core.c 199.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
42
#include <linux/module.h>
43
#include <linux/mman.h>
P
Pawel Moll 已提交
44
#include <linux/compat.h>
T
Thomas Gleixner 已提交
45

46 47
#include "internal.h"

48 49
#include <asm/irq_regs.h>

50 51
static struct workqueue_struct *perf_wq;

52
struct remote_function_call {
53 54 55 56
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
90 91 92 93
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
114 115 116 117
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
118 119 120 121 122 123 124
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

125 126 127 128 129 130 131
#define EVENT_OWNER_KERNEL ((void *) -1)

static bool is_kernel_event(struct perf_event *event)
{
	return event->owner == EVENT_OWNER_KERNEL;
}

S
Stephane Eranian 已提交
132 133
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
134 135
		       PERF_FLAG_PID_CGROUP |\
		       PERF_FLAG_FD_CLOEXEC)
S
Stephane Eranian 已提交
136

137 138 139 140 141 142 143
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

144 145 146 147 148 149
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
150 151 152 153
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
154
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
155
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
157

158 159 160
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
161
static atomic_t nr_freq_events __read_mostly;
162

P
Peter Zijlstra 已提交
163 164 165 166
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

167
/*
168
 * perf event paranoia level:
169 170
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
171
 *   1 - disallow cpu events for unpriv
172
 *   2 - disallow kernel profiling for unpriv
173
 */
174
int sysctl_perf_event_paranoid __read_mostly = 1;
175

176 177
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 179

/*
180
 * max perf event sample rate
181
 */
182 183 184 185 186 187 188 189 190
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

P
Peter Zijlstra 已提交
191 192
static int perf_sample_allowed_ns __read_mostly =
	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 194 195 196 197 198

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
199
	do_div(tmp, 100);
P
Peter Zijlstra 已提交
200
	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201
}
P
Peter Zijlstra 已提交
202

203 204
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
205 206 207 208
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
209
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
P
Peter Zijlstra 已提交
210 211 212 213 214

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
233 234 235

	return 0;
}
236

237 238 239 240 241 242 243
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
P
Peter Zijlstra 已提交
244
static DEFINE_PER_CPU(u64, running_sample_length);
245

246
static void perf_duration_warn(struct irq_work *w)
247
{
248
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249
	u64 avg_local_sample_len;
250
	u64 local_samples_len;
251

252
	local_samples_len = __this_cpu_read(running_sample_length);
253 254 255 256 257
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	printk_ratelimited(KERN_WARNING
			"perf interrupt took too long (%lld > %lld), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
258
			avg_local_sample_len, allowed_ns >> 1,
259 260 261 262 263 264 265
			sysctl_perf_event_sample_rate);
}

static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);

void perf_sample_event_took(u64 sample_len_ns)
{
P
Peter Zijlstra 已提交
266
	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 268
	u64 avg_local_sample_len;
	u64 local_samples_len;
269

P
Peter Zijlstra 已提交
270
	if (allowed_ns == 0)
271 272 273
		return;

	/* decay the counter by 1 average sample */
274
	local_samples_len = __this_cpu_read(running_sample_length);
275 276
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
277
	__this_cpu_write(running_sample_length, local_samples_len);
278 279 280 281 282 283 284 285

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

P
Peter Zijlstra 已提交
286
	if (avg_local_sample_len <= allowed_ns)
287 288 289 290 291 292 293 294 295 296
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	update_perf_cpu_limits();
297

298 299 300 301 302 303
	if (!irq_work_queue(&perf_duration_work)) {
		early_printk("perf interrupt took too long (%lld > %lld), lowering "
			     "kernel.perf_event_max_sample_rate to %d\n",
			     avg_local_sample_len, allowed_ns >> 1,
			     sysctl_perf_event_sample_rate);
	}
304 305
}

306
static atomic64_t perf_event_id;
307

308 309 310 311
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
312 313 314 315 316
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
317

318
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
319

320
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
321
{
322
	return "pmu";
T
Thomas Gleixner 已提交
323 324
}

325 326 327 328 329
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
330 331 332 333 334 335
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
352 353
#ifdef CONFIG_CGROUP_PERF

354 355 356 357 358 359 360 361 362 363 364
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
365
	struct perf_cgroup_info	__percpu *info;
366 367
};

368 369 370 371 372
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
373 374 375
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
376
	return container_of(task_css(task, perf_event_cgrp_id),
377
			    struct perf_cgroup, css);
S
Stephane Eranian 已提交
378 379 380 381 382 383 384 385
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
402 403 404 405
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
Z
Zefan Li 已提交
406
	css_put(&event->cgrp->css);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
445 446
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
447
	/*
448 449
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
450
	 */
451
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
452 453
		return;

454 455 456 457 458 459
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
460 461 462
}

static inline void
463 464
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
465 466 467 468
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

469 470 471 472 473 474
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
475 476 477 478
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
479
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 513
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
514 515 516 517 518 519 520 521 522

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
523 524
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
525 526 527 528 529 530 531 532 533 534 535

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
536
				WARN_ON_ONCE(cpuctx->cgrp);
537 538 539 540
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
541 542 543 544
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
545 546
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
547 548 549 550 551 552 553 554
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

555 556
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
557
{
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
580 581
}

582 583
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
584
{
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
603 604 605 606 607 608 609 610
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
611 612
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
613

614
	if (!f.file)
S
Stephane Eranian 已提交
615 616
		return -EBADF;

A
Al Viro 已提交
617
	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618
					 &perf_event_cgrp_subsys);
619 620 621 622
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
636
out:
637
	fdput(f);
S
Stephane Eranian 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

711 712
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
713 714 715
{
}

716 717
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
718 719 720 721 722 723 724 725 726 727 728
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
729 730
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
824
	int timer;
825 826 827 828 829

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

830 831 832 833 834 835 836 837 838
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
861
void perf_pmu_disable(struct pmu *pmu)
862
{
P
Peter Zijlstra 已提交
863 864 865
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
866 867
}

P
Peter Zijlstra 已提交
868
void perf_pmu_enable(struct pmu *pmu)
869
{
P
Peter Zijlstra 已提交
870 871 872
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
873 874
}

875 876 877 878 879 880 881
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
882
static void perf_pmu_rotate_start(struct pmu *pmu)
883
{
P
Peter Zijlstra 已提交
884
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885
	struct list_head *head = this_cpu_ptr(&rotation_list);
886

887
	WARN_ON(!irqs_disabled());
888

889
	if (list_empty(&cpuctx->rotation_list))
890
		list_add(&cpuctx->rotation_list, head);
891 892
}

893
static void get_ctx(struct perf_event_context *ctx)
894
{
895
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 897
}

898
static void put_ctx(struct perf_event_context *ctx)
899
{
900 901 902
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
903 904
		if (ctx->task)
			put_task_struct(ctx->task);
905
		kfree_rcu(ctx, rcu_head);
906
	}
907 908
}

P
Peter Zijlstra 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/*
 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
 * perf_pmu_migrate_context() we need some magic.
 *
 * Those places that change perf_event::ctx will hold both
 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
 *
 * Lock ordering is by mutex address. There is one other site where
 * perf_event_context::mutex nests and that is put_event(). But remember that
 * that is a parent<->child context relation, and migration does not affect
 * children, therefore these two orderings should not interact.
 *
 * The change in perf_event::ctx does not affect children (as claimed above)
 * because the sys_perf_event_open() case will install a new event and break
 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
 * concerned with cpuctx and that doesn't have children.
 *
 * The places that change perf_event::ctx will issue:
 *
 *   perf_remove_from_context();
 *   synchronize_rcu();
 *   perf_install_in_context();
 *
 * to affect the change. The remove_from_context() + synchronize_rcu() should
 * quiesce the event, after which we can install it in the new location. This
 * means that only external vectors (perf_fops, prctl) can perturb the event
 * while in transit. Therefore all such accessors should also acquire
 * perf_event_context::mutex to serialize against this.
 *
 * However; because event->ctx can change while we're waiting to acquire
 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
 * function.
 *
 * Lock order:
 *	task_struct::perf_event_mutex
 *	  perf_event_context::mutex
 *	    perf_event_context::lock
 *	    perf_event::child_mutex;
 *	    perf_event::mmap_mutex
 *	    mmap_sem
 */
static struct perf_event_context *perf_event_ctx_lock(struct perf_event *event)
{
	struct perf_event_context *ctx;

again:
	rcu_read_lock();
	ctx = ACCESS_ONCE(event->ctx);
	if (!atomic_inc_not_zero(&ctx->refcount)) {
		rcu_read_unlock();
		goto again;
	}
	rcu_read_unlock();

	mutex_lock(&ctx->mutex);
	if (event->ctx != ctx) {
		mutex_unlock(&ctx->mutex);
		put_ctx(ctx);
		goto again;
	}

	return ctx;
}

static void perf_event_ctx_unlock(struct perf_event *event,
				  struct perf_event_context *ctx)
{
	mutex_unlock(&ctx->mutex);
	put_ctx(ctx);
}

980 981 982 983 984 985 986
/*
 * This must be done under the ctx->lock, such as to serialize against
 * context_equiv(), therefore we cannot call put_ctx() since that might end up
 * calling scheduler related locks and ctx->lock nests inside those.
 */
static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context *ctx)
987
{
988 989 990 991 992
	struct perf_event_context *parent_ctx = ctx->parent_ctx;

	lockdep_assert_held(&ctx->lock);

	if (parent_ctx)
993
		ctx->parent_ctx = NULL;
994
	ctx->generation++;
995 996

	return parent_ctx;
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

1021
/*
1022
 * If we inherit events we want to return the parent event id
1023 1024
 * to userspace.
 */
1025
static u64 primary_event_id(struct perf_event *event)
1026
{
1027
	u64 id = event->id;
1028

1029 1030
	if (event->parent)
		id = event->parent->id;
1031 1032 1033 1034

	return id;
}

1035
/*
1036
 * Get the perf_event_context for a task and lock it.
1037 1038 1039
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
1040
static struct perf_event_context *
P
Peter Zijlstra 已提交
1041
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1042
{
1043
	struct perf_event_context *ctx;
1044

P
Peter Zijlstra 已提交
1045
retry:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
1057
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1058 1059 1060 1061
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
1062
		 * perf_event_task_sched_out, though the
1063 1064 1065 1066 1067 1068
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
1069
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
1070
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1071
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1072 1073
			rcu_read_unlock();
			preempt_enable();
1074 1075
			goto retry;
		}
1076 1077

		if (!atomic_inc_not_zero(&ctx->refcount)) {
1078
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1079 1080
			ctx = NULL;
		}
1081 1082
	}
	rcu_read_unlock();
1083
	preempt_enable();
1084 1085 1086 1087 1088 1089 1090 1091
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
1092 1093
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
1094
{
1095
	struct perf_event_context *ctx;
1096 1097
	unsigned long flags;

P
Peter Zijlstra 已提交
1098
	ctx = perf_lock_task_context(task, ctxn, &flags);
1099 1100
	if (ctx) {
		++ctx->pin_count;
1101
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1102 1103 1104 1105
	}
	return ctx;
}

1106
static void perf_unpin_context(struct perf_event_context *ctx)
1107 1108 1109
{
	unsigned long flags;

1110
	raw_spin_lock_irqsave(&ctx->lock, flags);
1111
	--ctx->pin_count;
1112
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1126 1127 1128
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1129 1130 1131 1132

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1133 1134 1135
	return ctx ? ctx->time : 0;
}

1136 1137
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1138
 * The caller of this function needs to hold the ctx->lock.
1139 1140 1141 1142 1143 1144 1145 1146 1147
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1159
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1160 1161
	else if (ctx->is_active)
		run_end = ctx->time;
1162 1163 1164 1165
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1166 1167 1168 1169

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1170
		run_end = perf_event_time(event);
1171 1172

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1173

1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1188 1189 1190 1191 1192 1193 1194 1195 1196
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1197
/*
1198
 * Add a event from the lists for its context.
1199 1200
 * Must be called with ctx->mutex and ctx->lock held.
 */
1201
static void
1202
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1203
{
1204 1205
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1206 1207

	/*
1208 1209 1210
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1211
	 */
1212
	if (event->group_leader == event) {
1213 1214
		struct list_head *list;

1215 1216 1217
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1218 1219
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1220
	}
P
Peter Zijlstra 已提交
1221

1222
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1223 1224
		ctx->nr_cgroups++;

1225 1226 1227
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1228
	list_add_rcu(&event->event_entry, &ctx->event_list);
1229
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1230
		perf_pmu_rotate_start(ctx->pmu);
1231 1232
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1233
		ctx->nr_stat++;
1234 1235

	ctx->generation++;
1236 1237
}

J
Jiri Olsa 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1286 1287 1288 1289 1290 1291
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1292 1293 1294
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1295 1296 1297
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1298 1299 1300
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

A
Andi Kleen 已提交
1301 1302 1303
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		size += sizeof(data->txn);

1304 1305 1306 1307 1308 1309 1310 1311 1312
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1313 1314 1315 1316 1317 1318
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

1319 1320 1321
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		size += sizeof(data->id);

1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1331
	event->id_header_size = size;
1332 1333
}

1334 1335
static void perf_group_attach(struct perf_event *event)
{
1336
	struct perf_event *group_leader = event->group_leader, *pos;
1337

P
Peter Zijlstra 已提交
1338 1339 1340 1341 1342 1343
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1344 1345 1346 1347 1348
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

P
Peter Zijlstra 已提交
1349 1350
	WARN_ON_ONCE(group_leader->ctx != event->ctx);

1351 1352 1353 1354 1355 1356
	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1357 1358 1359 1360 1361

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1362 1363
}

1364
/*
1365
 * Remove a event from the lists for its context.
1366
 * Must be called with ctx->mutex and ctx->lock held.
1367
 */
1368
static void
1369
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1370
{
1371
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
1372 1373 1374 1375

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1376 1377 1378 1379
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1380
		return;
1381 1382 1383

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1384
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1385
		ctx->nr_cgroups--;
1386 1387 1388 1389 1390 1391 1392 1393 1394
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1395

1396 1397 1398
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1399 1400
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1401
		ctx->nr_stat--;
1402

1403
	list_del_rcu(&event->event_entry);
1404

1405 1406
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1407

1408
	update_group_times(event);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1419 1420

	ctx->generation++;
1421 1422
}

1423
static void perf_group_detach(struct perf_event *event)
1424 1425
{
	struct perf_event *sibling, *tmp;
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1442
		goto out;
1443 1444 1445 1446
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1447

1448
	/*
1449 1450
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1451
	 * to whatever list we are on.
1452
	 */
1453
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1454 1455
		if (list)
			list_move_tail(&sibling->group_entry, list);
1456
		sibling->group_leader = sibling;
1457 1458 1459

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
P
Peter Zijlstra 已提交
1460 1461

		WARN_ON_ONCE(sibling->ctx != event->ctx);
1462
	}
1463 1464 1465 1466 1467 1468

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/*
 * User event without the task.
 */
static bool is_orphaned_event(struct perf_event *event)
{
	return event && !is_kernel_event(event) && !event->owner;
}

/*
 * Event has a parent but parent's task finished and it's
 * alive only because of children holding refference.
 */
static bool is_orphaned_child(struct perf_event *event)
{
	return is_orphaned_event(event->parent);
}

static void orphans_remove_work(struct work_struct *work);

static void schedule_orphans_remove(struct perf_event_context *ctx)
{
	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
		return;

	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
		get_ctx(ctx);
		ctx->orphans_remove_sched = true;
	}
}

static int __init perf_workqueue_init(void)
{
	perf_wq = create_singlethread_workqueue("perf");
	WARN(!perf_wq, "failed to create perf workqueue\n");
	return perf_wq ? 0 : -1;
}

core_initcall(perf_workqueue_init);

1510 1511 1512
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1513 1514
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1515 1516
}

1517 1518
static void
event_sched_out(struct perf_event *event,
1519
		  struct perf_cpu_context *cpuctx,
1520
		  struct perf_event_context *ctx)
1521
{
1522
	u64 tstamp = perf_event_time(event);
1523
	u64 delta;
P
Peter Zijlstra 已提交
1524 1525 1526 1527

	WARN_ON_ONCE(event->ctx != ctx);
	lockdep_assert_held(&ctx->lock);

1528 1529 1530 1531 1532 1533 1534 1535
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1536
		delta = tstamp - event->tstamp_stopped;
1537
		event->tstamp_running += delta;
1538
		event->tstamp_stopped = tstamp;
1539 1540
	}

1541
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1542
		return;
1543

1544 1545
	perf_pmu_disable(event->pmu);

1546 1547 1548 1549
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1550
	}
1551
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1552
	event->pmu->del(event, 0);
1553
	event->oncpu = -1;
1554

1555
	if (!is_software_event(event))
1556 1557
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1558 1559
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1560
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1561
		cpuctx->exclusive = 0;
1562

1563 1564 1565
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1566
	perf_pmu_enable(event->pmu);
1567 1568
}

1569
static void
1570
group_sched_out(struct perf_event *group_event,
1571
		struct perf_cpu_context *cpuctx,
1572
		struct perf_event_context *ctx)
1573
{
1574
	struct perf_event *event;
1575
	int state = group_event->state;
1576

1577
	event_sched_out(group_event, cpuctx, ctx);
1578 1579 1580 1581

	/*
	 * Schedule out siblings (if any):
	 */
1582 1583
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1584

1585
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1586 1587 1588
		cpuctx->exclusive = 0;
}

1589 1590 1591 1592 1593
struct remove_event {
	struct perf_event *event;
	bool detach_group;
};

T
Thomas Gleixner 已提交
1594
/*
1595
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1596
 *
1597
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1598 1599
 * remove it from the context list.
 */
1600
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1601
{
1602 1603
	struct remove_event *re = info;
	struct perf_event *event = re->event;
1604
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1605
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1606

