cpu)
{
2180 2181
	struct task_struct *task = NULL;

2182 2183
	lockdep_assert_held(&ctx->mutex);

2184
	event->ctx = ctx;
2185 2186
	if (event->cpu != -1)
		event->cpu = cpu;
2187

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * Installing events is tricky because we cannot rely on ctx->is_active
	 * to be set in case this is the nr_events 0 -> 1 transition.
	 *
	 * So what we do is we add the event to the list here, which will allow
	 * a future context switch to DTRT and then send a racy IPI. If the IPI
	 * fails to hit the right task, this means a context switch must have
	 * happened and that will have taken care of business.
	 */
	raw_spin_lock_irq(&ctx->lock);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	task = ctx->task;
	/*
	 * Worse, we cannot even rely on the ctx actually existing anymore. If
	 * between find_get_context() and perf_install_in_context() the task
	 * went through perf_event_exit_task() its dead and we should not be
	 * adding new events.
	 */
	if (task == TASK_TOMBSTONE) {
		raw_spin_unlock_irq(&ctx->lock);
		return;
	}
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	update_context_time(ctx);
	/*
	 * Update cgrp time only if current cgrp matches event->cgrp.
	 * Must be done before calling add_event_to_ctx().
	 */
	update_cgrp_time_from_event(event);
	add_event_to_ctx(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);

	if (task)
		task_function_call(task, __perf_install_in_context, ctx);
	else
		cpu_function_call(cpu, __perf_install_in_context, ctx);
T
Thomas Gleixner 已提交
2222 2223
}

2224
/*
2225
 * Put a event into inactive state and update time fields.
2226 2227 2228 2229 2230 2231
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2232
static void __perf_event_mark_enabled(struct perf_event *event)
2233
{
2234
	struct perf_event *sub;
2235
	u64 tstamp = perf_event_time(event);
2236

2237
	event->state = PERF_EVENT_STATE_INACTIVE;
2238
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2239
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2240 2241
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2242
	}
2243 2244
}

2245
/*
2246
 * Cross CPU call to enable a performance event
2247
 */
2248 2249 2250 2251
static void __perf_event_enable(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
2252
{
2253
	struct perf_event *leader = event->group_leader;
2254
	struct perf_event_context *task_ctx;
2255

2256
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2257
		return;
S
Stephane Eranian 已提交
2258

2259
	update_context_time(ctx);
2260
	__perf_event_mark_enabled(event);
2261

2262 2263 2264
	if (!ctx->is_active)
		return;

S
Stephane Eranian 已提交
2265
	if (!event_filter_match(event)) {
2266 2267
		if (is_cgroup_event(event)) {
			perf_cgroup_set_timestamp(current, ctx); // XXX ?
S
Stephane Eranian 已提交
2268
			perf_cgroup_defer_enabled(event);
2269 2270
		}
		return;
S
Stephane Eranian 已提交
2271
	}
2272

2273
	/*
2274
	 * If the event is in a group and isn't the group leader,
2275
	 * then don't put it on unless the group is on.
2276
	 */
2277
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2278
		return;
2279

2280 2281 2282
	task_ctx = cpuctx->task_ctx;
	if (ctx->task)
		WARN_ON_ONCE(task_ctx != ctx);
2283

2284
	ctx_resched(cpuctx, task_ctx);
2285 2286
}

2287
/*
2288
 * Enable a event.
2289
 *
2290 2291
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2292
 * remains valid.  This condition is satisfied when called through
2293 2294
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2295
 */
P
Peter Zijlstra 已提交
2296
static void _perf_event_enable(struct perf_event *event)
2297
{
2298
	struct perf_event_context *ctx = event->ctx;
2299

2300 2301 2302
	raw_spin_lock_irq(&ctx->lock);
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
		raw_spin_unlock_irq(&ctx->lock);
2303 2304 2305 2306
		return;
	}

	/*
2307
	 * If the event is in error state, clear that first.
2308 2309 2310 2311
	 *
	 * That way, if we see the event in error state below, we know that it
	 * has gone back into error state, as distinct from the task having
	 * been scheduled away before the cross-call arrived.
2312
	 */
2313 2314
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2315
	raw_spin_unlock_irq(&ctx->lock);
2316

2317
	event_function_call(event, __perf_event_enable, NULL);
2318
}
P
Peter Zijlstra 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2331
EXPORT_SYMBOL_GPL(perf_event_enable);
2332

P
Peter Zijlstra 已提交
2333
static int _perf_event_refresh(struct perf_event *event, int refresh)
2334
{
2335
	/*
2336
	 * not supported on inherited events
2337
	 */
2338
	if (event->attr.inherit || !is_sampling_event(event))
2339 2340
		return -EINVAL;

2341
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2342
	_perf_event_enable(event);
2343 2344

	return 0;
2345
}
P
Peter Zijlstra 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2361
EXPORT_SYMBOL_GPL(perf_event_refresh);
2362

2363 2364 2365
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2366
{
2367
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2368 2369 2370
	struct perf_event *event;

	lockdep_assert_held(&ctx->lock);
2371

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	if (likely(!ctx->nr_events)) {
		/*
		 * See __perf_remove_from_context().
		 */
		WARN_ON_ONCE(ctx->is_active);
		if (ctx->task)
			WARN_ON_ONCE(cpuctx->task_ctx);
		return;
	}

2382
	ctx->is_active &= ~event_type;
2383 2384 2385 2386 2387 2388
	if (ctx->task) {
		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
		if (!ctx->is_active)
			cpuctx->task_ctx = NULL;
	}

2389
	update_context_time(ctx);
S
Stephane Eranian 已提交
2390
	update_cgrp_time_from_cpuctx(cpuctx);
2391
	if (!ctx->nr_active)
2392
		return;
2393

P
Peter Zijlstra 已提交
2394
	perf_pmu_disable(ctx->pmu);
2395
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2396 2397
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2398
	}
2399

2400
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2401
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2402
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2403
	}
P
Peter Zijlstra 已提交
2404
	perf_pmu_enable(ctx->pmu);
2405 2406
}

2407
/*
2408 2409 2410 2411 2412 2413
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2414
 */
2415 2416
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2417
{
2418 2419 2420
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2443 2444
}

2445 2446
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2447 2448 2449
{
	u64 value;

2450
	if (!event->attr.inherit_stat)
2451 2452 2453
		return;

	/*
2454
	 * Update the event value, we cannot use perf_event_read()
2455 2456
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2457
	 * we know the event must be on the current CPU, therefore we
2458 2459
	 * don't need to use it.
	 */
2460 2461
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2462 2463
		event->pmu->read(event);
		/* fall-through */
2464

2465 2466
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2467 2468 2469 2470 2471 2472 2473
		break;

	default:
		break;
	}

	/*
2474
	 * In order to keep per-task stats reliable we need to flip the event
2475 2476
	 * values when we flip the contexts.
	 */
2477 2478 2479
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2480

2481 2482
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2483

2484
	/*
2485
	 * Since we swizzled the values, update the user visible data too.
2486
	 */
2487 2488
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2489 2490
}

2491 2492
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2493
{
2494
	struct perf_event *event, *next_event;
2495 2496 2497 2498

	if (!ctx->nr_stat)
		return;

2499 2500
	update_context_time(ctx);

2501 2502
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2503

2504 2505
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2506

2507 2508
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2509

2510
		__perf_event_sync_stat(event, next_event);
2511

2512 2513
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2514 2515 2516
	}
}

2517 2518
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2519
{
P
Peter Zijlstra 已提交
2520
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2521
	struct perf_event_context *next_ctx;
2522
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2523
	struct perf_cpu_context *cpuctx;
2524
	int do_switch = 1;
T
Thomas Gleixner 已提交
2525

P
Peter Zijlstra 已提交
2526 2527
	if (likely(!ctx))
		return;
2528

P
Peter Zijlstra 已提交
2529 2530
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2531 2532
		return;

2533
	rcu_read_lock();
P
Peter Zijlstra 已提交
2534
	next_ctx = next->perf_event_ctxp[ctxn];
2535 2536 2537 2538 2539 2540 2541
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2542
	if (!parent && !next_parent)
2543 2544 2545
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2546 2547 2548 2549 2550 2551 2552 2553 2554
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2555 2556
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2557
		if (context_equiv(ctx, next_ctx)) {
2558 2559
			WRITE_ONCE(ctx->task, next);
			WRITE_ONCE(next_ctx->task, task);
2560 2561 2562

			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
			/*
			 * RCU_INIT_POINTER here is safe because we've not
			 * modified the ctx and the above modification of
			 * ctx->task and ctx->task_ctx_data are immaterial
			 * since those values are always verified under
			 * ctx->lock which we're now holding.
			 */
			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);

2573
			do_switch = 0;
2574

2575
			perf_event_sync_stat(ctx, next_ctx);
2576
		}
2577 2578
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2579
	}
2580
unlock:
2581
	rcu_read_unlock();
2582

2583
	if (do_switch) {
2584
		raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
2585
		task_ctx_sched_out(cpuctx, ctx);
2586
		raw_spin_unlock(&ctx->lock);
2587
	}
T
Thomas Gleixner 已提交
2588 2589
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

2640 2641 2642
static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in);

P
Peter Zijlstra 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2657 2658
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2659 2660 2661
{
	int ctxn;

2662 2663 2664
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

2665 2666 2667
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, next, false);

P
Peter Zijlstra 已提交
2668 2669
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2670 2671 2672 2673 2674 2675

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2676
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2677
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2678 2679
}

2680 2681
static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
			       struct perf_event_context *ctx)
2682
{
2683 2684
	if (!cpuctx->task_ctx)
		return;
2685 2686 2687 2688

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2689
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2690 2691
}

2692 2693 2694 2695 2696 2697 2698
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2699 2700
}

2701
static void
2702
ctx_pinned_sched_in(struct perf_event_context *ctx,
2703
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2704
{
2705
	struct perf_event *event;
T
Thomas Gleixner 已提交
2706

2707 2708
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2709
			continue;
2710
		if (!event_filter_match(event))
2711 2712
			continue;

S
Stephane Eranian 已提交
2713 2714 2715 2716
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2717
		if (group_can_go_on(event, cpuctx, 1))
2718
			group_sched_in(event, cpuctx, ctx);
2719 2720 2721 2722 2723

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2724 2725 2726
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2727
		}
2728
	}
2729 2730 2731 2732
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2733
		      struct perf_cpu_context *cpuctx)
2734 2735 2736
{
	struct perf_event *event;
	int can_add_hw = 1;
2737

2738 2739 2740
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2741
			continue;
2742 2743
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2744
		 * of events:
2745
		 */
2746
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2747 2748
			continue;

S
Stephane Eranian 已提交
2749 2750 2751 2752
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2753
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2754
			if (group_sched_in(event, cpuctx, ctx))
2755
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2756
		}
T
Thomas Gleixner 已提交
2757
	}
2758 2759 2760 2761 2762
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2763 2764
	     enum event_type_t event_type,
	     struct task_struct *task)
2765
{
2766
	int is_active = ctx->is_active;
P
Peter Zijlstra 已提交
2767 2768 2769
	u64 now;

	lockdep_assert_held(&ctx->lock);
S
Stephane Eranian 已提交
2770

2771 2772 2773
	if (likely(!ctx->nr_events))
		return;

2774
	ctx->is_active |= event_type;
2775 2776 2777 2778 2779 2780 2781
	if (ctx->task) {
		if (!is_active)
			cpuctx->task_ctx = ctx;
		else
			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
	}

S
Stephane Eranian 已提交
2782 2783
	now = perf_clock();
	ctx->timestamp = now;
2784
	perf_cgroup_set_timestamp(task, ctx);
2785 2786 2787 2788
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2789
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2790
		ctx_pinned_sched_in(ctx, cpuctx);
2791 2792

	/* Then walk through the lower prio flexible groups */
2793
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2794
		ctx_flexible_sched_in(ctx, cpuctx);
2795 2796
}

2797
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2798 2799
			     enum event_type_t event_type,
			     struct task_struct *task)
2800 2801 2802
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2803
	ctx_sched_in(ctx, cpuctx, event_type, task);
2804 2805
}

S
Stephane Eranian 已提交
2806 2807
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2808
{
P
Peter Zijlstra 已提交
2809
	struct perf_cpu_context *cpuctx;
2810

P
Peter Zijlstra 已提交
2811
	cpuctx = __get_cpu_context(ctx);
2812 2813 2814
	if (cpuctx->task_ctx == ctx)
		return;

2815
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2816
	perf_pmu_disable(ctx->pmu);
2817 2818 2819 2820 2821 2822
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2823
	perf_event_sched_in(cpuctx, ctx, task);
2824 2825
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2826 2827
}

P
Peter Zijlstra 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2839 2840
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2841 2842 2843 2844
{
	struct perf_event_context *ctx;
	int ctxn;

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/*
	 * If cgroup events exist on this CPU, then we need to check if we have
	 * to switch in PMU state; cgroup event are system-wide mode only.
	 *
	 * Since cgroup events are CPU events, we must schedule these in before
	 * we schedule in the task events.
	 */
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
		perf_cgroup_sched_in(prev, task);

P
Peter Zijlstra 已提交
2855 2856 2857 2858 2859
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2860
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2861
	}
2862

2863 2864 2865
	if (atomic_read(&nr_switch_events))
		perf_event_switch(task, prev, true);

2866 2867
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2868 2869
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2897
#define REDUCE_FLS(a, b)		\
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2937 2938 2939
	if (!divisor)
		return dividend;

2940 2941 2942
	return div64_u64(dividend, divisor);
}

2943 2944 2945
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2946
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2947
{
2948
	struct hw_perf_event *hwc = &event->hw;
2949
	s64 period, sample_period;
2950 2951
	s64 delta;

2952
	period = perf_calculate_period(event, nsec, count);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2963

2964
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2965 2966 2967
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2968
		local64_set(&hwc->period_left, 0);
2969 2970 2971

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2972
	}
2973 2974
}

2975 2976 2977 2978 2979 2980 2981
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2982
{
2983 2984
	struct perf_event *event;
	struct hw_perf_event *hwc;
2985
	u64 now, period = TICK_NSEC;
2986
	s64 delta;
2987

2988 2989 2990 2991 2992 2993
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2994 2995
		return;

2996
	raw_spin_lock(&ctx->lock);
2997
	perf_pmu_disable(ctx->pmu);
2998

2999
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3000
		if (event->state != PERF_EVENT_STATE_ACTIVE)
3001 3002
			continue;

3003
		if (!event_filter_match(event))
3004 3005
			continue;

3006 3007
		perf_pmu_disable(event->pmu);

3008
		hwc = &event->hw;
3009

3010
		if (hwc->interrupts == MAX_INTERRUPTS) {
3011
			hwc->interrupts = 0;
3012
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
3013
			event->pmu->start(event, 0);
3014 3015
		}

3016
		if (!event->attr.freq || !event->attr.sample_freq)
3017
			goto next;
3018

3019 3020 3021 3022 3023
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

3024
		now = local64_read(&event->count);
3025 3026
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
3027

3028 3029 3030
		/*
		 * restart the event
		 * reload only if value has changed
3031 3032 3033
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3034
		 */
3035
		if (delta > 0)
3036
			perf_adjust_period(event, period, delta, false);
3037 3038

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3039 3040
	next:
		perf_pmu_enable(event->pmu);
3041
	}
3042

3043
	perf_pmu_enable(ctx->pmu);
3044
	raw_spin_unlock(&ctx->lock);
3045 3046
}

3047
/*
3048
 * Round-robin a context's events:
3049
 */
3050
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3051
{
3052 3053 3054 3055 3056 3057
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3058 3059
}

