workqueue.c 138.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
19 20 21 22
 * automatically managed.  There are two worker pools for each CPU (one for
 * normal work items and the other for high priority ones) and some extra
 * pools for workqueues which are not bound to any specific CPU - the
 * number of these backing pools is dynamic.
T
Tejun Heo 已提交
23 24
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
25 26
 */

27
#include <linux/export.h>
L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
38
#include <linux/hardirq.h>
39
#include <linux/mempolicy.h>
40
#include <linux/freezer.h>
41 42
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
43
#include <linux/lockdep.h>
T
Tejun Heo 已提交
44
#include <linux/idr.h>
45
#include <linux/jhash.h>
46
#include <linux/hashtable.h>
47
#include <linux/rculist.h>
48
#include <linux/nodemask.h>
49
#include <linux/moduleparam.h>
50
#include <linux/uaccess.h>
51

52
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
53

T
Tejun Heo 已提交
54
enum {
55 56
	/*
	 * worker_pool flags
57
	 *
58
	 * A bound pool is either associated or disassociated with its CPU.
59 60 61 62 63 64
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65
	 * be executing on any CPU.  The pool behaves as an unbound one.
66
	 *
67 68
	 * Note that DISASSOCIATED should be flipped only while holding
	 * manager_mutex to avoid changing binding state while
69
	 * create_worker() is in progress.
70
	 */
71
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74

T
Tejun Heo 已提交
75 76 77 78
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
79
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82
	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83

84 85
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
				  WORKER_UNBOUND | WORKER_REBOUND,
86

87
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88

89
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
90
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91

92 93 94
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

95 96 97
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
98 99 100 101 102 103 104 105
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
106
	HIGHPRI_NICE_LEVEL	= -20,
107 108

	WQ_NAME_LEN		= 24,
T
Tejun Heo 已提交
109
};
L
Linus Torvalds 已提交
110 111

/*
T
Tejun Heo 已提交
112 113
 * Structure fields follow one of the following exclusion rules.
 *
114 115
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
116
 *
117 118 119
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
120
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
121
 *
122 123 124 125
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
126
 *
127 128 129
 * MG: pool->manager_mutex and pool->lock protected.  Writes require both
 *     locks.  Reads can happen under either lock.
 *
130
 * PL: wq_pool_mutex protected.
131
 *
132
 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133
 *
134 135
 * WQ: wq->mutex protected.
 *
136
 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137 138
 *
 * MD: wq_mayday_lock protected.
L
Linus Torvalds 已提交
139 140
 */

141
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
142

143
struct worker_pool {
144
	spinlock_t		lock;		/* the pool lock */
145
	int			cpu;		/* I: the associated cpu */
146
	int			node;		/* I: the associated node ID */
T
Tejun Heo 已提交
147
	int			id;		/* I: pool ID */
148
	unsigned int		flags;		/* X: flags */
149 150 151

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
152 153

	/* nr_idle includes the ones off idle_list for rebinding */
154 155 156 157 158 159
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

160
	/* a workers is either on busy_hash or idle_list, or the manager */
161 162 163
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

164
	/* see manage_workers() for details on the two manager mutexes */
165
	struct mutex		manager_arb;	/* manager arbitration */
166
	struct mutex		manager_mutex;	/* manager exclusion */
167
	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168

T
Tejun Heo 已提交
169
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 171
	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
	int			refcnt;		/* PL: refcnt for unbound pools */
T
Tejun Heo 已提交
172

173 174 175 176 177 178
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 180 181 182 183 184

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
185 186
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
187
/*
188 189 190 191
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
192
 */
193
struct pool_workqueue {
194
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
195
	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 197
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
T
Tejun Heo 已提交
198
	int			refcnt;		/* L: reference count */
199 200
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
201
	int			nr_active;	/* L: nr of active works */
202
	int			max_active;	/* L: max active works */
203
	struct list_head	delayed_works;	/* L: delayed works */
204
	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205
	struct list_head	mayday_node;	/* MD: node on wq->maydays */
T
Tejun Heo 已提交
206 207 208 209 210

	/*
	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
	 * itself is also sched-RCU protected so that the first pwq can be
211
	 * determined without grabbing wq->mutex.
T
Tejun Heo 已提交
212 213 214
	 */
	struct work_struct	unbound_release_work;
	struct rcu_head		rcu;
215
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
216

217 218 219 220
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
221 222
	struct list_head	list;		/* WQ: list of flushers */
	int			flush_color;	/* WQ: flush color waiting for */
223 224 225
	struct completion	done;		/* flush completion */
};