1607
	raw_spin_lock(&ctx->lock);
1608
	event_sched_out(event, cpuctx, ctx);
1609 1610
	if (re->detach_group)
		perf_group_detach(event);
1611
	list_del_event(event, ctx);
1612 1613 1614 1615
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1616
	raw_spin_unlock(&ctx->lock);
1617 1618

	return 0;
T
Thomas Gleixner 已提交
1619 1620 1621 1622
}


/*
1623
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1624
 *
1625
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1626
 * call when the task is on a CPU.
1627
 *
1628 1629
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1630 1631
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1632
 * When called from perf_event_exit_task, it's OK because the
1633
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1634
 */
1635
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
T
Thomas Gleixner 已提交
1636
{
1637
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1638
	struct task_struct *task = ctx->task;
1639 1640 1641 1642
	struct remove_event re = {
		.event = event,
		.detach_group = detach_group,
	};
T
Thomas Gleixner 已提交
1643

1644 1645
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1646 1647
	if (!task) {
		/*
1648 1649 1650 1651
		 * Per cpu events are removed via an smp call. The removal can
		 * fail if the CPU is currently offline, but in that case we
		 * already called __perf_remove_from_context from
		 * perf_event_exit_cpu.
T
Thomas Gleixner 已提交
1652
		 */
1653
		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
T
Thomas Gleixner 已提交
1654 1655 1656 1657
		return;
	}

retry:
1658
	if (!task_function_call(task, __perf_remove_from_context, &re))
1659
		return;
T
Thomas Gleixner 已提交
1660

1661
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1662
	/*
1663 1664
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1665
	 */
1666
	if (ctx->is_active) {
1667
		raw_spin_unlock_irq(&ctx->lock);
1668 1669 1670 1671 1672
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
1673 1674 1675 1676
		goto retry;
	}

	/*
1677 1678
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1679
	 */
1680 1681
	if (detach_group)
		perf_group_detach(event);
1682
	list_del_event(event, ctx);
1683
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1684 1685
}

1686
/*
1687
 * Cross CPU call to disable a performance event
1688
 */
1689
int __perf_event_disable(void *info)
1690
{
1691 1692
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1693
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1694 1695

	/*
1696 1697
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1698 1699 1700
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1701
	 */
1702
	if (ctx->task && cpuctx->task_ctx != ctx)
1703
		return -EINVAL;
1704

1705
	raw_spin_lock(&ctx->lock);
1706 1707

	/*
1708
	 * If the event is on, turn it off.
1709 1710
	 * If it is in error state, leave it in error state.
	 */
1711
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1712
		update_context_time(ctx);
S
Stephane Eranian 已提交
1713
		update_cgrp_time_from_event(event);
1714 1715 1716
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1717
		else
1718 1719
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1720 1721
	}

1722
	raw_spin_unlock(&ctx->lock);
1723 1724

	return 0;
1725 1726 1727
}

/*
1728
 * Disable a event.
1729
 *
1730 1731
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1732
 * remains valid.  This condition is satisifed when called through
1733 1734 1735 1736
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1737
 * is the current context on this CPU and preemption is disabled,
1738
 * hence we can't get into perf_event_task_sched_out for this context.
1739
 */
P
Peter Zijlstra 已提交
1740
static void _perf_event_disable(struct perf_event *event)
1741
{
1742
	struct perf_event_context *ctx = event->ctx;
1743 1744 1745 1746
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1747
		 * Disable the event on the cpu that it's on
1748
		 */
1749
		cpu_function_call(event->cpu, __perf_event_disable, event);
1750 1751 1752
		return;
	}

P
Peter Zijlstra 已提交
1753
retry:
1754 1755
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1756

1757
	raw_spin_lock_irq(&ctx->lock);
1758
	/*
1759
	 * If the event is still active, we need to retry the cross-call.
1760
	 */
1761
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1762
		raw_spin_unlock_irq(&ctx->lock);
1763 1764 1765 1766 1767
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1768 1769 1770 1771 1772 1773 1774
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1775 1776 1777
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1778
	}
1779
	raw_spin_unlock_irq(&ctx->lock);
1780
}
P
Peter Zijlstra 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

/*
 * Strictly speaking kernel users cannot create groups and therefore this
 * interface does not need the perf_event_ctx_lock() magic.
 */
void perf_event_disable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_disable(event);
	perf_event_ctx_unlock(event, ctx);
}
1794
EXPORT_SYMBOL_GPL(perf_event_disable);
1795

S
Stephane Eranian 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1831 1832 1833 1834
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1835
static int
1836
event_sched_in(struct perf_event *event,
1837
		 struct perf_cpu_context *cpuctx,
1838
		 struct perf_event_context *ctx)
1839
{
1840
	u64 tstamp = perf_event_time(event);
1841
	int ret = 0;
1842

1843 1844
	lockdep_assert_held(&ctx->lock);

1845
	if (event->state <= PERF_EVENT_STATE_OFF)
1846 1847
		return 0;

1848
	event->state = PERF_EVENT_STATE_ACTIVE;
1849
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1861 1862 1863 1864 1865
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

1866 1867
	perf_pmu_disable(event->pmu);

P
Peter Zijlstra 已提交
1868
	if (event->pmu->add(event, PERF_EF_START)) {
1869 1870
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1871 1872
		ret = -EAGAIN;
		goto out;
1873 1874
	}

1875
	event->tstamp_running += tstamp - event->tstamp_stopped;
1876

S
Stephane Eranian 已提交
1877
	perf_set_shadow_time(event, ctx, tstamp);
1878

1879
	if (!is_software_event(event))
1880
		cpuctx->active_oncpu++;
1881
	ctx->nr_active++;
1882 1883
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1884

1885
	if (event->attr.exclusive)
1886 1887
		cpuctx->exclusive = 1;

1888 1889 1890
	if (is_orphaned_child(event))
		schedule_orphans_remove(ctx);

1891 1892 1893 1894
out:
	perf_pmu_enable(event->pmu);

	return ret;
1895 1896
}

1897
static int
1898
group_sched_in(struct perf_event *group_event,
1899
	       struct perf_cpu_context *cpuctx,
1900
	       struct perf_event_context *ctx)
1901
{
1902
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1903
	struct pmu *pmu = ctx->pmu;
1904 1905
	u64 now = ctx->time;
	bool simulate = false;
1906

1907
	if (group_event->state == PERF_EVENT_STATE_OFF)
1908 1909
		return 0;

P
Peter Zijlstra 已提交
1910
	pmu->start_txn(pmu);
1911

1912
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1913
		pmu->cancel_txn(pmu);
1914
		perf_cpu_hrtimer_restart(cpuctx);
1915
		return -EAGAIN;
1916
	}
1917 1918 1919 1920

	/*
	 * Schedule in siblings as one group (if any):
	 */
1921
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1922
		if (event_sched_in(event, cpuctx, ctx)) {
1923
			partial_group = event;
1924 1925 1926 1927
			goto group_error;
		}
	}

1928
	if (!pmu->commit_txn(pmu))
1929
		return 0;
1930

1931 1932 1933 1934
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1945
	 */
1946 1947
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1948 1949 1950 1951 1952 1953 1954 1955
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1956
	}
1957
	event_sched_out(group_event, cpuctx, ctx);
1958

P
Peter Zijlstra 已提交
1959
	pmu->cancel_txn(pmu);
1960

1961 1962
	perf_cpu_hrtimer_restart(cpuctx);

1963 1964 1965
	return -EAGAIN;
}

1966
/*
1967
 * Work out whether we can put this event group on the CPU now.
1968
 */
1969
static int group_can_go_on(struct perf_event *event,
1970 1971 1972 1973
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1974
	 * Groups consisting entirely of software events can always go on.
1975
	 */
1976
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1977 1978 1979
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1980
	 * events can go on.
1981 1982 1983 1984 1985
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1986
	 * events on the CPU, it can't go on.
1987
	 */
1988
	if (event->attr.exclusive && cpuctx->active_oncpu)
1989 1990 1991 1992 1993 1994 1995 1996
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1997 1998
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1999
{
2000 2001
	u64 tstamp = perf_event_time(event);

2002
	list_add_event(event, ctx);
2003
	perf_group_attach(event);
2004 2005 2006
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
2007 2008
}

2009 2010 2011 2012 2013 2014
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
2028
/*
2029
 * Cross CPU call to install and enable a performance event
2030 2031
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
2032
 */
2033
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
2034
{
2035 2036
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2037
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2038 2039 2040
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

2041
	perf_ctx_lock(cpuctx, task_ctx);
2042
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
2043 2044

	/*
2045
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
2046
	 */
2047
	if (task_ctx)
2048
		task_ctx_sched_out(task_ctx);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
2063 2064
		task = task_ctx->task;
	}
2065

2066
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
2067

2068
	update_context_time(ctx);
S
Stephane Eranian 已提交
2069 2070 2071 2072 2073 2074
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
2075

2076
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
2077

2078
	/*
2079
	 * Schedule everything back in
2080
	 */
2081
	perf_event_sched_in(cpuctx, task_ctx, task);
2082 2083 2084

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
2085 2086

	return 0;
T
Thomas Gleixner 已提交
2087 2088 2089
}

/*
2090
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
2091
 *
2092 2093
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
2094
 *
2095
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
2096 2097 2098 2099
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
2100 2101
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
2102 2103 2104 2105
			int cpu)
{
	struct task_struct *task = ctx->task;

2106 2107
	lockdep_assert_held(&ctx->mutex);

2108
	event->ctx = ctx;
2109 2110
	if (event->cpu != -1)
		event->cpu = cpu;
2111

T
Thomas Gleixner 已提交
2112 2113
	if (!task) {
		/*
2114
		 * Per cpu events are installed via an smp call and
2115
		 * the install is always successful.
T
Thomas Gleixner 已提交
2116
		 */
2117
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
2118 2119 2120 2121
		return;
	}

retry:
2122 2123
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
2124

2125
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2126
	/*
2127 2128
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
2129
	 */
2130
	if (ctx->is_active) {
2131
		raw_spin_unlock_irq(&ctx->lock);
2132 2133 2134 2135 2136
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
T
Thomas Gleixner 已提交
2137 2138 2139 2140
		goto retry;
	}

	/*
2141 2142
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
2143
	 */
2144
	add_event_to_ctx(event, ctx);
2145
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
2146 2147
}

2148
/*
2149
 * Put a event into inactive state and update time fields.
2150 2151 2152 2153 2154 2155
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
2156
static void __perf_event_mark_enabled(struct perf_event *event)
2157
{
2158
	struct perf_event *sub;
2159
	u64 tstamp = perf_event_time(event);
2160

2161
	event->state = PERF_EVENT_STATE_INACTIVE;
2162
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
2163
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2164 2165
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
2166
	}
2167 2168
}

2169
/*
2170
 * Cross CPU call to enable a performance event
2171
 */
2172
static int __perf_event_enable(void *info)
2173
{
2174 2175 2176
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
2177
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2178
	int err;
2179

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
2190
		return -EINVAL;
2191

2192
	raw_spin_lock(&ctx->lock);
2193
	update_context_time(ctx);
2194

2195
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2196
		goto unlock;
S
Stephane Eranian 已提交
2197 2198 2199 2200

	/*
	 * set current task's cgroup time reference point
	 */
2201
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
2202

2203
	__perf_event_mark_enabled(event);
2204

S
Stephane Eranian 已提交
2205 2206 2207
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
2208
		goto unlock;
S
Stephane Eranian 已提交
2209
	}
2210

2211
	/*
2212
	 * If the event is in a group and isn't the group leader,
2213
	 * then don't put it on unless the group is on.
2214
	 */
2215
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2216
		goto unlock;
2217

2218
	if (!group_can_go_on(event, cpuctx, 1)) {
2219
		err = -EEXIST;
2220
	} else {
2221
		if (event == leader)
2222
			err = group_sched_in(event, cpuctx, ctx);
2223
		else
2224
			err = event_sched_in(event, cpuctx, ctx);
2225
	}
2226 2227 2228

	if (err) {
		/*
2229
		 * If this event can't go on and it's part of a
2230 2231
		 * group, then the whole group has to come off.
		 */
2232
		if (leader != event) {
2233
			group_sched_out(leader, cpuctx, ctx);
2234 2235
			perf_cpu_hrtimer_restart(cpuctx);
		}
2236
		if (leader->attr.pinned) {
2237
			update_group_times(leader);
2238
			leader->state = PERF_EVENT_STATE_ERROR;
2239
		}
2240 2241
	}

P
Peter Zijlstra 已提交
2242
unlock:
2243
	raw_spin_unlock(&ctx->lock);
2244 2245

	return 0;
2246 2247 2248
}

/*
2249
 * Enable a event.
2250
 *
2251 2252
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2253
 * remains valid.  This condition is satisfied when called through
2254 2255
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2256
 */
P
Peter Zijlstra 已提交
2257
static void _perf_event_enable(struct perf_event *event)
2258
{
2259
	struct perf_event_context *ctx = event->ctx;
2260 2261 2262 2263
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2264
		 * Enable the event on the cpu that it's on
2265
		 */
2266
		cpu_function_call(event->cpu, __perf_event_enable, event);
2267 2268 2269
		return;
	}

2270
	raw_spin_lock_irq(&ctx->lock);
2271
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2272 2273 2274
		goto out;

	/*
2275 2276
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2277 2278 2279 2280
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2281 2282
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2283

P
Peter Zijlstra 已提交
2284
retry:
2285
	if (!ctx->is_active) {
2286
		__perf_event_mark_enabled(event);
2287 2288 2289
		goto out;
	}

2290
	raw_spin_unlock_irq(&ctx->lock);
2291 2292 2293

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2294

2295
	raw_spin_lock_irq(&ctx->lock);
2296 2297

	/*
2298
	 * If the context is active and the event is still off,
2299 2300
	 * we need to retry the cross-call.
	 */
2301 2302 2303 2304 2305 2306
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2307
		goto retry;
2308
	}
2309

P
Peter Zijlstra 已提交
2310
out:
2311
	raw_spin_unlock_irq(&ctx->lock);
2312
}
P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

/*
 * See perf_event_disable();
 */
void perf_event_enable(struct perf_event *event)
{
	struct perf_event_context *ctx;

	ctx = perf_event_ctx_lock(event);
	_perf_event_enable(event);
	perf_event_ctx_unlock(event, ctx);
}
2325
EXPORT_SYMBOL_GPL(perf_event_enable);
2326

P
Peter Zijlstra 已提交
2327
static int _perf_event_refresh(struct perf_event *event, int refresh)
2328
{
2329
	/*
2330
	 * not supported on inherited events
2331
	 */
2332
	if (event->attr.inherit || !is_sampling_event(event))
2333 2334
		return -EINVAL;

2335
	atomic_add(refresh, &event->event_limit);
P
Peter Zijlstra 已提交
2336
	_perf_event_enable(event);
2337 2338

	return 0;
2339
}
P
Peter Zijlstra 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354

/*
 * See perf_event_disable()
 */
int perf_event_refresh(struct perf_event *event, int refresh)
{
	struct perf_event_context *ctx;
	int ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_event_refresh(event, refresh);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}
2355
EXPORT_SYMBOL_GPL(perf_event_refresh);
2356

2357 2358 2359
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2360
{
2361
	struct perf_event *event;
2362
	int is_active = ctx->is_active;
2363

2364
	ctx->is_active &= ~event_type;
2365
	if (likely(!ctx->nr_events))
2366 2367
		return;

2368
	update_context_time(ctx);
S
Stephane Eranian 已提交
2369
	update_cgrp_time_from_cpuctx(cpuctx);
2370
	if (!ctx->nr_active)
2371
		return;
2372

P
Peter Zijlstra 已提交
2373
	perf_pmu_disable(ctx->pmu);
2374
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2375 2376
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2377
	}
2378

2379
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2380
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2381
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2382
	}
P
Peter Zijlstra 已提交
2383
	perf_pmu_enable(ctx->pmu);
2384 2385
}

2386
/*
2387 2388 2389 2390 2391 2392
 * Test whether two contexts are equivalent, i.e. whether they have both been
 * cloned from the same version of the same context.
 *
 * Equivalence is measured using a generation number in the context that is
 * incremented on each modification to it; see unclone_ctx(), list_add_event()
 * and list_del_event().
2393
 */
2394 2395
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2396
{
2397 2398 2399
	lockdep_assert_held(&ctx1->lock);
	lockdep_assert_held(&ctx2->lock);

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	/* Pinning disables the swap optimization */
	if (ctx1->pin_count || ctx2->pin_count)
		return 0;

	/* If ctx1 is the parent of ctx2 */
	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
		return 1;

	/* If ctx2 is the parent of ctx1 */
	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
		return 1;

	/*
	 * If ctx1 and ctx2 have the same parent; we flatten the parent
	 * hierarchy, see perf_event_init_context().
	 */
	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
			ctx1->parent_gen == ctx2->parent_gen)
		return 1;

	/* Unmatched */
	return 0;
2422 2423
}

2424 2425
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2426 2427 2428
{
	u64 value;

2429
	if (!event->attr.inherit_stat)
2430 2431 2432
		return;

	/*
2433
	 * Update the event value, we cannot use perf_event_read()
2434 2435
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2436
	 * we know the event must be on the current CPU, therefore we
2437 2438
	 * don't need to use it.
	 */
2439 2440
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2441 2442
		event->pmu->read(event);
		/* fall-through */
2443

2444 2445
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2446 2447 2448 2449 2450 2451 2452
		break;

	default:
		break;
	}

	/*
2453
	 * In order to keep per-task stats reliable we need to flip the event
2454 2455
	 * values when we flip the contexts.
	 */
2456 2457 2458
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2459

2460 2461
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2462

2463
	/*
2464
	 * Since we swizzled the values, update the user visible data too.
2465
	 */
2466 2467
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2468 2469
}

2470 2471
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2472
{
2473
	struct perf_event *event, *next_event;
2474 2475 2476 2477

	if (!ctx->nr_stat)
		return;

2478 2479
	update_context_time(ctx);

2480 2481
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2482

2483 2484
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2485

2486 2487
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2488

2489
		__perf_event_sync_stat(event, next_event);
2490

2491 2492
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2493 2494 2495
	}
}

2496 2497
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2498
{
P
Peter Zijlstra 已提交
2499
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2500
	struct perf_event_context *next_ctx;
2501
	struct perf_event_context *parent, *next_parent;
P
Peter Zijlstra 已提交
2502
	struct perf_cpu_context *cpuctx;
2503
	int do_switch = 1;
T
Thomas Gleixner 已提交
2504