3060
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3061
{
P
Peter Zijlstra 已提交
3062
	struct perf_event_context *ctx = NULL;
3063
	int rotate = 0;
3064

3065 3066 3067 3068
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3069

P
Peter Zijlstra 已提交
3070
	ctx = cpuctx->task_ctx;
3071 3072 3073 3074
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3075

3076
	if (!rotate)
3077 3078
		goto done;

3079
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3080
	perf_pmu_disable(cpuctx->ctx.pmu);
3081

3082 3083 3084
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3085

3086 3087 3088
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3089

3090
	perf_event_sched_in(cpuctx, ctx, current);
3091

3092 3093
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3094
done:
3095 3096

	return rotate;
3097 3098
}

3099 3100 3101
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3102
	if (atomic_read(&nr_freq_events) ||
3103
	    __this_cpu_read(perf_throttled_count))
3104
		return false;
3105 3106
	else
		return true;
3107 3108 3109
}
#endif

3110 3111
void perf_event_task_tick(void)
{
3112 3113
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3114
	int throttled;
3115

3116 3117
	WARN_ON(!irqs_disabled());

3118 3119 3120
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3121
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3122
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3123 3124
}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3135
	__perf_event_mark_enabled(event);
3136 3137 3138 3139

	return 1;
}

3140
/*
3141
 * Enable all of a task's events that have been marked enable-on-exec.
3142 3143
 * This expects task == current.
 */
3144
static void perf_event_enable_on_exec(int ctxn)
3145
{
3146
	struct perf_event_context *ctx, *clone_ctx = NULL;
3147
	struct perf_cpu_context *cpuctx;
3148
	struct perf_event *event;
3149 3150 3151 3152
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
3153
	ctx = current->perf_event_ctxp[ctxn];
3154
	if (!ctx || !ctx->nr_events)
3155 3156
		goto out;

3157 3158 3159 3160
	cpuctx = __get_cpu_context(ctx);
	perf_ctx_lock(cpuctx, ctx);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		enabled |= event_enable_on_exec(event, ctx);
3161 3162

	/*
3163
	 * Unclone and reschedule this context if we enabled any event.
3164
	 */
3165
	if (enabled) {
3166
		clone_ctx = unclone_ctx(ctx);
3167 3168 3169
		ctx_resched(cpuctx, ctx);
	}
	perf_ctx_unlock(cpuctx, ctx);
3170

P
Peter Zijlstra 已提交
3171
out:
3172
	local_irq_restore(flags);
3173 3174 3175

	if (clone_ctx)
		put_ctx(clone_ctx);
3176 3177
}

3178 3179 3180 3181 3182
void perf_event_exec(void)
{
	int ctxn;

	rcu_read_lock();
3183 3184
	for_each_task_context_nr(ctxn)
		perf_event_enable_on_exec(ctxn);
3185 3186 3187
	rcu_read_unlock();
}

3188 3189 3190
struct perf_read_data {
	struct perf_event *event;
	bool group;
3191
	int ret;
3192 3193
};

T
Thomas Gleixner 已提交
3194
/*
3195
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3196
 */
3197
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3198
{
3199 3200
	struct perf_read_data *data = info;
	struct perf_event *sub, *event = data->event;
3201
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3202
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203
	struct pmu *pmu = event->pmu;
I
Ingo Molnar 已提交
3204

3205 3206 3207 3208
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3209 3210
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3211 3212 3213 3214
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3215
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3216
	if (ctx->is_active) {
3217
		update_context_time(ctx);
S
Stephane Eranian 已提交
3218 3219
		update_cgrp_time_from_event(event);
	}
3220

3221
	update_event_times(event);
3222 3223
	if (event->state != PERF_EVENT_STATE_ACTIVE)
		goto unlock;
3224

3225 3226 3227
	if (!data->group) {
		pmu->read(event);
		data->ret = 0;
3228
		goto unlock;
3229 3230 3231 3232 3233
	}

	pmu->start_txn(pmu, PERF_PMU_TXN_READ);

	pmu->read(event);
3234 3235 3236

	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		update_event_times(sub);
3237 3238 3239 3240 3241
		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
			/*
			 * Use sibling's PMU rather than @event's since
			 * sibling could be on different (eg: software) PMU.
			 */
3242
			sub->pmu->read(sub);
3243
		}
3244
	}
3245 3246

	data->ret = pmu->commit_txn(pmu);
3247 3248

unlock:
3249
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3250 3251
}

P
Peter Zijlstra 已提交
3252 3253
static inline u64 perf_event_count(struct perf_event *event)
{
3254 3255 3256 3257
	if (event->pmu->count)
		return event->pmu->count(event);

	return __perf_event_count(event);
P
Peter Zijlstra 已提交
3258 3259
}

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
/*
 * NMI-safe method to read a local event, that is an event that
 * is:
 *   - either for the current task, or for this CPU
 *   - does not have inherit set, for inherited task events
 *     will not be local and we cannot read them atomically
 *   - must not have a pmu::count method
 */
u64 perf_event_read_local(struct perf_event *event)
{
	unsigned long flags;
	u64 val;

	/*
	 * Disabling interrupts avoids all counter scheduling (context
	 * switches, timer based rotation and IPIs).
	 */
	local_irq_save(flags);

	/* If this is a per-task event, it must be for current */
	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
		     event->hw.target != current);

	/* If this is a per-CPU event, it must be for this CPU */
	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
		     event->cpu != smp_processor_id());

	/*
	 * It must not be an event with inherit set, we cannot read
	 * all child counters from atomic context.
	 */
	WARN_ON_ONCE(event->attr.inherit);

	/*
	 * It must not have a pmu::count method, those are not
	 * NMI safe.
	 */
	WARN_ON_ONCE(event->pmu->count);

	/*
	 * If the event is currently on this CPU, its either a per-task event,
	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
	 * oncpu == -1).
	 */
	if (event->oncpu == smp_processor_id())
		event->pmu->read(event);

	val = local64_read(&event->count);
	local_irq_restore(flags);

	return val;
}

3313
static int perf_event_read(struct perf_event *event, bool group)
T
Thomas Gleixner 已提交
3314
{
3315 3316
	int ret = 0;

T
Thomas Gleixner 已提交
3317
	/*
3318 3319
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3320
	 */
3321
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3322 3323 3324
		struct perf_read_data data = {
			.event = event,
			.group = group,
3325
			.ret = 0,
3326
		};
3327
		smp_call_function_single(event->oncpu,
3328
					 __perf_event_read, &data, 1);
3329
		ret = data.ret;
3330
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3331 3332 3333
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3334
		raw_spin_lock_irqsave(&ctx->lock, flags);
3335 3336 3337 3338 3339
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3340
		if (ctx->is_active) {
3341
			update_context_time(ctx);
S
Stephane Eranian 已提交
3342 3343
			update_cgrp_time_from_event(event);
		}
3344 3345 3346 3347
		if (group)
			update_group_times(event);
		else
			update_event_times(event);
3348
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3349
	}
3350 3351

	return ret;
T
Thomas Gleixner 已提交
3352 3353
}

3354
/*
3355
 * Initialize the perf_event context in a task_struct:
3356
 */
3357
static void __perf_event_init_context(struct perf_event_context *ctx)
3358
{
3359
	raw_spin_lock_init(&ctx->lock);
3360
	mutex_init(&ctx->mutex);
3361
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3362 3363
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3364 3365
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3366
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3382
	}
3383 3384 3385
	ctx->pmu = pmu;

	return ctx;
3386 3387
}

3388 3389 3390 3391 3392
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3393 3394

	rcu_read_lock();
3395
	if (!vpid)
T
Thomas Gleixner 已提交
3396 3397
		task = current;
	else
3398
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3399 3400 3401 3402 3403 3404 3405 3406
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3407 3408 3409 3410
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3411 3412 3413 3414 3415 3416 3417
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3418 3419 3420
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3421
static struct perf_event_context *
3422 3423
find_get_context(struct pmu *pmu, struct task_struct *task,
		struct perf_event *event)
T
Thomas Gleixner 已提交
3424
{
3425
	struct perf_event_context *ctx, *clone_ctx = NULL;
3426
	struct perf_cpu_context *cpuctx;
3427
	void *task_ctx_data = NULL;
3428
	unsigned long flags;
P
Peter Zijlstra 已提交
3429
	int ctxn, err;
3430
	int cpu = event->cpu;
T
Thomas Gleixner 已提交
3431

3432
	if (!task) {
3433
		/* Must be root to operate on a CPU event: */
3434
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3435 3436 3437
			return ERR_PTR(-EACCES);

		/*
3438
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3439 3440 3441
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3442
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3443 3444
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3445
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3446
		ctx = &cpuctx->ctx;
3447
		get_ctx(ctx);
3448
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3449 3450 3451 3452

		return ctx;
	}

P
Peter Zijlstra 已提交
3453 3454 3455 3456 3457
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

3458 3459 3460 3461 3462 3463 3464 3465
	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
		if (!task_ctx_data) {
			err = -ENOMEM;
			goto errout;
		}
	}

P
Peter Zijlstra 已提交
3466
retry:
P
Peter Zijlstra 已提交
3467
	ctx = perf_lock_task_context(task, ctxn, &flags);
3468
	if (ctx) {
3469
		clone_ctx = unclone_ctx(ctx);
3470
		++ctx->pin_count;
3471 3472 3473 3474 3475

		if (task_ctx_data && !ctx->task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}
3476
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3477 3478 3479

		if (clone_ctx)
			put_ctx(clone_ctx);
3480
	} else {
3481
		ctx = alloc_perf_context(pmu, task);
3482 3483 3484
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3485

3486 3487 3488 3489 3490
		if (task_ctx_data) {
			ctx->task_ctx_data = task_ctx_data;
			task_ctx_data = NULL;
		}

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3501
		else {
3502
			get_ctx(ctx);
3503
			++ctx->pin_count;
3504
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3505
		}
3506 3507 3508
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3509
			put_ctx(ctx);
3510 3511 3512 3513

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3514 3515 3516
		}
	}

3517
	kfree(task_ctx_data);
T
Thomas Gleixner 已提交
3518
	return ctx;
3519

P
Peter Zijlstra 已提交
3520
errout:
3521
	kfree(task_ctx_data);
3522
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3523 3524
}

L
Li Zefan 已提交
3525
static void perf_event_free_filter(struct perf_event *event);
3526
static void perf_event_free_bpf_prog(struct perf_event *event);
L
Li Zefan 已提交
3527

3528
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3529
{
3530
	struct perf_event *event;
P
Peter Zijlstra 已提交
3531

3532 3533 3534
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3535
	perf_event_free_filter(event);
3536
	kfree(event);
P
Peter Zijlstra 已提交
3537 3538
}

3539 3540
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3541

3542
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3543
{
3544 3545 3546 3547 3548 3549
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3550

3551 3552
static void unaccount_event(struct perf_event *event)
{
3553 3554
	bool dec = false;

3555 3556 3557 3558
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
3559
		dec = true;
3560 3561 3562 3563 3564 3565
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3566 3567
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3568
	if (event->attr.context_switch) {
3569
		dec = true;
3570 3571
		atomic_dec(&nr_switch_events);
	}
3572
	if (is_cgroup_event(event))
3573
		dec = true;
3574
	if (has_branch_stack(event))
3575 3576 3577
		dec = true;

	if (dec)
3578 3579 3580 3581
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3582

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
/*
 * The following implement mutual exclusion of events on "exclusive" pmus
 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
 * at a time, so we disallow creating events that might conflict, namely:
 *
 *  1) cpu-wide events in the presence of per-task events,
 *  2) per-task events in the presence of cpu-wide events,
 *  3) two matching events on the same context.
 *
 * The former two cases are handled in the allocation path (perf_event_alloc(),
P
Peter Zijlstra 已提交
3593
 * _free_event()), the latter -- before the first perf_install_in_context().
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
 */
static int exclusive_event_init(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return 0;

	/*
	 * Prevent co-existence of per-task and cpu-wide events on the
	 * same exclusive pmu.
	 *
	 * Negative pmu::exclusive_cnt means there are cpu-wide
	 * events on this "exclusive" pmu, positive means there are
	 * per-task events.
	 *
	 * Since this is called in perf_event_alloc() path, event::ctx
	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
	 * to mean "per-task event", because unlike other attach states it
	 * never gets cleared.
	 */
	if (event->attach_state & PERF_ATTACH_TASK) {
		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
			return -EBUSY;
	} else {
		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
			return -EBUSY;
	}

	return 0;
}

static void exclusive_event_destroy(struct perf_event *event)
{
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return;

	/* see comment in exclusive_event_init() */
	if (event->attach_state & PERF_ATTACH_TASK)
		atomic_dec(&pmu->exclusive_cnt);
	else
		atomic_inc(&pmu->exclusive_cnt);
}

static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
{
	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
	    (e1->cpu == e2->cpu ||
	     e1->cpu == -1 ||
	     e2->cpu == -1))
		return true;
	return false;
}

/* Called under the same ctx::mutex as perf_install_in_context() */
static bool exclusive_event_installable(struct perf_event *event,
					struct perf_event_context *ctx)
{
	struct perf_event *iter_event;
	struct pmu *pmu = event->pmu;

	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
		return true;

	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
		if (exclusive_event_match(iter_event, event))
			return false;
	}

	return true;
}

P
Peter Zijlstra 已提交
3668
static void _free_event(struct perf_event *event)
3669
{
3670
	irq_work_sync(&event->pending);
3671

3672
	unaccount_event(event);
3673

3674
	if (event->rb) {
3675 3676 3677 3678 3679 3680 3681
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3682
		ring_buffer_attach(event, NULL);
3683
		mutex_unlock(&event->mmap_mutex);
3684 3685
	}

S
Stephane Eranian 已提交
3686 3687 3688
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

P
Peter Zijlstra 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
	if (!event->parent) {
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
	}

	perf_event_free_bpf_prog(event);

	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

	if (event->pmu) {
		exclusive_event_destroy(event);
		module_put(event->pmu->module);
	}

	call_rcu(&event->rcu_head, free_event_rcu);
3708 3709
}

P
Peter Zijlstra 已提交
3710 3711 3712 3713 3714
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3715
{
P
Peter Zijlstra 已提交
3716 3717 3718 3719 3720 3721
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3722

P
Peter Zijlstra 已提交
3723
	_free_event(event);
T
Thomas Gleixner 已提交
3724 3725
}

3726
/*
3727
 * Remove user event from the owner task.
3728
 */
3729
static void perf_remove_from_owner(struct perf_event *event)
3730
{
P
Peter Zijlstra 已提交
3731
	struct task_struct *owner;
3732

P
Peter Zijlstra 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3774 3775 3776 3777
}

static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3778
	struct perf_event_context *ctx;
3779 3780 3781 3782 3783 3784

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3785

P
Peter Zijlstra 已提交
3786 3787 3788 3789 3790 3791 3792
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
3793
	 *     perf_read_group(), which takes faults while
P
Peter Zijlstra 已提交
3794 3795 3796 3797
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3798 3799
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3800
	perf_remove_from_context(event, true);
L
Leon Yu 已提交
3801
	perf_event_ctx_unlock(event, ctx);
P
Peter Zijlstra 已提交
3802 3803

	_free_event(event);
3804 3805
}

P
Peter Zijlstra 已提交
3806 3807 3808 3809 3810 3811 3812
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3813 3814 3815
/*
 * Called when the last reference to the file is gone.
 */
3816 3817 3818 3819
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3820 3821
}

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3858
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3859
{
3860
	struct perf_event *child;
3861 3862
	u64 total = 0;

3863 3864 3865
	*enabled = 0;
	*running = 0;

3866
	mutex_lock(&event->child_mutex);
3867

3868
	(void)perf_event_read(event, false);
3869 3870
	total += perf_event_count(event);