226 227
struct wq_device;

L
Linus Torvalds 已提交
228
/*
229 230
 * The externally visible workqueue.  It relays the issued work items to
 * the appropriate worker_pool through its pool_workqueues.
L
Linus Torvalds 已提交
231 232
 */
struct workqueue_struct {
233
	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234
	struct list_head	list;		/* PL: list of all workqueues */
235

236 237 238
	struct mutex		mutex;		/* protects this wq */
	int			work_color;	/* WQ: current work color */
	int			flush_color;	/* WQ: current flush color */
239
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 241 242
	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
	struct list_head	flusher_queue;	/* WQ: flush waiters */
	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243

244
	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 246
	struct worker		*rescuer;	/* I: rescue worker */

247
	int			nr_drainers;	/* WQ: drain in progress */
248
	int			saved_max_active; /* WQ: saved pwq max_active */
249

250
	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251
	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252

253 254 255
#ifdef CONFIG_SYSFS
	struct wq_device	*wq_dev;	/* I: for sysfs interface */
#endif
256
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
257
	struct lockdep_map	lockdep_map;
258
#endif
259
	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 261 262 263

	/* hot fields used during command issue, aligned to cacheline */
	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264
	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
L
Linus Torvalds 已提交
265 266
};

267 268
static struct kmem_cache *pwq_cache;

269 270 271 272
static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
static cpumask_var_t *wq_numa_possible_cpumask;
					/* possible CPUs of each node */

273 274 275
static bool wq_disable_numa;
module_param_named(disable_numa, wq_disable_numa, bool, 0444);

276 277 278 279 280 281 282 283 284
/* see the comment above the definition of WQ_POWER_EFFICIENT */
#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
static bool wq_power_efficient = true;
#else
static bool wq_power_efficient;
#endif

module_param_named(power_efficient, wq_power_efficient, bool, 0444);

285 286
static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */

287 288 289
/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;

290
static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291
static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292

293 294
static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 296 297 298 299

/* the per-cpu worker pools */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
				     cpu_worker_pools);

300
static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301

302
/* PL: hash of all unbound pools keyed by pool->attrs */
303 304
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

305
/* I: attributes used when instantiating standard unbound pools on demand */
306 307
static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

308
struct workqueue_struct *system_wq __read_mostly;
309
EXPORT_SYMBOL(system_wq);
V
Valentin Ilie 已提交
310
struct workqueue_struct *system_highpri_wq __read_mostly;
311
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
312
struct workqueue_struct *system_long_wq __read_mostly;
313
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
314
struct workqueue_struct *system_unbound_wq __read_mostly;
315
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
316
struct workqueue_struct *system_freezable_wq __read_mostly;
317
EXPORT_SYMBOL_GPL(system_freezable_wq);
318 319 320 321
struct workqueue_struct *system_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
322

323 324 325 326
static int worker_thread(void *__worker);
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from);

327 328 329
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

330
#define assert_rcu_or_pool_mutex()					\
331
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
332 333
			   lockdep_is_held(&wq_pool_mutex),		\
			   "sched RCU or wq_pool_mutex should be held")
334

335
#define assert_rcu_or_wq_mutex(wq)					\
336
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
337
			   lockdep_is_held(&wq->mutex),			\
338
			   "sched RCU or wq->mutex should be held")
339

340 341
#ifdef CONFIG_LOCKDEP
#define assert_manager_or_pool_lock(pool)				\
342 343
	WARN_ONCE(debug_locks &&					\
		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
344 345 346 347 348 349
		  !lockdep_is_held(&(pool)->lock),			\
		  "pool->manager_mutex or ->lock should be held")
#else
#define assert_manager_or_pool_lock(pool)	do { } while (0)
#endif

350 351 352
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
353
	     (pool)++)
354

T
Tejun Heo 已提交
355 356 357
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
358
 * @pi: integer used for iteration
359
 *
360 361 362
 * This must be called either with wq_pool_mutex held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
363 364 365
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
366
 */
367 368
#define for_each_pool(pool, pi)						\
	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
369
		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
370
		else
T
Tejun Heo 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/**
 * for_each_pool_worker - iterate through all workers of a worker_pool
 * @worker: iteration cursor
 * @wi: integer used for iteration
 * @pool: worker_pool to iterate workers of
 *
 * This must be called with either @pool->manager_mutex or ->lock held.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
 */
#define for_each_pool_worker(worker, wi, pool)				\
	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
		else

388 389 390 391
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
392
 *
393
 * This must be called either with wq->mutex held or sched RCU read locked.
394 395
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
396 397 398
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
399 400
 */
#define for_each_pwq(pwq, wq)						\
401
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
402
		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
403
		else
404

