core.c 199.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(int, perf_sched_cb_usages);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875
static DEFINE_PER_CPU(struct list_head, active_ctx_list);
876 877

/*
878 879 880 881
 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
 * perf_event_task_tick() are fully serialized because they're strictly cpu
 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
 * disabled, while perf_event_task_tick is called from IRQ context.
882
 */
883
static void perf_event_ctx_activate(struct perf_event_context *ctx)
884
{
885
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
886

887
	WARN_ON(!irqs_disabled());
888

889 890 891 892 893 894 895 896 897 898 899 900
	WARN_ON(!list_empty(&ctx->active_ctx_list));

	list_add(&ctx->active_ctx_list, head);
}

static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
{
	WARN_ON(!irqs_disabled());

	WARN_ON(list_empty(&ctx->active_ctx_list));

	list_del_init(&ctx->active_ctx_list);
901 902
}

903
static void get_ctx(struct perf_event_context *ctx)
904
{
905
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
906 907
}

908
static void put_ctx(struct perf_event_context *ctx)
909
{
910 911 912
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
913 914
		if (ctx->task)
			put_task_struct(ctx->task);
915
		kfree_rcu(ctx, rcu_head);
916
	}
917 918
}

P
Peter Zijlstra 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
P
Peter Zijlstra 已提交
960 961
static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
P
Peter Zijlstra 已提交
962 963 964 965 966 967 968 969 970 971 972 973
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

P
Peter Zijlstra 已提交
974
	mutex_lock_nested(&ctx->mutex, nesting);
P
Peter Zijlstra 已提交
975 976 977 978 979 980 981 982 983
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

P
Peter Zijlstra 已提交
984 985 986 987 988 989
static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event *event)
{
	return perf_event_ctx_lock_nested(event, 0);
}

P
Peter Zijlstra 已提交
990 991 992 993 994 995 996
static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

997 998 999 1000 1001 1002 1003
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
1004
{
1005 1006 1007 1008 1009
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
1010
		ctx->parent_ctx = NULL;
1011
	ctx->generation++;
1012 1013

	return parent_ctx;
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1038
/*
1039
 * If we inherit events we want to return the parent event id
1040 1041
 * to userspace.
 */
1042
static u64 primary_event_id(struct perf_event *event)
1043
{
1044
	u64 id = event->id;
1045

1046 1047
	if (event->parent)
		id = event->parent->id;
1048 1049 1050 1051

	return id;
}

1052
/*
1053
 * Get the perf_event_context for a task and lock it.
1054 1055 1056
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1057
static struct perf_event_context *
P
Peter Zijlstra 已提交
1058
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1059
{
1060
	struct perf_event_context *ctx;
1061

P
Peter Zijlstra 已提交
1062
retry:
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1074
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1075 1076 1077 1078
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1079
		 * perf_event_task_sched_out, though the
1080 1081 1082 1083 1084 1085
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1086
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1087
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1088
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1089 1090
			rcu_read_unlock();
			preempt_enable();
1091 1092
			goto retry;
		}
1093 1094

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1095
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1096 1097
			ctx = NULL;
		}
1098 1099
	}
	rcu_read_unlock();
1100
	preempt_enable();
1101 1102 1103 1104 1105 1106 1107 1108
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1109 1110
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1111
{
1112
	struct perf_event_context *ctx;
1113 1114
	unsigned long flags;

P
Peter Zijlstra 已提交
1115
	ctx = perf_lock_task_context(task, ctxn, &flags);
1116 1117
	if (ctx) {
		++ctx->pin_count;
1118
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1119 1120 1121 1122
	}
	return ctx;
}

1123
static void perf_unpin_context(struct perf_event_context *ctx)
1124 1125 1126
{
	unsigned long flags;

1127
	raw_spin_lock_irqsave(&ctx->lock, flags);
1128
	--ctx->pin_count;
1129
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1143 1144 1145
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1146 1147 1148 1149

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1150 1151 1152
	return ctx ? ctx->time : 0;
}

1153 1154
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1155
 * The caller of this function needs to hold the ctx->lock.
1156 1157 1158 1159 1160 1161 1162 1163 1164
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1176
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1177 1178
	else if (ctx->is_active)
		run_end = ctx->time;
1179 1180 1181 1182
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1183 1184 1185 1186

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1187
		run_end = perf_event_time(event);
1188 1189

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1190

1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1205 1206 1207 1208 1209 1210 1211 1212 1213
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1214
/*
1215
 * Add a event from the lists for its context.
1216 1217
 * Must be called with ctx->mutex and ctx->lock held.
 */
1218
static void
1219
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1220
{
1221 1222
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1223 1224

	/*
1225 1226 1227
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1228
	 */
1229
	if (event->group_leader == event) {
1230 1231
		struct list_head *list;

1232 1233 1234
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1235 1236
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1237
	}
P
Peter Zijlstra 已提交
1238

1239
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1240 1241
		ctx->nr_cgroups++;

1242 1243 1244
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1245
		ctx->nr_stat++;
1246 1247

	ctx->generation++;
1248 1249
}

J
Jiri Olsa 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1298 1299 1300 1301 1302 1303
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1304 1305 1306
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1307 1308 1309
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1310 1311 1312
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1313 1314 1315
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1316 1317 1318 1319 1320 1321 1322 1323 1324
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1325 1326 1327 1328 1329 1330
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1331 1332 1333
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1334 1335 1336 1337 1338 1339 1340 1341 1342
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1343
	event->id_header_size = size;
1344 1345
}

1346 1347
static void perf_group_attach(struct perf_event *event)
{
1348
	struct perf_event *group_leader = event->group_leader, *pos;
1349

P
Peter Zijlstra 已提交
1350 1351 1352 1353 1354 1355
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1356 1357 1358 1359 1360
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1361 1362
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1363 1364 1365 1366 1367 1368
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1369 1370 1371 1372 1373

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1374 1375
}

1376
/*
1377
 * Remove a event from the lists for its context.
1378
 * Must be called with ctx->mutex and ctx->lock held.
1379
 */
1380
static void
1381
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1382
{
1383
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1384 1385 1386 1387

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1388 1389 1390 1391
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1392
		return;
1393 1394 1395

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1396
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1397
		ctx->nr_cgroups--;
1398 1399 1400 1401 1402 1403 1404 1405 1406
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1407

1408 1409
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1410
		ctx->nr_stat--;
1411

1412
	list_del_rcu(&event->event_entry);
1413

1414 1415
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1416

1417
	update_group_times(event);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1428 1429

	ctx->generation++;
1430 1431
}

1432
static void perf_group_detach(struct perf_event *event)
1433 1434
{
	struct perf_event *sibling, *tmp;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1451
		goto out;
1452 1453 1454 1455
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1456

1457
	/*
1458 1459
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1460
	 * to whatever list we are on.
1461
	 */
1462
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1463 1464
		if (list)
			list_move_tail(&sibling->group_entry, list);
1465
		sibling->group_leader = sibling;
1466 1467 1468

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1469 1470

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1471
	}
1472 1473 1474 1475 1476 1477

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1478 1479
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1519 1520 1521
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1522 1523
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1524 1525
}

1526 1527
static void
event_sched_out(struct perf_event *event,
1528
		  struct perf_cpu_context *cpuctx,
1529
		  struct perf_event_context *ctx)
1530
{
1531
	u64 tstamp = perf_event_time(event);
1532
	u64 delta;
P
Peter Zijlstra 已提交
1533 1534 1535 1536

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1537 1538 1539 1540 1541 1542 1543 1544
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1545
		delta = tstamp - event->tstamp_stopped;
1546
		event->tstamp_running += delta;
1547
		event->tstamp_stopped = tstamp;
1548 1549
	}

1550
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1551
		return;
1552

1553 1554
	perf_pmu_disable(event->pmu);

1555 1556 1557 1558
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1559
	}
1560
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1561
	event->pmu->del(event, 0);
1562
	event->oncpu = -1;
1563

1564
	if (!is_software_event(event))
1565
		cpuctx->active_oncpu--;
1566 1567
	if (!--ctx->nr_active)
		perf_event_ctx_deactivate(ctx);
1568 1569
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1570
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1571
		cpuctx->exclusive = 0;
1572

1573 1574 1575
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1576
	perf_pmu_enable(event->pmu);
1577 1578
}

1579
static void
1580
group_sched_out(struct perf_event *group_event,
1581
		struct perf_cpu_context *cpuctx,
1582
		struct perf_event_context *ctx)
1583
{
1584
	struct perf_event *event;
1585
	int state = group_event->state;
1586

1587
	event_sched_out(group_event, cpuctx, ctx);
1588 1589 1590 1591

	/*
	 * Schedule out siblings (if any):
	 */
1592 1593
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1594

1595
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1596 1597 1598
		cpuctx->exclusive = 0;
}

1599 1600 1601 1602 1603
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1604
/*
1605
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1606
 *
1607
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1608 1609
 * remove it from the context list.
 */
1610
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1611
{
1612 1613
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1614
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1615
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1616

1617
	raw_spin_lock(&ctx->lock);
1618
	event_sched_out(event, cpuctx, ctx);
1619 1620
	if (re->detach_group)
		perf_group_detach(event);
1621
	list_del_event(event, ctx);
1622 1623 1624 1625
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1626
	raw_spin_unlock(&ctx->lock);
1627 1628

	return 0;
T
Thomas Gleixner 已提交
1629 1630 1631 1632
}


/*
1633
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1634
 *
1635
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1636
 * call when the task is on a CPU.
1637
 *
1638 1639
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1640 1641
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1642
 * When called from perf_event_exit_task, it's OK because the
1643
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1644
 */
1645
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1646
{
1647
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1648
	struct task_struct *task = ctx->task;
1649 1650 1651 1652
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1653

1654 1655
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1656 1657
	if (!task) {
		/*
1658 1659 1660 1661
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1662
		 */
1663
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1664 1665 1666 1667
		return;
	}

retry:
1668
	if (!task_function_call(task, __perf_remove_from_context, &re))
1669
		return;
T
Thomas Gleixner 已提交
1670

1671
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1672
	/*
1673 1674
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1675
	 */
1676
	if (ctx->is_active) {
1677
		raw_spin_unlock_irq(&ctx->lock);
1678 1679 1680 1681 1682
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1683 1684 1685 1686
		goto retry;
	}

	/*
1687 1688
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1689
	 */
1690 1691
	if (detach_group)
		perf_group_detach(event);
1692
	list_del_event(event, ctx);
1693
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1694 1695
}

1696
/*
1697
 * Cross CPU call to disable a performance event
1698
 */
1699
int __perf_event_disable(void *info)
1700
{
1701 1702
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1703
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1704 1705

	/*
1706 1707
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1708 1709 1710
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1711
	 */
1712
	if (ctx->task && cpuctx->task_ctx != ctx)
1713
		return -EINVAL;
1714

1715
	raw_spin_lock(&ctx->lock);
1716 1717

	/*
1718
	 * If the event is on, turn it off.
1719 1720
	 * If it is in error state, leave it in error state.
	 */
1721
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1722
		update_context_time(ctx);
S
Stephane Eranian 已提交
1723
		update_cgrp_time_from_event(event);
1724 1725 1726
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1727
		else
1728 1729
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1730 1731
	}

1732
	raw_spin_unlock(&ctx->lock);
1733 1734

	return 0;
1735 1736 1737
}

/*
1738
 * Disable a event.
1739
 *
1740 1741
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1742
 * remains valid.  This condition is satisifed when called through
1743 1744 1745 1746
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1747
 * is the current context on this CPU and preemption is disabled,
1748
 * hence we can't get into perf_event_task_sched_out for this context.
1749
 */
P
Peter Zijlstra 已提交
1750
static void _perf_event_disable(struct perf_event *event)
1751
{
1752
	struct perf_event_context *ctx = event->ctx;
1753 1754 1755 1756
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1757
		 * Disable the event on the cpu that it's on
1758
		 */
1759
		cpu_function_call(event->cpu, __perf_event_disable, event);
1760 1761 1762
		return;
	}

P
Peter Zijlstra 已提交
1763
retry:
1764 1765
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1766

1767
	raw_spin_lock_irq(&ctx->lock);
1768
	/*
1769
	 * If the event is still active, we need to retry the cross-call.
1770
	 */
1771
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1772
		raw_spin_unlock_irq(&ctx->lock);
1773 1774 1775 1776 1777
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1778 1779 1780 1781 1782 1783 1784
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1785 1786 1787
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1788
	}
1789
	raw_spin_unlock_irq(&ctx->lock);
1790
}
P
Peter Zijlstra 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1804
EXPORT_SYMBOL_GPL(perf_event_disable);
1805

S
Stephane Eranian 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1841 1842 1843 1844
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1845
static int
1846
event_sched_in(struct perf_event *event,
1847
		 struct perf_cpu_context *cpuctx,
1848
		 struct perf_event_context *ctx)
1849
{
1850
	u64 tstamp = perf_event_time(event);
1851
	int ret = 0;
1852

1853 1854
	lockdep_assert_held(&ctx->lock);

1855
	if (event->state <= PERF_EVENT_STATE_OFF)
1856 1857
		return 0;

1858
	event->state = PERF_EVENT_STATE_ACTIVE;
1859
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1871 1872 1873 1874 1875
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1876 1877
	perf_pmu_disable(event->pmu);

1878 1879 1880 1881
	event->tstamp_running += tstamp - event->tstamp_stopped;

	perf_set_shadow_time(event, ctx, tstamp);

P
Peter Zijlstra 已提交
1882
	if (event->pmu->add(event, PERF_EF_START)) {
1883 1884
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1885 1886
		ret = -EAGAIN;
		goto out;
1887 1888
	}

1889
	if (!is_software_event(event))
1890
		cpuctx->active_oncpu++;
1891 1892
	if (!ctx->nr_active++)
		perf_event_ctx_activate(ctx);
1893 1894
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1895

1896
	if (event->attr.exclusive)
1897 1898
		cpuctx->exclusive = 1;

1899 1900 1901
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1902 1903 1904 1905
out:
	perf_pmu_enable(event->pmu);

	return ret;
1906 1907
}

1908
static int
1909
group_sched_in(struct perf_event *group_event,
1910
	       struct perf_cpu_context *cpuctx,
1911
	       struct perf_event_context *ctx)
1912
{
1913
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1914
	struct pmu *pmu = ctx->pmu;
1915 1916
	u64 now = ctx->time;
	bool simulate = false;
1917