3871 3872 3873 3874 3875 3876
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3877
		(void)perf_event_read(child, false);
3878
		total += perf_event_count(child);
3879 3880 3881
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3882
	mutex_unlock(&event->child_mutex);
3883 3884 3885

	return total;
}
3886
EXPORT_SYMBOL_GPL(perf_event_read_value);
3887

3888
static int __perf_read_group_add(struct perf_event *leader,
3889
					u64 read_format, u64 *values)
3890
{
3891 3892
	struct perf_event *sub;
	int n = 1; /* skip @nr */
3893
	int ret;
P
Peter Zijlstra 已提交
3894

3895 3896 3897
	ret = perf_event_read(leader, true);
	if (ret)
		return ret;
3898

3899 3900 3901 3902 3903 3904 3905 3906 3907
	/*
	 * Since we co-schedule groups, {enabled,running} times of siblings
	 * will be identical to those of the leader, so we only publish one
	 * set.
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] += leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
3908

3909 3910 3911 3912 3913 3914 3915 3916 3917
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] += leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}

	/*
	 * Write {count,id} tuples for every sibling.
	 */
	values[n++] += perf_event_count(leader);
3918 3919
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3920

3921 3922 3923 3924 3925
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
		values[n++] += perf_event_count(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);
	}
3926 3927

	return 0;
3928
}
3929

3930 3931 3932 3933 3934
static int perf_read_group(struct perf_event *event,
				   u64 read_format, char __user *buf)
{
	struct perf_event *leader = event->group_leader, *child;
	struct perf_event_context *ctx = leader->ctx;
3935
	int ret;
3936
	u64 *values;
3937

3938
	lockdep_assert_held(&ctx->mutex);
3939

3940 3941 3942
	values = kzalloc(event->read_size, GFP_KERNEL);
	if (!values)
		return -ENOMEM;
3943

3944 3945 3946 3947 3948 3949 3950
	values[0] = 1 + leader->nr_siblings;

	/*
	 * By locking the child_mutex of the leader we effectively
	 * lock the child list of all siblings.. XXX explain how.
	 */
	mutex_lock(&leader->child_mutex);
3951

3952 3953 3954 3955 3956 3957 3958 3959 3960
	ret = __perf_read_group_add(leader, read_format, values);
	if (ret)
		goto unlock;

	list_for_each_entry(child, &leader->child_list, child_list) {
		ret = __perf_read_group_add(child, read_format, values);
		if (ret)
			goto unlock;
	}
3961

3962
	mutex_unlock(&leader->child_mutex);
3963

3964
	ret = event->read_size;
3965 3966
	if (copy_to_user(buf, values, event->read_size))
		ret = -EFAULT;
3967
	goto out;
3968

3969 3970 3971
unlock:
	mutex_unlock(&leader->child_mutex);
out:
3972
	kfree(values);
3973
	return ret;
3974 3975
}

3976
static int perf_read_one(struct perf_event *event,
3977 3978
				 u64 read_format, char __user *buf)
{
3979
	u64 enabled, running;
3980 3981 3982
	u64 values[4];
	int n = 0;

3983 3984 3985 3986 3987
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3988
	if (read_format & PERF_FORMAT_ID)
3989
		values[n++] = primary_event_id(event);
3990 3991 3992 3993 3994 3995 3996

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
4010
/*
4011
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
4012 4013
 */
static ssize_t
4014
__perf_read(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
4015
{
4016
	u64 read_format = event->attr.read_format;
4017
	int ret;
T
Thomas Gleixner 已提交
4018

4019
	/*
4020
	 * Return end-of-file for a read on a event that is in
4021 4022 4023
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
4024
	if (event->state == PERF_EVENT_STATE_ERROR)
4025 4026
		return 0;

4027
	if (count < event->read_size)
4028 4029
		return -ENOSPC;

4030
	WARN_ON_ONCE(event->ctx->parent_ctx);
4031
	if (read_format & PERF_FORMAT_GROUP)
4032
		ret = perf_read_group(event, read_format, buf);
4033
	else
4034
		ret = perf_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
4035

4036
	return ret;
T
Thomas Gleixner 已提交
4037 4038 4039 4040 4041
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
4042
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
4043 4044
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
4045

P
Peter Zijlstra 已提交
4046
	ctx = perf_event_ctx_lock(event);
4047
	ret = __perf_read(event, buf, count);
P
Peter Zijlstra 已提交
4048 4049 4050
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
4051 4052 4053 4054
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
4055
	struct perf_event *event = file->private_data;
4056
	struct ring_buffer *rb;
4057
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
4058

4059
	poll_wait(file, &event->waitq, wait);
4060

4061
	if (is_event_hup(event))
4062
		return events;
P
Peter Zijlstra 已提交
4063

4064
	/*
4065 4066
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4067 4068
	 */
	mutex_lock(&event->mmap_mutex);
4069 4070
	rb = event->rb;
	if (rb)
4071
		events = atomic_xchg(&rb->poll, 0);
4072
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
4073 4074 4075
	return events;
}

P
Peter Zijlstra 已提交
4076
static void _perf_event_reset(struct perf_event *event)
4077
{
4078
	(void)perf_event_read(event, false);
4079
	local64_set(&event->count, 0);
4080
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
4081 4082
}

4083
/*
4084 4085 4086 4087
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
4088
 */
4089 4090
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4091
{
4092
	struct perf_event *child;
P
Peter Zijlstra 已提交
4093

4094
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
4095

4096 4097 4098
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
4099
		func(child);
4100
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
4101 4102
}

4103 4104
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
4105
{
4106 4107
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
4108

P
Peter Zijlstra 已提交
4109 4110
	lockdep_assert_held(&ctx->mutex);

4111
	event = event->group_leader;
4112

4113 4114
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4115
		perf_event_for_each_child(sibling, func);
4116 4117
}

4118 4119 4120 4121
static void __perf_event_period(struct perf_event *event,
				struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				void *info)
4122
{
4123
	u64 value = *((u64 *)info);
4124
	bool active;
4125

4126 4127
	if (event->attr.freq) {
		event->attr.sample_freq = value;
4128
	} else {
4129 4130
		event->attr.sample_period = value;
		event->hw.sample_period = value;
4131
	}
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
}

static int perf_event_period(struct perf_event *event, u64 __user *arg)
{
	u64 value;

	if (!is_sampling_event(event))
		return -EINVAL;

	if (copy_from_user(&value, arg, sizeof(value)))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
		return -EINVAL;

4163
	event_function_call(event, __perf_event_period, &value);
4164

4165
	return 0;
4166 4167
}

4168 4169
static const struct file_operations perf_fops;

4170
static inline int perf_fget_light(int fd, struct fd *p)
4171
{
4172 4173 4174
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
4175

4176 4177 4178
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
4179
	}
4180 4181
	*p = f;
	return 0;
4182 4183 4184 4185
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
4186
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4187
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4188

P
Peter Zijlstra 已提交
4189
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4190
{
4191
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
4192
	u32 flags = arg;
4193 4194

	switch (cmd) {
4195
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
4196
		func = _perf_event_enable;
4197
		break;
4198
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
4199
		func = _perf_event_disable;
4200
		break;
4201
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
4202
		func = _perf_event_reset;
4203
		break;
P
Peter Zijlstra 已提交
4204

4205
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
4206
		return _perf_event_refresh(event, arg);
4207

4208 4209
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

4220
	case PERF_EVENT_IOC_SET_OUTPUT:
4221 4222 4223
	{
		int ret;
		if (arg != -1) {
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
4234 4235 4236
		}
		return ret;
	}
4237

L
Li Zefan 已提交
4238 4239 4240
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

4241 4242 4243
	case PERF_EVENT_IOC_SET_BPF:
		return perf_event_set_bpf_prog(event, arg);

4244
	default:
P
Peter Zijlstra 已提交
4245
		return -ENOTTY;
4246
	}
P
Peter Zijlstra 已提交
4247 4248

	if (flags & PERF_IOC_FLAG_GROUP)
4249
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
4250
	else
4251
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
4252 4253

	return 0;
4254 4255
}

P
Peter Zijlstra 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4289
int perf_event_task_enable(void)
4290
{
P
Peter Zijlstra 已提交
4291
	struct perf_event_context *ctx;
4292
	struct perf_event *event;
4293

4294
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4295 4296 4297 4298 4299
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4300
	mutex_unlock(&current->perf_event_mutex);
4301 4302 4303 4304

	return 0;
}

4305
int perf_event_task_disable(void)
4306
{
P
Peter Zijlstra 已提交
4307
	struct perf_event_context *ctx;
4308
	struct perf_event *event;
4309

4310
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4311 4312 4313 4314 4315
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4316
	mutex_unlock(&current->perf_event_mutex);
4317 4318 4319 4320

	return 0;
}

4321
static int perf_event_index(struct perf_event *event)
4322
{
P
Peter Zijlstra 已提交
4323 4324 4325
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4326
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4327 4328
		return 0;

4329
	return event->pmu->event_idx(event);
4330 4331
}

4332
static void calc_timer_values(struct perf_event *event,
4333
				u64 *now,
4334 4335
				u64 *enabled,
				u64 *running)
4336
{
4337
	u64 ctx_time;
4338

4339 4340
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4341 4342 4343 4344
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4360 4361
	userpg->data_offset = PAGE_SIZE;
	userpg->data_size = perf_data_size(rb);
4362 4363 4364 4365 4366

unlock:
	rcu_read_unlock();
}

4367 4368
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4369 4370 4371
{
}

4372 4373 4374 4375 4376
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4377
void perf_event_update_userpage(struct perf_event *event)
4378
{
4379
	struct perf_event_mmap_page *userpg;
4380
	struct ring_buffer *rb;
4381
	u64 enabled, running, now;
4382 4383

	rcu_read_lock();
4384 4385 4386 4387
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4388 4389 4390 4391 4392 4393 4394 4395 4396
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4397
	calc_timer_values(event, &now, &enabled, &running);
4398

4399
	userpg = rb->user_page;
4400 4401 4402 4403 4404
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4405
	++userpg->lock;
4406
	barrier();
4407
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4408
	userpg->offset = perf_event_count(event);
4409
	if (userpg->index)
4410
		userpg->offset -= local64_read(&event->hw.prev_count);
4411

4412
	userpg->time_enabled = enabled +
4413
			atomic64_read(&event->child_total_time_enabled);
4414

4415
	userpg->time_running = running +
4416
			atomic64_read(&event->child_total_time_running);
4417

4418
	arch_perf_update_userpage(event, userpg, now);
4419

4420
	barrier();
4421
	++userpg->lock;
4422
	preempt_enable();
4423
unlock:
4424
	rcu_read_unlock();
4425 4426
}

4427 4428 4429
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4430
	struct ring_buffer *rb;
4431 4432 4433 4434 4435 4436 4437 4438 4439
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4440 4441
	rb = rcu_dereference(event->rb);
	if (!rb)
4442 4443 4444 4445 4446
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4447
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4462 4463 4464
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4465
	struct ring_buffer *old_rb = NULL;
4466 4467
	unsigned long flags;

4468 4469 4470 4471 4472 4473
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4474

4475 4476 4477 4478
		old_rb = event->rb;
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4479

4480 4481
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4482
	}
4483

4484
	if (rb) {
4485 4486 4487 4488 4489
		if (event->rcu_pending) {
			cond_synchronize_rcu(event->rcu_batches);
			event->rcu_pending = 0;
		}

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4506 4507 4508 4509 4510 4511 4512 4513
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4514 4515 4516 4517
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4518 4519 4520
	rcu_read_unlock();
}

4521
struct ring_buffer *ring_buffer_get(struct perf_event *event)
4522
{
4523
	struct ring_buffer *rb;
4524

4525
	rcu_read_lock();
4526 4527 4528 4529
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4530 4531 4532
	}
	rcu_read_unlock();

4533
	return rb;
4534 4535
}

4536
void ring_buffer_put(struct ring_buffer *rb)
4537
{
4538
	if (!atomic_dec_and_test(&rb->refcount))
4539
		return;
4540

4541
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4542

4543
	call_rcu(&rb->rcu_head, rb_free_rcu);
4544 4545 4546 4547
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4548
	struct perf_event *event = vma->vm_file->private_data;
4549

4550
	atomic_inc(&event->mmap_count);
4551
	atomic_inc(&event->rb->mmap_count);
4552

4553 4554 4555
	if (vma->vm_pgoff)
		atomic_inc(&event->rb->aux_mmap_count);

4556 4557
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4558 4559
}

4560 4561 4562 4563 4564 4565 4566 4567
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4568 4569
static void perf_mmap_close(struct vm_area_struct *vma)
{
4570
	struct perf_event *event = vma->vm_file->private_data;
4571

4572
	struct ring_buffer *rb = ring_buffer_get(event);
4573 4574 4575
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4576

4577 4578 4579
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	/*
	 * rb->aux_mmap_count will always drop before rb->mmap_count and
	 * event->mmap_count, so it is ok to use event->mmap_mutex to
	 * serialize with perf_mmap here.
	 */
	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;

		rb_free_aux(rb);
		mutex_unlock(&event->mmap_mutex);
	}

4594 4595 4596
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4597
		goto out_put;
4598

4599
	ring_buffer_attach(event, NULL);
4600 4601 4602
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4603 4604
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4605

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4622

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4634 4635 4636
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4637
		mutex_unlock(&event->mmap_mutex);
4638
		put_event(event);
4639

4640 4641 4642 4643 4644
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4645
	}
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4661
out_put:
4662
	ring_buffer_put(rb); /* could be last */
4663 4664
}

4665
static const struct vm_operations_struct perf_mmap_vmops = {
4666
	.open		= perf_mmap_open,
4667
	.close		= perf_mmap_close, /* non mergable */
4668 4669
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4670 4671 4672 4673
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4674
	struct perf_event *event = file->private_data;
4675
	unsigned long user_locked, user_lock_limit;
4676
	struct user_struct *user = current_user();
4677
	unsigned long locked, lock_limit;
4678
	struct ring_buffer *rb = NULL;
4679 4680
	unsigned long vma_size;
	unsigned long nr_pages;
4681
	long user_extra = 0, extra = 0;
4682
	int ret = 0, flags = 0;
4683

4684 4685 4686
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4687
	 * same rb.
4688 4689 4690 4691
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4692
	if (!(vma->vm_flags & VM_SHARED))
4693
		return -EINVAL;
4694 4695

	vma_size = vma->vm_end - vma->vm_start;
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755

	if (vma->vm_pgoff == 0) {
		nr_pages = (vma_size / PAGE_SIZE) - 1;
	} else {
		/*
		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
		 * mapped, all subsequent mappings should have the same size
		 * and offset. Must be above the normal perf buffer.
		 */
		u64 aux_offset, aux_size;

		if (!event->rb)
			return -EINVAL;

		nr_pages = vma_size / PAGE_SIZE;

		mutex_lock(&event->mmap_mutex);
		ret = -EINVAL;

		rb = event->rb;
		if (!rb)
			goto aux_unlock;

		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
		aux_size = ACCESS_ONCE(rb->user_page->aux_size);

		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
			goto aux_unlock;

		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
			goto aux_unlock;

		/* already mapped with a different offset */
		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
			goto aux_unlock;

		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
			goto aux_unlock;

		/* already mapped with a different size */
		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
			goto aux_unlock;

		if (!is_power_of_2(nr_pages))
			goto aux_unlock;

		if (!atomic_inc_not_zero(&rb->mmap_count))
			goto aux_unlock;

		if (rb_has_aux(rb)) {
			atomic_inc(&rb->aux_mmap_count);
			ret = 0;
			goto unlock;
		}

		atomic_set(&rb->aux_mmap_count, 1);
		user_extra = nr_pages;

		goto accounting;
	}
4756

4757
	/*
4758
	 * If we have rb pages ensure they're a power-of-two number, so we
4759 4760
	 * can do bitmasks instead of modulo.
	 */
4761
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4762 4763
		return -EINVAL;