405 406 407 408
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

409 410 411 412 413
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
449
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
485
	.debug_hint	= work_debug_hint,
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

T
Tejun Heo 已提交
521 522 523 524 525
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

526
	lockdep_assert_held(&wq_pool_mutex);
527

T
Tejun Heo 已提交
528
	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
529
	if (ret >= 0) {
T
Tejun Heo 已提交
530
		pool->id = ret;
531 532
		return 0;
	}
533
	return ret;
534 535
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/**
 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 * @wq: the target workqueue
 * @node: the node ID
 *
 * This must be called either with pwq_lock held or sched RCU read locked.
 * If the pwq needs to be used beyond the locking in effect, the caller is
 * responsible for guaranteeing that the pwq stays online.
 */
static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
						  int node)
{
	assert_rcu_or_wq_mutex(wq);
	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
567

568
/*
569 570
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
571
 * is cleared and the high bits contain OFFQ flags and pool ID.
572
 *
573 574
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
575 576
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
577
 *
578
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
579
 * corresponding to a work.  Pool is available once the work has been
580
 * queued anywhere after initialization until it is sync canceled.  pwq is
581
 * available only while the work item is queued.
582
 *
583 584 585 586
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
587
 */
588 589
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
590
{
591
	WARN_ON_ONCE(!work_pending(work));
592 593
	atomic_long_set(&work->data, data | flags | work_static(work));
}
594

595
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
596 597
			 unsigned long extra_flags)
{
598 599
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
600 601
}

602 603 604 605 606 607 608
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

609 610
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
611
{
612 613 614 615 616 617 618
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
619
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
620
}
621

622
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
623
{
624 625
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
626 627
}

628
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
629
{
630
	unsigned long data = atomic_long_read(&work->data);
631

632
	if (data & WORK_STRUCT_PWQ)
633 634 635
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
636 637
}

638 639 640 641 642
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
643
 *
644 645 646
 * Pools are created and destroyed under wq_pool_mutex, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under wq_pool_mutex or with preemption disabled.
647 648 649 650 651
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
652 653
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
654
{
655
	unsigned long data = atomic_long_read(&work->data);
656
	int pool_id;
657

658
	assert_rcu_or_pool_mutex();
659

660 661
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
662
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
663

664 665
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
666 667
		return NULL;

668
	return idr_find(&worker_pool_idr, pool_id);
669 670 671 672 673 674 675 676 677 678 679
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
680 681
	unsigned long data = atomic_long_read(&work->data);

682 683
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
684
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
685

686
	return data >> WORK_OFFQ_POOL_SHIFT;
687 688
}

689 690
static void mark_work_canceling(struct work_struct *work)
{
691
	unsigned long pool_id = get_work_pool_id(work);
692

693 694
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
695 696 697 698 699 700
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

701
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
702 703
}

704
/*
705 706
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
707
 * they're being called with pool->lock held.
708 709
 */

710
static bool __need_more_worker(struct worker_pool *pool)
711
{
712
	return !atomic_read(&pool->nr_running);
713 714
}

715
/*
716 717
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
718 719
 *
 * Note that, because unbound workers never contribute to nr_running, this
720
 * function will always return %true for unbound pools as long as the
721
 * worklist isn't empty.
722
 */
723
static bool need_more_worker(struct worker_pool *pool)
724
{
725
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
726
}
727

728
/* Can I start working?  Called from busy but !running workers. */
729
static bool may_start_working(struct worker_pool *pool)
730
{
731
	return pool->nr_idle;
732 733 734
}

/* Do I need to keep working?  Called from currently running workers. */
735
static bool keep_working(struct worker_pool *pool)
736
{
737 738
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
739 740 741
}

/* Do we need a new worker?  Called from manager. */
742
static bool need_to_create_worker(struct worker_pool *pool)
743
{
744
	return need_more_worker(pool) && !may_start_working(pool);
745
}
746

747
/* Do I need to be the manager? */
748
static bool need_to_manage_workers(struct worker_pool *pool)
749
{
750
	return need_to_create_worker(pool) ||
751
		(pool->flags & POOL_MANAGE_WORKERS);
752 753 754
}

/* Do we have too many workers and should some go away? */
755
static bool too_many_workers(struct worker_pool *pool)
756
{
757
	bool managing = mutex_is_locked(&pool->manager_arb);
758 759
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
760

761 762 763 764 765 766 767
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