1918
	if (group_event->state == PERF_EVENT_STATE_OFF)
1919 1920
		return 0;

P
Peter Zijlstra 已提交
1921
	pmu->start_txn(pmu);
1922

1923
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1924
		pmu->cancel_txn(pmu);
1925
		perf_cpu_hrtimer_restart(cpuctx);
1926
		return -EAGAIN;
1927
	}
1928 1929 1930 1931

	/*
	 * Schedule in siblings as one group (if any):
	 */
1932
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1933
		if (event_sched_in(event, cpuctx, ctx)) {
1934
			partial_group = event;
1935 1936 1937 1938
			goto group_error;
		}
	}

1939
	if (!pmu->commit_txn(pmu))
1940
		return 0;
1941

1942 1943 1944 1945
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1956
	 */
1957 1958
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1959 1960 1961 1962 1963 1964 1965 1966
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1967
	}
1968
	event_sched_out(group_event, cpuctx, ctx);
1969

P
Peter Zijlstra 已提交
1970
	pmu->cancel_txn(pmu);
1971

1972 1973
	perf_cpu_hrtimer_restart(cpuctx);

1974 1975 1976
	return -EAGAIN;
}

1977
/*
1978
 * Work out whether we can put this event group on the CPU now.
1979
 */
1980
static int group_can_go_on(struct perf_event *event,
1981 1982 1983 1984
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1985
	 * Groups consisting entirely of software events can always go on.
1986
	 */
1987
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1988 1989 1990
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1991
	 * events can go on.
1992 1993 1994 1995 1996
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1997
	 * events on the CPU, it can't go on.
1998
	 */
1999
	if (event->attr.exclusive && cpuctx->active_oncpu)
2000 2001 2002 2003 2004 2005 2006 2007
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

2008 2009
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
2010
{
2011 2012
	u64 tstamp = perf_event_time(event);

2013
	list_add_event(event, ctx);
2014
	perf_group_attach(event);
2015 2016 2017
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2018 2019
}

2020 2021 2022 2023 2024 2025
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2039
/*
2040
 * Cross CPU call to install and enable a performance event
2041 2042
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2043
 */
2044
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2045
{
2046 2047
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2048
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2049 2050 2051
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2052
	perf_ctx_lock(cpuctx, task_ctx);
2053
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2054 2055

	/*
2056
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2057
	 */
2058
	if (task_ctx)
2059
		task_ctx_sched_out(task_ctx);
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2074 2075
		task = task_ctx->task;
	}
2076

2077
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2078

2079
	update_context_time(ctx);
S
Stephane Eranian 已提交
2080 2081 2082 2083 2084 2085
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2086

2087
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2088

2089
	/*
2090
	 * Schedule everything back in
2091
	 */
2092
	perf_event_sched_in(cpuctx, task_ctx, task);
2093 2094 2095

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2096 2097

	return 0;
T
Thomas Gleixner 已提交
2098 2099 2100
}

/*
2101
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2102
 *
2103 2104
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2105
 *
2106
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2107 2108 2109 2110
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2111 2112
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2113 2114 2115 2116
			int cpu)
{
	struct task_struct *task = ctx->task;

2117 2118
	lockdep_assert_held(&ctx->mutex);

2119
	event->ctx = ctx;
2120 2121
	if (event->cpu != -1)
		event->cpu = cpu;
2122

T
Thomas Gleixner 已提交
2123 2124
	if (!task) {
		/*
2125
		 * Per cpu events are installed via an smp call and
2126
		 * the install is always successful.
T
Thomas Gleixner 已提交
2127
		 */
2128
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2129 2130 2131 2132
		return;
	}

retry:
2133 2134
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2135

2136
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2137
	/*
2138 2139
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2140
	 */
2141
	if (ctx->is_active) {
2142
		raw_spin_unlock_irq(&ctx->lock);
2143 2144 2145 2146 2147
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2148 2149 2150 2151
		goto retry;
	}

	/*
2152 2153
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2154
	 */
2155
	add_event_to_ctx(event, ctx);
2156
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2157 2158
}

2159
/*
2160
 * Put a event into inactive state and update time fields.
2161 2162 2163 2164 2165 2166
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2167
static void __perf_event_mark_enabled(struct perf_event *event)
2168
{
2169
	struct perf_event *sub;
2170
	u64 tstamp = perf_event_time(event);
2171

2172
	event->state = PERF_EVENT_STATE_INACTIVE;
2173
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2174
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2175 2176
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2177
	}
2178 2179
}

2180
/*
2181
 * Cross CPU call to enable a performance event
2182
 */
2183
static int __perf_event_enable(void *info)
2184
{
2185 2186 2187
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2188
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2189
	int err;
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2201
		return -EINVAL;
2202

2203
	raw_spin_lock(&ctx->lock);
2204
	update_context_time(ctx);
2205

2206
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2207
		goto unlock;
S
Stephane Eranian 已提交
2208 2209 2210 2211

	/*
	 * set current task's cgroup time reference point
	 */
2212
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2213

2214
	__perf_event_mark_enabled(event);
2215

S
Stephane Eranian 已提交
2216 2217 2218
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2219
		goto unlock;
S
Stephane Eranian 已提交
2220
	}
2221

2222
	/*
2223
	 * If the event is in a group and isn't the group leader,
2224
	 * then don't put it on unless the group is on.
2225
	 */
2226
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2227
		goto unlock;
2228

2229
	if (!group_can_go_on(event, cpuctx, 1)) {
2230
		err = -EEXIST;
2231
	} else {
2232
		if (event == leader)
2233
			err = group_sched_in(event, cpuctx, ctx);
2234
		else
2235
			err = event_sched_in(event, cpuctx, ctx);
2236
	}
2237 2238 2239

	if (err) {
		/*
2240
		 * If this event can't go on and it's part of a
2241 2242
		 * group, then the whole group has to come off.
		 */
2243
		if (leader != event) {
2244
			group_sched_out(leader, cpuctx, ctx);
2245 2246
			perf_cpu_hrtimer_restart(cpuctx);
		}
2247
		if (leader->attr.pinned) {
2248
			update_group_times(leader);
2249
			leader->state = PERF_EVENT_STATE_ERROR;
2250
		}
2251 2252
	}

P
Peter Zijlstra 已提交
2253
unlock:
2254
	raw_spin_unlock(&ctx->lock);
2255 2256

	return 0;
2257 2258 2259
}

/*
2260
 * Enable a event.
2261
 *
2262 2263
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2264
 * remains valid.  This condition is satisfied when called through
2265 2266
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2267
 */
P
Peter Zijlstra 已提交
2268
static void _perf_event_enable(struct perf_event *event)
2269
{
2270
	struct perf_event_context *ctx = event->ctx;
2271 2272 2273 2274
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2275
		 * Enable the event on the cpu that it's on
2276
		 */
2277
		cpu_function_call(event->cpu, __perf_event_enable, event);
2278 2279 2280
		return;
	}

2281
	raw_spin_lock_irq(&ctx->lock);
2282
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2283 2284 2285
		goto out;

	/*
2286 2287
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2288 2289 2290 2291
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2292 2293
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2294

P
Peter Zijlstra 已提交
2295
retry:
2296
	if (!ctx->is_active) {
2297
		__perf_event_mark_enabled(event);
2298 2299 2300
		goto out;
	}

2301
	raw_spin_unlock_irq(&ctx->lock);
2302 2303 2304

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2305

2306
	raw_spin_lock_irq(&ctx->lock);
2307 2308

	/*
2309
	 * If the context is active and the event is still off,
2310 2311
	 * we need to retry the cross-call.
	 */
2312 2313 2314 2315 2316 2317
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2318
		goto retry;
2319
	}
2320

P
Peter Zijlstra 已提交
2321
out:
2322
	raw_spin_unlock_irq(&ctx->lock);
2323
}
P
Peter Zijlstra 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2336
EXPORT_SYMBOL_GPL(perf_event_enable);
2337

P
Peter Zijlstra 已提交
2338
static int _perf_event_refresh(struct perf_event *event, int refresh)
2339
{
2340
	/*
2341
	 * not supported on inherited events
2342
	 */
2343
	if (event->attr.inherit || !is_sampling_event(event))
2344 2345
		return -EINVAL;

2346
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2347
	_perf_event_enable(event);
2348 2349

	return 0;
2350
}
P
Peter Zijlstra 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2366
EXPORT_SYMBOL_GPL(perf_event_refresh);
2367

2368 2369 2370
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2371
{
2372
	struct perf_event *event;
2373
	int is_active = ctx->is_active;
2374

2375
	ctx->is_active &= ~event_type;
2376
	if (likely(!ctx->nr_events))
2377 2378
		return;

2379
	update_context_time(ctx);
S
Stephane Eranian 已提交
2380
	update_cgrp_time_from_cpuctx(cpuctx);
2381
	if (!ctx->nr_active)
2382
		return;
2383

P
Peter Zijlstra 已提交
2384
	perf_pmu_disable(ctx->pmu);
2385
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2386 2387
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2388
	}
2389

2390
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2391
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2392
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2393
	}
P
Peter Zijlstra 已提交
2394
	perf_pmu_enable(ctx->pmu);
2395 2396
}

2397
/*
2398 2399 2400 2401 2402 2403
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2404
 */
2405 2406
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2407
{
2408 2409 2410
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2433 2434
}

2435 2436
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2437 2438 2439
{
	u64 value;

2440
	if (!event->attr.inherit_stat)
2441 2442 2443
		return;

	/*
2444
	 * Update the event value, we cannot use perf_event_read()
2445 2446
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2447
	 * we know the event must be on the current CPU, therefore we
2448 2449
	 * don't need to use it.
	 */
2450 2451
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2452 2453
		event->pmu->read(event);
		/* fall-through */
2454

2455 2456
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2457 2458 2459 2460 2461 2462 2463
		break;

	default:
		break;
	}

	/*
2464
	 * In order to keep per-task stats reliable we need to flip the event
2465 2466
	 * values when we flip the contexts.
	 */
2467 2468 2469
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2470

2471 2472
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2473

2474
	/*
2475
	 * Since we swizzled the values, update the user visible data too.
2476
	 */
2477 2478
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2479 2480
}

2481 2482
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2483
{
2484
	struct perf_event *event, *next_event;
2485 2486 2487 2488

	if (!ctx->nr_stat)
		return;

2489 2490
	update_context_time(ctx);

2491 2492
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2493

2494 2495
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2496

2497 2498
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2499

2500
		__perf_event_sync_stat(event, next_event);
2501

2502 2503
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2504 2505 2506
	}
}

2507 2508
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2509
{
P
Peter Zijlstra 已提交
2510
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2511
	struct perf_event_context *next_ctx;
2512
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2513
	struct perf_cpu_context *cpuctx;
2514
	int do_switch = 1;
T
Thomas Gleixner 已提交
2515

P
Peter Zijlstra 已提交
2516 2517
	if (likely(!ctx))
		return;
2518

P
Peter Zijlstra 已提交
2519 2520
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2521 2522
		return;

2523
	rcu_read_lock();
P
Peter Zijlstra 已提交
2524
	next_ctx = next->perf_event_ctxp[ctxn];
2525 2526 2527 2528 2529 2530 2531
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2532
	if (!parent && !next_parent)
2533 2534 2535
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2536 2537 2538 2539 2540 2541 2542 2543 2544
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2545 2546
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2547
		if (context_equiv(ctx, next_ctx)) {
2548 2549
			/*
			 * XXX do we need a memory barrier of sorts
2550
			 * wrt to rcu_dereference() of perf_event_ctxp
2551
			 */
P
Peter Zijlstra 已提交
2552 2553
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2554 2555 2556
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2557

2558
			perf_event_sync_stat(ctx, next_ctx);
2559
		}
2560 2561
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2562
	}
2563
unlock:
2564
	rcu_read_unlock();
2565

2566
	if (do_switch) {
2567
		raw_spin_lock(&ctx->lock);
2568
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2569
		cpuctx->task_ctx = NULL;
2570
		raw_spin_unlock(&ctx->lock);
2571
	}
T
Thomas Gleixner 已提交
2572 2573
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
void perf_sched_cb_dec(struct pmu *pmu)
{
	this_cpu_dec(perf_sched_cb_usages);
}

void perf_sched_cb_inc(struct pmu *pmu)
{
	this_cpu_inc(perf_sched_cb_usages);
}

/*
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when the context switch callback is enabled.
 */
static void perf_pmu_sched_task(struct task_struct *prev,
				struct task_struct *next,
				bool sched_in)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (prev == next)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		if (pmu->sched_task) {
			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->sched_task(cpuctx->task_ctx, sched_in);

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2638 2639
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2640 2641 2642
{
	int ctxn;

2643 2644 2645
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(task, next, false);

P
Peter Zijlstra 已提交
2646 2647
	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2648 2649 2650 2651 2652 2653

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2654
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2655
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2656 2657
}

2658
static void task_ctx_sched_out(struct perf_event_context *ctx)
2659
{
P
Peter Zijlstra 已提交
2660
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2661

2662 2663
	if (!cpuctx->task_ctx)
		return;
2664 2665 2666 2667

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2668
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2669 2670 2671
	cpuctx->task_ctx = NULL;
}

2672 2673 2674 2675 2676 2677 2678
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2679 2680
}

2681
static void
2682
ctx_pinned_sched_in(struct perf_event_context *ctx,
2683
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2684
{
2685
	struct perf_event *event;
T
Thomas Gleixner 已提交
2686

2687 2688
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2689
			continue;
2690
		if (!event_filter_match(event))
2691 2692
			continue;

S
Stephane Eranian 已提交
2693 2694 2695 2696
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2697
		if (group_can_go_on(event, cpuctx, 1))
2698
			group_sched_in(event, cpuctx, ctx);
2699 2700 2701 2702 2703

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2704 2705 2706
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2707
		}
2708
	}
2709 2710 2711 2712
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2713
		      struct perf_cpu_context *cpuctx)
2714 2715 2716
{
	struct perf_event *event;
	int can_add_hw = 1;
2717

2718 2719 2720
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2721
			continue;
2722 2723
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2724
		 * of events:
2725
		 */
2726
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2727 2728
			continue;

S
Stephane Eranian 已提交
2729 2730 2731 2732
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2733
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2734
			if (group_sched_in(event, cpuctx, ctx))
2735
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2736
		}
T
Thomas Gleixner 已提交
2737
	}
2738 2739 2740 2741 2742
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2743 2744
	     enum event_type_t event_type,
	     struct task_struct *task)
2745
{
S
Stephane Eranian 已提交
2746
	u64 now;
2747
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2748