4764
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4765 4766
		return -EINVAL;

4767
	WARN_ON_ONCE(event->ctx->parent_ctx);
4768
again:
4769
	mutex_lock(&event->mmap_mutex);
4770
	if (event->rb) {
4771
		if (event->rb->nr_pages != nr_pages) {
4772
			ret = -EINVAL;
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4786 4787 4788
		goto unlock;
	}

4789
	user_extra = nr_pages + 1;
4790 4791

accounting:
4792
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4793 4794 4795 4796 4797 4798

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4799
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4800

4801 4802
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4803

4804
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4805
	lock_limit >>= PAGE_SHIFT;
4806
	locked = vma->vm_mm->pinned_vm + extra;
4807

4808 4809
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4810 4811 4812
		ret = -EPERM;
		goto unlock;
	}
4813

4814
	WARN_ON(!rb && event->rb);
4815

4816
	if (vma->vm_flags & VM_WRITE)
4817
		flags |= RING_BUFFER_WRITABLE;
4818

4819
	if (!rb) {
4820 4821 4822
		rb = rb_alloc(nr_pages,
			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
			      event->cpu, flags);
P
Peter Zijlstra 已提交
4823

4824 4825 4826 4827
		if (!rb) {
			ret = -ENOMEM;
			goto unlock;
		}
4828

4829 4830 4831
		atomic_set(&rb->mmap_count, 1);
		rb->mmap_user = get_current_user();
		rb->mmap_locked = extra;
P
Peter Zijlstra 已提交
4832

4833
		ring_buffer_attach(event, rb);
4834

4835 4836 4837
		perf_event_init_userpage(event);
		perf_event_update_userpage(event);
	} else {
4838 4839
		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
				   event->attr.aux_watermark, flags);
4840 4841 4842
		if (!ret)
			rb->aux_mmap_locked = extra;
	}
4843

4844
unlock:
4845 4846 4847 4848
	if (!ret) {
		atomic_long_add(user_extra, &user->locked_vm);
		vma->vm_mm->pinned_vm += extra;

4849
		atomic_inc(&event->mmap_count);
4850 4851 4852 4853
	} else if (rb) {
		atomic_dec(&rb->mmap_count);
	}
aux_unlock:
4854
	mutex_unlock(&event->mmap_mutex);
4855

4856 4857 4858 4859
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4860
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4861
	vma->vm_ops = &perf_mmap_vmops;
4862

4863 4864 4865
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4866
	return ret;
4867 4868
}

P
Peter Zijlstra 已提交
4869 4870
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4871
	struct inode *inode = file_inode(filp);
4872
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4873 4874 4875
	int retval;

	mutex_lock(&inode->i_mutex);
4876
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4877 4878 4879 4880 4881 4882 4883 4884
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4885
static const struct file_operations perf_fops = {
4886
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4887 4888 4889
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4890
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4891
	.compat_ioctl		= perf_compat_ioctl,
4892
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4893
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4894 4895
};

4896
/*
4897
 * Perf event wakeup
4898 4899 4900 4901 4902
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4903 4904 4905 4906 4907 4908 4909 4910
static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{
	/* only the parent has fasync state */
	if (event->parent)
		event = event->parent;
	return &event->fasync;
}

4911
void perf_event_wakeup(struct perf_event *event)
4912
{
4913
	ring_buffer_wakeup(event);
4914

4915
	if (event->pending_kill) {
4916
		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4917
		event->pending_kill = 0;
4918
	}
4919 4920
}

4921
static void perf_pending_event(struct irq_work *entry)
4922
{
4923 4924
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4925 4926 4927 4928 4929 4930 4931
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
4932

4933 4934
	if (event->pending_disable) {
		event->pending_disable = 0;
4935
		perf_event_disable_local(event);
4936 4937
	}

4938 4939 4940
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4941
	}
4942 4943 4944

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
4945 4946
}

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4983
static void perf_sample_regs_user(struct perf_regs *regs_user,
4984 4985
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4986
{
4987 4988
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4989
		regs_user->regs = regs;
4990 4991
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4992 4993 4994
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4995 4996 4997
	}
}

4998 4999 5000 5001 5002 5003 5004 5005
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

5101 5102 5103
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
5117
		data->time = perf_event_clock(event);
5118

5119
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

5131 5132 5133
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
5158 5159 5160

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
5161 5162
}

5163 5164 5165
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
5166 5167 5168 5169 5170
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

5171
static void perf_output_read_one(struct perf_output_handle *handle,
5172 5173
				 struct perf_event *event,
				 u64 enabled, u64 running)
5174
{
5175
	u64 read_format = event->attr.read_format;
5176 5177 5178
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
5179
	values[n++] = perf_event_count(event);
5180
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5181
		values[n++] = enabled +
5182
			atomic64_read(&event->child_total_time_enabled);
5183 5184
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5185
		values[n++] = running +
5186
			atomic64_read(&event->child_total_time_running);
5187 5188
	}
	if (read_format & PERF_FORMAT_ID)
5189
		values[n++] = primary_event_id(event);
5190

5191
	__output_copy(handle, values, n * sizeof(u64));
5192 5193 5194
}

/*
5195
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5196 5197
 */
static void perf_output_read_group(struct perf_output_handle *handle,
5198 5199
			    struct perf_event *event,
			    u64 enabled, u64 running)
5200
{
5201 5202
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
5203 5204 5205 5206 5207 5208
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5209
		values[n++] = enabled;
5210 5211

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5212
		values[n++] = running;
5213

5214
	if (leader != event)
5215 5216
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
5217
	values[n++] = perf_event_count(leader);
5218
	if (read_format & PERF_FORMAT_ID)
5219
		values[n++] = primary_event_id(leader);
5220

5221
	__output_copy(handle, values, n * sizeof(u64));
5222

5223
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5224 5225
		n = 0;

5226 5227
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5228 5229
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
5230
		values[n++] = perf_event_count(sub);
5231
		if (read_format & PERF_FORMAT_ID)
5232
			values[n++] = primary_event_id(sub);
5233

5234
		__output_copy(handle, values, n * sizeof(u64));
5235 5236 5237
	}
}

5238 5239 5240
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

5241
static void perf_output_read(struct perf_output_handle *handle,
5242
			     struct perf_event *event)
5243
{
5244
	u64 enabled = 0, running = 0, now;
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
5256
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5257
		calc_timer_values(event, &now, &enabled, &running);
5258

5259
	if (event->attr.read_format & PERF_FORMAT_GROUP)
5260
		perf_output_read_group(handle, event, enabled, running);
5261
	else
5262
		perf_output_read_one(handle, event, enabled, running);
5263 5264
}

5265 5266 5267
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
5268
			struct perf_event *event)
5269 5270 5271 5272 5273
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

5274 5275 5276
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
5302
		perf_output_read(handle, event);
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

5313
			__output_copy(handle, data->callchain, size);
5314 5315 5316 5317 5318 5319 5320 5321
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
5322 5323 5324 5325 5326 5327 5328 5329 5330
			u32 raw_size = data->raw->size;
			u32 real_size = round_up(raw_size + sizeof(u32),
						 sizeof(u64)) - sizeof(u32);
			u64 zero = 0;

			perf_output_put(handle, real_size);
			__output_copy(handle, data->raw->data, raw_size);
			if (real_size - raw_size)
				__output_copy(handle, &zero, real_size - raw_size);
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
5342

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5377

5378
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5379 5380 5381
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5382
	}
A
Andi Kleen 已提交
5383 5384 5385

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5386 5387 5388

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5389

A
Andi Kleen 已提交
5390 5391 5392
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5423 5424 5425 5426
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5427
			 struct perf_event *event,
5428
			 struct pt_regs *regs)
5429
{
5430
	u64 sample_type = event->attr.sample_type;
5431

5432
	header->type = PERF_RECORD_SAMPLE;
5433
	header->size = sizeof(*header) + event->header_size;
5434 5435 5436

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5437

5438
	__perf_event_header__init_id(header, data, event);
5439

5440
	if (sample_type & PERF_SAMPLE_IP)
5441 5442
		data->ip = perf_instruction_pointer(regs);

5443
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5444
		int size = 1;
5445

5446
		data->callchain = perf_callchain(event, regs);
5447 5448 5449 5450 5451

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5452 5453
	}

5454
	if (sample_type & PERF_SAMPLE_RAW) {
5455 5456 5457 5458 5459 5460 5461
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

5462
		header->size += round_up(size, sizeof(u64));
5463
	}
5464 5465 5466 5467 5468 5469 5470 5471 5472

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5473

5474
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5475 5476
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5477

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5501
						     data->regs_user.regs);
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5529
}
5530

5531 5532 5533
void perf_event_output(struct perf_event *event,
			struct perf_sample_data *data,
			struct pt_regs *regs)
5534 5535 5536
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5537

5538 5539 5540
	/* protect the callchain buffers */
	rcu_read_lock();

5541
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5542

5543
	if (perf_output_begin(&handle, event, header.size))
5544
		goto exit;
5545

5546
	perf_output_sample(&handle, &header, data, event);
5547

5548
	perf_output_end(&handle);
5549 5550 5551

exit:
	rcu_read_unlock();
5552 5553
}

5554
/*
5555
 * read event_id
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5566
perf_event_read_event(struct perf_event *event,
5567 5568 5569
			struct task_struct *task)
{
	struct perf_output_handle handle;
5570
	struct perf_sample_data sample;
5571
	struct perf_read_event read_event = {
5572
		.header = {
5573
			.type = PERF_RECORD_READ,
5574
			.misc = 0,
5575
			.size = sizeof(read_event) + event->read_size,
5576
		},
5577 5578
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5579
	};
5580
	int ret;
5581

5582
	perf_event_header__init_id(&read_event.header, &sample, event);
5583
	ret = perf_output_begin(&handle, event, read_event.header.size);
5584 5585 5586
	if (ret)
		return;

5587
	perf_output_put(&handle, read_event);
5588
	perf_output_read(&handle, event);
5589
	perf_event__output_id_sample(event, &handle, &sample);
5590

5591 5592 5593
	perf_output_end(&handle);
}

5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5608
		output(event, data);
5609 5610 5611
	}
}

J
Jiri Olsa 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
			struct perf_event_context *task_ctx)
{
	rcu_read_lock();
	preempt_disable();
	perf_event_aux_ctx(task_ctx, output, data);
	preempt_enable();
	rcu_read_unlock();
}

5623
static void
5624
perf_event_aux(perf_event_aux_output_cb output, void *data,
5625 5626 5627 5628 5629 5630 5631
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

J
Jiri Olsa 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642
	/*
	 * If we have task_ctx != NULL we only notify
	 * the task context itself. The task_ctx is set
	 * only for EXIT events before releasing task
	 * context.
	 */
	if (task_ctx) {
		perf_event_aux_task_ctx(output, data, task_ctx);
		return;
	}

5643 5644 5645 5646 5647
	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5648
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5649 5650 5651 5652 5653
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5654
			perf_event_aux_ctx(ctx, output, data);
5655 5656 5657 5658 5659 5660
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5661
/*
P
Peter Zijlstra 已提交
5662 5663
 * task tracking -- fork/exit
 *
5664
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5665 5666
 */

P
Peter Zijlstra 已提交
5667
struct perf_task_event {
5668
	struct task_struct		*task;
5669
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5670 5671 5672 5673 5674 5675

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5676 5677
		u32				tid;
		u32				ptid;
5678
		u64				time;
5679
	} event_id;
P
Peter Zijlstra 已提交
5680 5681
};

5682 5683
static int perf_event_task_match(struct perf_event *event)
{
5684 5685 5686
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5687 5688
}

5689
static void perf_event_task_output(struct perf_event *event,
5690
				   void *data)
P
Peter Zijlstra 已提交
5691
{
5692
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5693
	struct perf_output_handle handle;
5694
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5695
	struct task_struct *task = task_event->task;
5696
	int ret, size = task_event->event_id.header.size;
5697

5698 5699 5700
	if (!perf_event_task_match(event))
		return;

5701
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5702

5703
	ret = perf_output_begin(&handle, event,
5704
				task_event->event_id.header.size);
5705
	if (ret)
5706
		goto out;
P
Peter Zijlstra 已提交
5707

5708 5709
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5710

5711 5712
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5713

5714 5715
	task_event->event_id.time = perf_event_clock(event);

5716
	perf_output_put(&handle, task_event->event_id);
5717

5718 5719
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5720
	perf_output_end(&handle);
5721 5722
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5723 5724
}

5725 5726
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5727
			      int new)
P
Peter Zijlstra 已提交
5728
{
P
Peter Zijlstra 已提交
5729
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5730

5731 5732 5733
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5734 5735
		return;

P
Peter Zijlstra 已提交
5736
	task_event = (struct perf_task_event){
5737 5738
		.task	  = task,
		.task_ctx = task_ctx,
5739
		.event_id    = {
P
Peter Zijlstra 已提交
5740
			.header = {
5741
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5742
				.misc = 0,
5743
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5744
			},
5745 5746
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5747 5748
			/* .tid  */
			/* .ptid */
5749
			/* .time */
P
Peter Zijlstra 已提交
5750 5751 5752
		},
	};

5753
	perf_event_aux(perf_event_task_output,
5754 5755
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5756 5757
}

5758
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5759
{
5760
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5761 5762
}

5763 5764 5765 5766 5767
/*
 * comm tracking
 */

struct perf_comm_event {
5768 5769
	struct task_struct	*task;
	char			*comm;
5770 5771 5772 5773 5774 5775 5776
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5777
	} event_id;
5778 5779
};

5780 5781 5782 5783 5784
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5785
static void perf_event_comm_output(struct perf_event *event,
5786
				   void *data)
5787
{
5788
	struct perf_comm_event *comm_event = data;
5789
	struct perf_output_handle handle;
5790
	struct perf_sample_data sample;
5791
	int size = comm_event->event_id.header.size;
5792 5793
	int ret;

5794 5795 5796
	if (!perf_event_comm_match(event))
		return;

5797 5798
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5799
				comm_event->event_id.header.size);
5800 5801

	if (ret)
5802
		goto out;
5803

5804 5805
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5806

5807
	perf_output_put(&handle, comm_event->event_id);
5808
	__output_copy(&handle, comm_event->comm,
5809
				   comm_event->comm_size);
5810 5811 5812

	perf_event__output_id_sample(event, &handle, &sample);

5813
	perf_output_end(&handle);
5814 5815
out:
	comm_event->event_id.header.size = size;
5816 5817
}

5818
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5819
{
5820
	char comm[TASK_COMM_LEN];
5821 5822
	unsigned int size;

5823
	memset(comm, 0, sizeof(comm));
5824
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5825
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5826 5827 5828 5829

	comm_event->comm = comm;
	comm_event->comm_size = size;

5830
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5831

5832
	perf_event_aux(perf_event_comm_output,
5833 5834
		       comm_event,
		       NULL);
5835 5836
}

5837
void perf_event_comm(struct task_struct *task, bool exec)
5838
{
5839 5840
	struct perf_comm_event comm_event;

5841
	if (!atomic_read(&nr_comm_events))
5842
		return;
5843

5844
	comm_event = (struct perf_comm_event){
5845
		.task	= task,
5846 5847
		/* .comm      */
		/* .comm_size */
5848
		.event_id  = {
5849
			.header = {
5850
				.type = PERF_RECORD_COMM,
5851
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5852 5853 5854 5855
				/* .size */
			},
			/* .pid */
			/* .tid */
5856 5857 5858
		},
	};