768
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
769 770
}

771
/*
772 773 774
 * Wake up functions.
 */

775
/* Return the first worker.  Safe with preemption disabled */
776
static struct worker *first_worker(struct worker_pool *pool)
777
{
778
	if (unlikely(list_empty(&pool->idle_list)))
779 780
		return NULL;

781
	return list_first_entry(&pool->idle_list, struct worker, entry);
782 783 784 785
}

/**
 * wake_up_worker - wake up an idle worker
786
 * @pool: worker pool to wake worker from
787
 *
788
 * Wake up the first idle worker of @pool.
789 790
 *
 * CONTEXT:
791
 * spin_lock_irq(pool->lock).
792
 */
793
static void wake_up_worker(struct worker_pool *pool)
794
{
795
	struct worker *worker = first_worker(pool);
796 797 798 799 800

	if (likely(worker))
		wake_up_process(worker->task);
}

801
/**
802 803 804 805 806 807 808 809 810 811
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
812
void wq_worker_waking_up(struct task_struct *task, int cpu)
813 814 815
{
	struct worker *worker = kthread_data(task);

816
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
817
		WARN_ON_ONCE(worker->pool->cpu != cpu);
818
		atomic_inc(&worker->pool->nr_running);
819
	}
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
837
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
838 839
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
840
	struct worker_pool *pool;
841

842 843 844 845 846
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
847
	if (worker->flags & WORKER_NOT_RUNNING)
848 849
		return NULL;

850 851
	pool = worker->pool;

852
	/* this can only happen on the local cpu */
853 854
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
855 856 857 858 859 860

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
861 862 863
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
864
	 * manipulating idle_list, so dereferencing idle_list without pool
865
	 * lock is safe.
866
	 */
867 868
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
869
		to_wakeup = first_worker(pool);
870 871 872 873 874
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
875
 * @worker: self
876 877 878
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
879 880 881
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
882
 *
883
 * CONTEXT:
884
 * spin_lock_irq(pool->lock)
885 886 887 888
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
889
	struct worker_pool *pool = worker->pool;
890

891 892
	WARN_ON_ONCE(worker->task != current);

893 894 895 896 897 898 899 900
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
901
			if (atomic_dec_and_test(&pool->nr_running) &&
902
			    !list_empty(&pool->worklist))
903
				wake_up_worker(pool);
904
		} else
905
			atomic_dec(&pool->nr_running);
906 907
	}

908 909 910 911
	worker->flags |= flags;
}

/**
912
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
913
 * @worker: self
914 915
 * @flags: flags to clear
 *
916
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
917
 *
918
 * CONTEXT:
919
 * spin_lock_irq(pool->lock)
920 921 922
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
923
	struct worker_pool *pool = worker->pool;
924 925
	unsigned int oflags = worker->flags;

926 927
	WARN_ON_ONCE(worker->task != current);

928
	worker->flags &= ~flags;
929

930 931 932 933 934
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
935 936
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
937
			atomic_inc(&pool->nr_running);
938 939
}

940 941
/**
 * find_worker_executing_work - find worker which is executing a work
942
 * @pool: pool of interest
943 944
 * @work: work to find worker for
 *
945 946
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
947 948 949 950 951 952 953 954 955 956 957 958
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
959 960 961 962 963 964
 * This function checks the work item address and work function to avoid
 * false positives.  Note that this isn't complete as one may construct a
 * work function which can introduce dependency onto itself through a
 * recycled work item.  Well, if somebody wants to shoot oneself in the
 * foot that badly, there's only so much we can do, and if such deadlock
 * actually occurs, it should be easy to locate the culprit work function.
965 966
 *
 * CONTEXT:
967
 * spin_lock_irq(pool->lock).
968 969 970 971
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
972
 */
973
static struct worker *find_worker_executing_work(struct worker_pool *pool,
974
						 struct work_struct *work)
975
{
976 977
	struct worker *worker;

978
	hash_for_each_possible(pool->busy_hash, worker, hentry,
979 980 981
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
982 983 984
			return worker;

	return NULL;
985 986
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
1002
 * spin_lock_irq(pool->lock).
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

T
Tejun Heo 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * get_pwq - get an extra reference on the specified pool_workqueue
 * @pwq: pool_workqueue to get
 *
 * Obtain an extra reference on @pwq.  The caller should guarantee that
 * @pwq has positive refcnt and be holding the matching pool->lock.
 */
static void get_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	WARN_ON_ONCE(pwq->refcnt <= 0);
	pwq->refcnt++;
}