2749
	ctx->is_active |= event_type;
2750
	if (likely(!ctx->nr_events))
2751
		return;
2752

S
Stephane Eranian 已提交
2753 2754
	now = perf_clock();
	ctx->timestamp = now;
2755
	perf_cgroup_set_timestamp(task, ctx);
2756 2757 2758 2759
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2760
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2761
		ctx_pinned_sched_in(ctx, cpuctx);
2762 2763

	/* Then walk through the lower prio flexible groups */
2764
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2765
		ctx_flexible_sched_in(ctx, cpuctx);
2766 2767
}

2768
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2769 2770
			     enum event_type_t event_type,
			     struct task_struct *task)
2771 2772 2773
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2774
	ctx_sched_in(ctx, cpuctx, event_type, task);
2775 2776
}

S
Stephane Eranian 已提交
2777 2778
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2779
{
P
Peter Zijlstra 已提交
2780
	struct perf_cpu_context *cpuctx;
2781

P
Peter Zijlstra 已提交
2782
	cpuctx = __get_cpu_context(ctx);
2783 2784 2785
	if (cpuctx->task_ctx == ctx)
		return;

2786
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2787
	perf_pmu_disable(ctx->pmu);
2788 2789 2790 2791 2792 2793 2794
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2795 2796
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2797

2798 2799
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2800 2801
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);
2802 2803
}

P
Peter Zijlstra 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2815 2816
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2826
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2827
	}
S
Stephane Eranian 已提交
2828 2829 2830 2831 2832
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2833
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2834
		perf_cgroup_sched_in(prev, task);
2835

2836 2837
	if (__this_cpu_read(perf_sched_cb_usages))
		perf_pmu_sched_task(prev, task, true);
2838 2839
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2867
#define REDUCE_FLS(a, b)		\
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2907 2908 2909
	if (!divisor)
		return dividend;

2910 2911 2912
	return div64_u64(dividend, divisor);
}

2913 2914 2915
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2916
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2917
{
2918
	struct hw_perf_event *hwc = &event->hw;
2919
	s64 period, sample_period;
2920 2921
	s64 delta;

2922
	period = perf_calculate_period(event, nsec, count);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2933

2934
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2935 2936 2937
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2938
		local64_set(&hwc->period_left, 0);
2939 2940 2941

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2942
	}
2943 2944
}

2945 2946 2947 2948 2949 2950 2951
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2952
{
2953 2954
	struct perf_event *event;
	struct hw_perf_event *hwc;
2955
	u64 now, period = TICK_NSEC;
2956
	s64 delta;
2957

2958 2959 2960 2961 2962 2963
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2964 2965
		return;

2966
	raw_spin_lock(&ctx->lock);
2967
	perf_pmu_disable(ctx->pmu);
2968

2969
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2970
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2971 2972
			continue;

2973
		if (!event_filter_match(event))
2974 2975
			continue;

2976 2977
		perf_pmu_disable(event->pmu);

2978
		hwc = &event->hw;
2979

2980
		if (hwc->interrupts == MAX_INTERRUPTS) {
2981
			hwc->interrupts = 0;
2982
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2983
			event->pmu->start(event, 0);
2984 2985
		}

2986
		if (!event->attr.freq || !event->attr.sample_freq)
2987
			goto next;
2988

2989 2990 2991 2992 2993
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2994
		now = local64_read(&event->count);
2995 2996
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2997

2998 2999 3000
		/*
		 * restart the event
		 * reload only if value has changed
3001 3002 3003
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3004
		 */
3005
		if (delta > 0)
3006
			perf_adjust_period(event, period, delta, false);
3007 3008

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3009 3010
	next:
		perf_pmu_enable(event->pmu);
3011
	}
3012

3013
	perf_pmu_enable(ctx->pmu);
3014
	raw_spin_unlock(&ctx->lock);
3015 3016
}

3017
/*
3018
 * Round-robin a context's events:
3019
 */
3020
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3021
{
3022 3023 3024 3025 3026 3027
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3028 3029
}

3030
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3031
{
P
Peter Zijlstra 已提交
3032
	struct perf_event_context *ctx = NULL;
3033
	int rotate = 0;
3034

3035 3036 3037 3038
	if (cpuctx->ctx.nr_events) {
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3039

P
Peter Zijlstra 已提交
3040
	ctx = cpuctx->task_ctx;
3041 3042 3043 3044
	if (ctx && ctx->nr_events) {
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3045

3046
	if (!rotate)
3047 3048
		goto done;

3049
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3050
	perf_pmu_disable(cpuctx->ctx.pmu);
3051

3052 3053 3054
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3055

3056 3057 3058
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3059

3060
	perf_event_sched_in(cpuctx, ctx, current);
3061

3062 3063
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3064
done:
3065 3066

	return rotate;
3067 3068
}

3069 3070 3071
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3072
	if (atomic_read(&nr_freq_events) ||
3073
	    __this_cpu_read(perf_throttled_count))
3074
		return false;
3075 3076
	else
		return true;
3077 3078 3079
}
#endif

3080 3081
void perf_event_task_tick(void)
{
3082 3083
	struct list_head *head = this_cpu_ptr(&active_ctx_list);
	struct perf_event_context *ctx, *tmp;
3084
	int throttled;
3085

3086 3087
	WARN_ON(!irqs_disabled());

3088 3089 3090
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3091
	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3092
		perf_adjust_freq_unthr_context(ctx, throttled);
T
Thomas Gleixner 已提交
3093 3094
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3105
	__perf_event_mark_enabled(event);
3106 3107 3108 3109

	return 1;
}

3110
/*
3111
 * Enable all of a task's events that have been marked enable-on-exec.
3112 3113
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3114
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3115
{
3116
	struct perf_event_context *clone_ctx = NULL;
3117
	struct perf_event *event;
3118 3119
	unsigned long flags;
	int enabled = 0;
3120
	int ret;
3121 3122

	local_irq_save(flags);
3123
	if (!ctx || !ctx->nr_events)
3124 3125
		goto out;

3126 3127 3128 3129 3130 3131 3132
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3133
	perf_cgroup_sched_out(current, NULL);
3134

3135
	raw_spin_lock(&ctx->lock);
3136
	task_ctx_sched_out(ctx);
3137

3138
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3139 3140 3141
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3142 3143 3144
	}

	/*
3145
	 * Unclone this context if we enabled any event.
3146
	 */
3147
	if (enabled)
3148
		clone_ctx = unclone_ctx(ctx);
3149

3150
	raw_spin_unlock(&ctx->lock);
3151

3152 3153 3154
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3155
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3156
out:
3157
	local_irq_restore(flags);
3158 3159 3160

	if (clone_ctx)
		put_ctx(clone_ctx);
3161 3162
}

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3179
/*
3180
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3181
 */
3182
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3183
{
3184 3185
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3186
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3187

3188 3189 3190 3191
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3192 3193
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3194 3195 3196 3197
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3198
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3199
	if (ctx->is_active) {
3200
		update_context_time(ctx);
S
Stephane Eranian 已提交
3201 3202
		update_cgrp_time_from_event(event);
	}
3203
	update_event_times(event);
3204 3205
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3206
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3207 3208
}

P
Peter Zijlstra 已提交
3209 3210
static inline u64 perf_event_count(struct perf_event *event)
{
3211
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3212 3213
}

3214
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3215 3216
{
	/*
3217 3218
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3219
	 */
3220 3221 3222 3223
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3224 3225 3226
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3227
		raw_spin_lock_irqsave(&ctx->lock, flags);
3228 3229 3230 3231 3232
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3233
		if (ctx->is_active) {
3234
			update_context_time(ctx);
S
Stephane Eranian 已提交
3235 3236
			update_cgrp_time_from_event(event);
		}
3237
		update_event_times(event);
3238
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3239 3240
	}

P
Peter Zijlstra 已提交
3241
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3242 3243
}

3244
/*
3245
 * Initialize the perf_event context in a task_struct:
3246
 */
3247
static void __perf_event_init_context(struct perf_event_context *ctx)
3248
{
3249
	raw_spin_lock_init(&ctx->lock);
3250
	mutex_init(&ctx->mutex);
3251
	INIT_LIST_HEAD(&ctx->active_ctx_list);
3252 3253
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3254 3255
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3256
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3272
	}
3273 3274 3275
	ctx->pmu = pmu;

	return ctx;
3276 3277
}

3278 3279 3280 3281 3282
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3283 3284

	rcu_read_lock();
3285
	if (!vpid)
T
Thomas Gleixner 已提交
3286 3287
		task = current;
	else
3288
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3289 3290 3291 3292 3293 3294 3295 3296
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3297 3298 3299 3300
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3301 3302 3303 3304 3305 3306 3307
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3308 3309 3310
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3311
static struct perf_event_context *
M
Matt Helsley 已提交
3312
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3313
{
3314
	struct perf_event_context *ctx, *clone_ctx = NULL;
3315
	struct perf_cpu_context *cpuctx;
3316
	unsigned long flags;
P
Peter Zijlstra 已提交
3317
	int ctxn, err;
T
Thomas Gleixner 已提交
3318

3319
	if (!task) {
3320
		/* Must be root to operate on a CPU event: */
3321
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3322 3323 3324
			return ERR_PTR(-EACCES);

		/*
3325
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3326 3327 3328
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3329
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3330 3331
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3332
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3333
		ctx = &cpuctx->ctx;
3334
		get_ctx(ctx);
3335
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3336 3337 3338 3339

		return ctx;
	}

P
Peter Zijlstra 已提交
3340 3341 3342 3343 3344
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3345
retry:
P
Peter Zijlstra 已提交
3346
	ctx = perf_lock_task_context(task, ctxn, &flags);
3347
	if (ctx) {
3348
		clone_ctx = unclone_ctx(ctx);
3349
		++ctx->pin_count;
3350
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3351 3352 3353

		if (clone_ctx)
			put_ctx(clone_ctx);
3354
	} else {
3355
		ctx = alloc_perf_context(pmu, task);
3356 3357 3358
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3359

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3370
		else {
3371
			get_ctx(ctx);
3372
			++ctx->pin_count;
3373
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3374
		}
3375 3376 3377
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3378
			put_ctx(ctx);
3379 3380 3381 3382

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3383 3384 3385
		}
	}

T
Thomas Gleixner 已提交
3386
	return ctx;
3387

P
Peter Zijlstra 已提交
3388
errout:
3389
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3390 3391
}

L
Li Zefan 已提交
3392 3393
static void perf_event_free_filter(struct perf_event *event);

3394
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3395
{
3396
	struct perf_event *event;
P
Peter Zijlstra 已提交
3397

3398 3399 3400
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3401
	perf_event_free_filter(event);
3402
	kfree(event);
P
Peter Zijlstra 已提交
3403 3404
}

3405
static void ring_buffer_put(struct ring_buffer *rb);
3406 3407
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3408

3409
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3410
{
3411 3412 3413 3414 3415 3416
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3417

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3431 3432
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3433 3434 3435 3436 3437 3438 3439
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3440

3441 3442
static void __free_event(struct perf_event *event)
{
3443
	if (!event->parent) {
3444 3445
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3446
	}
3447

3448 3449 3450 3451 3452 3453
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3454 3455 3456
	if (event->pmu)
		module_put(event->pmu->module);

3457 3458
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3459 3460

static void _free_event(struct perf_event *event)
3461
{
3462
	irq_work_sync(&event->pending);
3463

3464
	unaccount_event(event);
3465

3466
	if (event->rb) {
3467 3468 3469 3470 3471 3472 3473
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3474
		ring_buffer_attach(event, NULL);
3475
		mutex_unlock(&event->mmap_mutex);
3476 3477
	}

S
Stephane Eranian 已提交
3478 3479 3480
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3481
	__free_event(event);
3482 3483
}

P
Peter Zijlstra 已提交
3484 3485 3486 3487 3488
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3489
{
P
Peter Zijlstra 已提交
3490 3491 3492 3493 3494 3495
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3496

P
Peter Zijlstra 已提交
3497
	_free_event(event);
T
Thomas Gleixner 已提交
3498 3499
}

3500
/*
3501
 * Remove user event from the owner task.
3502
 */
3503
static void perf_remove_from_owner(struct perf_event *event)
3504
{
P
Peter Zijlstra 已提交
3505
	struct task_struct *owner;
3506

P
Peter Zijlstra 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3548 3549 3550 3551 3552 3553 3554
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
P
Peter Zijlstra 已提交
3555
	struct perf_event_context *ctx;
3556 3557 3558 3559 3560 3561

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3562

P
Peter Zijlstra 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
P
Peter Zijlstra 已提交
3575 3576
	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
	WARN_ON_ONCE(ctx->parent_ctx);
P
Peter Zijlstra 已提交
3577 3578 3579 3580
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3581 3582
}

P
Peter Zijlstra 已提交
3583 3584 3585 3586 3587 3588 3589
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3590 3591 3592 3593
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3594 3595
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3632
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3633
{
3634
	struct perf_event *child;
3635 3636
	u64 total = 0;

3637 3638 3639
	*enabled = 0;
	*running = 0;

3640
	mutex_lock(&event->child_mutex);
3641
	total += perf_event_read(event);
3642 3643 3644 3645 3646 3647
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3648
		total += perf_event_read(child);
3649 3650 3651
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3652
	mutex_unlock(&event->child_mutex);
3653 3654 3655

	return total;
}
3656
EXPORT_SYMBOL_GPL(perf_event_read_value);
3657

3658
static int perf_event_read_group(struct perf_event *event,
3659 3660
				   u64 read_format, char __user *buf)
{
3661
	struct perf_event *leader = event->group_leader, *sub;
3662
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3663
	int n = 0, size = 0, ret;
3664
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3665 3666 3667
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3668

3669
	count = perf_event_read_value(leader, &enabled, &running);
3670 3671

	values[n++] = 1 + leader->nr_siblings;
3672 3673 3674 3675
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3676 3677 3678
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3679 3680 3681 3682

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3683
		return -EFAULT;
3684

3685
	ret = size;
3686

3687
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3688
		n = 0;
3689

3690
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3691 3692 3693 3694 3695
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3696
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3697
			return -EFAULT;
3698
		}
3699 3700

		ret += size;
3701 3702
	}

3703
	return ret;
3704 3705
}

3706
static int perf_event_read_one(struct perf_event *event,
3707 3708
				 u64 read_format, char __user *buf)
{
3709
	u64 enabled, running;
3710 3711 3712
	u64 values[4];
	int n = 0;