5859
	perf_event_comm_event(&comm_event);
5860 5861
}

5862 5863 5864 5865 5866
/*
 * mmap tracking
 */

struct perf_mmap_event {
5867 5868 5869 5870
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5871 5872 5873
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5874
	u32			prot, flags;
5875 5876 5877 5878 5879 5880 5881 5882 5883

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5884
	} event_id;
5885 5886
};

5887 5888 5889 5890 5891 5892 5893 5894
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5895
	       (executable && (event->attr.mmap || event->attr.mmap2));
5896 5897
}

5898
static void perf_event_mmap_output(struct perf_event *event,
5899
				   void *data)
5900
{
5901
	struct perf_mmap_event *mmap_event = data;
5902
	struct perf_output_handle handle;
5903
	struct perf_sample_data sample;
5904
	int size = mmap_event->event_id.header.size;
5905
	int ret;
5906

5907 5908 5909
	if (!perf_event_mmap_match(event, data))
		return;

5910 5911 5912 5913 5914
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5915
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5916 5917
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5918 5919
	}

5920 5921
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5922
				mmap_event->event_id.header.size);
5923
	if (ret)
5924
		goto out;
5925

5926 5927
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5928

5929
	perf_output_put(&handle, mmap_event->event_id);
5930 5931 5932 5933 5934 5935

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5936 5937
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5938 5939
	}

5940
	__output_copy(&handle, mmap_event->file_name,
5941
				   mmap_event->file_size);
5942 5943 5944

	perf_event__output_id_sample(event, &handle, &sample);

5945
	perf_output_end(&handle);
5946 5947
out:
	mmap_event->event_id.header.size = size;
5948 5949
}

5950
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5951
{
5952 5953
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5954 5955
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5956
	u32 prot = 0, flags = 0;
5957 5958 5959
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5960
	char *name;
5961

5962
	if (file) {
5963 5964
		struct inode *inode;
		dev_t dev;
5965

5966
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5967
		if (!buf) {
5968 5969
			name = "//enomem";
			goto cpy_name;
5970
		}
5971
		/*
5972
		 * d_path() works from the end of the rb backwards, so we
5973 5974 5975
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
M
Miklos Szeredi 已提交
5976
		name = file_path(file, buf, PATH_MAX - sizeof(u64));
5977
		if (IS_ERR(name)) {
5978 5979
			name = "//toolong";
			goto cpy_name;
5980
		}
5981 5982 5983 5984 5985 5986
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

6009
		goto got_name;
6010
	} else {
6011 6012 6013 6014 6015 6016
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

6017
		name = (char *)arch_vma_name(vma);
6018 6019
		if (name)
			goto cpy_name;
6020

6021
		if (vma->vm_start <= vma->vm_mm->start_brk &&
6022
				vma->vm_end >= vma->vm_mm->brk) {
6023 6024
			name = "[heap]";
			goto cpy_name;
6025 6026
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
6027
				vma->vm_end >= vma->vm_mm->start_stack) {
6028 6029
			name = "[stack]";
			goto cpy_name;
6030 6031
		}

6032 6033
		name = "//anon";
		goto cpy_name;
6034 6035
	}

6036 6037 6038
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
6039
got_name:
6040 6041 6042 6043 6044 6045 6046 6047
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
6048 6049 6050

	mmap_event->file_name = name;
	mmap_event->file_size = size;
6051 6052 6053 6054
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
6055 6056
	mmap_event->prot = prot;
	mmap_event->flags = flags;
6057

6058 6059 6060
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

6061
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6062

6063
	perf_event_aux(perf_event_mmap_output,
6064 6065
		       mmap_event,
		       NULL);
6066

6067 6068 6069
	kfree(buf);
}

6070
void perf_event_mmap(struct vm_area_struct *vma)
6071
{
6072 6073
	struct perf_mmap_event mmap_event;

6074
	if (!atomic_read(&nr_mmap_events))
6075 6076 6077
		return;

	mmap_event = (struct perf_mmap_event){
6078
		.vma	= vma,
6079 6080
		/* .file_name */
		/* .file_size */
6081
		.event_id  = {
6082
			.header = {
6083
				.type = PERF_RECORD_MMAP,
6084
				.misc = PERF_RECORD_MISC_USER,
6085 6086 6087 6088
				/* .size */
			},
			/* .pid */
			/* .tid */
6089 6090
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
6091
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6092
		},
6093 6094 6095 6096
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
6097 6098
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
6099 6100
	};

6101
	perf_event_mmap_event(&mmap_event);
6102 6103
}

A
Alexander Shishkin 已提交
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
void perf_event_aux_event(struct perf_event *event, unsigned long head,
			  unsigned long size, u64 flags)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header	header;
		u64				offset;
		u64				size;
		u64				flags;
	} rec = {
		.header = {
			.type = PERF_RECORD_AUX,
			.misc = 0,
			.size = sizeof(rec),
		},
		.offset		= head,
		.size		= size,
		.flags		= flags,
	};
	int ret;

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
/*
 * Lost/dropped samples logging
 */
void perf_log_lost_samples(struct perf_event *event, u64 lost)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				lost;
	} lost_samples_event = {
		.header = {
			.type = PERF_RECORD_LOST_SAMPLES,
			.misc = 0,
			.size = sizeof(lost_samples_event),
		},
		.lost		= lost,
	};

	perf_event_header__init_id(&lost_samples_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
				lost_samples_event.header.size);
	if (ret)
		return;

	perf_output_put(&handle, lost_samples_event);
	perf_event__output_id_sample(event, &handle, &sample);
	perf_output_end(&handle);
}

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
/*
 * context_switch tracking
 */

struct perf_switch_event {
	struct task_struct	*task;
	struct task_struct	*next_prev;

	struct {
		struct perf_event_header	header;
		u32				next_prev_pid;
		u32				next_prev_tid;
	} event_id;
};

static int perf_event_switch_match(struct perf_event *event)
{
	return event->attr.context_switch;
}

static void perf_event_switch_output(struct perf_event *event, void *data)
{
	struct perf_switch_event *se = data;
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	int ret;

	if (!perf_event_switch_match(event))
		return;

	/* Only CPU-wide events are allowed to see next/prev pid/tid */
	if (event->ctx->task) {
		se->event_id.header.type = PERF_RECORD_SWITCH;
		se->event_id.header.size = sizeof(se->event_id.header);
	} else {
		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
		se->event_id.header.size = sizeof(se->event_id);
		se->event_id.next_prev_pid =
					perf_event_pid(event, se->next_prev);
		se->event_id.next_prev_tid =
					perf_event_tid(event, se->next_prev);
	}

	perf_event_header__init_id(&se->event_id.header, &sample, event);

	ret = perf_output_begin(&handle, event, se->event_id.header.size);
	if (ret)
		return;

	if (event->ctx->task)
		perf_output_put(&handle, se->event_id.header);
	else
		perf_output_put(&handle, se->event_id);

	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

static void perf_event_switch(struct task_struct *task,
			      struct task_struct *next_prev, bool sched_in)
{
	struct perf_switch_event switch_event;

	/* N.B. caller checks nr_switch_events != 0 */

	switch_event = (struct perf_switch_event){
		.task		= task,
		.next_prev	= next_prev,
		.event_id	= {
			.header = {
				/* .type */
				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
				/* .size */
			},
			/* .next_prev_pid */
			/* .next_prev_tid */
		},
	};

	perf_event_aux(perf_event_switch_output,
		       &switch_event,
		       NULL);
}

6256 6257 6258 6259
/*
 * IRQ throttle logging
 */

6260
static void perf_log_throttle(struct perf_event *event, int enable)
6261 6262
{
	struct perf_output_handle handle;
6263
	struct perf_sample_data sample;
6264 6265 6266 6267 6268
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
6269
		u64				id;
6270
		u64				stream_id;
6271 6272
	} throttle_event = {
		.header = {
6273
			.type = PERF_RECORD_THROTTLE,
6274 6275 6276
			.misc = 0,
			.size = sizeof(throttle_event),
		},
6277
		.time		= perf_event_clock(event),
6278 6279
		.id		= primary_event_id(event),
		.stream_id	= event->id,
6280 6281
	};

6282
	if (enable)
6283
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6284

6285 6286 6287
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
6288
				throttle_event.header.size);
6289 6290 6291 6292
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
6293
	perf_event__output_id_sample(event, &handle, &sample);
6294 6295 6296
	perf_output_end(&handle);
}

6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
static void perf_log_itrace_start(struct perf_event *event)
{
	struct perf_output_handle handle;
	struct perf_sample_data sample;
	struct perf_aux_event {
		struct perf_event_header        header;
		u32				pid;
		u32				tid;
	} rec;
	int ret;

	if (event->parent)
		event = event->parent;

	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
	    event->hw.itrace_started)
		return;

	rec.header.type	= PERF_RECORD_ITRACE_START;
	rec.header.misc	= 0;
	rec.header.size	= sizeof(rec);
	rec.pid	= perf_event_pid(event, current);
	rec.tid	= perf_event_tid(event, current);

	perf_event_header__init_id(&rec.header, &sample, event);
	ret = perf_output_begin(&handle, event, rec.header.size);

	if (ret)
		return;

	perf_output_put(&handle, rec);
	perf_event__output_id_sample(event, &handle, &sample);

	perf_output_end(&handle);
}

6333
/*
6334
 * Generic event overflow handling, sampling.
6335 6336
 */

6337
static int __perf_event_overflow(struct perf_event *event,
6338 6339
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
6340
{
6341 6342
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
6343
	u64 seq;
6344 6345
	int ret = 0;

6346 6347 6348 6349 6350 6351 6352
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

6353 6354 6355 6356 6357 6358 6359 6360 6361
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
6362 6363
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
6364
			tick_nohz_full_kick();
6365 6366
			ret = 1;
		}
6367
	}
6368

6369
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
6370
		u64 now = perf_clock();
6371
		s64 delta = now - hwc->freq_time_stamp;
6372

6373
		hwc->freq_time_stamp = now;
6374

6375
		if (delta > 0 && delta < 2*TICK_NSEC)
6376
			perf_adjust_period(event, delta, hwc->last_period, true);
6377 6378
	}

6379 6380
	/*
	 * XXX event_limit might not quite work as expected on inherited
6381
	 * events
6382 6383
	 */

6384 6385
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
6386
		ret = 1;
6387
		event->pending_kill = POLL_HUP;
6388 6389
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
6390 6391
	}

6392
	if (event->overflow_handler)
6393
		event->overflow_handler(event, data, regs);
6394
	else
6395
		perf_event_output(event, data, regs);
6396

6397
	if (*perf_event_fasync(event) && event->pending_kill) {
6398 6399
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
6400 6401
	}

6402
	return ret;
6403 6404
}

6405
int perf_event_overflow(struct perf_event *event,
6406 6407
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
6408
{
6409
	return __perf_event_overflow(event, 1, data, regs);
6410 6411
}

6412
/*
6413
 * Generic software event infrastructure
6414 6415
 */

6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

6427
/*
6428 6429
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
6430 6431 6432 6433
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

6434
u64 perf_swevent_set_period(struct perf_event *event)
6435
{
6436
	struct hw_perf_event *hwc = &event->hw;
6437 6438 6439 6440 6441
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
6442 6443

again:
6444
	old = val = local64_read(&hwc->period_left);
6445 6446
	if (val < 0)
		return 0;
6447

6448 6449 6450
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
6451
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6452
		goto again;
6453

6454
	return nr;
6455 6456
}

6457
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6458
				    struct perf_sample_data *data,
6459
				    struct pt_regs *regs)
6460
{
6461
	struct hw_perf_event *hwc = &event->hw;
6462
	int throttle = 0;
6463

6464 6465
	if (!overflow)
		overflow = perf_swevent_set_period(event);
6466

6467 6468
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
6469

6470
	for (; overflow; overflow--) {
6471
		if (__perf_event_overflow(event, throttle,
6472
					    data, regs)) {
6473 6474 6475 6476 6477 6478
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
6479
		throttle = 1;
6480
	}
6481 6482
}

P
Peter Zijlstra 已提交
6483
static void perf_swevent_event(struct perf_event *event, u64 nr,
6484
			       struct perf_sample_data *data,
6485
			       struct pt_regs *regs)
6486
{
6487
	struct hw_perf_event *hwc = &event->hw;
6488

6489
	local64_add(nr, &event->count);
6490

6491 6492 6493
	if (!regs)
		return;

6494
	if (!is_sampling_event(event))
6495
		return;
6496

6497 6498 6499 6500 6501 6502
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

6503
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6504
		return perf_swevent_overflow(event, 1, data, regs);
6505

6506
	if (local64_add_negative(nr, &hwc->period_left))
6507
		return;
6508

6509
	perf_swevent_overflow(event, 0, data, regs);
6510 6511
}

6512 6513 6514
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
6515
	if (event->hw.state & PERF_HES_STOPPED)
6516
		return 1;
P
Peter Zijlstra 已提交
6517

6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

6529
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
6530
				enum perf_type_id type,
L
Li Zefan 已提交
6531 6532 6533
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
6534
{
6535
	if (event->attr.type != type)
6536
		return 0;
6537

6538
	if (event->attr.config != event_id)
6539 6540
		return 0;

6541 6542
	if (perf_exclude_event(event, regs))
		return 0;
6543 6544 6545 6546

	return 1;
}

6547 6548 6549 6550 6551 6552 6553
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

6554 6555
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6556
{
6557 6558 6559 6560
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
6561

6562 6563
/* For the read side: events when they trigger */
static inline struct hlist_head *
6564
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6565 6566
{
	struct swevent_hlist *hlist;
6567

6568
	hlist = rcu_dereference(swhash->swevent_hlist);
6569 6570 6571
	if (!hlist)
		return NULL;

6572 6573 6574 6575 6576
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6577
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6588
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6589 6590 6591 6592 6593
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6594 6595 6596
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6597
				    u64 nr,
6598 6599
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6600
{
6601
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6602
	struct perf_event *event;
6603
	struct hlist_head *head;
6604

6605
	rcu_read_lock();
6606
	head = find_swevent_head_rcu(swhash, type, event_id);
6607 6608 6609
	if (!head)
		goto end;

6610
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6611
		if (perf_swevent_match(event, type, event_id, data, regs))
6612
			perf_swevent_event(event, nr, data, regs);
6613
	}
6614 6615
end:
	rcu_read_unlock();
6616 6617
}

6618 6619
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6620
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6621
{
6622
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6623

6624
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6625
}
I
Ingo Molnar 已提交
6626
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6627

6628
inline void perf_swevent_put_recursion_context(int rctx)
6629
{
6630
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6631

6632
	put_recursion_context(swhash->recursion, rctx);
6633
}
6634

6635
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6636
{
6637
	struct perf_sample_data data;
6638

6639
	if (WARN_ON_ONCE(!regs))
6640
		return;
6641

6642
	perf_sample_data_init(&data, addr, 0);
6643
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6656 6657

	perf_swevent_put_recursion_context(rctx);
6658
fail:
6659
	preempt_enable_notrace();
6660 6661
}

6662
static void perf_swevent_read(struct perf_event *event)
6663 6664 6665
{
}

P
Peter Zijlstra 已提交
6666
static int perf_swevent_add(struct perf_event *event, int flags)
6667
{
6668
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6669
	struct hw_perf_event *hwc = &event->hw;
6670 6671
	struct hlist_head *head;

6672
	if (is_sampling_event(event)) {
6673
		hwc->last_period = hwc->sample_period;
6674
		perf_swevent_set_period(event);
6675
	}
6676

P
Peter Zijlstra 已提交
6677 6678
	hwc->state = !(flags & PERF_EF_START);