/**
 * put_pwq - put a pool_workqueue reference
 * @pwq: pool_workqueue to put
 *
 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
 * destruction.  The caller should be holding the matching pool->lock.
 */
static void put_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&pwq->pool->lock);
	if (likely(--pwq->refcnt))
		return;
	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
		return;
	/*
	 * @pwq can't be released under pool->lock, bounce to
	 * pwq_unbound_release_workfn().  This never recurses on the same
	 * pool->lock as this path is taken only for unbound workqueues and
	 * the release work item is scheduled on a per-cpu workqueue.  To
	 * avoid lockdep warning, unbound pool->locks are given lockdep
	 * subclass of 1 in get_unbound_pool().
	 */
	schedule_work(&pwq->unbound_release_work);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
 * @pwq: pool_workqueue to put (can be %NULL)
 *
 * put_pwq() with locking.  This function also allows %NULL @pwq.
 */
static void put_pwq_unlocked(struct pool_workqueue *pwq)
{
	if (pwq) {
		/*
		 * As both pwqs and pools are sched-RCU protected, the
		 * following lock operations are safe.
		 */
		spin_lock_irq(&pwq->pool->lock);
		put_pwq(pwq);
		spin_unlock_irq(&pwq->pool->lock);
	}
}

1086
static void pwq_activate_delayed_work(struct work_struct *work)
1087
{
1088
	struct pool_workqueue *pwq = get_work_pwq(work);
1089 1090

	trace_workqueue_activate_work(work);
1091
	move_linked_works(work, &pwq->pool->worklist, NULL);
1092
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1093
	pwq->nr_active++;
1094 1095
}

1096
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1097
{
1098
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1099 1100
						    struct work_struct, entry);

1101
	pwq_activate_delayed_work(work);
1102 1103
}

1104
/**
1105 1106
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
1107 1108 1109
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
1110
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1111 1112
 *
 * CONTEXT:
1113
 * spin_lock_irq(pool->lock).
1114
 */
1115
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1116
{
T
Tejun Heo 已提交
1117
	/* uncolored work items don't participate in flushing or nr_active */
1118
	if (color == WORK_NO_COLOR)
T
Tejun Heo 已提交
1119
		goto out_put;
1120

1121
	pwq->nr_in_flight[color]--;
1122

1123 1124
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
1125
		/* one down, submit a delayed one */
1126 1127
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
1128 1129 1130
	}

	/* is flush in progress and are we at the flushing tip? */
1131
	if (likely(pwq->flush_color != color))
T
Tejun Heo 已提交
1132
		goto out_put;
1133 1134

	/* are there still in-flight works? */
1135
	if (pwq->nr_in_flight[color])
T
Tejun Heo 已提交
1136
		goto out_put;
1137

1138 1139
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
1140 1141

	/*
1142
	 * If this was the last pwq, wake up the first flusher.  It
1143 1144
	 * will handle the rest.
	 */
1145 1146
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
T
Tejun Heo 已提交
1147 1148
out_put:
	put_pwq(pwq);
1149 1150
}

1151
/**
1152
 * try_to_grab_pending - steal work item from worklist and disable irq
1153 1154
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1155
 * @flags: place to store irq state
1156 1157 1158 1159 1160 1161 1162
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1163 1164
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1165
 *
1166
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1167 1168 1169
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1170 1171 1172 1173
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1174
 * This function is safe to call from any context including IRQ handler.
1175
 */
1176 1177
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1178
{
1179
	struct worker_pool *pool;
1180
	struct pool_workqueue *pwq;
1181

1182 1183
	local_irq_save(*flags);

1184 1185 1186 1187
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1188 1189 1190 1191 1192
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1193 1194 1195 1196 1197
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1198 1199 1200 1201 1202 1203 1204
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1205 1206
	pool = get_work_pool(work);
	if (!pool)
1207
		goto fail;
1208

1209
	spin_lock(&pool->lock);
1210
	/*
1211 1212 1213 1214 1215
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1216 1217
	 * item is currently queued on that pool.
	 */
1218 1219
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1220 1221 1222 1223 1224
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1225
		 * on the delayed_list, will confuse pwq->nr_active
1226 1227 1228 1229
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1230
			pwq_activate_delayed_work(work);
1231 1232

		list_del_init(&work->entry);
1233
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1234

1235
		/* work->data points to pwq iff queued, point to pool */
1236 1237 1238 1239
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1240
	}
1241
	spin_unlock(&pool->lock);
1242 1243 1244 1245 1246
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1247
	return -EAGAIN;
1248 1249
}