P
Peter Zijlstra 已提交
2505 2506
	if (likely(!ctx))
		return;
2507

P
Peter Zijlstra 已提交
2508 2509
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2510 2511
		return;

2512
	rcu_read_lock();
P
Peter Zijlstra 已提交
2513
	next_ctx = next->perf_event_ctxp[ctxn];
2514 2515 2516 2517 2518 2519 2520
	if (!next_ctx)
		goto unlock;

	parent = rcu_dereference(ctx->parent_ctx);
	next_parent = rcu_dereference(next_ctx->parent_ctx);

	/* If neither context have a parent context; they cannot be clones. */
2521
	if (!parent && !next_parent)
2522 2523 2524
		goto unlock;

	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2525 2526 2527 2528 2529 2530 2531 2532 2533
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2534 2535
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2536
		if (context_equiv(ctx, next_ctx)) {
2537 2538
			/*
			 * XXX do we need a memory barrier of sorts
2539
			 * wrt to rcu_dereference() of perf_event_ctxp
2540
			 */
P
Peter Zijlstra 已提交
2541 2542
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2543 2544 2545
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2546

2547
			perf_event_sync_stat(ctx, next_ctx);
2548
		}
2549 2550
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2551
	}
2552
unlock:
2553
	rcu_read_unlock();
2554

2555
	if (do_switch) {
2556
		raw_spin_lock(&ctx->lock);
2557
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2558
		cpuctx->task_ctx = NULL;
2559
		raw_spin_unlock(&ctx->lock);
2560
	}
T
Thomas Gleixner 已提交
2561 2562
}

P
Peter Zijlstra 已提交
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2577 2578
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2579 2580 2581 2582 2583
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2584 2585 2586 2587 2588 2589

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
2590
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2591
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2592 2593
}

2594
static void task_ctx_sched_out(struct perf_event_context *ctx)
2595
{
P
Peter Zijlstra 已提交
2596
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2597

2598 2599
	if (!cpuctx->task_ctx)
		return;
2600 2601 2602 2603

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2604
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2605 2606 2607
	cpuctx->task_ctx = NULL;
}

2608 2609 2610 2611 2612 2613 2614
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2615 2616
}

2617
static void
2618
ctx_pinned_sched_in(struct perf_event_context *ctx,
2619
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2620
{
2621
	struct perf_event *event;
T
Thomas Gleixner 已提交
2622

2623 2624
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2625
			continue;
2626
		if (!event_filter_match(event))
2627 2628
			continue;

S
Stephane Eranian 已提交
2629 2630 2631 2632
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2633
		if (group_can_go_on(event, cpuctx, 1))
2634
			group_sched_in(event, cpuctx, ctx);
2635 2636 2637 2638 2639

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2640 2641 2642
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2643
		}
2644
	}
2645 2646 2647 2648
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2649
		      struct perf_cpu_context *cpuctx)
2650 2651 2652
{
	struct perf_event *event;
	int can_add_hw = 1;
2653

2654 2655 2656
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2657
			continue;
2658 2659
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2660
		 * of events:
2661
		 */
2662
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2663 2664
			continue;

S
Stephane Eranian 已提交
2665 2666 2667 2668
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2669
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2670
			if (group_sched_in(event, cpuctx, ctx))
2671
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2672
		}
T
Thomas Gleixner 已提交
2673
	}
2674 2675 2676 2677 2678
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2679 2680
	     enum event_type_t event_type,
	     struct task_struct *task)
2681
{
S
Stephane Eranian 已提交
2682
	u64 now;
2683
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2684

2685
	ctx->is_active |= event_type;
2686
	if (likely(!ctx->nr_events))
2687
		return;
2688

S
Stephane Eranian 已提交
2689 2690
	now = perf_clock();
	ctx->timestamp = now;
2691
	perf_cgroup_set_timestamp(task, ctx);
2692 2693 2694 2695
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2696
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2697
		ctx_pinned_sched_in(ctx, cpuctx);
2698 2699

	/* Then walk through the lower prio flexible groups */
2700
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2701
		ctx_flexible_sched_in(ctx, cpuctx);
2702 2703
}

2704
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2705 2706
			     enum event_type_t event_type,
			     struct task_struct *task)
2707 2708 2709
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2710
	ctx_sched_in(ctx, cpuctx, event_type, task);
2711 2712
}

S
Stephane Eranian 已提交
2713 2714
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2715
{
P
Peter Zijlstra 已提交
2716
	struct perf_cpu_context *cpuctx;
2717

P
Peter Zijlstra 已提交
2718
	cpuctx = __get_cpu_context(ctx);
2719 2720 2721
	if (cpuctx->task_ctx == ctx)
		return;

2722
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2723
	perf_pmu_disable(ctx->pmu);
2724 2725 2726 2727 2728 2729 2730
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2731 2732
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2733

2734 2735
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2736 2737 2738
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2739 2740 2741 2742
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2743
	perf_pmu_rotate_start(ctx->pmu);
2744 2745
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2815 2816
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2826
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2827
	}
S
Stephane Eranian 已提交
2828 2829 2830 2831 2832
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
2833
	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2834
		perf_cgroup_sched_in(prev, task);
2835 2836

	/* check for system-wide branch_stack events */
2837
	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2838
		perf_branch_stack_sched_in(prev, task);
2839 2840
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2868
#define REDUCE_FLS(a, b)		\
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2908 2909 2910
	if (!divisor)
		return dividend;

2911 2912 2913
	return div64_u64(dividend, divisor);
}

2914 2915 2916
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2917
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2918
{
2919
	struct hw_perf_event *hwc = &event->hw;
2920
	s64 period, sample_period;
2921 2922
	s64 delta;

2923
	period = perf_calculate_period(event, nsec, count);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2934

2935
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2936 2937 2938
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2939
		local64_set(&hwc->period_left, 0);
2940 2941 2942

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2943
	}
2944 2945
}

2946 2947 2948 2949 2950 2951 2952
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2953
{
2954 2955
	struct perf_event *event;
	struct hw_perf_event *hwc;
2956
	u64 now, period = TICK_NSEC;
2957
	s64 delta;
2958

2959 2960 2961 2962 2963 2964
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2965 2966
		return;

2967
	raw_spin_lock(&ctx->lock);
2968
	perf_pmu_disable(ctx->pmu);
2969

2970
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2971
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2972 2973
			continue;

2974
		if (!event_filter_match(event))
2975 2976
			continue;

2977 2978
		perf_pmu_disable(event->pmu);

2979
		hwc = &event->hw;
2980

2981
		if (hwc->interrupts == MAX_INTERRUPTS) {
2982
			hwc->interrupts = 0;
2983
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2984
			event->pmu->start(event, 0);
2985 2986
		}

2987
		if (!event->attr.freq || !event->attr.sample_freq)
2988
			goto next;
2989

2990 2991 2992 2993 2994
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2995
		now = local64_read(&event->count);
2996 2997
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2998

2999 3000 3001
		/*
		 * restart the event
		 * reload only if value has changed
3002 3003 3004
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
3005
		 */
3006
		if (delta > 0)
3007
			perf_adjust_period(event, period, delta, false);
3008 3009

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3010 3011
	next:
		perf_pmu_enable(event->pmu);
3012
	}
3013

3014
	perf_pmu_enable(ctx->pmu);
3015
	raw_spin_unlock(&ctx->lock);
3016 3017
}

3018
/*
3019
 * Round-robin a context's events:
3020
 */
3021
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
3022
{
3023 3024 3025 3026 3027 3028
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
3029 3030
}

3031
/*
3032 3033 3034
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
3035
 */
3036
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3037
{
P
Peter Zijlstra 已提交
3038
	struct perf_event_context *ctx = NULL;
3039
	int rotate = 0, remove = 1;
3040

3041
	if (cpuctx->ctx.nr_events) {
3042
		remove = 0;
3043 3044 3045
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
3046

P
Peter Zijlstra 已提交
3047
	ctx = cpuctx->task_ctx;
3048
	if (ctx && ctx->nr_events) {
3049
		remove = 0;
3050 3051 3052
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
3053

3054
	if (!rotate)
3055 3056
		goto done;

3057
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
3058
	perf_pmu_disable(cpuctx->ctx.pmu);
3059

3060 3061 3062
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
3063

3064 3065 3066
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
3067

3068
	perf_event_sched_in(cpuctx, ctx, current);
3069

3070 3071
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072
done:
3073 3074
	if (remove)
		list_del_init(&cpuctx->rotation_list);
3075 3076

	return rotate;
3077 3078
}

3079 3080 3081
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
3082
	if (atomic_read(&nr_freq_events) ||
3083
	    __this_cpu_read(perf_throttled_count))
3084
		return false;
3085 3086
	else
		return true;
3087 3088 3089
}
#endif

3090 3091
void perf_event_task_tick(void)
{
3092
	struct list_head *head = this_cpu_ptr(&rotation_list);
3093
	struct perf_cpu_context *cpuctx, *tmp;
3094 3095
	struct perf_event_context *ctx;
	int throttled;
3096

3097 3098
	WARN_ON(!irqs_disabled());

3099 3100 3101
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

3102
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
3103 3104 3105 3106 3107 3108
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
3109
	}
T
Thomas Gleixner 已提交
3110 3111
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

3122
	__perf_event_mark_enabled(event);
3123 3124 3125 3126

	return 1;
}

3127
/*
3128
 * Enable all of a task's events that have been marked enable-on-exec.
3129 3130
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
3131
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3132
{
3133
	struct perf_event_context *clone_ctx = NULL;
3134
	struct perf_event *event;
3135 3136
	unsigned long flags;
	int enabled = 0;
3137
	int ret;
3138 3139

	local_irq_save(flags);
3140
	if (!ctx || !ctx->nr_events)
3141 3142
		goto out;

3143 3144 3145 3146 3147 3148 3149
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
3150
	perf_cgroup_sched_out(current, NULL);
3151

3152
	raw_spin_lock(&ctx->lock);
3153
	task_ctx_sched_out(ctx);
3154

3155
	list_for_each_entry(event, &ctx->event_list, event_entry) {
3156 3157 3158
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
3159 3160 3161
	}

	/*
3162
	 * Unclone this context if we enabled any event.
3163
	 */
3164
	if (enabled)
3165
		clone_ctx = unclone_ctx(ctx);
3166

3167
	raw_spin_unlock(&ctx->lock);
3168

3169 3170 3171
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
3172
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
3173
out:
3174
	local_irq_restore(flags);
3175 3176 3177

	if (clone_ctx)
		put_ctx(clone_ctx);
3178 3179
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
void perf_event_exec(void)
{
	struct perf_event_context *ctx;
	int ctxn;

	rcu_read_lock();
	for_each_task_context_nr(ctxn) {
		ctx = current->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
	rcu_read_unlock();
}

T
Thomas Gleixner 已提交
3196
/*
3197
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
3198
 */
3199
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
3200
{
3201 3202
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
3203
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
3204

3205 3206 3207 3208
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
3209 3210
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
3211 3212 3213 3214
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

3215
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
3216
	if (ctx->is_active) {
3217
		update_context_time(ctx);
S
Stephane Eranian 已提交
3218 3219
		update_cgrp_time_from_event(event);
	}
3220
	update_event_times(event);
3221 3222
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
3223
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
3224 3225
}

P
Peter Zijlstra 已提交
3226 3227
static inline u64 perf_event_count(struct perf_event *event)
{
3228
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
3229 3230
}

3231
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
3232 3233
{
	/*
3234 3235
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
3236
	 */
3237 3238 3239 3240
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
3241 3242 3243
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

3244
		raw_spin_lock_irqsave(&ctx->lock, flags);
3245 3246 3247 3248 3249
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
3250
		if (ctx->is_active) {
3251
			update_context_time(ctx);
S
Stephane Eranian 已提交
3252 3253
			update_cgrp_time_from_event(event);
		}
3254
		update_event_times(event);
3255
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
3256 3257
	}

P
Peter Zijlstra 已提交
3258
	return perf_event_count(event);
T
Thomas Gleixner 已提交
3259 3260
}

3261
/*
3262
 * Initialize the perf_event context in a task_struct:
3263
 */
3264
static void __perf_event_init_context(struct perf_event_context *ctx)
3265
{
3266
	raw_spin_lock_init(&ctx->lock);
3267
	mutex_init(&ctx->mutex);
3268 3269
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
3270 3271
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
3272
	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
3288
	}
3289 3290 3291
	ctx->pmu = pmu;

	return ctx;
3292 3293
}

3294 3295 3296 3297 3298
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3299 3300

	rcu_read_lock();
3301
	if (!vpid)
T
Thomas Gleixner 已提交
3302 3303
		task = current;
	else
3304
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3305 3306 3307 3308 3309 3310 3311 3312
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3313 3314 3315 3316
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3317 3318 3319 3320 3321 3322 3323
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3324 3325 3326
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3327
static struct perf_event_context *
M
Matt Helsley 已提交
3328
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3329
{
3330
	struct perf_event_context *ctx, *clone_ctx = NULL;
3331
	struct perf_cpu_context *cpuctx;
3332
	unsigned long flags;
P
Peter Zijlstra 已提交
3333
	int ctxn, err;
T
Thomas Gleixner 已提交
3334

3335
	if (!task) {
3336
		/* Must be root to operate on a CPU event: */
3337
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3338 3339 3340
			return ERR_PTR(-EACCES);

		/*
3341
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3342 3343 3344
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3345
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3346 3347
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3348
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3349
		ctx = &cpuctx->ctx;
3350
		get_ctx(ctx);
3351
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3352 3353 3354 3355

		return ctx;
	}

P
Peter Zijlstra 已提交
3356 3357 3358 3359 3360
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3361
retry:
P
Peter Zijlstra 已提交
3362
	ctx = perf_lock_task_context(task, ctxn, &flags);
3363
	if (ctx) {
3364
		clone_ctx = unclone_ctx(ctx);
3365
		++ctx->pin_count;
3366
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3367 3368 3369

		if (clone_ctx)
			put_ctx(clone_ctx);
3370
	} else {
3371
		ctx = alloc_perf_context(pmu, task);
3372 3373 3374
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3386
		else {
3387
			get_ctx(ctx);
3388
			++ctx->pin_count;
3389
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3390
		}
3391 3392 3393
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3394
			put_ctx(ctx);
3395 3396 3397 3398

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3399 3400 3401
		}
	}

T
Thomas Gleixner 已提交
3402
	return ctx;
3403

P
Peter Zijlstra 已提交
3404
errout:
3405
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3406 3407
}

L
Li Zefan 已提交
3408 3409
static void perf_event_free_filter(struct perf_event *event);

3410
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3411
{
3412
	struct perf_event *event;
P
Peter Zijlstra 已提交
3413

3414 3415 3416
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3417
	perf_event_free_filter(event);
3418
	kfree(event);
P
Peter Zijlstra 已提交
3419 3420
}

3421
static void ring_buffer_put(struct ring_buffer *rb);
3422 3423
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);
3424

3425
static void unaccount_event_cpu(struct perf_event *event, int cpu)
3426
{
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
}
3437

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static void unaccount_event(struct perf_event *event)
{
	if (event->parent)
		return;

	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_dec_deferred(&perf_sched_events);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_dec(&nr_mmap_events);
	if (event->attr.comm)
		atomic_dec(&nr_comm_events);
	if (event->attr.task)
		atomic_dec(&nr_task_events);
3451 3452
	if (event->attr.freq)
		atomic_dec(&nr_freq_events);
3453 3454 3455 3456 3457 3458 3459
	if (is_cgroup_event(event))
		static_key_slow_dec_deferred(&perf_sched_events);
	if (has_branch_stack(event))
		static_key_slow_dec_deferred(&perf_sched_events);

	unaccount_event_cpu(event, event->cpu);
}
3460

3461 3462
static void __free_event(struct perf_event *event)
{
3463
	if (!event->parent) {
3464 3465
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3466
	}
3467

3468 3469 3470 3471 3472 3473
	if (event->destroy)
		event->destroy(event);

	if (event->ctx)
		put_ctx(event->ctx);

3474 3475 3476
	if (event->pmu)
		module_put(event->pmu->module);

3477 3478
	call_rcu(&event->rcu_head, free_event_rcu);
}
P
Peter Zijlstra 已提交
3479 3480

static void _free_event(struct perf_event *event)
3481
{
3482
	irq_work_sync(&event->pending);
3483

3484
	unaccount_event(event);
3485

3486
	if (event->rb) {
3487 3488 3489 3490 3491 3492 3493
		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
3494
		ring_buffer_attach(event, NULL);
3495
		mutex_unlock(&event->mmap_mutex);
3496 3497
	}

S
Stephane Eranian 已提交
3498 3499 3500
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3501
	__free_event(event);
3502 3503
}

P
Peter Zijlstra 已提交
3504 3505 3506 3507 3508
/*
 * Used to free events which have a known refcount of 1, such as in error paths
 * where the event isn't exposed yet and inherited events.
 */
static void free_event(struct perf_event *event)
T
Thomas Gleixner 已提交
3509
{
P
Peter Zijlstra 已提交
3510 3511 3512 3513 3514 3515
	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
				"unexpected event refcount: %ld; ptr=%p\n",
				atomic_long_read(&event->refcount), event)) {
		/* leak to avoid use-after-free */
		return;
	}
T
Thomas Gleixner 已提交
3516

P
Peter Zijlstra 已提交
3517
	_free_event(event);
T
Thomas Gleixner 已提交
3518 3519
}

3520
/*
3521
 * Remove user event from the owner task.
3522
 */
3523
static void perf_remove_from_owner(struct perf_event *event)
3524
{
P
Peter Zijlstra 已提交
3525
	struct task_struct *owner;
3526

P
Peter Zijlstra 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
P
Peter Zijlstra 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		/*
		 * If we're here through perf_event_exit_task() we're already
		 * holding ctx->mutex which would be an inversion wrt. the
		 * normal lock order.
		 *
		 * However we can safely take this lock because its the child
		 * ctx->mutex.
		 */
		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);