3713 3714 3715 3716 3717
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3718
	if (read_format & PERF_FORMAT_ID)
3719
		values[n++] = primary_event_id(event);
3720 3721 3722 3723 3724 3725 3726

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3740
/*
3741
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3742 3743
 */
static ssize_t
3744
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3745
{
3746
	u64 read_format = event->attr.read_format;
3747
	int ret;
T
Thomas Gleixner 已提交
3748

3749
	/*
3750
	 * Return end-of-file for a read on a event that is in
3751 3752 3753
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3754
	if (event->state == PERF_EVENT_STATE_ERROR)
3755 3756
		return 0;

3757
	if (count < event->read_size)
3758 3759
		return -ENOSPC;

3760
	WARN_ON_ONCE(event->ctx->parent_ctx);
3761
	if (read_format & PERF_FORMAT_GROUP)
3762
		ret = perf_event_read_group(event, read_format, buf);
3763
	else
3764
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3765

3766
	return ret;
T
Thomas Gleixner 已提交
3767 3768 3769 3770 3771
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3772
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3773 3774
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3775

P
Peter Zijlstra 已提交
3776 3777 3778 3779 3780
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3781 3782 3783 3784
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3785
	struct perf_event *event = file->private_data;
3786
	struct ring_buffer *rb;
3787
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3788

3789
	poll_wait(file, &event->waitq, wait);
3790

3791
	if (is_event_hup(event))
3792
		return events;
P
Peter Zijlstra 已提交
3793

3794
	/*
3795 3796
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3797 3798
	 */
	mutex_lock(&event->mmap_mutex);
3799 3800
	rb = event->rb;
	if (rb)
3801
		events = atomic_xchg(&rb->poll, 0);
3802
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3803 3804 3805
	return events;
}

P
Peter Zijlstra 已提交
3806
static void _perf_event_reset(struct perf_event *event)
3807
{
3808
	(void)perf_event_read(event);
3809
	local64_set(&event->count, 0);
3810
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3811 3812
}

3813
/*
3814 3815 3816 3817
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3818
 */
3819 3820
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3821
{
3822
	struct perf_event *child;
P
Peter Zijlstra 已提交
3823

3824
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3825

3826 3827 3828
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3829
		func(child);
3830
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3831 3832
}

3833 3834
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3835
{
3836 3837
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3838

P
Peter Zijlstra 已提交
3839 3840
	lockdep_assert_held(&ctx->mutex);

3841
	event = event->group_leader;
3842

3843 3844
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3845
		perf_event_for_each_child(sibling, func);
3846 3847
}

3848
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3849
{
3850
	struct perf_event_context *ctx = event->ctx;
3851
	int ret = 0, active;
3852 3853
	u64 value;

3854
	if (!is_sampling_event(event))
3855 3856
		return -EINVAL;

3857
	if (copy_from_user(&value, arg, sizeof(value)))
3858 3859 3860 3861 3862
		return -EFAULT;

	if (!value)
		return -EINVAL;

3863
	raw_spin_lock_irq(&ctx->lock);
3864 3865
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3866 3867 3868 3869
			ret = -EINVAL;
			goto unlock;
		}

3870
		event->attr.sample_freq = value;
3871
	} else {
3872 3873
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3874
	}
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3889
unlock:
3890
	raw_spin_unlock_irq(&ctx->lock);
3891 3892 3893 3894

	return ret;
}

3895 3896
static const struct file_operations perf_fops;

3897
static inline int perf_fget_light(int fd, struct fd *p)
3898
{
3899 3900 3901
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3902

3903 3904 3905
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3906
	}
3907 3908
	*p = f;
	return 0;
3909 3910 3911 3912
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3913
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3914

P
Peter Zijlstra 已提交
3915
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3916
{
3917
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3918
	u32 flags = arg;
3919 3920

	switch (cmd) {
3921
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3922
		func = _perf_event_enable;
3923
		break;
3924
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3925
		func = _perf_event_disable;
3926
		break;
3927
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3928
		func = _perf_event_reset;
3929
		break;
P
Peter Zijlstra 已提交
3930

3931
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3932
		return _perf_event_refresh(event, arg);
3933

3934 3935
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3936

3937 3938 3939 3940 3941 3942 3943 3944 3945
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3946
	case PERF_EVENT_IOC_SET_OUTPUT:
3947 3948 3949
	{
		int ret;
		if (arg != -1) {
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3960 3961 3962
		}
		return ret;
	}
3963

L
Li Zefan 已提交
3964 3965 3966
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3967
	default:
P
Peter Zijlstra 已提交
3968
		return -ENOTTY;
3969
	}
P
Peter Zijlstra 已提交
3970 3971

	if (flags & PERF_IOC_FLAG_GROUP)
3972
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3973
	else
3974
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3975 3976

	return 0;
3977 3978
}

P
Peter Zijlstra 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4012
int perf_event_task_enable(void)
4013
{
P
Peter Zijlstra 已提交
4014
	struct perf_event_context *ctx;
4015
	struct perf_event *event;
4016

4017
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4018 4019 4020 4021 4022
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4023
	mutex_unlock(&current->perf_event_mutex);
4024 4025 4026 4027

	return 0;
}

4028
int perf_event_task_disable(void)
4029
{
P
Peter Zijlstra 已提交
4030
	struct perf_event_context *ctx;
4031
	struct perf_event *event;
4032

4033
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4034 4035 4036 4037 4038
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4039
	mutex_unlock(&current->perf_event_mutex);
4040 4041 4042 4043

	return 0;
}

4044
static int perf_event_index(struct perf_event *event)
4045
{
P
Peter Zijlstra 已提交
4046 4047 4048
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4049
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4050 4051
		return 0;

4052
	return event->pmu->event_idx(event);
4053 4054
}

4055
static void calc_timer_values(struct perf_event *event,
4056
				u64 *now,
4057 4058
				u64 *enabled,
				u64 *running)
4059
{
4060
	u64 ctx_time;
4061

4062 4063
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4064 4065 4066 4067
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4088 4089
void __weak arch_perf_update_userpage(
	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4090 4091 4092
{
}

4093 4094 4095 4096 4097
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4098
void perf_event_update_userpage(struct perf_event *event)
4099
{
4100
	struct perf_event_mmap_page *userpg;
4101
	struct ring_buffer *rb;
4102
	u64 enabled, running, now;
4103 4104

	rcu_read_lock();
4105 4106 4107 4108
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4109 4110 4111 4112 4113 4114 4115 4116 4117
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4118
	calc_timer_values(event, &now, &enabled, &running);
4119

4120
	userpg = rb->user_page;
4121 4122 4123 4124 4125
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4126
	++userpg->lock;
4127
	barrier();
4128
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4129
	userpg->offset = perf_event_count(event);
4130
	if (userpg->index)
4131
		userpg->offset -= local64_read(&event->hw.prev_count);
4132

4133
	userpg->time_enabled = enabled +
4134
			atomic64_read(&event->child_total_time_enabled);
4135

4136
	userpg->time_running = running +
4137
			atomic64_read(&event->child_total_time_running);
4138

4139
	arch_perf_update_userpage(event, userpg, now);
4140

4141
	barrier();
4142
	++userpg->lock;
4143
	preempt_enable();
4144
unlock:
4145
	rcu_read_unlock();
4146 4147
}

4148 4149 4150
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4151
	struct ring_buffer *rb;
4152 4153 4154 4155 4156 4157 4158 4159 4160
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4161 4162
	rb = rcu_dereference(event->rb);
	if (!rb)
4163 4164 4165 4166 4167
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4168
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4183 4184 4185
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4186
	struct ring_buffer *old_rb = NULL;
4187 4188
	unsigned long flags;

4189 4190 4191 4192 4193 4194
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4195

4196 4197 4198
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4199

4200 4201 4202 4203
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4204

4205 4206 4207 4208
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4209

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4227 4228 4229 4230 4231 4232 4233 4234
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4235 4236 4237 4238
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4239 4240 4241
	rcu_read_unlock();
}

4242
static void rb_free_rcu(struct rcu_head *rcu_head)
4243
{
4244
	struct ring_buffer *rb;
4245

4246 4247
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4248 4249
}

4250
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4251
{
4252
	struct ring_buffer *rb;
4253

4254
	rcu_read_lock();
4255 4256 4257 4258
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4259 4260 4261
	}
	rcu_read_unlock();

4262
	return rb;
4263 4264
}

4265
static void ring_buffer_put(struct ring_buffer *rb)
4266
{
4267
	if (!atomic_dec_and_test(&rb->refcount))
4268
		return;
4269

4270
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4271

4272
	call_rcu(&rb->rcu_head, rb_free_rcu);
4273 4274 4275 4276
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4277
	struct perf_event *event = vma->vm_file->private_data;
4278

4279
	atomic_inc(&event->mmap_count);
4280
	atomic_inc(&event->rb->mmap_count);
4281 4282 4283

	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);
4284 4285
}

4286 4287 4288 4289 4290 4291 4292 4293
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4294 4295
static void perf_mmap_close(struct vm_area_struct *vma)
{
4296
	struct perf_event *event = vma->vm_file->private_data;
4297

4298
	struct ring_buffer *rb = ring_buffer_get(event);
4299 4300 4301
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4302

4303 4304 4305
	if (event->pmu->event_unmapped)
		event->pmu->event_unmapped(event);

4306 4307 4308
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4309
		goto out_put;
4310

4311
	ring_buffer_attach(event, NULL);
4312 4313 4314
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4315 4316
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4317

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4334

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4346 4347 4348
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4349
		mutex_unlock(&event->mmap_mutex);
4350
		put_event(event);
4351

4352 4353 4354 4355 4356
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4357
	}
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4373
out_put:
4374
	ring_buffer_put(rb); /* could be last */
4375 4376
}

4377
static const struct vm_operations_struct perf_mmap_vmops = {
4378 4379 4380 4381
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4382 4383 4384 4385
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4386
	struct perf_event *event = file->private_data;
4387
	unsigned long user_locked, user_lock_limit;
4388
	struct user_struct *user = current_user();
4389
	unsigned long locked, lock_limit;
4390
	struct ring_buffer *rb;
4391 4392
	unsigned long vma_size;
	unsigned long nr_pages;
4393
	long user_extra, extra;
4394
	int ret = 0, flags = 0;
4395

4396 4397 4398
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4399
	 * same rb.
4400 4401 4402 4403
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4404
	if (!(vma->vm_flags & VM_SHARED))
4405
		return -EINVAL;
4406 4407 4408 4409

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4410
	/*
4411
	 * If we have rb pages ensure they're a power-of-two number, so we
4412 4413 4414
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4415 4416
		return -EINVAL;

4417
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4418 4419
		return -EINVAL;

4420 4421
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4422

4423
	WARN_ON_ONCE(event->ctx->parent_ctx);
4424
again:
4425
	mutex_lock(&event->mmap_mutex);
4426
	if (event->rb) {
4427
		if (event->rb->nr_pages != nr_pages) {
4428
			ret = -EINVAL;
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4442 4443 4444
		goto unlock;
	}

4445
	user_extra = nr_pages + 1;
4446
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4447 4448 4449 4450 4451 4452

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4453
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4454

4455 4456 4457
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4458

4459
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4460
	lock_limit >>= PAGE_SHIFT;
4461
	locked = vma->vm_mm->pinned_vm + extra;
4462

4463 4464
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4465 4466 4467
		ret = -EPERM;
		goto unlock;
	}
4468

4469
	WARN_ON(event->rb);
4470

4471
	if (vma->vm_flags & VM_WRITE)
4472
		flags |= RING_BUFFER_WRITABLE;
4473

4474 4475 4476 4477
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4478
	if (!rb) {
4479
		ret = -ENOMEM;
4480
		goto unlock;
4481
	}
P
Peter Zijlstra 已提交
4482

4483
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4484 4485
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4486

4487
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4488 4489
	vma->vm_mm->pinned_vm += extra;

4490
	ring_buffer_attach(event, rb);
4491

4492
	perf_event_init_userpage(event);
4493 4494
	perf_event_update_userpage(event);

4495
unlock:
4496 4497
	if (!ret)
		atomic_inc(&event->mmap_count);
4498
	mutex_unlock(&event->mmap_mutex);
4499

4500 4501 4502 4503
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4504
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4505
	vma->vm_ops = &perf_mmap_vmops;
4506

4507 4508 4509
	if (event->pmu->event_mapped)
		event->pmu->event_mapped(event);

4510
	return ret;
4511 4512
}

P
Peter Zijlstra 已提交
4513 4514
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4515
	struct inode *inode = file_inode(filp);
4516
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4517 4518 4519
	int retval;

	mutex_lock(&inode->i_mutex);
4520
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4521 4522 4523 4524 4525 4526 4527 4528
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4529
static const struct file_operations perf_fops = {
4530
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4531 4532 4533
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4534
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4535
	.compat_ioctl		= perf_compat_ioctl,
4536
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4537
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4538 4539
};

4540
/*
4541
 * Perf event wakeup
4542 4543 4544 4545 4546
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4547
void perf_event_wakeup(struct perf_event *event)
4548
{
4549
	ring_buffer_wakeup(event);
4550

4551 4552 4553
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4554
	}
4555 4556
}

4557
static void perf_pending_event(struct irq_work *entry)
4558
{
4559 4560
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4561

4562 4563 4564
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4565 4566
	}

4567 4568 4569
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4570 4571 4572
	}
}

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4609
static void perf_sample_regs_user(struct perf_regs *regs_user,
4610 4611
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4612
{
4613 4614
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4615
		regs_user->regs = regs;
4616 4617
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4618 4619 4620
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4621 4622 4623
	}
}

4624 4625 4626 4627 4628 4629 4630 4631
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4727 4728 4729
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4745
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4757 4758 4759
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4784 4785 4786

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4787 4788
}

4789 4790 4791
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4792 4793 4794 4795 4796
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4797
static void perf_output_read_one(struct perf_output_handle *handle,
4798 4799
				 struct perf_event *event,
				 u64 enabled, u64 running)
4800
{
4801
	u64 read_format = event->attr.read_format;
4802 4803 4804
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4805
	values[n++] = perf_event_count(event);
4806
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4807
		values[n++] = enabled +
4808
			atomic64_read(&event->child_total_time_enabled);
4809 4810
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4811
		values[n++] = running +
4812
			atomic64_read(&event->child_total_time_running);
4813 4814
	}
	if (read_format & PERF_FORMAT_ID)
4815
		values[n++] = primary_event_id(event);
4816