T
Tejun Heo 已提交
1250
/**
1251
 * insert_work - insert a work into a pool
1252
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1253 1254 1255 1256
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1257
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1258
 * work_struct flags.
T
Tejun Heo 已提交
1259 1260
 *
 * CONTEXT:
1261
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1262
 */
1263 1264
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1265
{
1266
	struct worker_pool *pool = pwq->pool;
1267

T
Tejun Heo 已提交
1268
	/* we own @work, set data and link */
1269
	set_work_pwq(work, pwq, extra_flags);
1270
	list_add_tail(&work->entry, head);
T
Tejun Heo 已提交
1271
	get_pwq(pwq);
1272 1273

	/*
1274 1275 1276
	 * Ensure either wq_worker_sleeping() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers lying
	 * around lazily while there are works to be processed.
1277 1278 1279
	 */
	smp_mb();

1280 1281
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1282 1283
}

1284 1285
/*
 * Test whether @work is being queued from another work executing on the
1286
 * same workqueue.
1287 1288 1289
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1290 1291 1292 1293 1294 1295 1296
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1297
	return worker && worker->current_pwq->wq == wq;
1298 1299
}

1300
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1301 1302
			 struct work_struct *work)
{
1303
	struct pool_workqueue *pwq;
1304
	struct worker_pool *last_pool;
1305
	struct list_head *worklist;
1306
	unsigned int work_flags;
1307
	unsigned int req_cpu = cpu;
1308 1309 1310 1311 1312 1313 1314 1315

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1316

1317
	debug_work_activate(work);
1318

1319
	/* if dying, only works from the same workqueue are allowed */
1320
	if (unlikely(wq->flags & __WQ_DRAINING) &&
1321
	    WARN_ON_ONCE(!is_chained_work(wq)))
1322
		return;
1323
retry:
1324 1325 1326
	if (req_cpu == WORK_CPU_UNBOUND)
		cpu = raw_smp_processor_id();

1327
	/* pwq which will be used unless @work is executing elsewhere */
1328
	if (!(wq->flags & WQ_UNBOUND))
1329
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1330 1331
	else
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1332

1333 1334 1335 1336 1337 1338 1339 1340
	/*
	 * If @work was previously on a different pool, it might still be
	 * running there, in which case the work needs to be queued on that
	 * pool to guarantee non-reentrancy.
	 */
	last_pool = get_work_pool(work);
	if (last_pool && last_pool != pwq->pool) {
		struct worker *worker;
1341

1342
		spin_lock(&last_pool->lock);
1343

1344
		worker = find_worker_executing_work(last_pool, work);
1345

1346 1347
		if (worker && worker->current_pwq->wq == wq) {
			pwq = worker->current_pwq;
1348
		} else {
1349 1350
			/* meh... not running there, queue here */
			spin_unlock(&last_pool->lock);
1351
			spin_lock(&pwq->pool->lock);
1352
		}
1353
	} else {
1354
		spin_lock(&pwq->pool->lock);
1355 1356
	}

1357 1358 1359 1360
	/*
	 * pwq is determined and locked.  For unbound pools, we could have
	 * raced with pwq release and it could already be dead.  If its
	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1361 1362
	 * without another pwq replacing it in the numa_pwq_tbl or while
	 * work items are executing on it, so the retrying is guaranteed to
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	 * make forward-progress.
	 */
	if (unlikely(!pwq->refcnt)) {
		if (wq->flags & WQ_UNBOUND) {
			spin_unlock(&pwq->pool->lock);
			cpu_relax();
			goto retry;
		}
		/* oops */
		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
			  wq->name, cpu);
	}

1376 1377
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1378

1379
	if (WARN_ON(!list_empty(&work->entry))) {
1380
		spin_unlock(&pwq->pool->lock);
1381 1382
		return;
	}
1383

1384 1385
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1386

1387
	if (likely(pwq->nr_active < pwq->max_active)) {
1388
		trace_workqueue_activate_work(work);
1389 1390
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1391 1392
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1393
		worklist = &pwq->delayed_works;
1394
	}
1395

1396
	insert_work(pwq, work, worklist, work_flags);
1397

1398
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1399 1400
}

1401
/**
1402 1403
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1404 1405 1406
 * @wq: workqueue to use
 * @work: work to queue
 *
1407
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1408
 *
1409 1410
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1411
 */
1412 1413
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1414
{
1415
	bool ret = false;
1416
	unsigned long flags;
1417

1418
	local_irq_save(flags);
1419

1420
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1421
		__queue_work(cpu, wq, work);
1422
		ret = true;
1423
	}
1424

1425
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1426 1427
	return ret;
}
1428
EXPORT_SYMBOL(queue_work_on);
L
Linus Torvalds 已提交
1429