6679
	head = find_swevent_head(swhash, event);
P
Peter Zijlstra 已提交
6680
	if (WARN_ON_ONCE(!head))
6681 6682 6683
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);
6684
	perf_event_update_userpage(event);
6685

6686 6687 6688
	return 0;
}

P
Peter Zijlstra 已提交
6689
static void perf_swevent_del(struct perf_event *event, int flags)
6690
{
6691
	hlist_del_rcu(&event->hlist_entry);
6692 6693
}

P
Peter Zijlstra 已提交
6694
static void perf_swevent_start(struct perf_event *event, int flags)
6695
{
P
Peter Zijlstra 已提交
6696
	event->hw.state = 0;
6697
}
I
Ingo Molnar 已提交
6698

P
Peter Zijlstra 已提交
6699
static void perf_swevent_stop(struct perf_event *event, int flags)
6700
{
P
Peter Zijlstra 已提交
6701
	event->hw.state = PERF_HES_STOPPED;
6702 6703
}

6704 6705
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6706
swevent_hlist_deref(struct swevent_htable *swhash)
6707
{
6708 6709
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6710 6711
}

6712
static void swevent_hlist_release(struct swevent_htable *swhash)
6713
{
6714
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6715

6716
	if (!hlist)
6717 6718
		return;

6719
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6720
	kfree_rcu(hlist, rcu_head);
6721 6722 6723 6724
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6725
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6726

6727
	mutex_lock(&swhash->hlist_mutex);
6728

6729 6730
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6731

6732
	mutex_unlock(&swhash->hlist_mutex);
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6745
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6746 6747
	int err = 0;

6748 6749
	mutex_lock(&swhash->hlist_mutex);
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6750 6751 6752 6753 6754 6755 6756
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6757
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6758
	}
6759
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6760
exit:
6761
	mutex_unlock(&swhash->hlist_mutex);
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6782
fail:
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6793
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6794

6795 6796 6797
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6798

6799 6800
	WARN_ON(event->parent);

6801
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6802 6803 6804 6805 6806
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6807
	u64 event_id = event->attr.config;
6808 6809 6810 6811

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6812 6813 6814 6815 6816 6817
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6818 6819 6820 6821 6822 6823 6824 6825 6826
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6827
	if (event_id >= PERF_COUNT_SW_MAX)
6828 6829 6830 6831 6832 6833 6834 6835 6836
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6837
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6838 6839 6840 6841 6842 6843 6844
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6845
	.task_ctx_nr	= perf_sw_context,
6846

6847 6848
	.capabilities	= PERF_PMU_CAP_NO_NMI,

6849
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6850 6851 6852 6853
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6854 6855 6856
	.read		= perf_swevent_read,
};

6857 6858
#ifdef CONFIG_EVENT_TRACING

6859 6860 6861 6862 6863
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

6864 6865 6866 6867
	/* only top level events have filters set */
	if (event->parent)
		event = event->parent;

6868 6869 6870 6871 6872 6873 6874 6875 6876
	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6877 6878
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6879 6880 6881 6882
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6883 6884 6885 6886 6887 6888 6889 6890 6891
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6892 6893
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6894 6895
{
	struct perf_sample_data data;
6896 6897
	struct perf_event *event;

6898 6899 6900 6901 6902
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6903
	perf_sample_data_init(&data, addr, 0);
6904 6905
	data.raw = &raw;

6906
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6907
		if (perf_tp_event_match(event, &data, regs))
6908
			perf_swevent_event(event, count, &data, regs);
6909
	}
6910

6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6936
	perf_swevent_put_recursion_context(rctx);
6937 6938 6939
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6940
static void tp_perf_event_destroy(struct perf_event *event)
6941
{
6942
	perf_trace_destroy(event);
6943 6944
}

6945
static int perf_tp_event_init(struct perf_event *event)
6946
{
6947 6948
	int err;

6949 6950 6951
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6952 6953 6954 6955 6956 6957
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6958 6959
	err = perf_trace_init(event);
	if (err)
6960
		return err;
6961

6962
	event->destroy = tp_perf_event_destroy;
6963

6964 6965 6966 6967
	return 0;
}

static struct pmu perf_tracepoint = {
6968 6969
	.task_ctx_nr	= perf_sw_context,

6970
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6971 6972 6973 6974
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6975 6976 6977 6978 6979
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6980
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6981
}
L
Li Zefan 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	struct bpf_prog *prog;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	if (event->tp_event->prog)
		return -EEXIST;

7016 7017
	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
		/* bpf programs can only be attached to u/kprobes */
7018 7019 7020 7021 7022 7023
		return -EINVAL;

	prog = bpf_prog_get(prog_fd);
	if (IS_ERR(prog))
		return PTR_ERR(prog);

7024
	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
		/* valid fd, but invalid bpf program type */
		bpf_prog_put(prog);
		return -EINVAL;
	}

	event->tp_event->prog = prog;

	return 0;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
	struct bpf_prog *prog;

	if (!event->tp_event)
		return;

	prog = event->tp_event->prog;
	if (prog) {
		event->tp_event->prog = NULL;
		bpf_prog_put(prog);
	}
}

7049
#else
L
Li Zefan 已提交
7050

7051
static inline void perf_tp_register(void)
7052 7053
{
}
L
Li Zefan 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

7064 7065 7066 7067 7068 7069 7070 7071
static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
{
	return -ENOENT;
}

static void perf_event_free_bpf_prog(struct perf_event *event)
{
}
7072
#endif /* CONFIG_EVENT_TRACING */
7073

7074
#ifdef CONFIG_HAVE_HW_BREAKPOINT
7075
void perf_bp_event(struct perf_event *bp, void *data)
7076
{
7077 7078 7079
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

7080
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7081

P
Peter Zijlstra 已提交
7082
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7083
		perf_swevent_event(bp, 1, &sample, regs);
7084 7085 7086
}
#endif

7087 7088 7089
/*
 * hrtimer based swevent callback
 */
7090

7091
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7092
{
7093 7094 7095 7096 7097
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
7098

7099
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
7100 7101 7102 7103

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

7104
	event->pmu->read(event);
7105

7106
	perf_sample_data_init(&data, 0, event->hw.last_period);
7107 7108 7109
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
7110
		if (!(event->attr.exclude_idle && is_idle_task(current)))
7111
			if (__perf_event_overflow(event, 1, &data, regs))
7112 7113
				ret = HRTIMER_NORESTART;
	}
7114

7115 7116
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7117

7118
	return ret;
7119 7120
}

7121
static void perf_swevent_start_hrtimer(struct perf_event *event)
7122
{
7123
	struct hw_perf_event *hwc = &event->hw;
7124 7125 7126 7127
	s64 period;

	if (!is_sampling_event(event))
		return;
7128

7129 7130 7131 7132
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
7133

7134 7135 7136 7137
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
7138 7139
	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
		      HRTIMER_MODE_REL_PINNED);
7140
}
7141 7142

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7143
{
7144 7145
	struct hw_perf_event *hwc = &event->hw;

7146
	if (is_sampling_event(event)) {
7147
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
7148
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7149 7150 7151

		hrtimer_cancel(&hwc->hrtimer);
	}
7152 7153
}

P
Peter Zijlstra 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
7174
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
7175 7176 7177 7178
		event->attr.freq = 0;
	}
}

7179 7180 7181 7182 7183
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
7184
{
7185 7186 7187
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
7188
	now = local_clock();
7189 7190
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
7191 7192
}

P
Peter Zijlstra 已提交
7193
static void cpu_clock_event_start(struct perf_event *event, int flags)
7194
{
P
Peter Zijlstra 已提交
7195
	local64_set(&event->hw.prev_count, local_clock());
7196 7197 7198
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7199
static void cpu_clock_event_stop(struct perf_event *event, int flags)
7200
{
7201 7202 7203
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
7204

P
Peter Zijlstra 已提交
7205 7206 7207 7208
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
7209
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

7219 7220 7221 7222
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
7223

7224 7225 7226 7227 7228 7229 7230 7231
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

7232 7233 7234 7235 7236 7237
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7238 7239
	perf_swevent_init_hrtimer(event);

7240
	return 0;
7241 7242
}

7243
static struct pmu perf_cpu_clock = {
7244 7245
	.task_ctx_nr	= perf_sw_context,

7246 7247
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7248
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
7249 7250 7251 7252
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
7253 7254 7255 7256 7257 7258 7259 7260
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
7261
{
7262 7263
	u64 prev;
	s64 delta;
7264

7265 7266 7267 7268
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
7269

P
Peter Zijlstra 已提交
7270
static void task_clock_event_start(struct perf_event *event, int flags)
7271
{
P
Peter Zijlstra 已提交
7272
	local64_set(&event->hw.prev_count, event->ctx->time);
7273 7274 7275
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
7276
static void task_clock_event_stop(struct perf_event *event, int flags)
7277 7278 7279
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
7280 7281 7282 7283 7284 7285
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
7286
	perf_event_update_userpage(event);
7287

P
Peter Zijlstra 已提交
7288 7289 7290 7291 7292 7293
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
7294 7295 7296 7297
}

static void task_clock_event_read(struct perf_event *event)
{
7298 7299 7300
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
7301 7302 7303 7304 7305

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
7306
{
7307 7308 7309 7310 7311 7312
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

7313 7314 7315 7316 7317 7318
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
7319 7320
	perf_swevent_init_hrtimer(event);

7321
	return 0;
L
Li Zefan 已提交
7322 7323
}

7324
static struct pmu perf_task_clock = {
7325 7326
	.task_ctx_nr	= perf_sw_context,

7327 7328
	.capabilities	= PERF_PMU_CAP_NO_NMI,

7329
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
7330 7331 7332 7333
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
7334 7335
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
7336

P
Peter Zijlstra 已提交
7337
static void perf_pmu_nop_void(struct pmu *pmu)
7338 7339
{
}
L
Li Zefan 已提交
7340

7341 7342 7343 7344
static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
{
}

P
Peter Zijlstra 已提交
7345
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
7346
{
P
Peter Zijlstra 已提交
7347
	return 0;
L
Li Zefan 已提交
7348 7349
}

7350
static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7351 7352

static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
L
Li Zefan 已提交
7353
{
7354 7355 7356 7357 7358
	__this_cpu_write(nop_txn_flags, flags);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7359
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
7360 7361
}

P
Peter Zijlstra 已提交
7362 7363
static int perf_pmu_commit_txn(struct pmu *pmu)
{
7364 7365 7366 7367 7368 7369 7370
	unsigned int flags = __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return 0;

P
Peter Zijlstra 已提交
7371 7372 7373
	perf_pmu_enable(pmu);
	return 0;
}
7374

P
Peter Zijlstra 已提交
7375
static void perf_pmu_cancel_txn(struct pmu *pmu)
7376
{
7377 7378 7379 7380 7381 7382 7383
	unsigned int flags =  __this_cpu_read(nop_txn_flags);

	__this_cpu_write(nop_txn_flags, 0);

	if (flags & ~PERF_PMU_TXN_ADD)
		return;

P
Peter Zijlstra 已提交
7384
	perf_pmu_enable(pmu);
7385 7386
}

7387 7388
static int perf_event_idx_default(struct perf_event *event)
{
7389
	return 0;
7390 7391
}

P
Peter Zijlstra 已提交
7392 7393 7394 7395
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
7396
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7397
{
P
Peter Zijlstra 已提交
7398
	struct pmu *pmu;
7399

P
Peter Zijlstra 已提交
7400 7401
	if (ctxn < 0)
		return NULL;
7402

P
Peter Zijlstra 已提交
7403 7404 7405 7406
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
7407

P
Peter Zijlstra 已提交
7408
	return NULL;
7409 7410
}

7411
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7412
{
7413 7414 7415 7416 7417 7418 7419
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

7420 7421
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
7422 7423 7424 7425 7426 7427
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
7428

P
Peter Zijlstra 已提交
7429
	mutex_lock(&pmus_lock);
7430
	/*
P
Peter Zijlstra 已提交
7431
	 * Like a real lame refcount.
7432
	 */
7433 7434 7435
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
7436
			goto out;
7437
		}
P
Peter Zijlstra 已提交
7438
	}
7439

7440
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
7441 7442
out:
	mutex_unlock(&pmus_lock);
7443
}
P
Peter Zijlstra 已提交
7444
static struct idr pmu_idr;
7445

P
Peter Zijlstra 已提交
7446 7447 7448 7449 7450 7451 7452
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
7453
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
7454

7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

7465 7466
static DEFINE_MUTEX(mux_interval_mutex);

7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

7486
	mutex_lock(&mux_interval_mutex);
7487 7488 7489
	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
7490 7491
	get_online_cpus();
	for_each_online_cpu(cpu) {
7492 7493 7494 7495
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

7496 7497
		cpu_function_call(cpu,
			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7498
	}
7499 7500
	put_online_cpus();
	mutex_unlock(&mux_interval_mutex);
7501 7502 7503

	return count;
}
7504
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7505

7506 7507 7508 7509
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
7510
};
7511
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
7512 7513 7514 7515

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
7516
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

7532
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

7553
static struct lock_class_key cpuctx_mutex;
7554
static struct lock_class_key cpuctx_lock;
7555

7556
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7557
{
P
Peter Zijlstra 已提交
7558
	int cpu, ret;
7559

7560
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
7561 7562 7563 7564
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
7565

P
Peter Zijlstra 已提交
7566 7567 7568 7569 7570 7571
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
7572 7573 7574
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
7575 7576 7577 7578 7579
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
7580 7581 7582 7583 7584 7585
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
7586
skip_type:
P
Peter Zijlstra 已提交
7587 7588 7589
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
7590

W
Wei Yongjun 已提交
7591
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
7592 7593
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
7594
		goto free_dev;
7595

P
Peter Zijlstra 已提交
7596 7597 7598 7599
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7600
		__perf_event_init_context(&cpuctx->ctx);
7601
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7602
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
7603
		cpuctx->ctx.pmu = pmu;
7604

7605
		__perf_mux_hrtimer_init(cpuctx, cpu);
7606

7607
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
7608
	}
7609

P
Peter Zijlstra 已提交
7610
got_cpu_context:
P
Peter Zijlstra 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
7622
			pmu->start_txn  = perf_pmu_nop_txn;
P
Peter Zijlstra 已提交
7623 7624
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
7625
		}
7626
	}
7627

P
Peter Zijlstra 已提交
7628 7629 7630 7631 7632
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

7633 7634 7635
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

7636
	list_add_rcu(&pmu->entry, &pmus);
7637
	atomic_set(&pmu->exclusive_cnt, 0);
P
Peter Zijlstra 已提交
7638 7639
	ret = 0;
unlock:
7640 7641
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
7642
	return ret;
P
Peter Zijlstra 已提交
7643

P
Peter Zijlstra 已提交
7644 7645 7646 7647
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
7648 7649 7650 7651
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
7652 7653 7654
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
7655
}
7656
EXPORT_SYMBOL_GPL(perf_pmu_register);
7657

7658
void perf_pmu_unregister(struct pmu *pmu)
7659
{
7660 7661 7662
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7663

7664
	/*
P
Peter Zijlstra 已提交
7665 7666
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7667
	 */
7668
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7669
	synchronize_rcu();
7670

P
Peter Zijlstra 已提交
7671
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7672 7673
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7674 7675
	device_del(pmu->dev);
	put_device(pmu->dev);
7676
	free_pmu_context(pmu);
7677
}
7678
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7679