4817
	__output_copy(handle, values, n * sizeof(u64));
4818 4819 4820
}

/*
4821
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4822 4823
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4824 4825
			    struct perf_event *event,
			    u64 enabled, u64 running)
4826
{
4827 4828
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4829 4830 4831 4832 4833 4834
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4835
		values[n++] = enabled;
4836 4837

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4838
		values[n++] = running;
4839

4840
	if (leader != event)
4841 4842
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4843
	values[n++] = perf_event_count(leader);
4844
	if (read_format & PERF_FORMAT_ID)
4845
		values[n++] = primary_event_id(leader);
4846

4847
	__output_copy(handle, values, n * sizeof(u64));
4848

4849
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4850 4851
		n = 0;

4852 4853
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4854 4855
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4856
		values[n++] = perf_event_count(sub);
4857
		if (read_format & PERF_FORMAT_ID)
4858
			values[n++] = primary_event_id(sub);
4859

4860
		__output_copy(handle, values, n * sizeof(u64));
4861 4862 4863
	}
}

4864 4865 4866
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4867
static void perf_output_read(struct perf_output_handle *handle,
4868
			     struct perf_event *event)
4869
{
4870
	u64 enabled = 0, running = 0, now;
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4882
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4883
		calc_timer_values(event, &now, &enabled, &running);
4884

4885
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4886
		perf_output_read_group(handle, event, enabled, running);
4887
	else
4888
		perf_output_read_one(handle, event, enabled, running);
4889 4890
}

4891 4892 4893
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4894
			struct perf_event *event)
4895 4896 4897 4898 4899
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4900 4901 4902
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4928
		perf_output_read(handle, event);
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4939
			__output_copy(handle, data->callchain, size);
4940 4941 4942 4943 4944 4945 4946 4947 4948
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4949 4950
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4962

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4997

4998
	if (sample_type & PERF_SAMPLE_STACK_USER) {
4999 5000 5001
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5002
	}
A
Andi Kleen 已提交
5003 5004 5005

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5006 5007 5008

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5009

A
Andi Kleen 已提交
5010 5011 5012
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5043 5044 5045 5046
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5047
			 struct perf_event *event,
5048
			 struct pt_regs *regs)
5049
{
5050
	u64 sample_type = event->attr.sample_type;
5051

5052
	header->type = PERF_RECORD_SAMPLE;
5053
	header->size = sizeof(*header) + event->header_size;
5054 5055 5056

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5057

5058
	__perf_event_header__init_id(header, data, event);
5059

5060
	if (sample_type & PERF_SAMPLE_IP)
5061 5062
		data->ip = perf_instruction_pointer(regs);

5063
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5064
		int size = 1;
5065

5066
		data->callchain = perf_callchain(event, regs);
5067 5068 5069 5070 5071

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5072 5073
	}

5074
	if (sample_type & PERF_SAMPLE_RAW) {
5075 5076 5077 5078 5079 5080 5081 5082
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5083
		header->size += size;
5084
	}
5085 5086 5087 5088 5089 5090 5091 5092 5093

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5094

5095
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5096 5097
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5098

5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5122
						     data->regs_user.regs);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5150
}
5151

5152
static void perf_event_output(struct perf_event *event,
5153 5154 5155 5156 5157
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5158

5159 5160 5161
	/* protect the callchain buffers */
	rcu_read_lock();

5162
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5163

5164
	if (perf_output_begin(&handle, event, header.size))
5165
		goto exit;
5166

5167
	perf_output_sample(&handle, &header, data, event);
5168

5169
	perf_output_end(&handle);
5170 5171 5172

exit:
	rcu_read_unlock();
5173 5174
}

5175
/*
5176
 * read event_id
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5187
perf_event_read_event(struct perf_event *event,
5188 5189 5190
			struct task_struct *task)
{
	struct perf_output_handle handle;
5191
	struct perf_sample_data sample;
5192
	struct perf_read_event read_event = {
5193
		.header = {
5194
			.type = PERF_RECORD_READ,
5195
			.misc = 0,
5196
			.size = sizeof(read_event) + event->read_size,
5197
		},
5198 5199
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5200
	};
5201
	int ret;
5202

5203
	perf_event_header__init_id(&read_event.header, &sample, event);
5204
	ret = perf_output_begin(&handle, event, read_event.header.size);
5205 5206 5207
	if (ret)
		return;

5208
	perf_output_put(&handle, read_event);
5209
	perf_output_read(&handle, event);
5210
	perf_event__output_id_sample(event, &handle, &sample);
5211

5212 5213 5214
	perf_output_end(&handle);
}

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5229
		output(event, data);
5230 5231 5232 5233
	}
}

static void
5234
perf_event_aux(perf_event_aux_output_cb output, void *data,
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5247
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5248 5249 5250 5251 5252 5253 5254
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5255
			perf_event_aux_ctx(ctx, output, data);
5256 5257 5258 5259 5260 5261
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5262
		perf_event_aux_ctx(task_ctx, output, data);
5263 5264 5265 5266 5267
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5268
/*
P
Peter Zijlstra 已提交
5269 5270
 * task tracking -- fork/exit
 *
5271
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5272 5273
 */

P
Peter Zijlstra 已提交
5274
struct perf_task_event {
5275
	struct task_struct		*task;
5276
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5277 5278 5279 5280 5281 5282

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5283 5284
		u32				tid;
		u32				ptid;
5285
		u64				time;
5286
	} event_id;
P
Peter Zijlstra 已提交
5287 5288
};

5289 5290
static int perf_event_task_match(struct perf_event *event)
{
5291 5292 5293
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5294 5295
}

5296
static void perf_event_task_output(struct perf_event *event,
5297
				   void *data)
P
Peter Zijlstra 已提交
5298
{
5299
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5300
	struct perf_output_handle handle;
5301
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5302
	struct task_struct *task = task_event->task;
5303
	int ret, size = task_event->event_id.header.size;
5304

5305 5306 5307
	if (!perf_event_task_match(event))
		return;

5308
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5309

5310
	ret = perf_output_begin(&handle, event,
5311
				task_event->event_id.header.size);
5312
	if (ret)
5313
		goto out;
P
Peter Zijlstra 已提交
5314

5315 5316
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5317

5318 5319
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5320

5321
	perf_output_put(&handle, task_event->event_id);
5322

5323 5324
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5325
	perf_output_end(&handle);
5326 5327
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5328 5329
}

5330 5331
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5332
			      int new)
P
Peter Zijlstra 已提交
5333
{
P
Peter Zijlstra 已提交
5334
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5335

5336 5337 5338
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5339 5340
		return;

P
Peter Zijlstra 已提交
5341
	task_event = (struct perf_task_event){
5342 5343
		.task	  = task,
		.task_ctx = task_ctx,
5344
		.event_id    = {
P
Peter Zijlstra 已提交
5345
			.header = {
5346
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5347
				.misc = 0,
5348
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5349
			},
5350 5351
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5352 5353
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5354
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5355 5356 5357
		},
	};

5358
	perf_event_aux(perf_event_task_output,
5359 5360
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5361 5362
}

5363
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5364
{
5365
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5366 5367
}

5368 5369 5370 5371 5372
/*
 * comm tracking
 */

struct perf_comm_event {
5373 5374
	struct task_struct	*task;
	char			*comm;
5375 5376 5377 5378 5379 5380 5381
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5382
	} event_id;
5383 5384
};

5385 5386 5387 5388 5389
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5390
static void perf_event_comm_output(struct perf_event *event,
5391
				   void *data)
5392
{
5393
	struct perf_comm_event *comm_event = data;
5394
	struct perf_output_handle handle;
5395
	struct perf_sample_data sample;
5396
	int size = comm_event->event_id.header.size;
5397 5398
	int ret;

5399 5400 5401
	if (!perf_event_comm_match(event))
		return;

5402 5403
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5404
				comm_event->event_id.header.size);
5405 5406

	if (ret)
5407
		goto out;
5408

5409 5410
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5411

5412
	perf_output_put(&handle, comm_event->event_id);
5413
	__output_copy(&handle, comm_event->comm,
5414
				   comm_event->comm_size);
5415 5416 5417

	perf_event__output_id_sample(event, &handle, &sample);

5418
	perf_output_end(&handle);
5419 5420
out:
	comm_event->event_id.header.size = size;
5421 5422
}

5423
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5424
{
5425
	char comm[TASK_COMM_LEN];
5426 5427
	unsigned int size;

5428
	memset(comm, 0, sizeof(comm));
5429
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5430
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5431 5432 5433 5434

	comm_event->comm = comm;
	comm_event->comm_size = size;

5435
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5436

5437
	perf_event_aux(perf_event_comm_output,
5438 5439
		       comm_event,
		       NULL);
5440 5441
}

5442
void perf_event_comm(struct task_struct *task, bool exec)
5443
{
5444 5445
	struct perf_comm_event comm_event;

5446
	if (!atomic_read(&nr_comm_events))
5447
		return;
5448

5449
	comm_event = (struct perf_comm_event){
5450
		.task	= task,
5451 5452
		/* .comm      */
		/* .comm_size */
5453
		.event_id  = {
5454
			.header = {
5455
				.type = PERF_RECORD_COMM,
5456
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5457 5458 5459 5460
				/* .size */
			},
			/* .pid */
			/* .tid */
5461 5462 5463
		},
	};

5464
	perf_event_comm_event(&comm_event);
5465 5466
}

5467 5468 5469 5470 5471
/*
 * mmap tracking
 */

struct perf_mmap_event {
5472 5473 5474 5475
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5476 5477 5478
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5479
	u32			prot, flags;
5480 5481 5482 5483 5484 5485 5486 5487 5488

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5489
	} event_id;
5490 5491
};

5492 5493 5494 5495 5496 5497 5498 5499
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5500
	       (executable && (event->attr.mmap || event->attr.mmap2));
5501 5502
}

5503
static void perf_event_mmap_output(struct perf_event *event,
5504
				   void *data)
5505
{
5506
	struct perf_mmap_event *mmap_event = data;
5507
	struct perf_output_handle handle;
5508
	struct perf_sample_data sample;
5509
	int size = mmap_event->event_id.header.size;
5510
	int ret;
5511

5512 5513 5514
	if (!perf_event_mmap_match(event, data))
		return;

5515 5516 5517 5518 5519
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5520
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5521 5522
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5523 5524
	}

5525 5526
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5527
				mmap_event->event_id.header.size);
5528
	if (ret)
5529
		goto out;
5530

5531 5532
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5533

5534
	perf_output_put(&handle, mmap_event->event_id);
5535 5536 5537 5538 5539 5540

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5541 5542
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5543 5544
	}

5545
	__output_copy(&handle, mmap_event->file_name,
5546
				   mmap_event->file_size);
5547 5548 5549

	perf_event__output_id_sample(event, &handle, &sample);

5550
	perf_output_end(&handle);
5551 5552
out:
	mmap_event->event_id.header.size = size;
5553 5554
}

5555
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5556
{
5557 5558
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5559 5560
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5561
	u32 prot = 0, flags = 0;
5562 5563 5564
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5565
	char *name;
5566

5567
	if (file) {
5568 5569
		struct inode *inode;
		dev_t dev;
5570

5571
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5572
		if (!buf) {
5573 5574
			name = "//enomem";
			goto cpy_name;
5575
		}
5576
		/*
5577
		 * d_path() works from the end of the rb backwards, so we
5578 5579 5580
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5581
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5582
		if (IS_ERR(name)) {
5583 5584
			name = "//toolong";
			goto cpy_name;
5585
		}
5586 5587 5588 5589 5590 5591
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5614
		goto got_name;
5615
	} else {
5616 5617 5618 5619 5620 5621
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5622
		name = (char *)arch_vma_name(vma);
5623 5624
		if (name)
			goto cpy_name;
5625

5626
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5627
				vma->vm_end >= vma->vm_mm->brk) {
5628 5629
			name = "[heap]";
			goto cpy_name;
5630 5631
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5632
				vma->vm_end >= vma->vm_mm->start_stack) {
5633 5634
			name = "[stack]";
			goto cpy_name;
5635 5636
		}

5637 5638
		name = "//anon";
		goto cpy_name;
5639 5640
	}

5641 5642 5643
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5644
got_name:
5645 5646 5647 5648 5649 5650 5651 5652
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5653 5654 5655

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5656 5657 5658 5659
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5660 5661
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5662

5663 5664 5665
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5666
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5667

5668
	perf_event_aux(perf_event_mmap_output,
5669 5670
		       mmap_event,
		       NULL);
5671

5672 5673 5674
	kfree(buf);
}

5675
void perf_event_mmap(struct vm_area_struct *vma)
5676
{
5677 5678
	struct perf_mmap_event mmap_event;

5679
	if (!atomic_read(&nr_mmap_events))
5680 5681 5682
		return;

	mmap_event = (struct perf_mmap_event){
5683
		.vma	= vma,
5684 5685
		/* .file_name */
		/* .file_size */
5686
		.event_id  = {
5687
			.header = {
5688
				.type = PERF_RECORD_MMAP,
5689
				.misc = PERF_RECORD_MISC_USER,
5690 5691 5692 5693
				/* .size */
			},
			/* .pid */
			/* .tid */
5694 5695
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5696
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5697
		},
5698 5699 5700 5701
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5702 5703
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5704 5705
	};

5706
	perf_event_mmap_event(&mmap_event);
5707 5708
}

5709 5710 5711 5712
/*
 * IRQ throttle logging
 */

5713
static void perf_log_throttle(struct perf_event *event, int enable)
5714 5715
{
	struct perf_output_handle handle;
5716
	struct perf_sample_data sample;
5717 5718 5719 5720 5721
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5722
		u64				id;
5723
		u64				stream_id;
5724 5725
	} throttle_event = {
		.header = {
5726
			.type = PERF_RECORD_THROTTLE,
5727 5728 5729
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5730
		.time		= perf_clock(),
5731 5732
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5733 5734
	};

5735
	if (enable)
5736
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5737

5738 5739 5740
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5741
				throttle_event.header.size);
5742 5743 5744 5745
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5746
	perf_event__output_id_sample(event, &handle, &sample);
5747 5748 5749
	perf_output_end(&handle);
}