1430
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1431
{
1432
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1433

1434
	/* should have been called from irqsafe timer with irq already off */
1435
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1436
}
1437
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1438

1439 1440
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1441
{
1442 1443 1444 1445 1446
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1447 1448
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1461
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1462

1463
	dwork->wq = wq;
1464
	dwork->cpu = cpu;
1465 1466 1467 1468 1469 1470
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1471 1472
}

1473 1474 1475 1476
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1477
 * @dwork: work to queue
1478 1479
 * @delay: number of jiffies to wait before queueing
 *
1480 1481 1482
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1483
 */
1484 1485
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1486
{
1487
	struct work_struct *work = &dwork->work;
1488
	bool ret = false;
1489
	unsigned long flags;
1490

1491 1492
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1493

1494
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1495
		__queue_delayed_work(cpu, wq, dwork, delay);
1496
		ret = true;
1497
	}
1498

1499
	local_irq_restore(flags);
1500 1501
	return ret;
}
1502
EXPORT_SYMBOL(queue_delayed_work_on);
1503

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1519
 * This function is safe to call from any context including IRQ handler.
1520 1521 1522 1523 1524 1525 1526
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1527

1528 1529 1530
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1531

1532 1533 1534
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1535
	}
1536 1537

	/* -ENOENT from try_to_grab_pending() becomes %true */
1538 1539
	return ret;
}
1540 1541
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

T
Tejun Heo 已提交
1542 1543 1544 1545 1546 1547 1548 1549
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1550
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1551 1552
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1553
{
1554
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1555

1556 1557 1558 1559
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1560

1561 1562
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1563
	pool->nr_idle++;
1564
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1565 1566

	/* idle_list is LIFO */
1567
	list_add(&worker->entry, &pool->idle_list);
1568

1569 1570
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1571

1572
	/*
1573
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1574
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1575 1576
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1577
	 */
1578
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1579
		     pool->nr_workers == pool->nr_idle &&
1580
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1590
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1591 1592 1593
 */
static void worker_leave_idle(struct worker *worker)
{
1594
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1595

1596 1597
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1598
	worker_clr_flags(worker, WORKER_IDLE);
1599
	pool->nr_idle--;
T
Tejun Heo 已提交
1600 1601 1602
	list_del_init(&worker->entry);
}

1603
/**
1604 1605 1606 1607
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1608 1609 1610 1611 1612 1613
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1614
 * This function is to be used by unbound workers and rescuers to bind
1615 1616 1617
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1618
 * verbatim as it's best effort and blocking and pool may be
1619 1620
 * [dis]associated in the meantime.
 *
1621
 * This function tries set_cpus_allowed() and locks pool and verifies the
1622
 * binding against %POOL_DISASSOCIATED which is set during
1623 1624 1625
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1626 1627
 *
 * CONTEXT:
1628
 * Might sleep.  Called without any lock but returns with pool->lock
1629 1630 1631
 * held.
 *
 * RETURNS:
1632
 * %true if the associated pool is online (@worker is successfully
1633 1634
 * bound), %false if offline.
 */
1635
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1636
__acquires(&pool->lock)
1637 1638
{
	while (true) {
1639
		/*
1640 1641 1642
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1643
		 * against POOL_DISASSOCIATED.
1644
		 */
1645
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1646
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1647

1648
		spin_lock_irq(&pool->lock);
1649
		if (pool->flags & POOL_DISASSOCIATED)
1650
			return false;
1651
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1652
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1653
			return true;
1654
		spin_unlock_irq(&pool->lock);
1655

1656 1657 1658 1659 1660 1661
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1662
		cpu_relax();
1663
		cond_resched();
1664 1665 1666
	}
}

T
Tejun Heo 已提交
1667 1668 1669 1670 1671
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1672 1673
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1674
		INIT_LIST_HEAD(&worker->scheduled);
1675 1676
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1677
	}
T
Tejun Heo 已提交
1678 1679 1680 1681 1682
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1683
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1684
 *
1685
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1695
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1696 1697
{
	struct worker *worker = NULL;
1698
	int id = -1;
1699
	char id_buf[16];
T
Tejun Heo 已提交
1700

1701 1702
	lockdep_assert_held(&pool->manager_mutex);

1703 1704 1705 1706 1707
	/*
	 * ID is needed to determine kthread name.  Allocate ID first
	 * without installing the pointer.
	 */
	idr_preload(GFP_KERNEL);
1708
	spin_lock_irq(&pool->lock);
1709 1710 1711

	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);