7680 7681
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
P
Peter Zijlstra 已提交
7682
	struct perf_event_context *ctx = NULL;
7683 7684 7685 7686
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
P
Peter Zijlstra 已提交
7687 7688

	if (event->group_leader != event) {
7689 7690 7691 7692 7693 7694
		/*
		 * This ctx->mutex can nest when we're called through
		 * inheritance. See the perf_event_ctx_lock_nested() comment.
		 */
		ctx = perf_event_ctx_lock_nested(event->group_leader,
						 SINGLE_DEPTH_NESTING);
P
Peter Zijlstra 已提交
7695 7696 7697
		BUG_ON(!ctx);
	}

7698 7699
	event->pmu = pmu;
	ret = pmu->event_init(event);
P
Peter Zijlstra 已提交
7700 7701 7702 7703

	if (ctx)
		perf_event_ctx_unlock(event->group_leader, ctx);

7704 7705 7706 7707 7708 7709
	if (ret)
		module_put(pmu->module);

	return ret;
}

7710
static struct pmu *perf_init_event(struct perf_event *event)
7711 7712 7713
{
	struct pmu *pmu = NULL;
	int idx;
7714
	int ret;
7715 7716

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7717 7718 7719 7720

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7721
	if (pmu) {
7722
		ret = perf_try_init_event(pmu, event);
7723 7724
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7725
		goto unlock;
7726
	}
P
Peter Zijlstra 已提交
7727

7728
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7729
		ret = perf_try_init_event(pmu, event);
7730
		if (!ret)
P
Peter Zijlstra 已提交
7731
			goto unlock;
7732

7733 7734
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7735
			goto unlock;
7736
		}
7737
	}
P
Peter Zijlstra 已提交
7738 7739
	pmu = ERR_PTR(-ENOENT);
unlock:
7740
	srcu_read_unlock(&pmus_srcu, idx);
7741

7742
	return pmu;
7743 7744
}

7745 7746 7747 7748 7749 7750 7751 7752 7753
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7754 7755
static void account_event(struct perf_event *event)
{
7756 7757
	bool inc = false;

7758 7759 7760
	if (event->parent)
		return;

7761
	if (event->attach_state & PERF_ATTACH_TASK)
7762
		inc = true;
7763 7764 7765 7766 7767 7768
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7769 7770 7771 7772
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7773 7774
	if (event->attr.context_switch) {
		atomic_inc(&nr_switch_events);
7775
		inc = true;
7776
	}
7777
	if (has_branch_stack(event))
7778
		inc = true;
7779
	if (is_cgroup_event(event))
7780 7781 7782
		inc = true;

	if (inc)
7783
		static_key_slow_inc(&perf_sched_events.key);
7784 7785

	account_event_cpu(event, event->cpu);
7786 7787
}

T
Thomas Gleixner 已提交
7788
/*
7789
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7790
 */
7791
static struct perf_event *
7792
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7793 7794 7795
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7796
		 perf_overflow_handler_t overflow_handler,
7797
		 void *context, int cgroup_fd)
T
Thomas Gleixner 已提交
7798
{
P
Peter Zijlstra 已提交
7799
	struct pmu *pmu;
7800 7801
	struct perf_event *event;
	struct hw_perf_event *hwc;
7802
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7803

7804 7805 7806 7807 7808
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7809
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7810
	if (!event)
7811
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7812

7813
	/*
7814
	 * Single events are their own group leaders, with an
7815 7816 7817
	 * empty sibling list:
	 */
	if (!group_leader)
7818
		group_leader = event;
7819

7820 7821
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7822

7823 7824 7825
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7826
	INIT_LIST_HEAD(&event->rb_entry);
7827
	INIT_LIST_HEAD(&event->active_entry);
7828 7829
	INIT_HLIST_NODE(&event->hlist_entry);

7830

7831
	init_waitqueue_head(&event->waitq);
7832
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7833

7834
	mutex_init(&event->mmap_mutex);
7835

7836
	atomic_long_set(&event->refcount, 1);
7837 7838 7839 7840 7841
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7842

7843
	event->parent		= parent_event;
7844

7845
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7846
	event->id		= atomic64_inc_return(&perf_event_id);
7847

7848
	event->state		= PERF_EVENT_STATE_INACTIVE;
7849

7850 7851 7852
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
		/*
7853 7854 7855
		 * XXX pmu::event_init needs to know what task to account to
		 * and we cannot use the ctx information because we need the
		 * pmu before we get a ctx.
7856
		 */
7857
		event->hw.target = task;
7858 7859
	}

7860 7861 7862 7863
	event->clock = &local_clock;
	if (parent_event)
		event->clock = parent_event->clock;

7864
	if (!overflow_handler && parent_event) {
7865
		overflow_handler = parent_event->overflow_handler;
7866 7867
		context = parent_event->overflow_handler_context;
	}
7868

7869
	event->overflow_handler	= overflow_handler;
7870
	event->overflow_handler_context = context;
7871

J
Jiri Olsa 已提交
7872
	perf_event__state_init(event);
7873

7874
	pmu = NULL;
7875

7876
	hwc = &event->hw;
7877
	hwc->sample_period = attr->sample_period;
7878
	if (attr->freq && attr->sample_freq)
7879
		hwc->sample_period = 1;
7880
	hwc->last_period = hwc->sample_period;
7881

7882
	local64_set(&hwc->period_left, hwc->sample_period);
7883

7884
	/*
7885
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7886
	 */
7887
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7888
		goto err_ns;
7889 7890 7891

	if (!has_branch_stack(event))
		event->attr.branch_sample_type = 0;
7892

7893 7894 7895 7896 7897 7898
	if (cgroup_fd != -1) {
		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
		if (err)
			goto err_ns;
	}

7899
	pmu = perf_init_event(event);
7900
	if (!pmu)
7901 7902
		goto err_ns;
	else if (IS_ERR(pmu)) {
7903
		err = PTR_ERR(pmu);
7904
		goto err_ns;
I
Ingo Molnar 已提交
7905
	}
7906

7907 7908 7909 7910
	err = exclusive_event_init(event);
	if (err)
		goto err_pmu;

7911
	if (!event->parent) {
7912 7913
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7914
			if (err)
7915
				goto err_per_task;
7916
		}
7917
	}
7918

7919
	return event;
7920

7921 7922 7923
err_per_task:
	exclusive_event_destroy(event);

7924 7925 7926
err_pmu:
	if (event->destroy)
		event->destroy(event);
7927
	module_put(pmu->module);
7928
err_ns:
7929 7930
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);
7931 7932 7933 7934 7935
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7936 7937
}

7938 7939
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7940 7941
{
	u32 size;
7942
	int ret;
7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7967 7968 7969
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7970 7971
	 */
	if (size > sizeof(*attr)) {
7972 7973 7974
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7975

7976 7977
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7978

7979
		for (; addr < end; addr++) {
7980 7981 7982 7983 7984 7985
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7986
		size = sizeof(*attr);
7987 7988 7989 7990 7991 7992
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7993
	if (attr->__reserved_1)
7994 7995 7996 7997 7998 7999 8000 8001
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
8030 8031
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8032 8033
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
8034
	}
8035

8036
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8037
		ret = perf_reg_validate(attr->sample_regs_user);
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
8056

8057 8058
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
8059 8060 8061 8062 8063 8064 8065 8066 8067
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

8068 8069
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8070
{
8071
	struct ring_buffer *rb = NULL;
8072 8073
	int ret = -EINVAL;

8074
	if (!output_event)
8075 8076
		goto set;

8077 8078
	/* don't allow circular references */
	if (event == output_event)
8079 8080
		goto out;

8081 8082 8083 8084 8085 8086 8087
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
8088
	 * If its not a per-cpu rb, it must be the same task.
8089 8090 8091 8092
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

8093 8094 8095 8096 8097 8098
	/*
	 * Mixing clocks in the same buffer is trouble you don't need.
	 */
	if (output_event->clock != event->clock)
		goto out;

8099 8100 8101 8102 8103 8104 8105
	/*
	 * If both events generate aux data, they must be on the same PMU
	 */
	if (has_aux(event) && has_aux(output_event) &&
	    event->pmu != output_event->pmu)
		goto out;

8106
set:
8107
	mutex_lock(&event->mmap_mutex);
8108 8109 8110
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
8111

8112
	if (output_event) {
8113 8114 8115
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
8116
			goto unlock;
8117 8118
	}

8119
	ring_buffer_attach(event, rb);
8120

8121
	ret = 0;
8122 8123 8124
unlock:
	mutex_unlock(&event->mmap_mutex);

8125 8126 8127 8128
out:
	return ret;
}

P
Peter Zijlstra 已提交
8129 8130 8131 8132 8133 8134 8135 8136 8137
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174
static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
{
	bool nmi_safe = false;

	switch (clk_id) {
	case CLOCK_MONOTONIC:
		event->clock = &ktime_get_mono_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_MONOTONIC_RAW:
		event->clock = &ktime_get_raw_fast_ns;
		nmi_safe = true;
		break;

	case CLOCK_REALTIME:
		event->clock = &ktime_get_real_ns;
		break;

	case CLOCK_BOOTTIME:
		event->clock = &ktime_get_boot_ns;
		break;

	case CLOCK_TAI:
		event->clock = &ktime_get_tai_ns;
		break;

	default:
		return -EINVAL;
	}

	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
		return -EINVAL;

	return 0;
}

T
Thomas Gleixner 已提交
8175
/**
8176
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
8177
 *
8178
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
8179
 * @pid:		target pid
I
Ingo Molnar 已提交
8180
 * @cpu:		target cpu
8181
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
8182
 */
8183 8184
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
8185
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
8186
{
8187 8188
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
8189
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
8190
	struct perf_event_context *ctx, *uninitialized_var(gctx);
8191
	struct file *event_file = NULL;
8192
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
8193
	struct task_struct *task = NULL;
8194
	struct pmu *pmu;
8195
	int event_fd;
8196
	int move_group = 0;
8197
	int err;
8198
	int f_flags = O_RDWR;
8199
	int cgroup_fd = -1;
T
Thomas Gleixner 已提交
8200

8201
	/* for future expandability... */
S
Stephane Eranian 已提交
8202
	if (flags & ~PERF_FLAG_ALL)
8203 8204
		return -EINVAL;

8205 8206 8207
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
8208

8209 8210 8211 8212 8213
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

8214
	if (attr.freq) {
8215
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8216
			return -EINVAL;
8217 8218 8219
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
8220 8221
	}

S
Stephane Eranian 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

8231 8232 8233 8234
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
8235 8236 8237
	if (event_fd < 0)
		return event_fd;

8238
	if (group_fd != -1) {
8239 8240
		err = perf_fget_light(group_fd, &group);
		if (err)
8241
			goto err_fd;
8242
		group_leader = group.file->private_data;
8243 8244 8245 8246 8247 8248
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
8249
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8250 8251 8252 8253 8254 8255 8256
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

8257 8258 8259 8260 8261 8262
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

8263 8264
	get_online_cpus();

8265 8266 8267
	if (flags & PERF_FLAG_PID_CGROUP)
		cgroup_fd = pid;

8268
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8269
				 NULL, NULL, cgroup_fd);
8270 8271
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
8272
		goto err_cpus;
8273 8274
	}

8275 8276 8277 8278 8279 8280 8281
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

8282 8283
	account_event(event);

8284 8285 8286 8287 8288
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
8289

8290 8291 8292 8293 8294 8295
	if (attr.use_clockid) {
		err = perf_event_set_clock(event, attr.clockid);
		if (err)
			goto err_alloc;
	}

8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317
	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
8318 8319 8320 8321

	/*
	 * Get the target context (task or percpu):
	 */
8322
	ctx = find_get_context(pmu, task, event);
8323 8324
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8325
		goto err_alloc;
8326 8327
	}

8328 8329 8330 8331 8332
	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
		err = -EBUSY;
		goto err_context;
	}

8333 8334 8335 8336 8337
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
8338
	/*
8339
	 * Look up the group leader (we will attach this event to it):
8340
	 */
8341
	if (group_leader) {
8342
		err = -EINVAL;
8343 8344

		/*
I
Ingo Molnar 已提交
8345 8346 8347 8348
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
8349
			goto err_context;
8350 8351 8352 8353 8354

		/* All events in a group should have the same clock */
		if (group_leader->clock != event->clock)
			goto err_context;

I
Ingo Molnar 已提交
8355 8356 8357
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
8358
		 */
8359
		if (move_group) {
8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
8373 8374 8375 8376 8377 8378
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

8379 8380 8381
		/*
		 * Only a group leader can be exclusive or pinned
		 */
8382
		if (attr.exclusive || attr.pinned)
8383
			goto err_context;
8384 8385 8386 8387 8388
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
8389
			goto err_context;
8390
	}
T
Thomas Gleixner 已提交
8391

8392 8393
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
8394 8395
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
8396
		goto err_context;
8397
	}
8398

8399
	if (move_group) {
P
Peter Zijlstra 已提交
8400
		gctx = group_leader->ctx;
8401 8402 8403 8404 8405
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
	} else {
		mutex_lock(&ctx->mutex);
	}

P
Peter Zijlstra 已提交
8406 8407 8408 8409 8410
	if (!perf_event_validate_size(event)) {
		err = -E2BIG;
		goto err_locked;
	}

8411 8412 8413 8414 8415 8416 8417
	/*
	 * Must be under the same ctx::mutex as perf_install_in_context(),
	 * because we need to serialize with concurrent event creation.
	 */
	if (!exclusive_event_installable(event, ctx)) {
		/* exclusive and group stuff are assumed mutually exclusive */
		WARN_ON_ONCE(move_group);
P
Peter Zijlstra 已提交
8418

8419 8420 8421
		err = -EBUSY;
		goto err_locked;
	}
P
Peter Zijlstra 已提交
8422

8423 8424 8425
	WARN_ON_ONCE(ctx->parent_ctx);

	if (move_group) {
P
Peter Zijlstra 已提交
8426 8427 8428 8429
		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
8430
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
8431

8432 8433
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8434
			perf_remove_from_context(sibling, false);
8435 8436 8437
			put_ctx(gctx);
		}

P
Peter Zijlstra 已提交
8438 8439 8440 8441
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
8442
		synchronize_rcu();
P
Peter Zijlstra 已提交
8443

8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
8454 8455
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
8456
			perf_event__state_init(sibling);
8457
			perf_install_in_context(ctx, sibling, sibling->cpu);
8458 8459
			get_ctx(ctx);
		}
8460 8461 8462 8463 8464 8465 8466 8467 8468

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
8469

8470 8471 8472 8473 8474 8475
		/*
		 * Now that all events are installed in @ctx, nothing
		 * references @gctx anymore, so drop the last reference we have
		 * on it.
		 */
		put_ctx(gctx);
8476 8477
	}

8478 8479 8480 8481 8482 8483 8484 8485 8486
	/*
	 * Precalculate sample_data sizes; do while holding ctx::mutex such
	 * that we're serialized against further additions and before
	 * perf_install_in_context() which is the point the event is active and
	 * can use these values.
	 */
	perf_event__header_size(event);
	perf_event__id_header_size(event);

P
Peter Zijlstra 已提交
8487 8488
	event->owner = current;

8489
	perf_install_in_context(ctx, event, event->cpu);
8490
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
8491

8492
	if (move_group)
P
Peter Zijlstra 已提交
8493
		mutex_unlock(&gctx->mutex);
8494
	mutex_unlock(&ctx->mutex);
8495

8496 8497
	put_online_cpus();

8498 8499 8500
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
8501

8502 8503 8504 8505 8506 8507
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
8508
	fdput(group);
8509 8510
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
8511