5750
/*
5751
 * Generic event overflow handling, sampling.
5752 5753
 */

5754
static int __perf_event_overflow(struct perf_event *event,
5755 5756
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5757
{
5758 5759
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5760
	u64 seq;
5761 5762
	int ret = 0;

5763 5764 5765 5766 5767 5768 5769
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5770 5771 5772 5773 5774 5775 5776 5777 5778
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5779 5780
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5781
			tick_nohz_full_kick();
5782 5783
			ret = 1;
		}
5784
	}
5785

5786
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5787
		u64 now = perf_clock();
5788
		s64 delta = now - hwc->freq_time_stamp;
5789

5790
		hwc->freq_time_stamp = now;
5791

5792
		if (delta > 0 && delta < 2*TICK_NSEC)
5793
			perf_adjust_period(event, delta, hwc->last_period, true);
5794 5795
	}

5796 5797
	/*
	 * XXX event_limit might not quite work as expected on inherited
5798
	 * events
5799 5800
	 */

5801 5802
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5803
		ret = 1;
5804
		event->pending_kill = POLL_HUP;
5805 5806
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5807 5808
	}

5809
	if (event->overflow_handler)
5810
		event->overflow_handler(event, data, regs);
5811
	else
5812
		perf_event_output(event, data, regs);
5813

P
Peter Zijlstra 已提交
5814
	if (event->fasync && event->pending_kill) {
5815 5816
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5817 5818
	}

5819
	return ret;
5820 5821
}

5822
int perf_event_overflow(struct perf_event *event,
5823 5824
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5825
{
5826
	return __perf_event_overflow(event, 1, data, regs);
5827 5828
}

5829
/*
5830
 * Generic software event infrastructure
5831 5832
 */

5833 5834 5835 5836 5837 5838 5839
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5840 5841 5842

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5843 5844 5845 5846
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5847
/*
5848 5849
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5850 5851 5852 5853
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5854
u64 perf_swevent_set_period(struct perf_event *event)
5855
{
5856
	struct hw_perf_event *hwc = &event->hw;
5857 5858 5859 5860 5861
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5862 5863

again:
5864
	old = val = local64_read(&hwc->period_left);
5865 5866
	if (val < 0)
		return 0;
5867

5868 5869 5870
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5871
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5872
		goto again;
5873

5874
	return nr;
5875 5876
}

5877
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5878
				    struct perf_sample_data *data,
5879
				    struct pt_regs *regs)
5880
{
5881
	struct hw_perf_event *hwc = &event->hw;
5882
	int throttle = 0;
5883

5884 5885
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5886

5887 5888
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5889

5890
	for (; overflow; overflow--) {
5891
		if (__perf_event_overflow(event, throttle,
5892
					    data, regs)) {
5893 5894 5895 5896 5897 5898
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5899
		throttle = 1;
5900
	}
5901 5902
}

P
Peter Zijlstra 已提交
5903
static void perf_swevent_event(struct perf_event *event, u64 nr,
5904
			       struct perf_sample_data *data,
5905
			       struct pt_regs *regs)
5906
{
5907
	struct hw_perf_event *hwc = &event->hw;
5908

5909
	local64_add(nr, &event->count);
5910

5911 5912 5913
	if (!regs)
		return;

5914
	if (!is_sampling_event(event))
5915
		return;
5916

5917 5918 5919 5920 5921 5922
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5923
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5924
		return perf_swevent_overflow(event, 1, data, regs);
5925

5926
	if (local64_add_negative(nr, &hwc->period_left))
5927
		return;
5928

5929
	perf_swevent_overflow(event, 0, data, regs);
5930 5931
}

5932 5933 5934
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5935
	if (event->hw.state & PERF_HES_STOPPED)
5936
		return 1;
P
Peter Zijlstra 已提交
5937

5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5949
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5950
				enum perf_type_id type,
L
Li Zefan 已提交
5951 5952 5953
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5954
{
5955
	if (event->attr.type != type)
5956
		return 0;
5957

5958
	if (event->attr.config != event_id)
5959 5960
		return 0;

5961 5962
	if (perf_exclude_event(event, regs))
		return 0;
5963 5964 5965 5966

	return 1;
}

5967 5968 5969 5970 5971 5972 5973
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5974 5975
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5976
{
5977 5978 5979 5980
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5981

5982 5983
/* For the read side: events when they trigger */
static inline struct hlist_head *
5984
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5985 5986
{
	struct swevent_hlist *hlist;
5987

5988
	hlist = rcu_dereference(swhash->swevent_hlist);
5989 5990 5991
	if (!hlist)
		return NULL;

5992 5993 5994 5995 5996
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5997
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6008
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6009 6010 6011 6012 6013
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6014 6015 6016
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6017
				    u64 nr,
6018 6019
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6020
{
6021
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6022
	struct perf_event *event;
6023
	struct hlist_head *head;
6024

6025
	rcu_read_lock();
6026
	head = find_swevent_head_rcu(swhash, type, event_id);
6027 6028 6029
	if (!head)
		goto end;

6030
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6031
		if (perf_swevent_match(event, type, event_id, data, regs))
6032
			perf_swevent_event(event, nr, data, regs);
6033
	}
6034 6035
end:
	rcu_read_unlock();
6036 6037
}

6038 6039
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6040
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6041
{
6042
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6043

6044
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6045
}
I
Ingo Molnar 已提交
6046
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6047

6048
inline void perf_swevent_put_recursion_context(int rctx)
6049
{
6050
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6051

6052
	put_recursion_context(swhash->recursion, rctx);
6053
}
6054

6055
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6056
{
6057
	struct perf_sample_data data;
6058

6059
	if (WARN_ON_ONCE(!regs))
6060
		return;
6061

6062
	perf_sample_data_init(&data, addr, 0);
6063
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6076 6077

	perf_swevent_put_recursion_context(rctx);
6078
fail:
6079
	preempt_enable_notrace();
6080 6081
}

6082
static void perf_swevent_read(struct perf_event *event)
6083 6084 6085
{
}

P
Peter Zijlstra 已提交
6086
static int perf_swevent_add(struct perf_event *event, int flags)
6087
{
6088
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6089
	struct hw_perf_event *hwc = &event->hw;
6090 6091
	struct hlist_head *head;

6092
	if (is_sampling_event(event)) {
6093
		hwc->last_period = hwc->sample_period;
6094
		perf_swevent_set_period(event);
6095
	}
6096

P
Peter Zijlstra 已提交
6097 6098
	hwc->state = !(flags & PERF_EF_START);

6099
	head = find_swevent_head(swhash, event);
6100 6101 6102 6103 6104 6105
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6106
		return -EINVAL;
6107
	}
6108 6109

	hlist_add_head_rcu(&event->hlist_entry, head);
6110
	perf_event_update_userpage(event);
6111

6112 6113 6114
	return 0;
}

P
Peter Zijlstra 已提交
6115
static void perf_swevent_del(struct perf_event *event, int flags)
6116
{
6117
	hlist_del_rcu(&event->hlist_entry);
6118 6119
}

P
Peter Zijlstra 已提交
6120
static void perf_swevent_start(struct perf_event *event, int flags)
6121
{
P
Peter Zijlstra 已提交
6122
	event->hw.state = 0;
6123
}
I
Ingo Molnar 已提交
6124

P
Peter Zijlstra 已提交
6125
static void perf_swevent_stop(struct perf_event *event, int flags)
6126
{
P
Peter Zijlstra 已提交
6127
	event->hw.state = PERF_HES_STOPPED;
6128 6129
}

6130 6131
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6132
swevent_hlist_deref(struct swevent_htable *swhash)
6133
{
6134 6135
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6136 6137
}

6138
static void swevent_hlist_release(struct swevent_htable *swhash)
6139
{
6140
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6141

6142
	if (!hlist)
6143 6144
		return;

6145
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6146
	kfree_rcu(hlist, rcu_head);
6147 6148 6149 6150
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6151
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6152

6153
	mutex_lock(&swhash->hlist_mutex);
6154

6155 6156
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6157

6158
	mutex_unlock(&swhash->hlist_mutex);
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6171
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6172 6173
	int err = 0;

6174
	mutex_lock(&swhash->hlist_mutex);
6175

6176
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6177 6178 6179 6180 6181 6182 6183
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6184
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6185
	}
6186
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6187
exit:
6188
	mutex_unlock(&swhash->hlist_mutex);
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6209
fail:
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6220
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6221

6222 6223 6224
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6225

6226 6227
	WARN_ON(event->parent);

6228
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6229 6230 6231 6232 6233
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6234
	u64 event_id = event->attr.config;
6235 6236 6237 6238

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6239 6240 6241 6242 6243 6244
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6245 6246 6247 6248 6249 6250 6251 6252 6253
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6254
	if (event_id >= PERF_COUNT_SW_MAX)
6255 6256 6257 6258 6259 6260 6261 6262 6263
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6264
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6265 6266 6267 6268 6269 6270 6271
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6272
	.task_ctx_nr	= perf_sw_context,
6273

6274
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6275 6276 6277 6278
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6279 6280 6281
	.read		= perf_swevent_read,
};

6282 6283
#ifdef CONFIG_EVENT_TRACING

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6298 6299
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6300 6301 6302 6303
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6304 6305 6306 6307 6308 6309 6310 6311 6312
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6313 6314
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6315 6316
{
	struct perf_sample_data data;
6317 6318
	struct perf_event *event;

6319 6320 6321 6322 6323
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6324
	perf_sample_data_init(&data, addr, 0);
6325 6326
	data.raw = &raw;

6327
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6328
		if (perf_tp_event_match(event, &data, regs))
6329
			perf_swevent_event(event, count, &data, regs);
6330
	}
6331

6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6357
	perf_swevent_put_recursion_context(rctx);
6358 6359 6360
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6361
static void tp_perf_event_destroy(struct perf_event *event)
6362
{
6363
	perf_trace_destroy(event);
6364 6365
}

6366
static int perf_tp_event_init(struct perf_event *event)
6367
{
6368 6369
	int err;

6370 6371 6372
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6373 6374 6375 6376 6377 6378
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6379 6380
	err = perf_trace_init(event);
	if (err)
6381
		return err;
6382

6383
	event->destroy = tp_perf_event_destroy;
6384

6385 6386 6387 6388
	return 0;
}

static struct pmu perf_tracepoint = {
6389 6390
	.task_ctx_nr	= perf_sw_context,

6391
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6392 6393 6394 6395
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6396 6397 6398 6399 6400
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6401
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6402
}
L
Li Zefan 已提交
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6427
#else
L
Li Zefan 已提交
6428

6429
static inline void perf_tp_register(void)
6430 6431
{
}
L
Li Zefan 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6442
#endif /* CONFIG_EVENT_TRACING */
6443

6444
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6445
void perf_bp_event(struct perf_event *bp, void *data)
6446
{
6447 6448 6449
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6450
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6451

P
Peter Zijlstra 已提交
6452
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6453
		perf_swevent_event(bp, 1, &sample, regs);
6454 6455 6456
}
#endif

6457 6458 6459
/*
 * hrtimer based swevent callback
 */
6460

6461
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6462
{
6463 6464 6465 6466 6467
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6468

6469
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6470 6471 6472 6473

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6474
	event->pmu->read(event);
6475

6476
	perf_sample_data_init(&data, 0, event->hw.last_period);
6477 6478 6479
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6480
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6481
			if (__perf_event_overflow(event, 1, &data, regs))
6482 6483
				ret = HRTIMER_NORESTART;
	}
6484

6485 6486
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6487

6488
	return ret;
6489 6490
}

6491
static void perf_swevent_start_hrtimer(struct perf_event *event)
6492
{
6493
	struct hw_perf_event *hwc = &event->hw;
6494 6495 6496 6497
	s64 period;

	if (!is_sampling_event(event))
		return;
6498

6499 6500 6501 6502
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6503

6504 6505 6506 6507 6508
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6509
				ns_to_ktime(period), 0,
6510
				HRTIMER_MODE_REL_PINNED, 0);
6511
}
6512 6513

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6514
{
6515 6516
	struct hw_perf_event *hwc = &event->hw;

6517
	if (is_sampling_event(event)) {
6518
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6519
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6520 6521 6522

		hrtimer_cancel(&hwc->hrtimer);
	}
6523 6524
}

P
Peter Zijlstra 已提交
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6545
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6546 6547 6548 6549
		event->attr.freq = 0;
	}
}

6550 6551 6552 6553 6554
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6555
{
6556 6557 6558
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6559
	now = local_clock();
6560 6561
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6562 6563
}

P
Peter Zijlstra 已提交
6564
static void cpu_clock_event_start(struct perf_event *event, int flags)
6565
{
P
Peter Zijlstra 已提交
6566
	local64_set(&event->hw.prev_count, local_clock());
6567 6568 6569
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6570
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6571
{
6572 6573 6574
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6575

P
Peter Zijlstra 已提交
6576 6577 6578 6579
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);
6580
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
6581 6582 6583 6584 6585 6586 6587 6588 6589

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6590 6591 6592 6593
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6594

6595 6596 6597 6598 6599 6600 6601 6602
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6603 6604 6605 6606 6607 6608
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6609 6610
	perf_swevent_init_hrtimer(event);

6611
	return 0;
6612 6613
}

6614
static struct pmu perf_cpu_clock = {
6615 6616
	.task_ctx_nr	= perf_sw_context,

6617
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6618 6619 6620 6621
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6622 6623 6624 6625 6626 6627 6628 6629
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6630
{
6631 6632
	u64 prev;
	s64 delta;
6633

6634 6635 6636 6637
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6638

P
Peter Zijlstra 已提交
6639
static void task_clock_event_start(struct perf_event *event, int flags)
6640
{
P
Peter Zijlstra 已提交
6641
	local64_set(&event->hw.prev_count, event->ctx->time);
6642 6643 6644
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6645
static void task_clock_event_stop(struct perf_event *event, int flags)
6646 6647 6648
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6649 6650 6651 6652 6653 6654
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6655
	perf_event_update_userpage(event);
6656

P
Peter Zijlstra 已提交
6657 6658 6659 6660 6661 6662
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6663 6664 6665 6666
}

static void task_clock_event_read(struct perf_event *event)
{
6667 6668 6669
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6670 6671 6672 6673 6674

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6675
{
6676 6677 6678 6679 6680 6681
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6682 6683 6684 6685 6686 6687
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6688 6689
	perf_swevent_init_hrtimer(event);