P
Peter Zijlstra 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
}

/*
 * Called when the last reference to the file is gone.
 */
static void put_event(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	if (!atomic_long_dec_and_test(&event->refcount))
		return;

	if (!is_kernel_event(event))
		perf_remove_from_owner(event);
P
Peter Zijlstra 已提交
3582

P
Peter Zijlstra 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	WARN_ON_ONCE(ctx->parent_ctx);
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
	perf_remove_from_context(event, true);
	mutex_unlock(&ctx->mutex);

	_free_event(event);
3601 3602
}

P
Peter Zijlstra 已提交
3603 3604 3605 3606 3607 3608 3609
int perf_event_release_kernel(struct perf_event *event)
{
	put_event(event);
	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

3610 3611 3612 3613
static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3614 3615
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
/*
 * Remove all orphanes events from the context.
 */
static void orphans_remove_work(struct work_struct *work)
{
	struct perf_event_context *ctx;
	struct perf_event *event, *tmp;

	ctx = container_of(work, struct perf_event_context,
			   orphans_remove.work);

	mutex_lock(&ctx->mutex);
	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
		struct perf_event *parent_event = event->parent;

		if (!is_orphaned_child(event))
			continue;

		perf_remove_from_context(event, true);

		mutex_lock(&parent_event->child_mutex);
		list_del_init(&event->child_list);
		mutex_unlock(&parent_event->child_mutex);

		free_event(event);
		put_event(parent_event);
	}

	raw_spin_lock_irq(&ctx->lock);
	ctx->orphans_remove_sched = false;
	raw_spin_unlock_irq(&ctx->lock);
	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

3652
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3653
{
3654
	struct perf_event *child;
3655 3656
	u64 total = 0;

3657 3658 3659
	*enabled = 0;
	*running = 0;

3660
	mutex_lock(&event->child_mutex);
3661
	total += perf_event_read(event);
3662 3663 3664 3665 3666 3667
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3668
		total += perf_event_read(child);
3669 3670 3671
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3672
	mutex_unlock(&event->child_mutex);
3673 3674 3675

	return total;
}
3676
EXPORT_SYMBOL_GPL(perf_event_read_value);
3677

3678
static int perf_event_read_group(struct perf_event *event,
3679 3680
				   u64 read_format, char __user *buf)
{
3681
	struct perf_event *leader = event->group_leader, *sub;
3682
	struct perf_event_context *ctx = leader->ctx;
P
Peter Zijlstra 已提交
3683
	int n = 0, size = 0, ret;
3684
	u64 count, enabled, running;
P
Peter Zijlstra 已提交
3685 3686 3687
	u64 values[5];

	lockdep_assert_held(&ctx->mutex);
3688

3689
	count = perf_event_read_value(leader, &enabled, &running);
3690 3691

	values[n++] = 1 + leader->nr_siblings;
3692 3693 3694 3695
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3696 3697 3698
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3699 3700 3701 3702

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
P
Peter Zijlstra 已提交
3703
		return -EFAULT;
3704

3705
	ret = size;
3706

3707
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3708
		n = 0;
3709

3710
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3711 3712 3713 3714 3715
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3716
		if (copy_to_user(buf + ret, values, size)) {
P
Peter Zijlstra 已提交
3717
			return -EFAULT;
3718
		}
3719 3720

		ret += size;
3721 3722
	}

3723
	return ret;
3724 3725
}

3726
static int perf_event_read_one(struct perf_event *event,
3727 3728
				 u64 read_format, char __user *buf)
{
3729
	u64 enabled, running;
3730 3731 3732
	u64 values[4];
	int n = 0;

3733 3734 3735 3736 3737
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3738
	if (read_format & PERF_FORMAT_ID)
3739
		values[n++] = primary_event_id(event);
3740 3741 3742 3743 3744 3745 3746

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static bool is_event_hup(struct perf_event *event)
{
	bool no_children;

	if (event->state != PERF_EVENT_STATE_EXIT)
		return false;

	mutex_lock(&event->child_mutex);
	no_children = list_empty(&event->child_list);
	mutex_unlock(&event->child_mutex);
	return no_children;
}

T
Thomas Gleixner 已提交
3760
/*
3761
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3762 3763
 */
static ssize_t
3764
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3765
{
3766
	u64 read_format = event->attr.read_format;
3767
	int ret;
T
Thomas Gleixner 已提交
3768

3769
	/*
3770
	 * Return end-of-file for a read on a event that is in
3771 3772 3773
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3774
	if (event->state == PERF_EVENT_STATE_ERROR)
3775 3776
		return 0;

3777
	if (count < event->read_size)
3778 3779
		return -ENOSPC;

3780
	WARN_ON_ONCE(event->ctx->parent_ctx);
3781
	if (read_format & PERF_FORMAT_GROUP)
3782
		ret = perf_event_read_group(event, read_format, buf);
3783
	else
3784
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3785

3786
	return ret;
T
Thomas Gleixner 已提交
3787 3788 3789 3790 3791
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3792
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
3793 3794
	struct perf_event_context *ctx;
	int ret;
T
Thomas Gleixner 已提交
3795

P
Peter Zijlstra 已提交
3796 3797 3798 3799 3800
	ctx = perf_event_ctx_lock(event);
	ret = perf_read_hw(event, buf, count);
	perf_event_ctx_unlock(event, ctx);

	return ret;
T
Thomas Gleixner 已提交
3801 3802 3803 3804
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3805
	struct perf_event *event = file->private_data;
3806
	struct ring_buffer *rb;
3807
	unsigned int events = POLLHUP;
P
Peter Zijlstra 已提交
3808

3809
	poll_wait(file, &event->waitq, wait);
3810

3811
	if (is_event_hup(event))
3812
		return events;
P
Peter Zijlstra 已提交
3813

3814
	/*
3815 3816
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3817 3818
	 */
	mutex_lock(&event->mmap_mutex);
3819 3820
	rb = event->rb;
	if (rb)
3821
		events = atomic_xchg(&rb->poll, 0);
3822
	mutex_unlock(&event->mmap_mutex);
T
Thomas Gleixner 已提交
3823 3824 3825
	return events;
}

P
Peter Zijlstra 已提交
3826
static void _perf_event_reset(struct perf_event *event)
3827
{
3828
	(void)perf_event_read(event);
3829
	local64_set(&event->count, 0);
3830
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3831 3832
}

3833
/*
3834 3835 3836 3837
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3838
 */
3839 3840
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3841
{
3842
	struct perf_event *child;
P
Peter Zijlstra 已提交
3843

3844
	WARN_ON_ONCE(event->ctx->parent_ctx);
P
Peter Zijlstra 已提交
3845

3846 3847 3848
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3849
		func(child);
3850
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3851 3852
}

3853 3854
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3855
{
3856 3857
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3858

P
Peter Zijlstra 已提交
3859 3860
	lockdep_assert_held(&ctx->mutex);

3861
	event = event->group_leader;
3862

3863 3864
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3865
		perf_event_for_each_child(sibling, func);
3866 3867
}

3868
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3869
{
3870
	struct perf_event_context *ctx = event->ctx;
3871
	int ret = 0, active;
3872 3873
	u64 value;

3874
	if (!is_sampling_event(event))
3875 3876
		return -EINVAL;

3877
	if (copy_from_user(&value, arg, sizeof(value)))
3878 3879 3880 3881 3882
		return -EFAULT;

	if (!value)
		return -EINVAL;

3883
	raw_spin_lock_irq(&ctx->lock);
3884 3885
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3886 3887 3888 3889
			ret = -EINVAL;
			goto unlock;
		}

3890
		event->attr.sample_freq = value;
3891
	} else {
3892 3893
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3894
	}
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

	active = (event->state == PERF_EVENT_STATE_ACTIVE);
	if (active) {
		perf_pmu_disable(ctx->pmu);
		event->pmu->stop(event, PERF_EF_UPDATE);
	}

	local64_set(&event->hw.period_left, 0);

	if (active) {
		event->pmu->start(event, PERF_EF_RELOAD);
		perf_pmu_enable(ctx->pmu);
	}

3909
unlock:
3910
	raw_spin_unlock_irq(&ctx->lock);
3911 3912 3913 3914

	return ret;
}

3915 3916
static const struct file_operations perf_fops;

3917
static inline int perf_fget_light(int fd, struct fd *p)
3918
{
3919 3920 3921
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3922

3923 3924 3925
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3926
	}
3927 3928
	*p = f;
	return 0;
3929 3930 3931 3932
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3933
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3934

P
Peter Zijlstra 已提交
3935
static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
3936
{
3937
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3938
	u32 flags = arg;
3939 3940

	switch (cmd) {
3941
	case PERF_EVENT_IOC_ENABLE:
P
Peter Zijlstra 已提交
3942
		func = _perf_event_enable;
3943
		break;
3944
	case PERF_EVENT_IOC_DISABLE:
P
Peter Zijlstra 已提交
3945
		func = _perf_event_disable;
3946
		break;
3947
	case PERF_EVENT_IOC_RESET:
P
Peter Zijlstra 已提交
3948
		func = _perf_event_reset;
3949
		break;
P
Peter Zijlstra 已提交
3950

3951
	case PERF_EVENT_IOC_REFRESH:
P
Peter Zijlstra 已提交
3952
		return _perf_event_refresh(event, arg);
3953

3954 3955
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3956

3957 3958 3959 3960 3961 3962 3963 3964 3965
	case PERF_EVENT_IOC_ID:
	{
		u64 id = primary_event_id(event);

		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
			return -EFAULT;
		return 0;
	}

3966
	case PERF_EVENT_IOC_SET_OUTPUT:
3967 3968 3969
	{
		int ret;
		if (arg != -1) {
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3980 3981 3982
		}
		return ret;
	}
3983

L
Li Zefan 已提交
3984 3985 3986
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3987
	default:
P
Peter Zijlstra 已提交
3988
		return -ENOTTY;
3989
	}
P
Peter Zijlstra 已提交
3990 3991

	if (flags & PERF_IOC_FLAG_GROUP)
3992
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3993
	else
3994
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3995 3996

	return 0;
3997 3998
}

P
Peter Zijlstra 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx;
	long ret;

	ctx = perf_event_ctx_lock(event);
	ret = _perf_ioctl(event, cmd, arg);
	perf_event_ctx_unlock(event, ctx);

	return ret;
}

P
Pawel Moll 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
#ifdef CONFIG_COMPAT
static long perf_compat_ioctl(struct file *file, unsigned int cmd,
				unsigned long arg)
{
	switch (_IOC_NR(cmd)) {
	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
	case _IOC_NR(PERF_EVENT_IOC_ID):
		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
			cmd &= ~IOCSIZE_MASK;
			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
		}
		break;
	}
	return perf_ioctl(file, cmd, arg);
}
#else
# define perf_compat_ioctl NULL
#endif

4032
int perf_event_task_enable(void)
4033
{
P
Peter Zijlstra 已提交
4034
	struct perf_event_context *ctx;
4035
	struct perf_event *event;
4036

4037
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4038 4039 4040 4041 4042
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_enable);
		perf_event_ctx_unlock(event, ctx);
	}
4043
	mutex_unlock(&current->perf_event_mutex);
4044 4045 4046 4047

	return 0;
}

4048
int perf_event_task_disable(void)
4049
{
P
Peter Zijlstra 已提交
4050
	struct perf_event_context *ctx;
4051
	struct perf_event *event;
4052

4053
	mutex_lock(&current->perf_event_mutex);
P
Peter Zijlstra 已提交
4054 4055 4056 4057 4058
	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
		ctx = perf_event_ctx_lock(event);
		perf_event_for_each_child(event, _perf_event_disable);
		perf_event_ctx_unlock(event, ctx);
	}
4059
	mutex_unlock(&current->perf_event_mutex);
4060 4061 4062 4063

	return 0;
}

4064
static int perf_event_index(struct perf_event *event)
4065
{
P
Peter Zijlstra 已提交
4066 4067 4068
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
4070 4071
		return 0;

4072
	return event->pmu->event_idx(event);
4073 4074
}

4075
static void calc_timer_values(struct perf_event *event,
4076
				u64 *now,
4077 4078
				u64 *enabled,
				u64 *running)
4079
{
4080
	u64 ctx_time;
4081

4082 4083
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
4084 4085 4086 4087
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
static void perf_event_init_userpage(struct perf_event *event)
{
	struct perf_event_mmap_page *userpg;
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

	userpg = rb->user_page;

	/* Allow new userspace to detect that bit 0 is deprecated */
	userpg->cap_bit0_is_deprecated = 1;
	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);

unlock:
	rcu_read_unlock();
}

4108
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
4109 4110 4111
{
}

4112 4113 4114 4115 4116
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
4117
void perf_event_update_userpage(struct perf_event *event)
4118
{
4119
	struct perf_event_mmap_page *userpg;
4120
	struct ring_buffer *rb;
4121
	u64 enabled, running, now;
4122 4123

	rcu_read_lock();
4124 4125 4126 4127
	rb = rcu_dereference(event->rb);
	if (!rb)
		goto unlock;

4128 4129 4130 4131 4132 4133 4134 4135 4136
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
4137
	calc_timer_values(event, &now, &enabled, &running);
4138

4139
	userpg = rb->user_page;
4140 4141 4142 4143 4144
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
4145
	++userpg->lock;
4146
	barrier();
4147
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
4148
	userpg->offset = perf_event_count(event);
4149
	if (userpg->index)
4150
		userpg->offset -= local64_read(&event->hw.prev_count);
4151

4152
	userpg->time_enabled = enabled +
4153
			atomic64_read(&event->child_total_time_enabled);
4154

4155
	userpg->time_running = running +
4156
			atomic64_read(&event->child_total_time_running);
4157

4158
	arch_perf_update_userpage(userpg, now);
4159

4160
	barrier();
4161
	++userpg->lock;
4162
	preempt_enable();
4163
unlock:
4164
	rcu_read_unlock();
4165 4166
}

4167 4168 4169
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
4170
	struct ring_buffer *rb;
4171 4172 4173 4174 4175 4176 4177 4178 4179
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
4180 4181
	rb = rcu_dereference(event->rb);
	if (!rb)
4182 4183 4184 4185 4186
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

4187
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

4202 4203 4204
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
4205
	struct ring_buffer *old_rb = NULL;
4206 4207
	unsigned long flags;

4208 4209 4210 4211 4212 4213
	if (event->rb) {
		/*
		 * Should be impossible, we set this when removing
		 * event->rb_entry and wait/clear when adding event->rb_entry.
		 */
		WARN_ON_ONCE(event->rcu_pending);
4214

4215 4216 4217
		old_rb = event->rb;
		event->rcu_batches = get_state_synchronize_rcu();
		event->rcu_pending = 1;
4218

4219 4220 4221 4222
		spin_lock_irqsave(&old_rb->event_lock, flags);
		list_del_rcu(&event->rb_entry);
		spin_unlock_irqrestore(&old_rb->event_lock, flags);
	}
4223

4224 4225 4226 4227
	if (event->rcu_pending && rb) {
		cond_synchronize_rcu(event->rcu_batches);
		event->rcu_pending = 0;
	}
4228

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	if (rb) {
		spin_lock_irqsave(&rb->event_lock, flags);
		list_add_rcu(&event->rb_entry, &rb->event_list);
		spin_unlock_irqrestore(&rb->event_lock, flags);
	}

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}
4246 4247 4248 4249 4250 4251 4252 4253
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
4254 4255 4256 4257
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
4258 4259 4260
	rcu_read_unlock();
}

4261
static void rb_free_rcu(struct rcu_head *rcu_head)
4262
{
4263
	struct ring_buffer *rb;
4264

4265 4266
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
4267 4268
}

4269
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4270
{
4271
	struct ring_buffer *rb;
4272

4273
	rcu_read_lock();
4274 4275 4276 4277
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
4278 4279 4280
	}
	rcu_read_unlock();

4281
	return rb;
4282 4283
}

4284
static void ring_buffer_put(struct ring_buffer *rb)
4285
{
4286
	if (!atomic_dec_and_test(&rb->refcount))
4287
		return;
4288

4289
	WARN_ON_ONCE(!list_empty(&rb->event_list));
4290

4291
	call_rcu(&rb->rcu_head, rb_free_rcu);
4292 4293 4294 4295
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
4296
	struct perf_event *event = vma->vm_file->private_data;
4297

4298
	atomic_inc(&event->mmap_count);
4299
	atomic_inc(&event->rb->mmap_count);
4300 4301
}

4302 4303 4304 4305 4306 4307 4308 4309
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
4310 4311
static void perf_mmap_close(struct vm_area_struct *vma)
{
4312
	struct perf_event *event = vma->vm_file->private_data;
4313

4314
	struct ring_buffer *rb = ring_buffer_get(event);
4315 4316 4317
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
4318

4319 4320 4321
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4322
		goto out_put;
4323

4324
	ring_buffer_attach(event, NULL);
4325 4326 4327
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
4328 4329
	if (atomic_read(&rb->mmap_count))
		goto out_put;
4330

4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
4347

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
4359 4360 4361
		if (event->rb == rb)
			ring_buffer_attach(event, NULL);

4362
		mutex_unlock(&event->mmap_mutex);
4363
		put_event(event);
4364

4365 4366 4367 4368 4369
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
4370
	}
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

4386
out_put:
4387
	ring_buffer_put(rb); /* could be last */
4388 4389
}

4390
static const struct vm_operations_struct perf_mmap_vmops = {
4391 4392 4393 4394
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
4395 4396 4397 4398
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
4399
	struct perf_event *event = file->private_data;
4400
	unsigned long user_locked, user_lock_limit;
4401
	struct user_struct *user = current_user();
4402
	unsigned long locked, lock_limit;
4403
	struct ring_buffer *rb;
4404 4405
	unsigned long vma_size;
	unsigned long nr_pages;
4406
	long user_extra, extra;
4407
	int ret = 0, flags = 0;
4408

4409 4410 4411
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
4412
	 * same rb.
4413 4414 4415 4416
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

4417
	if (!(vma->vm_flags & VM_SHARED))
4418
		return -EINVAL;
4419 4420 4421 4422

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

4423
	/*
4424
	 * If we have rb pages ensure they're a power-of-two number, so we
4425 4426 4427
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4428 4429
		return -EINVAL;