8512 8513 8514 8515 8516 8517
err_locked:
	if (move_group)
		mutex_unlock(&gctx->mutex);
	mutex_unlock(&ctx->mutex);
/* err_file: */
	fput(event_file);
8518
err_context:
8519
	perf_unpin_context(ctx);
8520
	put_ctx(ctx);
8521
err_alloc:
8522
	free_event(event);
8523
err_cpus:
8524
	put_online_cpus();
8525
err_task:
P
Peter Zijlstra 已提交
8526 8527
	if (task)
		put_task_struct(task);
8528
err_group_fd:
8529
	fdput(group);
8530 8531
err_fd:
	put_unused_fd(event_fd);
8532
	return err;
T
Thomas Gleixner 已提交
8533 8534
}

8535 8536 8537 8538 8539
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
8540
 * @task: task to profile (NULL for percpu)
8541 8542 8543
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
8544
				 struct task_struct *task,
8545 8546
				 perf_overflow_handler_t overflow_handler,
				 void *context)
8547 8548
{
	struct perf_event_context *ctx;
8549
	struct perf_event *event;
8550
	int err;
8551

8552 8553 8554
	/*
	 * Get the target context (task or percpu):
	 */
8555

8556
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8557
				 overflow_handler, context, -1);
8558 8559 8560 8561
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
8562

8563
	/* Mark owner so we could distinguish it from user events. */
8564
	event->owner = TASK_TOMBSTONE;
8565

8566 8567
	account_event(event);

8568
	ctx = find_get_context(event->pmu, task, event);
8569 8570
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
8571
		goto err_free;
8572
	}
8573 8574 8575

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
8576 8577 8578 8579 8580 8581 8582 8583
	if (!exclusive_event_installable(event, ctx)) {
		mutex_unlock(&ctx->mutex);
		perf_unpin_context(ctx);
		put_ctx(ctx);
		err = -EBUSY;
		goto err_free;
	}

8584
	perf_install_in_context(ctx, event, cpu);
8585
	perf_unpin_context(ctx);
8586 8587 8588 8589
	mutex_unlock(&ctx->mutex);

	return event;

8590 8591 8592
err_free:
	free_event(event);
err:
8593
	return ERR_PTR(err);
8594
}
8595
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8596

8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
8607 8608 8609 8610 8611
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8612 8613
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
8614
		perf_remove_from_context(event, false);
8615
		unaccount_event_cpu(event, src_cpu);
8616
		put_ctx(src_ctx);
8617
		list_add(&event->migrate_entry, &events);
8618 8619
	}

8620 8621 8622
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
8623 8624
	synchronize_rcu();

8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
8649 8650
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
8651 8652
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
8653
		account_event_cpu(event, dst_cpu);
8654 8655 8656 8657
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
8658
	mutex_unlock(&src_ctx->mutex);
8659 8660 8661
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

8662
static void sync_child_event(struct perf_event *child_event,
8663
			       struct task_struct *child)
8664
{
8665
	struct perf_event *parent_event = child_event->parent;
8666
	u64 child_val;
8667

8668 8669
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
8670

P
Peter Zijlstra 已提交
8671
	child_val = perf_event_count(child_event);
8672 8673 8674 8675

	/*
	 * Add back the child's count to the parent's count:
	 */
8676
	atomic64_add(child_val, &parent_event->child_count);
8677 8678 8679 8680
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
8681 8682

	/*
8683
	 * Remove this event from the parent's list
8684
	 */
8685 8686 8687 8688
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
8689

8690 8691 8692 8693 8694 8695
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

8696
	/*
8697
	 * Release the parent event, if this was the last
8698 8699
	 * reference to it.
	 */
8700
	put_event(parent_event);
8701 8702
}

8703
static void
8704 8705
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
8706
			 struct task_struct *child)
8707
{
8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
8720 8721 8722 8723 8724 8725 8726
	raw_spin_lock_irq(&child_ctx->lock);
	WARN_ON_ONCE(child_ctx->is_active);

	if (!!child_event->parent)
		perf_group_detach(child_event);
	list_del_event(child_event, child_ctx);
	raw_spin_unlock_irq(&child_ctx->lock);
8727

8728
	/*
8729
	 * It can happen that the parent exits first, and has events
8730
	 * that are still around due to the child reference. These
8731
	 * events need to be zapped.
8732
	 */
8733
	if (child_event->parent) {
8734 8735
		sync_child_event(child_event, child);
		free_event(child_event);
8736 8737 8738
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
8739
	}
8740 8741
}

P
Peter Zijlstra 已提交
8742
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8743
{
8744
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8745 8746 8747
	struct perf_event *child_event, *next;

	WARN_ON_ONCE(child != current);
8748

8749
	child_ctx = perf_pin_task_context(child, ctxn);
8750
	if (!child_ctx)
8751 8752
		return;

8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
	/*
	 * In order to reduce the amount of tricky in ctx tear-down, we hold
	 * ctx::mutex over the entire thing. This serializes against almost
	 * everything that wants to access the ctx.
	 *
	 * The exception is sys_perf_event_open() /
	 * perf_event_create_kernel_count() which does find_get_context()
	 * without ctx::mutex (it cannot because of the move_group double mutex
	 * lock thing). See the comments in perf_install_in_context().
	 *
	 * We can recurse on the same lock type through:
	 *
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock(&child_ctx->mutex);

	/*
	 * In a single ctx::lock section, de-schedule the events and detach the
	 * context from the task such that we cannot ever get it scheduled back
	 * in.
	 */
	raw_spin_lock_irq(&child_ctx->lock);
8780
	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8781 8782

	/*
8783 8784
	 * Now that the context is inactive, destroy the task <-> ctx relation
	 * and mark the context dead.
8785
	 */
8786 8787 8788 8789
	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
	put_ctx(child_ctx); /* cannot be last */
	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
	put_task_struct(current); /* cannot be last */
8790

8791
	clone_ctx = unclone_ctx(child_ctx);
8792
	raw_spin_unlock_irq(&child_ctx->lock);
P
Peter Zijlstra 已提交
8793

8794 8795
	if (clone_ctx)
		put_ctx(clone_ctx);
8796

P
Peter Zijlstra 已提交
8797
	/*
8798 8799 8800
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
8801
	 */
8802
	perf_event_task(child, child_ctx, 0);
8803

8804
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8805
		__perf_event_exit_task(child_event, child_ctx, child);
8806

8807 8808 8809
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
8810 8811
}

P
Peter Zijlstra 已提交
8812 8813 8814 8815 8816
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8817
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8818 8819
	int ctxn;

P
Peter Zijlstra 已提交
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8835 8836
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
J
Jiri Olsa 已提交
8837 8838 8839 8840 8841 8842 8843 8844

	/*
	 * The perf_event_exit_task_context calls perf_event_task
	 * with child's task_ctx, which generates EXIT events for
	 * child contexts and sets child->perf_event_ctxp[] to NULL.
	 * At this point we need to send EXIT events to cpu contexts.
	 */
	perf_event_task(child, NULL, 0);
P
Peter Zijlstra 已提交
8845 8846
}

8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8859
	put_event(parent);
8860

P
Peter Zijlstra 已提交
8861
	raw_spin_lock_irq(&ctx->lock);
8862
	perf_group_detach(event);
8863
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8864
	raw_spin_unlock_irq(&ctx->lock);
8865 8866 8867
	free_event(event);
}

8868
/*
P
Peter Zijlstra 已提交
8869
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8870
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8871 8872 8873
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8874
 */
8875
void perf_event_free_task(struct task_struct *task)
8876
{
P
Peter Zijlstra 已提交
8877
	struct perf_event_context *ctx;
8878
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8879
	int ctxn;
8880

P
Peter Zijlstra 已提交
8881 8882 8883 8884
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8885

P
Peter Zijlstra 已提交
8886
		mutex_lock(&ctx->mutex);
8887
again:
P
Peter Zijlstra 已提交
8888 8889 8890
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8891

P
Peter Zijlstra 已提交
8892 8893 8894
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8895

P
Peter Zijlstra 已提交
8896 8897 8898
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8899

P
Peter Zijlstra 已提交
8900
		mutex_unlock(&ctx->mutex);
8901

P
Peter Zijlstra 已提交
8902 8903
		put_ctx(ctx);
	}
8904 8905
}

8906 8907 8908 8909 8910 8911 8912 8913
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

8914
struct file *perf_event_get(unsigned int fd)
8915
{
8916
	struct file *file;
8917

8918 8919 8920
	file = fget_raw(fd);
	if (!file)
		return ERR_PTR(-EBADF);
8921

8922 8923 8924 8925
	if (file->f_op != &perf_fops) {
		fput(file);
		return ERR_PTR(-EBADF);
	}
8926

8927
	return file;
8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
}

const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	if (!event)
		return ERR_PTR(-EINVAL);

	return &event->attr;
}

P
Peter Zijlstra 已提交
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8949
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8950
	struct perf_event *child_event;
8951
	unsigned long flags;
P
Peter Zijlstra 已提交
8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8964
					   child,
P
Peter Zijlstra 已提交
8965
					   group_leader, parent_event,
8966
					   NULL, NULL, -1);
P
Peter Zijlstra 已提交
8967 8968
	if (IS_ERR(child_event))
		return child_event;
8969

8970 8971
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8972 8973 8974 8975
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8976 8977 8978 8979 8980 8981 8982
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8983
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
9000 9001
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
9002

9003 9004 9005 9006
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
9007
	perf_event__id_header_size(child_event);
9008

P
Peter Zijlstra 已提交
9009 9010 9011
	/*
	 * Link it up in the child's context:
	 */
9012
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9013
	add_event_to_ctx(child_event, child_ctx);
9014
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
9048 9049 9050 9051 9052
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
9053
		   struct task_struct *child, int ctxn,
9054 9055 9056
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
9057
	struct perf_event_context *child_ctx;
9058 9059 9060 9061

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
9062 9063
	}

9064
	child_ctx = child->perf_event_ctxp[ctxn];
9065 9066 9067 9068 9069 9070 9071
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
9072

9073
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9074 9075
		if (!child_ctx)
			return -ENOMEM;
9076

P
Peter Zijlstra 已提交
9077
		child->perf_event_ctxp[ctxn] = child_ctx;
9078 9079 9080 9081 9082 9083 9084 9085 9086
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
9087 9088
}

9089
/*
9090
 * Initialize the perf_event context in task_struct
9091
 */
9092
static int perf_event_init_context(struct task_struct *child, int ctxn)
9093
{
9094
	struct perf_event_context *child_ctx, *parent_ctx;
9095 9096
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
9097
	struct task_struct *parent = current;
9098
	int inherited_all = 1;
9099
	unsigned long flags;
9100
	int ret = 0;
9101

P
Peter Zijlstra 已提交
9102
	if (likely(!parent->perf_event_ctxp[ctxn]))
9103 9104
		return 0;

9105
	/*
9106 9107
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
9108
	 */
P
Peter Zijlstra 已提交
9109
	parent_ctx = perf_pin_task_context(parent, ctxn);
9110 9111
	if (!parent_ctx)
		return 0;
9112

9113 9114 9115 9116 9117 9118 9119
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

9120 9121 9122 9123
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
9124
	mutex_lock(&parent_ctx->mutex);
9125 9126 9127 9128 9129

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
9130
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
9131 9132
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9133 9134 9135
		if (ret)
			break;
	}
9136

9137 9138 9139 9140 9141 9142 9143 9144 9145
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

9146
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
9147 9148
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
9149
		if (ret)
9150
			break;
9151 9152
	}

9153 9154 9155
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
9156
	child_ctx = child->perf_event_ctxp[ctxn];
9157

9158
	if (child_ctx && inherited_all) {
9159 9160 9161
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
9162 9163 9164
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
9165
		 */
P
Peter Zijlstra 已提交
9166
		cloned_ctx = parent_ctx->parent_ctx;
9167 9168
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
9169
			child_ctx->parent_gen = parent_ctx->parent_gen;
9170 9171 9172 9173 9174
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
9175 9176
	}

P
Peter Zijlstra 已提交
9177
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9178
	mutex_unlock(&parent_ctx->mutex);
9179

9180
	perf_unpin_context(parent_ctx);
9181
	put_ctx(parent_ctx);
9182

9183
	return ret;
9184 9185
}

P
Peter Zijlstra 已提交
9186 9187 9188 9189 9190 9191 9192
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

9193 9194 9195 9196
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
9197 9198
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
9199 9200
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
9201
			return ret;
P
Peter Zijlstra 已提交
9202
		}
P
Peter Zijlstra 已提交
9203 9204 9205 9206 9207
	}

	return 0;
}

9208 9209
static void __init perf_event_init_all_cpus(void)
{
9210
	struct swevent_htable *swhash;
9211 9212 9213
	int cpu;

	for_each_possible_cpu(cpu) {
9214 9215
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
9216
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9217 9218 9219
	}
}

9220
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
9221
{
P
Peter Zijlstra 已提交
9222
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
9223

9224
	mutex_lock(&swhash->hlist_mutex);
9225
	if (swhash->hlist_refcount > 0) {
9226 9227
		struct swevent_hlist *hlist;

9228 9229 9230
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9231
	}
9232
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
9233 9234
}

9235
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
P
Peter Zijlstra 已提交
9236
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
9237
{
P
Peter Zijlstra 已提交
9238
	struct perf_event_context *ctx = __info;
9239 9240
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
	struct perf_event *event;
T
Thomas Gleixner 已提交
9241

9242 9243 9244 9245
	raw_spin_lock(&ctx->lock);
	list_for_each_entry(event, &ctx->event_list, event_entry)
		__perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
9246
}
P
Peter Zijlstra 已提交
9247 9248 9249 9250 9251 9252 9253 9254 9255

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
9256
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
9257 9258 9259 9260 9261 9262 9263 9264

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

9265
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
9266
{
P
Peter Zijlstra 已提交
9267
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
9268 9269
}
#else
9270
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
9271 9272
#endif

P
Peter Zijlstra 已提交
9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

9293
static int
T
Thomas Gleixner 已提交
9294 9295 9296 9297
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

9298
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
9299 9300

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
9301
	case CPU_DOWN_FAILED:
9302
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
9303 9304
		break;

P
Peter Zijlstra 已提交
9305
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
9306
	case CPU_DOWN_PREPARE:
9307
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
9308 9309 9310 9311 9312 9313 9314 9315
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

9316
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
9317
{
9318 9319
	int ret;

P
Peter Zijlstra 已提交
9320 9321
	idr_init(&pmu_idr);

9322
	perf_event_init_all_cpus();
9323
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
9324 9325 9326
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
9327 9328
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
9329
	register_reboot_notifier(&perf_reboot_notifier);
9330 9331 9332

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9333 9334 9335

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
9336 9337 9338 9339 9340 9341 9342

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
9343
}
P
Peter Zijlstra 已提交
9344

9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356
ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page)
{
	struct perf_pmu_events_attr *pmu_attr =
		container_of(attr, struct perf_pmu_events_attr, attr);

	if (pmu_attr->event_str)
		return sprintf(page, "%s\n", pmu_attr->event_str);

	return 0;
}

P
Peter Zijlstra 已提交
9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383
static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
9384 9385

#ifdef CONFIG_CGROUP_PERF
9386 9387
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
9388 9389 9390
{
	struct perf_cgroup *jc;

9391
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

9404
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
9405
{
9406 9407
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
9408 9409 9410 9411 9412 9413 9414
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
9415
	rcu_read_lock();
S
Stephane Eranian 已提交
9416
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9417
	rcu_read_unlock();
S
Stephane Eranian 已提交
9418 9419 9420
	return 0;
}

9421
static void perf_cgroup_attach(struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
9422
{
9423
	struct task_struct *task;
9424
	struct cgroup_subsys_state *css;
9425

9426
	cgroup_taskset_for_each(task, css, tset)
9427
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
9428 9429
}

9430
struct cgroup_subsys perf_event_cgrp_subsys = {
9431 9432
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
9433
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
9434 9435
};
#endif /* CONFIG_CGROUP_PERF */