6690
	return 0;
L
Li Zefan 已提交
6691 6692
}

6693
static struct pmu perf_task_clock = {
6694 6695
	.task_ctx_nr	= perf_sw_context,

6696
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6697 6698 6699 6700
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6701 6702
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6703

P
Peter Zijlstra 已提交
6704
static void perf_pmu_nop_void(struct pmu *pmu)
6705 6706
{
}
L
Li Zefan 已提交
6707

P
Peter Zijlstra 已提交
6708
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6709
{
P
Peter Zijlstra 已提交
6710
	return 0;
L
Li Zefan 已提交
6711 6712
}

P
Peter Zijlstra 已提交
6713
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6714
{
P
Peter Zijlstra 已提交
6715
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6716 6717
}

P
Peter Zijlstra 已提交
6718 6719 6720 6721 6722
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6723

P
Peter Zijlstra 已提交
6724
static void perf_pmu_cancel_txn(struct pmu *pmu)
6725
{
P
Peter Zijlstra 已提交
6726
	perf_pmu_enable(pmu);
6727 6728
}

6729 6730
static int perf_event_idx_default(struct perf_event *event)
{
6731
	return 0;
6732 6733
}

P
Peter Zijlstra 已提交
6734 6735 6736 6737
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6738
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6739
{
P
Peter Zijlstra 已提交
6740
	struct pmu *pmu;
6741

P
Peter Zijlstra 已提交
6742 6743
	if (ctxn < 0)
		return NULL;
6744

P
Peter Zijlstra 已提交
6745 6746 6747 6748
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6749

P
Peter Zijlstra 已提交
6750
	return NULL;
6751 6752
}

6753
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6754
{
6755 6756 6757 6758 6759 6760 6761
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6762 6763
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6764 6765 6766 6767 6768 6769
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6770

P
Peter Zijlstra 已提交
6771
	mutex_lock(&pmus_lock);
6772
	/*
P
Peter Zijlstra 已提交
6773
	 * Like a real lame refcount.
6774
	 */
6775 6776 6777
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6778
			goto out;
6779
		}
P
Peter Zijlstra 已提交
6780
	}
6781

6782
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6783 6784
out:
	mutex_unlock(&pmus_lock);
6785
}
P
Peter Zijlstra 已提交
6786
static struct idr pmu_idr;
6787

P
Peter Zijlstra 已提交
6788 6789 6790 6791 6792 6793 6794
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6795
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6796

6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6840
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6841

6842 6843 6844 6845
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6846
};
6847
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6848 6849 6850 6851

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6852
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6868
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6889
static struct lock_class_key cpuctx_mutex;
6890
static struct lock_class_key cpuctx_lock;
6891

6892
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6893
{
P
Peter Zijlstra 已提交
6894
	int cpu, ret;
6895

6896
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6897 6898 6899 6900
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6901

P
Peter Zijlstra 已提交
6902 6903 6904 6905 6906 6907
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6908 6909 6910
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6911 6912 6913 6914 6915
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920 6921
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6922
skip_type:
P
Peter Zijlstra 已提交
6923 6924 6925
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6926

W
Wei Yongjun 已提交
6927
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6928 6929
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6930
		goto free_dev;
6931

P
Peter Zijlstra 已提交
6932 6933 6934 6935
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6936
		__perf_event_init_context(&cpuctx->ctx);
6937
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6938
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6939
		cpuctx->ctx.pmu = pmu;
6940 6941 6942

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6943
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6944
	}
6945

P
Peter Zijlstra 已提交
6946
got_cpu_context:
P
Peter Zijlstra 已提交
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6961
		}
6962
	}
6963

P
Peter Zijlstra 已提交
6964 6965 6966 6967 6968
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6969 6970 6971
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6972
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6973 6974
	ret = 0;
unlock:
6975 6976
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6977
	return ret;
P
Peter Zijlstra 已提交
6978

P
Peter Zijlstra 已提交
6979 6980 6981 6982
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6983 6984 6985 6986
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6987 6988 6989
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6990
}
6991
EXPORT_SYMBOL_GPL(perf_pmu_register);
6992

6993
void perf_pmu_unregister(struct pmu *pmu)
6994
{
6995 6996 6997
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6998

6999
	/*
P
Peter Zijlstra 已提交
7000 7001
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7002
	 */
7003
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7004
	synchronize_rcu();
7005

P
Peter Zijlstra 已提交
7006
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7007 7008
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7009 7010
	device_del(pmu->dev);
	put_device(pmu->dev);
7011
	free_pmu_context(pmu);
7012
}
7013
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7014

7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
{
	int ret;

	if (!try_module_get(pmu->module))
		return -ENODEV;
	event->pmu = pmu;
	ret = pmu->event_init(event);
	if (ret)
		module_put(pmu->module);

	return ret;
}

7029 7030 7031 7032
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7033
	int ret;
7034 7035

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7036 7037 7038 7039

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7040
	if (pmu) {
7041
		ret = perf_try_init_event(pmu, event);
7042 7043
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7044
		goto unlock;
7045
	}
P
Peter Zijlstra 已提交
7046

7047
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7048
		ret = perf_try_init_event(pmu, event);
7049
		if (!ret)
P
Peter Zijlstra 已提交
7050
			goto unlock;
7051

7052 7053
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7054
			goto unlock;
7055
		}
7056
	}
P
Peter Zijlstra 已提交
7057 7058
	pmu = ERR_PTR(-ENOENT);
unlock:
7059
	srcu_read_unlock(&pmus_srcu, idx);
7060

7061
	return pmu;
7062 7063
}

7064 7065 7066 7067 7068 7069 7070 7071 7072
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7073 7074
static void account_event(struct perf_event *event)
{
7075 7076 7077
	if (event->parent)
		return;

7078 7079 7080 7081 7082 7083 7084 7085
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7086 7087 7088 7089
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7090
	if (has_branch_stack(event))
7091
		static_key_slow_inc(&perf_sched_events.key);
7092
	if (is_cgroup_event(event))
7093
		static_key_slow_inc(&perf_sched_events.key);
7094 7095

	account_event_cpu(event, event->cpu);
7096 7097
}

T
Thomas Gleixner 已提交
7098
/*
7099
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7100
 */
7101
static struct perf_event *
7102
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7103 7104 7105
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7106 7107
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7108
{
P
Peter Zijlstra 已提交
7109
	struct pmu *pmu;
7110 7111
	struct perf_event *event;
	struct hw_perf_event *hwc;
7112
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7113

7114 7115 7116 7117 7118
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7119
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7120
	if (!event)
7121
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7122

7123
	/*
7124
	 * Single events are their own group leaders, with an
7125 7126 7127
	 * empty sibling list:
	 */
	if (!group_leader)
7128
		group_leader = event;
7129

7130 7131
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7132

7133 7134 7135
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7136
	INIT_LIST_HEAD(&event->rb_entry);
7137
	INIT_LIST_HEAD(&event->active_entry);
7138 7139
	INIT_HLIST_NODE(&event->hlist_entry);

7140

7141
	init_waitqueue_head(&event->waitq);
7142
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7143

7144
	mutex_init(&event->mmap_mutex);
7145

7146
	atomic_long_set(&event->refcount, 1);
7147 7148 7149 7150 7151
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7152

7153
	event->parent		= parent_event;
7154

7155
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7156
	event->id		= atomic64_inc_return(&perf_event_id);
7157

7158
	event->state		= PERF_EVENT_STATE_INACTIVE;
7159

7160 7161
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7162 7163 7164

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7165 7166 7167 7168
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7169
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7170 7171 7172 7173
			event->hw.bp_target = task;
#endif
	}

7174
	if (!overflow_handler && parent_event) {
7175
		overflow_handler = parent_event->overflow_handler;
7176 7177
		context = parent_event->overflow_handler_context;
	}
7178

7179
	event->overflow_handler	= overflow_handler;
7180
	event->overflow_handler_context = context;
7181

J
Jiri Olsa 已提交
7182
	perf_event__state_init(event);
7183

7184
	pmu = NULL;
7185

7186
	hwc = &event->hw;
7187
	hwc->sample_period = attr->sample_period;
7188
	if (attr->freq && attr->sample_freq)
7189
		hwc->sample_period = 1;
7190
	hwc->last_period = hwc->sample_period;
7191

7192
	local64_set(&hwc->period_left, hwc->sample_period);
7193

7194
	/*
7195
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7196
	 */
7197
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7198
		goto err_ns;
7199

7200
	pmu = perf_init_event(event);
7201
	if (!pmu)
7202 7203
		goto err_ns;
	else if (IS_ERR(pmu)) {
7204
		err = PTR_ERR(pmu);
7205
		goto err_ns;
I
Ingo Molnar 已提交
7206
	}
7207

7208
	if (!event->parent) {
7209 7210
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7211 7212
			if (err)
				goto err_pmu;
7213
		}
7214
	}
7215

7216
	return event;
7217 7218 7219 7220

err_pmu:
	if (event->destroy)
		event->destroy(event);
7221
	module_put(pmu->module);
7222 7223 7224 7225 7226 7227
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7228 7229
}

7230 7231
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7232 7233
{
	u32 size;
7234
	int ret;
7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7259 7260 7261
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7262 7263
	 */
	if (size > sizeof(*attr)) {
7264 7265 7266
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7267

7268 7269
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7270

7271
		for (; addr < end; addr++) {
7272 7273 7274 7275 7276 7277
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7278
		size = sizeof(*attr);
7279 7280 7281 7282 7283 7284
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7285
	if (attr->__reserved_1)
7286 7287 7288 7289 7290 7291 7292 7293
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7322 7323
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7324 7325
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7326
	}
7327

7328
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7329
		ret = perf_reg_validate(attr->sample_regs_user);
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7348

7349 7350
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7351 7352 7353 7354 7355 7356 7357 7358 7359
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7360 7361
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7362
{
7363
	struct ring_buffer *rb = NULL;
7364 7365
	int ret = -EINVAL;

7366
	if (!output_event)
7367 7368
		goto set;

7369 7370
	/* don't allow circular references */
	if (event == output_event)
7371 7372
		goto out;

7373 7374 7375 7376 7377 7378 7379
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7380
	 * If its not a per-cpu rb, it must be the same task.
7381 7382 7383 7384
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7385
set:
7386
	mutex_lock(&event->mmap_mutex);
7387 7388 7389
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7390

7391
	if (output_event) {
7392 7393 7394
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7395
			goto unlock;
7396 7397
	}

7398
	ring_buffer_attach(event, rb);
7399

7400
	ret = 0;
7401 7402 7403
unlock:
	mutex_unlock(&event->mmap_mutex);

7404 7405 7406 7407
out:
	return ret;
}

P
Peter Zijlstra 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7417
/**
7418
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7419
 *
7420
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7421
 * @pid:		target pid
I
Ingo Molnar 已提交
7422
 * @cpu:		target cpu
7423
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7424
 */
7425 7426
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7427
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7428
{
7429 7430
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7431
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7432
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7433
	struct file *event_file = NULL;
7434
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7435
	struct task_struct *task = NULL;
7436
	struct pmu *pmu;
7437
	int event_fd;
7438
	int move_group = 0;
7439
	int err;
7440
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7441

7442
	/* for future expandability... */
S
Stephane Eranian 已提交
7443
	if (flags & ~PERF_FLAG_ALL)
7444 7445
		return -EINVAL;

7446 7447 7448
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7449

7450 7451 7452 7453 7454
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7455
	if (attr.freq) {
7456
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7457
			return -EINVAL;
7458 7459 7460
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7461 7462
	}

S
Stephane Eranian 已提交
7463 7464 7465 7466 7467 7468 7469 7470 7471
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7472 7473 7474 7475
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7476 7477 7478
	if (event_fd < 0)
		return event_fd;

7479
	if (group_fd != -1) {
7480 7481
		err = perf_fget_light(group_fd, &group);
		if (err)
7482
			goto err_fd;
7483
		group_leader = group.file->private_data;
7484 7485 7486 7487 7488 7489
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7490
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7491 7492 7493 7494 7495 7496 7497
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7498 7499 7500 7501 7502 7503
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7504 7505
	get_online_cpus();

7506 7507
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7508 7509
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7510
		goto err_cpus;
7511 7512
	}

S
Stephane Eranian 已提交
7513 7514
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7515 7516
		if (err) {
			__free_event(event);
7517
			goto err_cpus;
7518
		}
S
Stephane Eranian 已提交
7519 7520
	}

7521 7522 7523 7524 7525 7526 7527
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7528 7529
	account_event(event);

7530 7531 7532 7533 7534
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7558 7559 7560 7561

	/*
	 * Get the target context (task or percpu):
	 */
7562
	ctx = find_get_context(pmu, task, event->cpu);
7563 7564
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7565
		goto err_alloc;
7566 7567
	}

7568 7569 7570 7571 7572
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7573
	/*
7574
	 * Look up the group leader (we will attach this event to it):
7575
	 */
7576
	if (group_leader) {
7577
		err = -EINVAL;
7578 7579

		/*
I
Ingo Molnar 已提交
7580 7581 7582 7583
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7584
			goto err_context;
I
Ingo Molnar 已提交
7585 7586 7587
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7588
		 */
7589
		if (move_group) {
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7603 7604 7605 7606 7607 7608
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7609 7610 7611
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7612
		if (attr.exclusive || attr.pinned)
7613
			goto err_context;
7614 7615 7616 7617 7618
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7619
			goto err_context;
7620
	}
T
Thomas Gleixner 已提交
7621

7622 7623
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7624 7625
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7626
		goto err_context;
7627
	}
7628

7629
	if (move_group) {
P
Peter Zijlstra 已提交
7630 7631 7632 7633 7634 7635 7636
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7637

7638
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7639

7640 7641
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7642
			perf_remove_from_context(sibling, false);
7643 7644
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7645 7646
	} else {
		mutex_lock(&ctx->mutex);
7647
	}
7648

7649
	WARN_ON_ONCE(ctx->parent_ctx);
7650 7651

	if (move_group) {
P
Peter Zijlstra 已提交
7652 7653 7654 7655
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7656
		synchronize_rcu();
P
Peter Zijlstra 已提交
7657

7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
		/*
		 * Install the group siblings before the group leader.
		 *
		 * Because a group leader will try and install the entire group
		 * (through the sibling list, which is still in-tact), we can
		 * end up with siblings installed in the wrong context.
		 *
		 * By installing siblings first we NO-OP because they're not
		 * reachable through the group lists.
		 */
7668 7669
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7670
			perf_event__state_init(sibling);
7671
			perf_install_in_context(ctx, sibling, sibling->cpu);
7672 7673
			get_ctx(ctx);
		}
7674 7675 7676 7677 7678 7679 7680 7681 7682