4430
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4431 4432
		return -EINVAL;

4433 4434
	if (vma->vm_pgoff != 0)
		return -EINVAL;
4435

4436
	WARN_ON_ONCE(event->ctx->parent_ctx);
4437
again:
4438
	mutex_lock(&event->mmap_mutex);
4439
	if (event->rb) {
4440
		if (event->rb->nr_pages != nr_pages) {
4441
			ret = -EINVAL;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

4455 4456 4457
		goto unlock;
	}

4458
	user_extra = nr_pages + 1;
4459
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
4460 4461 4462 4463 4464 4465

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

4466
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4467

4468 4469 4470
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
4471

4472
	lock_limit = rlimit(RLIMIT_MEMLOCK);
4473
	lock_limit >>= PAGE_SHIFT;
4474
	locked = vma->vm_mm->pinned_vm + extra;
4475

4476 4477
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
4478 4479 4480
		ret = -EPERM;
		goto unlock;
	}
4481

4482
	WARN_ON(event->rb);
4483

4484
	if (vma->vm_flags & VM_WRITE)
4485
		flags |= RING_BUFFER_WRITABLE;
4486

4487 4488 4489 4490
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

4491
	if (!rb) {
4492
		ret = -ENOMEM;
4493
		goto unlock;
4494
	}
P
Peter Zijlstra 已提交
4495

4496
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4497 4498
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4499

4500
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4501 4502
	vma->vm_mm->pinned_vm += extra;

4503
	ring_buffer_attach(event, rb);
4504

4505
	perf_event_init_userpage(event);
4506 4507
	perf_event_update_userpage(event);

4508
unlock:
4509 4510
	if (!ret)
		atomic_inc(&event->mmap_count);
4511
	mutex_unlock(&event->mmap_mutex);
4512

4513 4514 4515 4516
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4517
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4518
	vma->vm_ops = &perf_mmap_vmops;
4519 4520

	return ret;
4521 4522
}

P
Peter Zijlstra 已提交
4523 4524
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4525
	struct inode *inode = file_inode(filp);
4526
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4527 4528 4529
	int retval;

	mutex_lock(&inode->i_mutex);
4530
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4531 4532 4533 4534 4535 4536 4537 4538
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4539
static const struct file_operations perf_fops = {
4540
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4541 4542 4543
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4544
	.unlocked_ioctl		= perf_ioctl,
P
Pawel Moll 已提交
4545
	.compat_ioctl		= perf_compat_ioctl,
4546
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4547
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4548 4549
};

4550
/*
4551
 * Perf event wakeup
4552 4553 4554 4555 4556
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4557
void perf_event_wakeup(struct perf_event *event)
4558
{
4559
	ring_buffer_wakeup(event);
4560

4561 4562 4563
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4564
	}
4565 4566
}

4567
static void perf_pending_event(struct irq_work *entry)
4568
{
4569 4570
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4571

4572 4573 4574
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4575 4576
	}

4577 4578 4579
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4580 4581 4582
	}
}

4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

4619
static void perf_sample_regs_user(struct perf_regs *regs_user,
4620 4621
				  struct pt_regs *regs,
				  struct pt_regs *regs_user_copy)
4622
{
4623 4624
	if (user_mode(regs)) {
		regs_user->abi = perf_reg_abi(current);
4625
		regs_user->regs = regs;
4626 4627
	} else if (current->mm) {
		perf_get_regs_user(regs_user, regs, regs_user_copy);
4628 4629 4630
	} else {
		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
		regs_user->regs = NULL;
4631 4632 4633
	}
}

4634 4635 4636 4637 4638 4639 4640 4641
static void perf_sample_regs_intr(struct perf_regs *regs_intr,
				  struct pt_regs *regs)
{
	regs_intr->regs = regs;
	regs_intr->abi  = perf_reg_abi(current);
}


4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4737 4738 4739
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

4755
	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4767 4768 4769
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
4794 4795 4796

	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);
4797 4798
}

4799 4800 4801
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4802 4803 4804 4805 4806
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4807
static void perf_output_read_one(struct perf_output_handle *handle,
4808 4809
				 struct perf_event *event,
				 u64 enabled, u64 running)
4810
{
4811
	u64 read_format = event->attr.read_format;
4812 4813 4814
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4815
	values[n++] = perf_event_count(event);
4816
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4817
		values[n++] = enabled +
4818
			atomic64_read(&event->child_total_time_enabled);
4819 4820
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4821
		values[n++] = running +
4822
			atomic64_read(&event->child_total_time_running);
4823 4824
	}
	if (read_format & PERF_FORMAT_ID)
4825
		values[n++] = primary_event_id(event);
4826

4827
	__output_copy(handle, values, n * sizeof(u64));
4828 4829 4830
}

/*
4831
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4832 4833
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4834 4835
			    struct perf_event *event,
			    u64 enabled, u64 running)
4836
{
4837 4838
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4839 4840 4841 4842 4843 4844
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4845
		values[n++] = enabled;
4846 4847

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4848
		values[n++] = running;
4849

4850
	if (leader != event)
4851 4852
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4853
	values[n++] = perf_event_count(leader);
4854
	if (read_format & PERF_FORMAT_ID)
4855
		values[n++] = primary_event_id(leader);
4856

4857
	__output_copy(handle, values, n * sizeof(u64));
4858

4859
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4860 4861
		n = 0;

4862 4863
		if ((sub != event) &&
		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4864 4865
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4866
		values[n++] = perf_event_count(sub);
4867
		if (read_format & PERF_FORMAT_ID)
4868
			values[n++] = primary_event_id(sub);
4869

4870
		__output_copy(handle, values, n * sizeof(u64));
4871 4872 4873
	}
}

4874 4875 4876
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4877
static void perf_output_read(struct perf_output_handle *handle,
4878
			     struct perf_event *event)
4879
{
4880
	u64 enabled = 0, running = 0, now;
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4892
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4893
		calc_timer_values(event, &now, &enabled, &running);
4894

4895
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4896
		perf_output_read_group(handle, event, enabled, running);
4897
	else
4898
		perf_output_read_one(handle, event, enabled, running);
4899 4900
}

4901 4902 4903
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4904
			struct perf_event *event)
4905 4906 4907 4908 4909
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

4910 4911 4912
	if (sample_type & PERF_SAMPLE_IDENTIFIER)
		perf_output_put(handle, data->id);

4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4938
		perf_output_read(handle, event);
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4949
			__output_copy(handle, data->callchain, size);
4950 4951 4952 4953 4954 4955 4956 4957 4958
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4959 4960
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4972

4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
5007

5008
	if (sample_type & PERF_SAMPLE_STACK_USER) {
5009 5010 5011
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
5012
	}
A
Andi Kleen 已提交
5013 5014 5015

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
5016 5017 5018

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
5019

A
Andi Kleen 已提交
5020 5021 5022
	if (sample_type & PERF_SAMPLE_TRANSACTION)
		perf_output_put(handle, data->txn);

5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		u64 abi = data->regs_intr.abi;
		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_intr;

			perf_output_sample_regs(handle,
						data->regs_intr.regs,
						mask);
		}
	}

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
5053 5054 5055 5056
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
5057
			 struct perf_event *event,
5058
			 struct pt_regs *regs)
5059
{
5060
	u64 sample_type = event->attr.sample_type;
5061

5062
	header->type = PERF_RECORD_SAMPLE;
5063
	header->size = sizeof(*header) + event->header_size;
5064 5065 5066

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
5067

5068
	__perf_event_header__init_id(header, data, event);
5069

5070
	if (sample_type & PERF_SAMPLE_IP)
5071 5072
		data->ip = perf_instruction_pointer(regs);

5073
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5074
		int size = 1;
5075

5076
		data->callchain = perf_callchain(event, regs);
5077 5078 5079 5080 5081

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
5082 5083
	}

5084
	if (sample_type & PERF_SAMPLE_RAW) {
5085 5086 5087 5088 5089 5090 5091 5092
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
5093
		header->size += size;
5094
	}
5095 5096 5097 5098 5099 5100 5101 5102 5103

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
5104

5105
	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5106 5107
		perf_sample_regs_user(&data->regs_user, regs,
				      &data->regs_user_copy);
5108

5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
5132
						     data->regs_user.regs);
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

	if (sample_type & PERF_SAMPLE_REGS_INTR) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_intr(&data->regs_intr, regs);

		if (data->regs_intr.regs) {
			u64 mask = event->attr.sample_regs_intr;

			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
5160
}
5161

5162
static void perf_event_output(struct perf_event *event,
5163 5164 5165 5166 5167
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
5168

5169 5170 5171
	/* protect the callchain buffers */
	rcu_read_lock();

5172
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
5173

5174
	if (perf_output_begin(&handle, event, header.size))
5175
		goto exit;
5176

5177
	perf_output_sample(&handle, &header, data, event);
5178

5179
	perf_output_end(&handle);
5180 5181 5182

exit:
	rcu_read_unlock();
5183 5184
}

5185
/*
5186
 * read event_id
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
5197
perf_event_read_event(struct perf_event *event,
5198 5199 5200
			struct task_struct *task)
{
	struct perf_output_handle handle;
5201
	struct perf_sample_data sample;
5202
	struct perf_read_event read_event = {
5203
		.header = {
5204
			.type = PERF_RECORD_READ,
5205
			.misc = 0,
5206
			.size = sizeof(read_event) + event->read_size,
5207
		},
5208 5209
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
5210
	};
5211
	int ret;
5212

5213
	perf_event_header__init_id(&read_event.header, &sample, event);
5214
	ret = perf_output_begin(&handle, event, read_event.header.size);
5215 5216 5217
	if (ret)
		return;

5218
	perf_output_put(&handle, read_event);
5219
	perf_output_read(&handle, event);
5220
	perf_event__output_id_sample(event, &handle, &sample);
5221

5222 5223 5224
	perf_output_end(&handle);
}

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
5239
		output(event, data);
5240 5241 5242 5243
	}
}

static void
5244
perf_event_aux(perf_event_aux_output_cb output, void *data,
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
5257
		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5258 5259 5260 5261 5262 5263 5264
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
5265
			perf_event_aux_ctx(ctx, output, data);
5266 5267 5268 5269 5270 5271
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
5272
		perf_event_aux_ctx(task_ctx, output, data);
5273 5274 5275 5276 5277
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
5278
/*
P
Peter Zijlstra 已提交
5279 5280
 * task tracking -- fork/exit
 *
5281
 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
5282 5283
 */

P
Peter Zijlstra 已提交
5284
struct perf_task_event {
5285
	struct task_struct		*task;
5286
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
5287 5288 5289 5290 5291 5292

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
5293 5294
		u32				tid;
		u32				ptid;
5295
		u64				time;
5296
	} event_id;
P
Peter Zijlstra 已提交
5297 5298
};

5299 5300
static int perf_event_task_match(struct perf_event *event)
{
5301 5302 5303
	return event->attr.comm  || event->attr.mmap ||
	       event->attr.mmap2 || event->attr.mmap_data ||
	       event->attr.task;
5304 5305
}

5306
static void perf_event_task_output(struct perf_event *event,
5307
				   void *data)
P
Peter Zijlstra 已提交
5308
{
5309
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
5310
	struct perf_output_handle handle;
5311
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
5312
	struct task_struct *task = task_event->task;
5313
	int ret, size = task_event->event_id.header.size;
5314

5315 5316 5317
	if (!perf_event_task_match(event))
		return;

5318
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
5319

5320
	ret = perf_output_begin(&handle, event,
5321
				task_event->event_id.header.size);
5322
	if (ret)
5323
		goto out;
P
Peter Zijlstra 已提交
5324

5325 5326
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
5327

5328 5329
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
5330

5331
	perf_output_put(&handle, task_event->event_id);
5332

5333 5334
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
5335
	perf_output_end(&handle);
5336 5337
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
5338 5339
}

5340 5341
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
5342
			      int new)
P
Peter Zijlstra 已提交
5343
{
P
Peter Zijlstra 已提交
5344
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
5345

5346 5347 5348
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
5349 5350
		return;

P
Peter Zijlstra 已提交
5351
	task_event = (struct perf_task_event){
5352 5353
		.task	  = task,
		.task_ctx = task_ctx,
5354
		.event_id    = {
P
Peter Zijlstra 已提交
5355
			.header = {
5356
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5357
				.misc = 0,
5358
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
5359
			},
5360 5361
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
5362 5363
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
5364
			.time = perf_clock(),
P
Peter Zijlstra 已提交
5365 5366 5367
		},
	};

5368
	perf_event_aux(perf_event_task_output,
5369 5370
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
5371 5372
}

5373
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
5374
{
5375
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
5376 5377
}

5378 5379 5380 5381 5382
/*
 * comm tracking
 */

struct perf_comm_event {
5383 5384
	struct task_struct	*task;
	char			*comm;
5385 5386 5387 5388 5389 5390 5391
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
5392
	} event_id;
5393 5394
};

5395 5396 5397 5398 5399
static int perf_event_comm_match(struct perf_event *event)
{
	return event->attr.comm;
}

5400
static void perf_event_comm_output(struct perf_event *event,
5401
				   void *data)
5402
{
5403
	struct perf_comm_event *comm_event = data;
5404
	struct perf_output_handle handle;
5405
	struct perf_sample_data sample;
5406
	int size = comm_event->event_id.header.size;
5407 5408
	int ret;

5409 5410 5411
	if (!perf_event_comm_match(event))
		return;

5412 5413
	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5414
				comm_event->event_id.header.size);
5415 5416

	if (ret)
5417
		goto out;
5418

5419 5420
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5421

5422
	perf_output_put(&handle, comm_event->event_id);
5423
	__output_copy(&handle, comm_event->comm,
5424
				   comm_event->comm_size);
5425 5426 5427

	perf_event__output_id_sample(event, &handle, &sample);

5428
	perf_output_end(&handle);
5429 5430
out:
	comm_event->event_id.header.size = size;
5431 5432
}

5433
static void perf_event_comm_event(struct perf_comm_event *comm_event)
5434
{
5435
	char comm[TASK_COMM_LEN];
5436 5437
	unsigned int size;

5438
	memset(comm, 0, sizeof(comm));
5439
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5440
	size = ALIGN(strlen(comm)+1, sizeof(u64));
5441 5442 5443 5444

	comm_event->comm = comm;
	comm_event->comm_size = size;

5445
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
5446

5447
	perf_event_aux(perf_event_comm_output,
5448 5449
		       comm_event,
		       NULL);
5450 5451
}

5452
void perf_event_comm(struct task_struct *task, bool exec)
5453
{
5454 5455
	struct perf_comm_event comm_event;

5456
	if (!atomic_read(&nr_comm_events))
5457
		return;
5458

5459
	comm_event = (struct perf_comm_event){
5460
		.task	= task,
5461 5462
		/* .comm      */
		/* .comm_size */
5463
		.event_id  = {
5464
			.header = {
5465
				.type = PERF_RECORD_COMM,
5466
				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5467 5468 5469 5470
				/* .size */
			},
			/* .pid */
			/* .tid */
5471 5472 5473
		},
	};

5474
	perf_event_comm_event(&comm_event);
5475 5476
}

5477 5478 5479 5480 5481
/*
 * mmap tracking
 */

struct perf_mmap_event {
5482 5483 5484 5485
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
5486 5487 5488
	int			maj, min;
	u64			ino;
	u64			ino_generation;
5489
	u32			prot, flags;
5490 5491 5492 5493 5494 5495 5496 5497 5498

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
5499
	} event_id;
5500 5501
};

5502 5503 5504 5505 5506 5507 5508 5509
static int perf_event_mmap_match(struct perf_event *event,
				 void *data)
{
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;

	return (!executable && event->attr.mmap_data) ||
5510
	       (executable && (event->attr.mmap || event->attr.mmap2));
5511 5512
}

5513
static void perf_event_mmap_output(struct perf_event *event,
5514
				   void *data)
5515
{
5516
	struct perf_mmap_event *mmap_event = data;
5517
	struct perf_output_handle handle;
5518
	struct perf_sample_data sample;
5519
	int size = mmap_event->event_id.header.size;
5520
	int ret;
5521

5522 5523 5524
	if (!perf_event_mmap_match(event, data))
		return;

5525 5526 5527 5528 5529
	if (event->attr.mmap2) {
		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
		mmap_event->event_id.header.size += sizeof(mmap_event->min);
		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5530
		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5531 5532
		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5533 5534
	}

5535 5536
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
5537
				mmap_event->event_id.header.size);
5538
	if (ret)
5539
		goto out;
5540

5541 5542
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
5543

5544
	perf_output_put(&handle, mmap_event->event_id);
5545 5546 5547 5548 5549 5550

	if (event->attr.mmap2) {
		perf_output_put(&handle, mmap_event->maj);
		perf_output_put(&handle, mmap_event->min);
		perf_output_put(&handle, mmap_event->ino);
		perf_output_put(&handle, mmap_event->ino_generation);
5551 5552
		perf_output_put(&handle, mmap_event->prot);
		perf_output_put(&handle, mmap_event->flags);
5553 5554
	}

5555
	__output_copy(&handle, mmap_event->file_name,
5556
				   mmap_event->file_size);
5557 5558 5559

	perf_event__output_id_sample(event, &handle, &sample);

5560
	perf_output_end(&handle);
5561 5562
out:
	mmap_event->event_id.header.size = size;
5563 5564
}

5565
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5566
{
5567 5568
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5569 5570
	int maj = 0, min = 0;
	u64 ino = 0, gen = 0;
5571
	u32 prot = 0, flags = 0;
5572 5573 5574
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5575
	char *name;
5576

5577
	if (file) {
5578 5579
		struct inode *inode;
		dev_t dev;
5580

5581
		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5582
		if (!buf) {
5583 5584
			name = "//enomem";
			goto cpy_name;
5585
		}
5586
		/*
5587
		 * d_path() works from the end of the rb backwards, so we
5588 5589 5590
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
5591
		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5592
		if (IS_ERR(name)) {
5593 5594
			name = "//toolong";
			goto cpy_name;
5595
		}
5596 5597 5598 5599 5600 5601
		inode = file_inode(vma->vm_file);
		dev = inode->i_sb->s_dev;
		ino = inode->i_ino;
		gen = inode->i_generation;
		maj = MAJOR(dev);
		min = MINOR(dev);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

		if (vma->vm_flags & VM_READ)
			prot |= PROT_READ;
		if (vma->vm_flags & VM_WRITE)
			prot |= PROT_WRITE;
		if (vma->vm_flags & VM_EXEC)
			prot |= PROT_EXEC;

		if (vma->vm_flags & VM_MAYSHARE)
			flags = MAP_SHARED;
		else
			flags = MAP_PRIVATE;

		if (vma->vm_flags & VM_DENYWRITE)
			flags |= MAP_DENYWRITE;
		if (vma->vm_flags & VM_MAYEXEC)
			flags |= MAP_EXECUTABLE;
		if (vma->vm_flags & VM_LOCKED)
			flags |= MAP_LOCKED;
		if (vma->vm_flags & VM_HUGETLB)
			flags |= MAP_HUGETLB;

5624
		goto got_name;
5625
	} else {
5626 5627 5628 5629 5630 5631
		if (vma->vm_ops && vma->vm_ops->name) {
			name = (char *) vma->vm_ops->name(vma);
			if (name)
				goto cpy_name;
		}

5632
		name = (char *)arch_vma_name(vma);
5633 5634
		if (name)
			goto cpy_name;
5635

5636
		if (vma->vm_start <= vma->vm_mm->start_brk &&
5637
				vma->vm_end >= vma->vm_mm->brk) {
5638 5639
			name = "[heap]";
			goto cpy_name;
5640 5641
		}
		if (vma->vm_start <= vma->vm_mm->start_stack &&
5642
				vma->vm_end >= vma->vm_mm->start_stack) {
5643 5644
			name = "[stack]";
			goto cpy_name;
5645 5646
		}

5647 5648
		name = "//anon";
		goto cpy_name;
5649 5650
	}

5651 5652 5653
cpy_name:
	strlcpy(tmp, name, sizeof(tmp));
	name = tmp;
5654
got_name:
5655 5656 5657 5658 5659 5660 5661 5662
	/*
	 * Since our buffer works in 8 byte units we need to align our string
	 * size to a multiple of 8. However, we must guarantee the tail end is
	 * zero'd out to avoid leaking random bits to userspace.
	 */
	size = strlen(name)+1;
	while (!IS_ALIGNED(size, sizeof(u64)))
		name[size++] = '\0';
5663 5664 5665

	mmap_event->file_name = name;
	mmap_event->file_size = size;
5666 5667 5668 5669
	mmap_event->maj = maj;
	mmap_event->min = min;
	mmap_event->ino = ino;
	mmap_event->ino_generation = gen;
5670 5671
	mmap_event->prot = prot;
	mmap_event->flags = flags;
5672

5673 5674 5675
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5676
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5677

5678
	perf_event_aux(perf_event_mmap_output,
5679 5680
		       mmap_event,
		       NULL);
5681

5682 5683 5684
	kfree(buf);
}

5685
void perf_event_mmap(struct vm_area_struct *vma)
5686
{
5687 5688
	struct perf_mmap_event mmap_event;

5689
	if (!atomic_read(&nr_mmap_events))
5690 5691 5692
		return;

	mmap_event = (struct perf_mmap_event){
5693
		.vma	= vma,
5694 5695
		/* .file_name */
		/* .file_size */
5696
		.event_id  = {
5697
			.header = {
5698
				.type = PERF_RECORD_MMAP,
5699
				.misc = PERF_RECORD_MISC_USER,
5700 5701 5702 5703
				/* .size */
			},
			/* .pid */
			/* .tid */
5704 5705
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5706
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5707
		},
5708 5709 5710 5711
		/* .maj (attr_mmap2 only) */
		/* .min (attr_mmap2 only) */
		/* .ino (attr_mmap2 only) */
		/* .ino_generation (attr_mmap2 only) */
5712 5713
		/* .prot (attr_mmap2 only) */
		/* .flags (attr_mmap2 only) */
5714 5715
	};

5716
	perf_event_mmap_event(&mmap_event);
5717 5718
}

5719 5720 5721 5722
/*
 * IRQ throttle logging
 */

5723
static void perf_log_throttle(struct perf_event *event, int enable)
5724 5725
{
	struct perf_output_handle handle;
5726
	struct perf_sample_data sample;
5727 5728 5729 5730 5731
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5732
		u64				id;
5733
		u64				stream_id;
5734 5735
	} throttle_event = {
		.header = {
5736
			.type = PERF_RECORD_THROTTLE,
5737 5738 5739
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5740
		.time		= perf_clock(),
5741 5742
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5743 5744
	};

5745
	if (enable)
5746
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5747

5748 5749 5750
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5751
				throttle_event.header.size);
5752 5753 5754 5755
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5756
	perf_event__output_id_sample(event, &handle, &sample);
5757 5758 5759
	perf_output_end(&handle);
}

5760
/*
5761
 * Generic event overflow handling, sampling.
5762 5763
 */

5764
static int __perf_event_overflow(struct perf_event *event,
5765 5766
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5767
{
5768 5769
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5770
	u64 seq;
5771 5772
	int ret = 0;

5773 5774 5775 5776 5777 5778 5779
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5780 5781 5782 5783 5784 5785 5786 5787 5788
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5789 5790
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5791
			tick_nohz_full_kick();
5792 5793
			ret = 1;
		}
5794
	}
5795

5796
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5797
		u64 now = perf_clock();
5798
		s64 delta = now - hwc->freq_time_stamp;
5799

5800
		hwc->freq_time_stamp = now;
5801

5802
		if (delta > 0 && delta < 2*TICK_NSEC)
5803
			perf_adjust_period(event, delta, hwc->last_period, true);
5804 5805
	}

5806 5807
	/*
	 * XXX event_limit might not quite work as expected on inherited
5808
	 * events
5809 5810
	 */

5811 5812
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5813
		ret = 1;
5814
		event->pending_kill = POLL_HUP;
5815 5816
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5817 5818
	}

5819
	if (event->overflow_handler)
5820
		event->overflow_handler(event, data, regs);
5821
	else
5822
		perf_event_output(event, data, regs);
5823

P
Peter Zijlstra 已提交
5824
	if (event->fasync && event->pending_kill) {
5825 5826
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5827 5828
	}

5829
	return ret;
5830 5831
}

5832
int perf_event_overflow(struct perf_event *event,
5833 5834
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5835
{
5836
	return __perf_event_overflow(event, 1, data, regs);
5837 5838
}

5839
/*
5840
 * Generic software event infrastructure
5841 5842
 */

5843 5844 5845 5846 5847 5848 5849
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
5850 5851 5852

	/* Keeps track of cpu being initialized/exited */
	bool				online;
5853 5854 5855 5856
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5857
/*
5858 5859
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5860 5861 5862 5863
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5864
u64 perf_swevent_set_period(struct perf_event *event)
5865
{
5866
	struct hw_perf_event *hwc = &event->hw;
5867 5868 5869 5870 5871
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5872 5873

again:
5874
	old = val = local64_read(&hwc->period_left);
5875 5876
	if (val < 0)
		return 0;
5877

5878 5879 5880
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5881
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5882
		goto again;
5883

5884
	return nr;
5885 5886
}

5887
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5888
				    struct perf_sample_data *data,
5889
				    struct pt_regs *regs)
5890
{
5891
	struct hw_perf_event *hwc = &event->hw;
5892
	int throttle = 0;
5893

5894 5895
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5896

5897 5898
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5899

5900
	for (; overflow; overflow--) {
5901
		if (__perf_event_overflow(event, throttle,
5902
					    data, regs)) {
5903 5904 5905 5906 5907 5908
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5909
		throttle = 1;
5910
	}
5911 5912
}

P
Peter Zijlstra 已提交
5913
static void perf_swevent_event(struct perf_event *event, u64 nr,
5914
			       struct perf_sample_data *data,
5915
			       struct pt_regs *regs)
5916
{
5917
	struct hw_perf_event *hwc = &event->hw;
5918

5919
	local64_add(nr, &event->count);
5920

5921 5922 5923
	if (!regs)
		return;

5924
	if (!is_sampling_event(event))
5925
		return;
5926

5927 5928 5929 5930 5931 5932
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5933
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5934
		return perf_swevent_overflow(event, 1, data, regs);
5935

5936
	if (local64_add_negative(nr, &hwc->period_left))
5937
		return;
5938

5939
	perf_swevent_overflow(event, 0, data, regs);
5940 5941
}

5942 5943 5944
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5945
	if (event->hw.state & PERF_HES_STOPPED)
5946
		return 1;
P
Peter Zijlstra 已提交
5947

5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5959
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5960
				enum perf_type_id type,
L
Li Zefan 已提交
5961 5962 5963
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5964
{
5965
	if (event->attr.type != type)
5966
		return 0;
5967

5968
	if (event->attr.config != event_id)
5969 5970
		return 0;

5971 5972
	if (perf_exclude_event(event, regs))
		return 0;
5973 5974 5975 5976

	return 1;
}

5977 5978 5979 5980 5981 5982 5983
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5984 5985
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5986
{
5987 5988 5989 5990
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5991

5992 5993
/* For the read side: events when they trigger */
static inline struct hlist_head *
5994
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5995 5996
{
	struct swevent_hlist *hlist;
5997

5998
	hlist = rcu_dereference(swhash->swevent_hlist);
5999 6000 6001
	if (!hlist)
		return NULL;

6002 6003 6004 6005 6006
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
6007
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
6018
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6019 6020 6021 6022 6023
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
6024 6025 6026
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6027
				    u64 nr,
6028 6029
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
6030
{
6031
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6032
	struct perf_event *event;
6033
	struct hlist_head *head;
6034

6035
	rcu_read_lock();
6036
	head = find_swevent_head_rcu(swhash, type, event_id);
6037 6038 6039
	if (!head)
		goto end;

6040
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
6041
		if (perf_swevent_match(event, type, event_id, data, regs))
6042
			perf_swevent_event(event, nr, data, regs);
6043
	}
6044 6045
end:
	rcu_read_unlock();
6046 6047
}

6048 6049
DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);

6050
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
6051
{
6052
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
P
Peter Zijlstra 已提交
6053

6054
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
6055
}
I
Ingo Molnar 已提交
6056
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
6057

6058
inline void perf_swevent_put_recursion_context(int rctx)
6059
{
6060
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6061

6062
	put_recursion_context(swhash->recursion, rctx);
6063
}
6064

6065
void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6066
{
6067
	struct perf_sample_data data;
6068

6069
	if (WARN_ON_ONCE(!regs))
6070
		return;
6071

6072
	perf_sample_data_init(&data, addr, 0);
6073
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
}

void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
	int rctx;

	preempt_disable_notrace();
	rctx = perf_swevent_get_recursion_context();
	if (unlikely(rctx < 0))
		goto fail;

	___perf_sw_event(event_id, nr, regs, addr);
6086 6087

	perf_swevent_put_recursion_context(rctx);
6088
fail:
6089
	preempt_enable_notrace();
6090 6091
}

6092
static void perf_swevent_read(struct perf_event *event)
6093 6094 6095
{
}

P
Peter Zijlstra 已提交
6096
static int perf_swevent_add(struct perf_event *event, int flags)
6097
{
6098
	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6099
	struct hw_perf_event *hwc = &event->hw;
6100 6101
	struct hlist_head *head;

6102
	if (is_sampling_event(event)) {
6103
		hwc->last_period = hwc->sample_period;
6104
		perf_swevent_set_period(event);
6105
	}
6106

P
Peter Zijlstra 已提交
6107 6108
	hwc->state = !(flags & PERF_EF_START);

6109
	head = find_swevent_head(swhash, event);
6110 6111 6112 6113 6114 6115
	if (!head) {
		/*
		 * We can race with cpu hotplug code. Do not
		 * WARN if the cpu just got unplugged.
		 */
		WARN_ON_ONCE(swhash->online);
6116
		return -EINVAL;
6117
	}
6118 6119 6120

	hlist_add_head_rcu(&event->hlist_entry, head);

6121 6122 6123
	return 0;
}

P
Peter Zijlstra 已提交
6124
static void perf_swevent_del(struct perf_event *event, int flags)
6125
{
6126
	hlist_del_rcu(&event->hlist_entry);
6127 6128
}

P
Peter Zijlstra 已提交
6129
static void perf_swevent_start(struct perf_event *event, int flags)
6130
{
P
Peter Zijlstra 已提交
6131
	event->hw.state = 0;
6132
}
I
Ingo Molnar 已提交
6133

P
Peter Zijlstra 已提交
6134
static void perf_swevent_stop(struct perf_event *event, int flags)
6135
{
P
Peter Zijlstra 已提交
6136
	event->hw.state = PERF_HES_STOPPED;
6137 6138
}

6139 6140
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
6141
swevent_hlist_deref(struct swevent_htable *swhash)
6142
{
6143 6144
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
6145 6146
}

6147
static void swevent_hlist_release(struct swevent_htable *swhash)
6148
{
6149
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6150

6151
	if (!hlist)
6152 6153
		return;

6154
	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6155
	kfree_rcu(hlist, rcu_head);
6156 6157 6158 6159
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
6160
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6161

6162
	mutex_lock(&swhash->hlist_mutex);
6163

6164 6165
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
6166

6167
	mutex_unlock(&swhash->hlist_mutex);
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
6180
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6181 6182
	int err = 0;

6183
	mutex_lock(&swhash->hlist_mutex);
6184

6185
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6186 6187 6188 6189 6190 6191 6192
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
6193
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6194
	}
6195
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
6196
exit:
6197
	mutex_unlock(&swhash->hlist_mutex);
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
6218
fail:
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

6229
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6230

6231 6232 6233
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
6234

6235 6236
	WARN_ON(event->parent);

6237
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6238 6239 6240 6241 6242
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
6243
	u64 event_id = event->attr.config;
6244 6245 6246 6247

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

6248 6249 6250 6251 6252 6253
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6254 6255 6256 6257 6258 6259 6260 6261 6262
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

6263
	if (event_id >= PERF_COUNT_SW_MAX)
6264 6265 6266 6267 6268 6269 6270 6271 6272
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

6273
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6274 6275 6276 6277 6278 6279 6280
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
6281
	.task_ctx_nr	= perf_sw_context,
6282

6283
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
6284 6285 6286 6287
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6288 6289 6290
	.read		= perf_swevent_read,
};

6291 6292
#ifdef CONFIG_EVENT_TRACING

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
6307 6308
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
6309 6310 6311 6312
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
6313 6314 6315 6316 6317 6318 6319 6320 6321
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6322 6323
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
6324 6325
{
	struct perf_sample_data data;
6326 6327
	struct perf_event *event;

6328 6329 6330 6331 6332
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

6333
	perf_sample_data_init(&data, addr, 0);
6334 6335
	data.raw = &raw;

6336
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6337
		if (perf_tp_event_match(event, &data, regs))
6338
			perf_swevent_event(event, count, &data, regs);
6339
	}
6340

6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

6366
	perf_swevent_put_recursion_context(rctx);
6367 6368 6369
}
EXPORT_SYMBOL_GPL(perf_tp_event);

6370
static void tp_perf_event_destroy(struct perf_event *event)
6371
{
6372
	perf_trace_destroy(event);
6373 6374
}

6375
static int perf_tp_event_init(struct perf_event *event)
6376
{
6377 6378
	int err;

6379 6380 6381
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

6382 6383 6384 6385 6386 6387
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

6388 6389
	err = perf_trace_init(event);
	if (err)
6390
		return err;
6391

6392
	event->destroy = tp_perf_event_destroy;
6393

6394 6395 6396 6397
	return 0;
}

static struct pmu perf_tracepoint = {
6398 6399
	.task_ctx_nr	= perf_sw_context,

6400
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
6401 6402 6403 6404
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
6405 6406 6407 6408 6409
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
6410
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6411
}
L
Li Zefan 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

6436
#else
L
Li Zefan 已提交
6437

6438
static inline void perf_tp_register(void)
6439 6440
{
}
L
Li Zefan 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

6451
#endif /* CONFIG_EVENT_TRACING */
6452

6453
#ifdef CONFIG_HAVE_HW_BREAKPOINT
6454
void perf_bp_event(struct perf_event *bp, void *data)
6455
{
6456 6457 6458
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

6459
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6460

P
Peter Zijlstra 已提交
6461
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6462
		perf_swevent_event(bp, 1, &sample, regs);
6463 6464 6465
}
#endif

6466 6467 6468
/*
 * hrtimer based swevent callback
 */
6469

6470
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6471
{
6472 6473 6474 6475 6476
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
6477

6478
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
6479 6480 6481 6482

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

6483
	event->pmu->read(event);
6484

6485
	perf_sample_data_init(&data, 0, event->hw.last_period);
6486 6487 6488
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
6489
		if (!(event->attr.exclude_idle && is_idle_task(current)))
6490
			if (__perf_event_overflow(event, 1, &data, regs))
6491 6492
				ret = HRTIMER_NORESTART;
	}
6493

6494 6495
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6496

6497
	return ret;
6498 6499
}

6500
static void perf_swevent_start_hrtimer(struct perf_event *event)
6501
{
6502
	struct hw_perf_event *hwc = &event->hw;
6503 6504 6505 6506
	s64 period;

	if (!is_sampling_event(event))
		return;
6507

6508 6509 6510 6511
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
6512

6513 6514 6515 6516 6517
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
6518
				ns_to_ktime(period), 0,
6519
				HRTIMER_MODE_REL_PINNED, 0);
6520
}
6521 6522

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6523
{
6524 6525
	struct hw_perf_event *hwc = &event->hw;

6526
	if (is_sampling_event(event)) {
6527
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
6528
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6529 6530 6531

		hrtimer_cancel(&hwc->hrtimer);
	}
6532 6533
}

P
Peter Zijlstra 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
6554
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
6555 6556 6557 6558
		event->attr.freq = 0;
	}
}

6559 6560 6561 6562 6563
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
6564
{
6565 6566 6567
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
6568
	now = local_clock();
6569 6570
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
6571 6572
}