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
		get_ctx(ctx);
7683 7684
	}

7685
	perf_install_in_context(ctx, event, event->cpu);
7686
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7687 7688 7689 7690 7691

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7692
	mutex_unlock(&ctx->mutex);
7693

7694 7695
	put_online_cpus();

7696
	event->owner = current;
P
Peter Zijlstra 已提交
7697

7698 7699 7700
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7701

7702 7703 7704 7705
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7706
	perf_event__id_header_size(event);
7707

7708 7709 7710 7711 7712 7713
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7714
	fdput(group);
7715 7716
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7717

7718
err_context:
7719
	perf_unpin_context(ctx);
7720
	put_ctx(ctx);
7721
err_alloc:
7722
	free_event(event);
7723
err_cpus:
7724
	put_online_cpus();
7725
err_task:
P
Peter Zijlstra 已提交
7726 7727
	if (task)
		put_task_struct(task);
7728
err_group_fd:
7729
	fdput(group);
7730 7731
err_fd:
	put_unused_fd(event_fd);
7732
	return err;
T
Thomas Gleixner 已提交
7733 7734
}

7735 7736 7737 7738 7739
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7740
 * @task: task to profile (NULL for percpu)
7741 7742 7743
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7744
				 struct task_struct *task,
7745 7746
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7747 7748
{
	struct perf_event_context *ctx;
7749
	struct perf_event *event;
7750
	int err;
7751

7752 7753 7754
	/*
	 * Get the target context (task or percpu):
	 */
7755

7756 7757
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7758 7759 7760 7761
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7762

7763 7764 7765
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7766 7767
	account_event(event);

M
Matt Helsley 已提交
7768
	ctx = find_get_context(event->pmu, task, cpu);
7769 7770
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7771
		goto err_free;
7772
	}
7773 7774 7775 7776

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7777
	perf_unpin_context(ctx);
7778 7779 7780 7781
	mutex_unlock(&ctx->mutex);

	return event;

7782 7783 7784
err_free:
	free_event(event);
err:
7785
	return ERR_PTR(err);
7786
}
7787
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7788

7789 7790 7791 7792 7793 7794 7795 7796 7797 7798
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7799 7800 7801 7802 7803
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7804 7805
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7806
		perf_remove_from_context(event, false);
7807
		unaccount_event_cpu(event, src_cpu);
7808
		put_ctx(src_ctx);
7809
		list_add(&event->migrate_entry, &events);
7810 7811
	}

7812 7813 7814
	/*
	 * Wait for the events to quiesce before re-instating them.
	 */
7815 7816
	synchronize_rcu();

7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
	/*
	 * Re-instate events in 2 passes.
	 *
	 * Skip over group leaders and only install siblings on this first
	 * pass, siblings will not get enabled without a leader, however a
	 * leader will enable its siblings, even if those are still on the old
	 * context.
	 */
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		if (event->group_leader == event)
			continue;

		list_del(&event->migrate_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		account_event_cpu(event, dst_cpu);
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}

	/*
	 * Once all the siblings are setup properly, install the group leaders
	 * to make it go.
	 */
7841 7842
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7843 7844
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7845
		account_event_cpu(event, dst_cpu);
7846 7847 7848 7849
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7850
	mutex_unlock(&src_ctx->mutex);
7851 7852 7853
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7854
static void sync_child_event(struct perf_event *child_event,
7855
			       struct task_struct *child)
7856
{
7857
	struct perf_event *parent_event = child_event->parent;
7858
	u64 child_val;
7859

7860 7861
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7862

P
Peter Zijlstra 已提交
7863
	child_val = perf_event_count(child_event);
7864 7865 7866 7867

	/*
	 * Add back the child's count to the parent's count:
	 */
7868
	atomic64_add(child_val, &parent_event->child_count);
7869 7870 7871 7872
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7873 7874

	/*
7875
	 * Remove this event from the parent's list
7876
	 */
7877 7878 7879 7880
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7881

7882 7883 7884 7885 7886 7887
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7888
	/*
7889
	 * Release the parent event, if this was the last
7890 7891
	 * reference to it.
	 */
7892
	put_event(parent_event);
7893 7894
}

7895
static void
7896 7897
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7898
			 struct task_struct *child)
7899
{
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7913

7914
	/*
7915
	 * It can happen that the parent exits first, and has events
7916
	 * that are still around due to the child reference. These
7917
	 * events need to be zapped.
7918
	 */
7919
	if (child_event->parent) {
7920 7921
		sync_child_event(child_event, child);
		free_event(child_event);
7922 7923 7924
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7925
	}
7926 7927
}

P
Peter Zijlstra 已提交
7928
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7929
{
7930
	struct perf_event *child_event, *next;
7931
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7932
	unsigned long flags;
7933

P
Peter Zijlstra 已提交
7934
	if (likely(!child->perf_event_ctxp[ctxn])) {
7935
		perf_event_task(child, NULL, 0);
7936
		return;
P
Peter Zijlstra 已提交
7937
	}
7938

7939
	local_irq_save(flags);
7940 7941 7942 7943 7944 7945
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7946
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7947 7948 7949

	/*
	 * Take the context lock here so that if find_get_context is
7950
	 * reading child->perf_event_ctxp, we wait until it has
7951 7952
	 * incremented the context's refcount before we do put_ctx below.
	 */
7953
	raw_spin_lock(&child_ctx->lock);
7954
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7955
	child->perf_event_ctxp[ctxn] = NULL;
7956

7957 7958 7959
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7960
	 * the events from it.
7961
	 */
7962
	clone_ctx = unclone_ctx(child_ctx);
7963
	update_context_time(child_ctx);
7964
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7965

7966 7967
	if (clone_ctx)
		put_ctx(clone_ctx);
7968

P
Peter Zijlstra 已提交
7969
	/*
7970 7971 7972
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7973
	 */
7974
	perf_event_task(child, child_ctx, 0);
7975

7976 7977 7978
	/*
	 * We can recurse on the same lock type through:
	 *
7979 7980
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7981 7982
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7983 7984 7985
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7986
	mutex_lock(&child_ctx->mutex);
7987

7988
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7989
		__perf_event_exit_task(child_event, child_ctx, child);
7990

7991 7992 7993
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7994 7995
}

P
Peter Zijlstra 已提交
7996 7997 7998 7999 8000
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
8001
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8002 8003
	int ctxn;

P
Peter Zijlstra 已提交
8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
8019 8020 8021 8022
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8035
	put_event(parent);
8036

P
Peter Zijlstra 已提交
8037
	raw_spin_lock_irq(&ctx->lock);
8038
	perf_group_detach(event);
8039
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8040
	raw_spin_unlock_irq(&ctx->lock);
8041 8042 8043
	free_event(event);
}

8044
/*
P
Peter Zijlstra 已提交
8045
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8046
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8047 8048 8049
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8050
 */
8051
void perf_event_free_task(struct task_struct *task)
8052
{
P
Peter Zijlstra 已提交
8053
	struct perf_event_context *ctx;
8054
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8055
	int ctxn;
8056

P
Peter Zijlstra 已提交
8057 8058 8059 8060
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8061

P
Peter Zijlstra 已提交
8062
		mutex_lock(&ctx->mutex);
8063
again:
P
Peter Zijlstra 已提交
8064 8065 8066
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8067

P
Peter Zijlstra 已提交
8068 8069 8070
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8071

P
Peter Zijlstra 已提交
8072 8073 8074
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8075

P
Peter Zijlstra 已提交
8076
		mutex_unlock(&ctx->mutex);
8077

P
Peter Zijlstra 已提交
8078 8079
		put_ctx(ctx);
	}
8080 8081
}

8082 8083 8084 8085 8086 8087 8088 8089
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8101
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8102
	struct perf_event *child_event;
8103
	unsigned long flags;
P
Peter Zijlstra 已提交
8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8116
					   child,
P
Peter Zijlstra 已提交
8117
					   group_leader, parent_event,
8118
				           NULL, NULL);
P
Peter Zijlstra 已提交
8119 8120
	if (IS_ERR(child_event))
		return child_event;
8121

8122 8123
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8124 8125 8126 8127
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8128 8129 8130 8131 8132 8133 8134
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8135
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8152 8153
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8154

8155 8156 8157 8158
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8159
	perf_event__id_header_size(child_event);
8160

P
Peter Zijlstra 已提交
8161 8162 8163
	/*
	 * Link it up in the child's context:
	 */
8164
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8165
	add_event_to_ctx(child_event, child_ctx);
8166
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8200 8201 8202 8203 8204
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8205
		   struct task_struct *child, int ctxn,
8206 8207 8208
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8209
	struct perf_event_context *child_ctx;
8210 8211 8212 8213

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8214 8215
	}

8216
	child_ctx = child->perf_event_ctxp[ctxn];
8217 8218 8219 8220 8221 8222 8223
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8224

8225
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8226 8227
		if (!child_ctx)
			return -ENOMEM;
8228

P
Peter Zijlstra 已提交
8229
		child->perf_event_ctxp[ctxn] = child_ctx;
8230 8231 8232 8233 8234 8235 8236 8237 8238
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8239 8240
}

8241
/*
8242
 * Initialize the perf_event context in task_struct
8243
 */
8244
static int perf_event_init_context(struct task_struct *child, int ctxn)
8245
{
8246
	struct perf_event_context *child_ctx, *parent_ctx;
8247 8248
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8249
	struct task_struct *parent = current;
8250
	int inherited_all = 1;
8251
	unsigned long flags;
8252
	int ret = 0;
8253

P
Peter Zijlstra 已提交
8254
	if (likely(!parent->perf_event_ctxp[ctxn]))
8255 8256
		return 0;

8257
	/*
8258 8259
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8260
	 */
P
Peter Zijlstra 已提交
8261
	parent_ctx = perf_pin_task_context(parent, ctxn);
8262 8263
	if (!parent_ctx)
		return 0;
8264

8265 8266 8267 8268 8269 8270 8271
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8272 8273 8274 8275
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8276
	mutex_lock(&parent_ctx->mutex);
8277 8278 8279 8280 8281

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8282
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8283 8284
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8285 8286 8287
		if (ret)
			break;
	}
8288

8289 8290 8291 8292 8293 8294 8295 8296 8297
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8298
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8299 8300
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8301
		if (ret)
8302
			break;
8303 8304
	}

8305 8306 8307
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8308
	child_ctx = child->perf_event_ctxp[ctxn];
8309

8310
	if (child_ctx && inherited_all) {
8311 8312 8313
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8314 8315 8316
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8317
		 */
P
Peter Zijlstra 已提交
8318
		cloned_ctx = parent_ctx->parent_ctx;
8319 8320
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8321
			child_ctx->parent_gen = parent_ctx->parent_gen;
8322 8323 8324 8325 8326
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8327 8328
	}

P
Peter Zijlstra 已提交
8329
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8330
	mutex_unlock(&parent_ctx->mutex);
8331

8332
	perf_unpin_context(parent_ctx);
8333
	put_ctx(parent_ctx);
8334

8335
	return ret;
8336 8337
}

P
Peter Zijlstra 已提交
8338 8339 8340 8341 8342 8343 8344
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8345 8346 8347 8348
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8349 8350
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8351 8352
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8353
			return ret;
P
Peter Zijlstra 已提交
8354
		}
P
Peter Zijlstra 已提交
8355 8356 8357 8358 8359
	}

	return 0;
}

8360 8361
static void __init perf_event_init_all_cpus(void)
{
8362
	struct swevent_htable *swhash;
8363 8364 8365
	int cpu;

	for_each_possible_cpu(cpu) {
8366 8367
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8368
		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8369 8370 8371
	}
}

8372
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8373
{
P
Peter Zijlstra 已提交
8374
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8375

8376
	mutex_lock(&swhash->hlist_mutex);
8377
	swhash->online = true;
8378
	if (swhash->hlist_refcount > 0) {
8379 8380
		struct swevent_hlist *hlist;

8381 8382 8383
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8384
	}
8385
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8386 8387
}

P
Peter Zijlstra 已提交
8388
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
P
Peter Zijlstra 已提交
8389
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8390
{
8391
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8392
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8393

P
Peter Zijlstra 已提交
8394
	rcu_read_lock();
8395 8396
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8397
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8398
}
P
Peter Zijlstra 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8408
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8409 8410 8411 8412 8413 8414 8415 8416

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8417
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8418
{
8419
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8420

P
Peter Zijlstra 已提交
8421 8422
	perf_event_exit_cpu_context(cpu);

8423
	mutex_lock(&swhash->hlist_mutex);
8424
	swhash->online = false;
8425 8426
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8427 8428
}
#else
8429
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8430 8431
#endif

P
Peter Zijlstra 已提交
8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8452
static int
T
Thomas Gleixner 已提交
8453 8454 8455 8456
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8457
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8458 8459

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8460
	case CPU_DOWN_FAILED:
8461
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8462 8463
		break;

P
Peter Zijlstra 已提交
8464
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8465
	case CPU_DOWN_PREPARE:
8466
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8467 8468 8469 8470 8471 8472 8473 8474
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8475
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8476
{
8477 8478
	int ret;

P
Peter Zijlstra 已提交
8479 8480
	idr_init(&pmu_idr);

8481
	perf_event_init_all_cpus();
8482
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8483 8484 8485
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8486 8487
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8488
	register_reboot_notifier(&perf_reboot_notifier);
8489 8490 8491

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8492 8493 8494

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8495 8496 8497 8498 8499 8500 8501

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8502
}
P
Peter Zijlstra 已提交
8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8531 8532

#ifdef CONFIG_CGROUP_PERF
8533 8534
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8535 8536 8537
{
	struct perf_cgroup *jc;

8538
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8551
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8552
{
8553 8554
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8566 8567
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8568
{
8569 8570
	struct task_struct *task;

8571
	cgroup_taskset_for_each(task, tset)
8572
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8573 8574
}

8575 8576
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8577
			     struct task_struct *task)
S
Stephane Eranian 已提交
8578 8579 8580 8581 8582 8583 8584 8585 8586
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8587
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8588 8589
}

8590
struct cgroup_subsys perf_event_cgrp_subsys = {
8591 8592
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8593
	.exit		= perf_cgroup_exit,
8594
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8595 8596
};
#endif /* CONFIG_CGROUP_PERF */