P
Peter Zijlstra 已提交
6573
static void cpu_clock_event_start(struct perf_event *event, int flags)
6574
{
P
Peter Zijlstra 已提交
6575
	local64_set(&event->hw.prev_count, local_clock());
6576 6577 6578
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6579
static void cpu_clock_event_stop(struct perf_event *event, int flags)
6580
{
6581 6582 6583
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
6584

P
Peter Zijlstra 已提交
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

6598 6599 6600 6601
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
6602

6603 6604 6605 6606 6607 6608 6609 6610
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

6611 6612 6613 6614 6615 6616
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6617 6618
	perf_swevent_init_hrtimer(event);

6619
	return 0;
6620 6621
}

6622
static struct pmu perf_cpu_clock = {
6623 6624
	.task_ctx_nr	= perf_sw_context,

6625
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6626 6627 6628 6629
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6630 6631 6632 6633 6634 6635 6636 6637
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6638
{
6639 6640
	u64 prev;
	s64 delta;
6641

6642 6643 6644 6645
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6646

P
Peter Zijlstra 已提交
6647
static void task_clock_event_start(struct perf_event *event, int flags)
6648
{
P
Peter Zijlstra 已提交
6649
	local64_set(&event->hw.prev_count, event->ctx->time);
6650 6651 6652
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6653
static void task_clock_event_stop(struct perf_event *event, int flags)
6654 6655 6656
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6657 6658 6659 6660 6661 6662
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6663

P
Peter Zijlstra 已提交
6664 6665 6666 6667 6668 6669
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6670 6671 6672 6673
}

static void task_clock_event_read(struct perf_event *event)
{
6674 6675 6676
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6677 6678 6679 6680 6681

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6682
{
6683 6684 6685 6686 6687 6688
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6689 6690 6691 6692 6693 6694
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6695 6696
	perf_swevent_init_hrtimer(event);

6697
	return 0;
L
Li Zefan 已提交
6698 6699
}

6700
static struct pmu perf_task_clock = {
6701 6702
	.task_ctx_nr	= perf_sw_context,

6703
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6704 6705 6706 6707
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6708 6709
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
6710

P
Peter Zijlstra 已提交
6711
static void perf_pmu_nop_void(struct pmu *pmu)
6712 6713
{
}
L
Li Zefan 已提交
6714

P
Peter Zijlstra 已提交
6715
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6716
{
P
Peter Zijlstra 已提交
6717
	return 0;
L
Li Zefan 已提交
6718 6719
}

P
Peter Zijlstra 已提交
6720
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6721
{
P
Peter Zijlstra 已提交
6722
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6723 6724
}

P
Peter Zijlstra 已提交
6725 6726 6727 6728 6729
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6730

P
Peter Zijlstra 已提交
6731
static void perf_pmu_cancel_txn(struct pmu *pmu)
6732
{
P
Peter Zijlstra 已提交
6733
	perf_pmu_enable(pmu);
6734 6735
}

6736 6737
static int perf_event_idx_default(struct perf_event *event)
{
6738
	return 0;
6739 6740
}

P
Peter Zijlstra 已提交
6741 6742 6743 6744
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
6745
static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6746
{
P
Peter Zijlstra 已提交
6747
	struct pmu *pmu;
6748

P
Peter Zijlstra 已提交
6749 6750
	if (ctxn < 0)
		return NULL;
6751

P
Peter Zijlstra 已提交
6752 6753 6754 6755
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6756

P
Peter Zijlstra 已提交
6757
	return NULL;
6758 6759
}

6760
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6761
{
6762 6763 6764 6765 6766 6767 6768
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6769 6770
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6771 6772 6773 6774 6775 6776
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6777

P
Peter Zijlstra 已提交
6778
	mutex_lock(&pmus_lock);
6779
	/*
P
Peter Zijlstra 已提交
6780
	 * Like a real lame refcount.
6781
	 */
6782 6783 6784
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6785
			goto out;
6786
		}
P
Peter Zijlstra 已提交
6787
	}
6788

6789
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6790 6791
out:
	mutex_unlock(&pmus_lock);
6792
}
P
Peter Zijlstra 已提交
6793
static struct idr pmu_idr;
6794

P
Peter Zijlstra 已提交
6795 6796 6797 6798 6799 6800 6801
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}
6802
static DEVICE_ATTR_RO(type);
P
Peter Zijlstra 已提交
6803

6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}
6847
static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6848

6849 6850 6851 6852
static struct attribute *pmu_dev_attrs[] = {
	&dev_attr_type.attr,
	&dev_attr_perf_event_mux_interval_ms.attr,
	NULL,
P
Peter Zijlstra 已提交
6853
};
6854
ATTRIBUTE_GROUPS(pmu_dev);
P
Peter Zijlstra 已提交
6855 6856 6857 6858

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
6859
	.dev_groups	= pmu_dev_groups,
P
Peter Zijlstra 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6875
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6896
static struct lock_class_key cpuctx_mutex;
6897
static struct lock_class_key cpuctx_lock;
6898

6899
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6900
{
P
Peter Zijlstra 已提交
6901
	int cpu, ret;
6902

6903
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6904 6905 6906 6907
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6908

P
Peter Zijlstra 已提交
6909 6910 6911 6912 6913 6914
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6915 6916 6917
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6918 6919 6920 6921 6922
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6923 6924 6925 6926 6927 6928
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6929
skip_type:
P
Peter Zijlstra 已提交
6930 6931 6932
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6933

W
Wei Yongjun 已提交
6934
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6935 6936
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6937
		goto free_dev;
6938

P
Peter Zijlstra 已提交
6939 6940 6941 6942
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6943
		__perf_event_init_context(&cpuctx->ctx);
6944
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6945
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
P
Peter Zijlstra 已提交
6946
		cpuctx->ctx.pmu = pmu;
6947 6948 6949

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6950
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6951
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6952
	}
6953

P
Peter Zijlstra 已提交
6954
got_cpu_context:
P
Peter Zijlstra 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6969
		}
6970
	}
6971

P
Peter Zijlstra 已提交
6972 6973 6974 6975 6976
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6977 6978 6979
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6980
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6981 6982
	ret = 0;
unlock:
6983 6984
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6985
	return ret;
P
Peter Zijlstra 已提交
6986

P
Peter Zijlstra 已提交
6987 6988 6989 6990
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6991 6992 6993 6994
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6995 6996 6997
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6998
}
6999
EXPORT_SYMBOL_GPL(perf_pmu_register);
7000

7001
void perf_pmu_unregister(struct pmu *pmu)
7002
{
7003 7004 7005
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
7006

7007
	/*
P
Peter Zijlstra 已提交
7008 7009
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
7010
	 */
7011
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
7012
	synchronize_rcu();
7013

P
Peter Zijlstra 已提交
7014
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
7015 7016
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
7017 7018
	device_del(pmu->dev);
	put_device(pmu->dev);
7019
	free_pmu_context(pmu);
7020
}
7021
EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7022

7023 7024 7025 7026
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
7027
	int ret;
7028 7029

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
7030 7031 7032 7033

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
7034
	if (pmu) {
7035 7036 7037 7038
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
7039
		event->pmu = pmu;
7040 7041 7042
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7043
		goto unlock;
7044
	}
P
Peter Zijlstra 已提交
7045

7046
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7047 7048 7049 7050
		if (!try_module_get(pmu->module)) {
			pmu = ERR_PTR(-ENODEV);
			goto unlock;
		}
7051
		event->pmu = pmu;
7052
		ret = pmu->event_init(event);
7053
		if (!ret)
P
Peter Zijlstra 已提交
7054
			goto unlock;
7055

7056 7057
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
7058
			goto unlock;
7059
		}
7060
	}
P
Peter Zijlstra 已提交
7061 7062
	pmu = ERR_PTR(-ENOENT);
unlock:
7063
	srcu_read_unlock(&pmus_srcu, idx);
7064

7065
	return pmu;
7066 7067
}

7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
static void account_event_cpu(struct perf_event *event, int cpu)
{
	if (event->parent)
		return;

	if (has_branch_stack(event)) {
		if (!(event->attach_state & PERF_ATTACH_TASK))
			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
	}
	if (is_cgroup_event(event))
		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
}

7081 7082
static void account_event(struct perf_event *event)
{
7083 7084 7085
	if (event->parent)
		return;

7086 7087 7088 7089 7090 7091 7092 7093
	if (event->attach_state & PERF_ATTACH_TASK)
		static_key_slow_inc(&perf_sched_events.key);
	if (event->attr.mmap || event->attr.mmap_data)
		atomic_inc(&nr_mmap_events);
	if (event->attr.comm)
		atomic_inc(&nr_comm_events);
	if (event->attr.task)
		atomic_inc(&nr_task_events);
7094 7095 7096 7097
	if (event->attr.freq) {
		if (atomic_inc_return(&nr_freq_events) == 1)
			tick_nohz_full_kick_all();
	}
7098
	if (has_branch_stack(event))
7099
		static_key_slow_inc(&perf_sched_events.key);
7100
	if (is_cgroup_event(event))
7101
		static_key_slow_inc(&perf_sched_events.key);
7102 7103

	account_event_cpu(event, event->cpu);
7104 7105
}

T
Thomas Gleixner 已提交
7106
/*
7107
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
7108
 */
7109
static struct perf_event *
7110
perf_event_alloc(struct perf_event_attr *attr, int cpu,
7111 7112 7113
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
7114 7115
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
7116
{
P
Peter Zijlstra 已提交
7117
	struct pmu *pmu;
7118 7119
	struct perf_event *event;
	struct hw_perf_event *hwc;
7120
	long err = -EINVAL;
T
Thomas Gleixner 已提交
7121

7122 7123 7124 7125 7126
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

7127
	event = kzalloc(sizeof(*event), GFP_KERNEL);
7128
	if (!event)
7129
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
7130

7131
	/*
7132
	 * Single events are their own group leaders, with an
7133 7134 7135
	 * empty sibling list:
	 */
	if (!group_leader)
7136
		group_leader = event;
7137

7138 7139
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
7140

7141 7142 7143
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
7144
	INIT_LIST_HEAD(&event->rb_entry);
7145
	INIT_LIST_HEAD(&event->active_entry);
7146 7147
	INIT_HLIST_NODE(&event->hlist_entry);

7148

7149
	init_waitqueue_head(&event->waitq);
7150
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
7151

7152
	mutex_init(&event->mmap_mutex);
7153

7154
	atomic_long_set(&event->refcount, 1);
7155 7156 7157 7158 7159
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
7160

7161
	event->parent		= parent_event;
7162

7163
	event->ns		= get_pid_ns(task_active_pid_ns(current));
7164
	event->id		= atomic64_inc_return(&perf_event_id);
7165

7166
	event->state		= PERF_EVENT_STATE_INACTIVE;
7167

7168 7169
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
7170 7171 7172

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
7173 7174 7175 7176
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
7177
		else if (attr->type == PERF_TYPE_BREAKPOINT)
7178 7179 7180 7181
			event->hw.bp_target = task;
#endif
	}

7182
	if (!overflow_handler && parent_event) {
7183
		overflow_handler = parent_event->overflow_handler;
7184 7185
		context = parent_event->overflow_handler_context;
	}
7186

7187
	event->overflow_handler	= overflow_handler;
7188
	event->overflow_handler_context = context;
7189

J
Jiri Olsa 已提交
7190
	perf_event__state_init(event);
7191

7192
	pmu = NULL;
7193

7194
	hwc = &event->hw;
7195
	hwc->sample_period = attr->sample_period;
7196
	if (attr->freq && attr->sample_freq)
7197
		hwc->sample_period = 1;
7198
	hwc->last_period = hwc->sample_period;
7199

7200
	local64_set(&hwc->period_left, hwc->sample_period);
7201

7202
	/*
7203
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7204
	 */
7205
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7206
		goto err_ns;
7207

7208
	pmu = perf_init_event(event);
7209
	if (!pmu)
7210 7211
		goto err_ns;
	else if (IS_ERR(pmu)) {
7212
		err = PTR_ERR(pmu);
7213
		goto err_ns;
I
Ingo Molnar 已提交
7214
	}
7215

7216
	if (!event->parent) {
7217 7218
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
7219 7220
			if (err)
				goto err_pmu;
7221
		}
7222
	}
7223

7224
	return event;
7225 7226 7227 7228

err_pmu:
	if (event->destroy)
		event->destroy(event);
7229
	module_put(pmu->module);
7230 7231 7232 7233 7234 7235
err_ns:
	if (event->ns)
		put_pid_ns(event->ns);
	kfree(event);

	return ERR_PTR(err);
T
Thomas Gleixner 已提交
7236 7237
}

7238 7239
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
7240 7241
{
	u32 size;
7242
	int ret;
7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
7267 7268 7269
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
7270 7271
	 */
	if (size > sizeof(*attr)) {
7272 7273 7274
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
7275

7276 7277
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
7278

7279
		for (; addr < end; addr++) {
7280 7281 7282 7283 7284 7285
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
7286
		size = sizeof(*attr);
7287 7288 7289 7290 7291 7292
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

7293
	if (attr->__reserved_1)
7294 7295 7296 7297 7298 7299 7300 7301
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
7330 7331
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7332 7333
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
7334
	}
7335

7336
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7337
		ret = perf_reg_validate(attr->sample_regs_user);
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
7356

7357 7358
	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
		ret = perf_reg_validate(attr->sample_regs_intr);
7359 7360 7361 7362 7363 7364 7365 7366 7367
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

7368 7369
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7370
{
7371
	struct ring_buffer *rb = NULL;
7372 7373
	int ret = -EINVAL;

7374
	if (!output_event)
7375 7376
		goto set;

7377 7378
	/* don't allow circular references */
	if (event == output_event)
7379 7380
		goto out;

7381 7382 7383 7384 7385 7386 7387
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
7388
	 * If its not a per-cpu rb, it must be the same task.
7389 7390 7391 7392
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

7393
set:
7394
	mutex_lock(&event->mmap_mutex);
7395 7396 7397
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
7398

7399
	if (output_event) {
7400 7401 7402
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
7403
			goto unlock;
7404 7405
	}

7406
	ring_buffer_attach(event, rb);
7407

7408
	ret = 0;
7409 7410 7411
unlock:
	mutex_unlock(&event->mmap_mutex);

7412 7413 7414 7415
out:
	return ret;
}

P
Peter Zijlstra 已提交
7416 7417 7418 7419 7420 7421 7422 7423 7424
static void mutex_lock_double(struct mutex *a, struct mutex *b)
{
	if (b < a)
		swap(a, b);

	mutex_lock(a);
	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
}

T
Thomas Gleixner 已提交
7425
/**
7426
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
7427
 *
7428
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
7429
 * @pid:		target pid
I
Ingo Molnar 已提交
7430
 * @cpu:		target cpu
7431
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
7432
 */
7433 7434
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
7435
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
7436
{
7437 7438
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
7439
	struct perf_event_attr attr;
P
Peter Zijlstra 已提交
7440
	struct perf_event_context *ctx, *uninitialized_var(gctx);
7441
	struct file *event_file = NULL;
7442
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
7443
	struct task_struct *task = NULL;
7444
	struct pmu *pmu;
7445
	int event_fd;
7446
	int move_group = 0;
7447
	int err;
7448
	int f_flags = O_RDWR;
T
Thomas Gleixner 已提交
7449

7450
	/* for future expandability... */
S
Stephane Eranian 已提交
7451
	if (flags & ~PERF_FLAG_ALL)
7452 7453
		return -EINVAL;

7454 7455 7456
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
7457

7458 7459 7460 7461 7462
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

7463
	if (attr.freq) {
7464
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7465
			return -EINVAL;
7466 7467 7468
	} else {
		if (attr.sample_period & (1ULL << 63))
			return -EINVAL;
7469 7470
	}

S
Stephane Eranian 已提交
7471 7472 7473 7474 7475 7476 7477 7478 7479
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

7480 7481 7482 7483
	if (flags & PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;

	event_fd = get_unused_fd_flags(f_flags);
7484 7485 7486
	if (event_fd < 0)
		return event_fd;

7487
	if (group_fd != -1) {
7488 7489
		err = perf_fget_light(group_fd, &group);
		if (err)
7490
			goto err_fd;
7491
		group_leader = group.file->private_data;
7492 7493 7494 7495 7496 7497
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
7498
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7499 7500 7501 7502 7503 7504 7505
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

7506 7507 7508 7509 7510 7511
	if (task && group_leader &&
	    group_leader->attr.inherit != attr.inherit) {
		err = -EINVAL;
		goto err_task;
	}

7512 7513
	get_online_cpus();

7514 7515
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
7516 7517
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
7518
		goto err_cpus;
7519 7520
	}

S
Stephane Eranian 已提交
7521 7522
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7523 7524
		if (err) {
			__free_event(event);
7525
			goto err_cpus;
7526
		}
S
Stephane Eranian 已提交
7527 7528
	}

7529 7530 7531 7532 7533 7534 7535
	if (is_sampling_event(event)) {
		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
			err = -ENOTSUPP;
			goto err_alloc;
		}
	}

7536 7537
	account_event(event);

7538 7539 7540 7541 7542
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
7566 7567 7568 7569

	/*
	 * Get the target context (task or percpu):
	 */
7570
	ctx = find_get_context(pmu, task, event->cpu);
7571 7572
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7573
		goto err_alloc;
7574 7575
	}

7576 7577 7578 7579 7580
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
7581
	/*
7582
	 * Look up the group leader (we will attach this event to it):
7583
	 */
7584
	if (group_leader) {
7585
		err = -EINVAL;
7586 7587

		/*
I
Ingo Molnar 已提交
7588 7589 7590 7591
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
7592
			goto err_context;
I
Ingo Molnar 已提交
7593 7594 7595
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
7596
		 */
7597
		if (move_group) {
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
			/*
			 * Make sure we're both on the same task, or both
			 * per-cpu events.
			 */
			if (group_leader->ctx->task != ctx->task)
				goto err_context;

			/*
			 * Make sure we're both events for the same CPU;
			 * grouping events for different CPUs is broken; since
			 * you can never concurrently schedule them anyhow.
			 */
			if (group_leader->cpu != event->cpu)
7611 7612 7613 7614 7615 7616
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

7617 7618 7619
		/*
		 * Only a group leader can be exclusive or pinned
		 */
7620
		if (attr.exclusive || attr.pinned)
7621
			goto err_context;
7622 7623 7624 7625 7626
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
7627
			goto err_context;
7628
	}
T
Thomas Gleixner 已提交
7629

7630 7631
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
					f_flags);
7632 7633
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
7634
		goto err_context;
7635
	}
7636

7637
	if (move_group) {
P
Peter Zijlstra 已提交
7638 7639 7640 7641 7642 7643 7644
		gctx = group_leader->ctx;

		/*
		 * See perf_event_ctx_lock() for comments on the details
		 * of swizzling perf_event::ctx.
		 */
		mutex_lock_double(&gctx->mutex, &ctx->mutex);
7645

7646
		perf_remove_from_context(group_leader, false);
J
Jiri Olsa 已提交
7647 7648 7649 7650 7651 7652 7653

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
7654 7655
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7656
			perf_remove_from_context(sibling, false);
J
Jiri Olsa 已提交
7657
			perf_event__state_init(sibling);
7658 7659
			put_ctx(gctx);
		}
P
Peter Zijlstra 已提交
7660 7661
	} else {
		mutex_lock(&ctx->mutex);
7662
	}
7663

7664
	WARN_ON_ONCE(ctx->parent_ctx);
7665 7666

	if (move_group) {
P
Peter Zijlstra 已提交
7667 7668 7669 7670
		/*
		 * Wait for everybody to stop referencing the events through
		 * the old lists, before installing it on new lists.
		 */
7671
		synchronize_rcu();
P
Peter Zijlstra 已提交
7672

7673
		perf_install_in_context(ctx, group_leader, group_leader->cpu);
7674 7675 7676
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
7677
			perf_install_in_context(ctx, sibling, sibling->cpu);
7678 7679 7680 7681
			get_ctx(ctx);
		}
	}

7682
	perf_install_in_context(ctx, event, event->cpu);
7683
	perf_unpin_context(ctx);
P
Peter Zijlstra 已提交
7684 7685 7686 7687 7688

	if (move_group) {
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}
7689
	mutex_unlock(&ctx->mutex);
7690

7691 7692
	put_online_cpus();

7693
	event->owner = current;
P
Peter Zijlstra 已提交
7694

7695 7696 7697
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7698

7699 7700 7701 7702
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7703
	perf_event__id_header_size(event);
7704

7705 7706 7707 7708 7709 7710
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7711
	fdput(group);
7712 7713
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7714

7715
err_context:
7716
	perf_unpin_context(ctx);
7717
	put_ctx(ctx);
7718
err_alloc:
7719
	free_event(event);
7720
err_cpus:
7721
	put_online_cpus();
7722
err_task:
P
Peter Zijlstra 已提交
7723 7724
	if (task)
		put_task_struct(task);
7725
err_group_fd:
7726
	fdput(group);
7727 7728
err_fd:
	put_unused_fd(event_fd);
7729
	return err;
T
Thomas Gleixner 已提交
7730 7731
}

7732 7733 7734 7735 7736
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7737
 * @task: task to profile (NULL for percpu)
7738 7739 7740
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7741
				 struct task_struct *task,
7742 7743
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7744 7745
{
	struct perf_event_context *ctx;
7746
	struct perf_event *event;
7747
	int err;
7748

7749 7750 7751
	/*
	 * Get the target context (task or percpu):
	 */
7752

7753 7754
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7755 7756 7757 7758
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7759

7760 7761 7762
	/* Mark owner so we could distinguish it from user events. */
	event->owner = EVENT_OWNER_KERNEL;

7763 7764
	account_event(event);

M
Matt Helsley 已提交
7765
	ctx = find_get_context(event->pmu, task, cpu);
7766 7767
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7768
		goto err_free;
7769
	}
7770 7771 7772 7773

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
7774
	perf_unpin_context(ctx);
7775 7776 7777 7778
	mutex_unlock(&ctx->mutex);

	return event;

7779 7780 7781
err_free:
	free_event(event);
err:
7782
	return ERR_PTR(err);
7783
}
7784
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7785

7786 7787 7788 7789 7790 7791 7792 7793 7794 7795
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

P
Peter Zijlstra 已提交
7796 7797 7798 7799 7800
	/*
	 * See perf_event_ctx_lock() for comments on the details
	 * of swizzling perf_event::ctx.
	 */
	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
7801 7802
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
7803
		perf_remove_from_context(event, false);
7804
		unaccount_event_cpu(event, src_cpu);
7805
		put_ctx(src_ctx);
7806
		list_add(&event->migrate_entry, &events);
7807 7808 7809 7810
	}

	synchronize_rcu();

7811 7812
	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
		list_del(&event->migrate_entry);
7813 7814
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
7815
		account_event_cpu(event, dst_cpu);
7816 7817 7818 7819
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
P
Peter Zijlstra 已提交
7820
	mutex_unlock(&src_ctx->mutex);
7821 7822 7823
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7824
static void sync_child_event(struct perf_event *child_event,
7825
			       struct task_struct *child)
7826
{
7827
	struct perf_event *parent_event = child_event->parent;
7828
	u64 child_val;
7829

7830 7831
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7832

P
Peter Zijlstra 已提交
7833
	child_val = perf_event_count(child_event);
7834 7835 7836 7837

	/*
	 * Add back the child's count to the parent's count:
	 */
7838
	atomic64_add(child_val, &parent_event->child_count);
7839 7840 7841 7842
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7843 7844

	/*
7845
	 * Remove this event from the parent's list
7846
	 */
7847 7848 7849 7850
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7851

7852 7853 7854 7855 7856 7857
	/*
	 * Make sure user/parent get notified, that we just
	 * lost one event.
	 */
	perf_event_wakeup(parent_event);

7858
	/*
7859
	 * Release the parent event, if this was the last
7860 7861
	 * reference to it.
	 */
7862
	put_event(parent_event);
7863 7864
}

7865
static void
7866 7867
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7868
			 struct task_struct *child)
7869
{
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
	/*
	 * Do not destroy the 'original' grouping; because of the context
	 * switch optimization the original events could've ended up in a
	 * random child task.
	 *
	 * If we were to destroy the original group, all group related
	 * operations would cease to function properly after this random
	 * child dies.
	 *
	 * Do destroy all inherited groups, we don't care about those
	 * and being thorough is better.
	 */
	perf_remove_from_context(child_event, !!child_event->parent);
7883

7884
	/*
7885
	 * It can happen that the parent exits first, and has events
7886
	 * that are still around due to the child reference. These
7887
	 * events need to be zapped.
7888
	 */
7889
	if (child_event->parent) {
7890 7891
		sync_child_event(child_event, child);
		free_event(child_event);
7892 7893 7894
	} else {
		child_event->state = PERF_EVENT_STATE_EXIT;
		perf_event_wakeup(child_event);
7895
	}
7896 7897
}

P
Peter Zijlstra 已提交
7898
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7899
{
7900
	struct perf_event *child_event, *next;
7901
	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7902
	unsigned long flags;
7903

P
Peter Zijlstra 已提交
7904
	if (likely(!child->perf_event_ctxp[ctxn])) {
7905
		perf_event_task(child, NULL, 0);
7906
		return;
P
Peter Zijlstra 已提交
7907
	}
7908

7909
	local_irq_save(flags);
7910 7911 7912 7913 7914 7915
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7916
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7917 7918 7919

	/*
	 * Take the context lock here so that if find_get_context is
7920
	 * reading child->perf_event_ctxp, we wait until it has
7921 7922
	 * incremented the context's refcount before we do put_ctx below.
	 */
7923
	raw_spin_lock(&child_ctx->lock);
7924
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7925
	child->perf_event_ctxp[ctxn] = NULL;
7926

7927 7928 7929
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7930
	 * the events from it.
7931
	 */
7932
	clone_ctx = unclone_ctx(child_ctx);
7933
	update_context_time(child_ctx);
7934
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7935

7936 7937
	if (clone_ctx)
		put_ctx(clone_ctx);
7938

P
Peter Zijlstra 已提交
7939
	/*
7940 7941 7942
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7943
	 */
7944
	perf_event_task(child, child_ctx, 0);
7945

7946 7947 7948
	/*
	 * We can recurse on the same lock type through:
	 *
7949 7950
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7951 7952
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7953 7954 7955
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7956
	mutex_lock(&child_ctx->mutex);
7957

7958
	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7959
		__perf_event_exit_task(child_event, child_ctx, child);
7960

7961 7962 7963
	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7964 7965
}

P
Peter Zijlstra 已提交
7966 7967 7968 7969 7970
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7971
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7972 7973
	int ctxn;

P
Peter Zijlstra 已提交
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7989 7990 7991 7992
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

8005
	put_event(parent);
8006

P
Peter Zijlstra 已提交
8007
	raw_spin_lock_irq(&ctx->lock);
8008
	perf_group_detach(event);
8009
	list_del_event(event, ctx);
P
Peter Zijlstra 已提交
8010
	raw_spin_unlock_irq(&ctx->lock);
8011 8012 8013
	free_event(event);
}

8014
/*
P
Peter Zijlstra 已提交
8015
 * Free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
8016
 * perf_event_init_task below, used by fork() in case of fail.
P
Peter Zijlstra 已提交
8017 8018 8019
 *
 * Not all locks are strictly required, but take them anyway to be nice and
 * help out with the lockdep assertions.
8020
 */
8021
void perf_event_free_task(struct task_struct *task)
8022
{
P
Peter Zijlstra 已提交
8023
	struct perf_event_context *ctx;
8024
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
8025
	int ctxn;
8026

P
Peter Zijlstra 已提交
8027 8028 8029 8030
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
8031

P
Peter Zijlstra 已提交
8032
		mutex_lock(&ctx->mutex);
8033
again:
P
Peter Zijlstra 已提交
8034 8035 8036
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
8037

P
Peter Zijlstra 已提交
8038 8039 8040
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
8041

P
Peter Zijlstra 已提交
8042 8043 8044
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
8045

P
Peter Zijlstra 已提交
8046
		mutex_unlock(&ctx->mutex);
8047

P
Peter Zijlstra 已提交
8048 8049
		put_ctx(ctx);
	}
8050 8051
}

8052 8053 8054 8055 8056 8057 8058 8059
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
8071
	enum perf_event_active_state parent_state = parent_event->state;
P
Peter Zijlstra 已提交
8072
	struct perf_event *child_event;
8073
	unsigned long flags;
P
Peter Zijlstra 已提交
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
8086
					   child,
P
Peter Zijlstra 已提交
8087
					   group_leader, parent_event,
8088
				           NULL, NULL);
P
Peter Zijlstra 已提交
8089 8090
	if (IS_ERR(child_event))
		return child_event;
8091

8092 8093
	if (is_orphaned_event(parent_event) ||
	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8094 8095 8096 8097
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
8098 8099 8100 8101 8102 8103 8104
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
8105
	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
P
Peter Zijlstra 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
8122 8123
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
8124

8125 8126 8127 8128
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
8129
	perf_event__id_header_size(child_event);
8130

P
Peter Zijlstra 已提交
8131 8132 8133
	/*
	 * Link it up in the child's context:
	 */
8134
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8135
	add_event_to_ctx(child_event, child_ctx);
8136
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
8170 8171 8172 8173 8174
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
8175
		   struct task_struct *child, int ctxn,
8176 8177 8178
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
8179
	struct perf_event_context *child_ctx;
8180 8181 8182 8183

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
8184 8185
	}

8186
	child_ctx = child->perf_event_ctxp[ctxn];
8187 8188 8189 8190 8191 8192 8193
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
8194

8195
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8196 8197
		if (!child_ctx)
			return -ENOMEM;
8198

P
Peter Zijlstra 已提交
8199
		child->perf_event_ctxp[ctxn] = child_ctx;
8200 8201 8202 8203 8204 8205 8206 8207 8208
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
8209 8210
}

8211
/*
8212
 * Initialize the perf_event context in task_struct
8213
 */
8214
static int perf_event_init_context(struct task_struct *child, int ctxn)
8215
{
8216
	struct perf_event_context *child_ctx, *parent_ctx;
8217 8218
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
8219
	struct task_struct *parent = current;
8220
	int inherited_all = 1;
8221
	unsigned long flags;
8222
	int ret = 0;
8223

P
Peter Zijlstra 已提交
8224
	if (likely(!parent->perf_event_ctxp[ctxn]))
8225 8226
		return 0;

8227
	/*
8228 8229
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
8230
	 */
P
Peter Zijlstra 已提交
8231
	parent_ctx = perf_pin_task_context(parent, ctxn);
8232 8233
	if (!parent_ctx)
		return 0;
8234

8235 8236 8237 8238 8239 8240 8241
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

8242 8243 8244 8245
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
8246
	mutex_lock(&parent_ctx->mutex);
8247 8248 8249 8250 8251

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
8252
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
8253 8254
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8255 8256 8257
		if (ret)
			break;
	}
8258

8259 8260 8261 8262 8263 8264 8265 8266 8267
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

8268
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
8269 8270
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
8271
		if (ret)
8272
			break;
8273 8274
	}

8275 8276 8277
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
8278
	child_ctx = child->perf_event_ctxp[ctxn];
8279

8280
	if (child_ctx && inherited_all) {
8281 8282 8283
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
8284 8285 8286
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
8287
		 */
P
Peter Zijlstra 已提交
8288
		cloned_ctx = parent_ctx->parent_ctx;
8289 8290
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
8291
			child_ctx->parent_gen = parent_ctx->parent_gen;
8292 8293 8294 8295 8296
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
8297 8298
	}

P
Peter Zijlstra 已提交
8299
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8300
	mutex_unlock(&parent_ctx->mutex);
8301

8302
	perf_unpin_context(parent_ctx);
8303
	put_ctx(parent_ctx);
8304

8305
	return ret;
8306 8307
}

P
Peter Zijlstra 已提交
8308 8309 8310 8311 8312 8313 8314
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

8315 8316 8317 8318
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
8319 8320
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
P
Peter Zijlstra 已提交
8321 8322
		if (ret) {
			perf_event_free_task(child);
P
Peter Zijlstra 已提交
8323
			return ret;
P
Peter Zijlstra 已提交
8324
		}
P
Peter Zijlstra 已提交
8325 8326 8327 8328 8329
	}

	return 0;
}

8330 8331
static void __init perf_event_init_all_cpus(void)
{
8332
	struct swevent_htable *swhash;
8333 8334 8335
	int cpu;

	for_each_possible_cpu(cpu) {
8336 8337
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
8338
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8339 8340 8341
	}
}

8342
static void perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
8343
{
P
Peter Zijlstra 已提交
8344
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
8345

8346
	mutex_lock(&swhash->hlist_mutex);
8347
	swhash->online = true;
8348
	if (swhash->hlist_refcount > 0) {
8349 8350
		struct swevent_hlist *hlist;

8351 8352 8353
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8354
	}
8355
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8356 8357
}

P
Peter Zijlstra 已提交
8358
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8359
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
8360
{
8361 8362 8363 8364 8365 8366 8367
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
8368
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
8369
{
8370
	struct remove_event re = { .detach_group = true };
P
Peter Zijlstra 已提交
8371
	struct perf_event_context *ctx = __info;
T
Thomas Gleixner 已提交
8372

P
Peter Zijlstra 已提交
8373
	perf_pmu_rotate_stop(ctx->pmu);
8374

P
Peter Zijlstra 已提交
8375
	rcu_read_lock();
8376 8377
	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
		__perf_remove_from_context(&re);
P
Peter Zijlstra 已提交
8378
	rcu_read_unlock();
T
Thomas Gleixner 已提交
8379
}
P
Peter Zijlstra 已提交
8380 8381 8382 8383 8384 8385 8386 8387 8388

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
8389
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
8390 8391 8392 8393 8394 8395 8396 8397

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

8398
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
8399
{
8400
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8401

P
Peter Zijlstra 已提交
8402 8403
	perf_event_exit_cpu_context(cpu);

8404
	mutex_lock(&swhash->hlist_mutex);
8405
	swhash->online = false;
8406 8407
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
8408 8409
}
#else
8410
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
8411 8412
#endif

P
Peter Zijlstra 已提交
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

8433
static int
T
Thomas Gleixner 已提交
8434 8435 8436 8437
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

8438
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
8439 8440

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
8441
	case CPU_DOWN_FAILED:
8442
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
8443 8444
		break;

P
Peter Zijlstra 已提交
8445
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
8446
	case CPU_DOWN_PREPARE:
8447
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
8448 8449 8450 8451 8452 8453 8454 8455
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

8456
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
8457
{
8458 8459
	int ret;

P
Peter Zijlstra 已提交
8460 8461
	idr_init(&pmu_idr);

8462
	perf_event_init_all_cpus();
8463
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
8464 8465 8466
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
8467 8468
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
8469
	register_reboot_notifier(&perf_reboot_notifier);
8470 8471 8472

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8473 8474 8475

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
8476 8477 8478 8479 8480 8481 8482

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
8483
}
P
Peter Zijlstra 已提交
8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
8512 8513

#ifdef CONFIG_CGROUP_PERF
8514 8515
static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
S
Stephane Eranian 已提交
8516 8517 8518
{
	struct perf_cgroup *jc;

8519
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

8532
static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
S
Stephane Eranian 已提交
8533
{
8534 8535
	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);

S
Stephane Eranian 已提交
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

8547 8548
static void perf_cgroup_attach(struct cgroup_subsys_state *css,
			       struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
8549
{
8550 8551
	struct task_struct *task;

8552
	cgroup_taskset_for_each(task, tset)
8553
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8554 8555
}

8556 8557
static void perf_cgroup_exit(struct cgroup_subsys_state *css,
			     struct cgroup_subsys_state *old_css,
8558
			     struct task_struct *task)
S
Stephane Eranian 已提交
8559 8560 8561 8562 8563 8564 8565 8566 8567
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

8568
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
8569 8570
}

8571
struct cgroup_subsys perf_event_cgrp_subsys = {
8572 8573
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
8574
	.exit		= perf_cgroup_exit,
8575
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
8576 8577
};
#endif /* CONFIG_CGROUP_PERF */