1712
	spin_unlock_irq(&pool->lock);
1713 1714 1715
	idr_preload_end();
	if (id < 0)
		goto fail;
T
Tejun Heo 已提交
1716 1717 1718 1719 1720

	worker = alloc_worker();
	if (!worker)
		goto fail;

1721
	worker->pool = pool;
T
Tejun Heo 已提交
1722 1723
	worker->id = id;

1724
	if (pool->cpu >= 0)
1725 1726
		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
			 pool->attrs->nice < 0  ? "H" : "");
1727
	else
1728 1729
		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);

1730
	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1731
					      "kworker/%s", id_buf);
T
Tejun Heo 已提交
1732 1733 1734
	if (IS_ERR(worker->task))
		goto fail;

1735 1736 1737 1738
	/*
	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
	 */
T
Tejun Heo 已提交
1739 1740
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1741

1742 1743
	/* prevent userland from meddling with cpumask of workqueue workers */
	worker->task->flags |= PF_NO_SETAFFINITY;
T
Tejun Heo 已提交
1744 1745 1746 1747 1748 1749 1750

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1751
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1752

1753 1754 1755 1756 1757
	/* successful, commit the pointer to idr */
	spin_lock_irq(&pool->lock);
	idr_replace(&pool->worker_idr, worker, worker->id);
	spin_unlock_irq(&pool->lock);

T
Tejun Heo 已提交
1758
	return worker;
1759

T
Tejun Heo 已提交
1760 1761
fail:
	if (id >= 0) {
1762
		spin_lock_irq(&pool->lock);
1763
		idr_remove(&pool->worker_idr, id);
1764
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1774
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1775 1776
 *
 * CONTEXT:
1777
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1778 1779 1780
 */
static void start_worker(struct worker *worker)
{
1781
	worker->flags |= WORKER_STARTED;
1782
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1783
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1784 1785 1786
	wake_up_process(worker->task);
}

1787 1788 1789 1790
/**
 * create_and_start_worker - create and start a worker for a pool
 * @pool: the target pool
 *
1791
 * Grab the managership of @pool and create and start a new worker for it.
1792 1793 1794 1795 1796
 */
static int create_and_start_worker(struct worker_pool *pool)
{
	struct worker *worker;

1797 1798
	mutex_lock(&pool->manager_mutex);

1799 1800 1801 1802 1803 1804 1805
	worker = create_worker(pool);
	if (worker) {
		spin_lock_irq(&pool->lock);
		start_worker(worker);
		spin_unlock_irq(&pool->lock);
	}

1806 1807
	mutex_unlock(&pool->manager_mutex);

1808 1809 1810
	return worker ? 0 : -ENOMEM;
}

T
Tejun Heo 已提交
1811 1812 1813 1814
/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1815
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1816 1817
 *
 * CONTEXT:
1818
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1819 1820 1821
 */
static void destroy_worker(struct worker *worker)
{
1822
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1823

1824 1825 1826
	lockdep_assert_held(&pool->manager_mutex);
	lockdep_assert_held(&pool->lock);

T
Tejun Heo 已提交
1827
	/* sanity check frenzy */
1828 1829 1830
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1831

T
Tejun Heo 已提交
1832
	if (worker->flags & WORKER_STARTED)
1833
		pool->nr_workers--;
T
Tejun Heo 已提交
1834
	if (worker->flags & WORKER_IDLE)
1835
		pool->nr_idle--;
T
Tejun Heo 已提交
1836 1837

	list_del_init(&worker->entry);
1838
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1839

1840 1841
	idr_remove(&pool->worker_idr, worker->id);

1842
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1843

T
Tejun Heo 已提交
1844 1845 1846
	kthread_stop(worker->task);
	kfree(worker);

1847
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1848 1849
}

1850
static void idle_worker_timeout(unsigned long __pool)
1851
{
1852
	struct worker_pool *pool = (void *)__pool;
1853

1854
	spin_lock_irq(&pool->lock);
1855

1856
	if (too_many_workers(pool)) {
1857 1858 1859 1860
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1861
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1862 1863 1864
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1865
			mod_timer(&pool->idle_timer, expires);
1866 1867
		else {
			/* it's been idle for too long, wake up manager */
1868
			pool->flags |= POOL_MANAGE_WORKERS;
1869
			wake_up_worker(pool);
1870
		}
1871 1872
	}

1873
	spin_unlock_irq(&pool->lock);
1874
}
1875

1876
static void send_mayday(struct work_struct *work)
1877
{
1878 1879
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1880

1881
	lockdep_assert_held(&wq_mayday_lock);
1882

1883
	if (!wq->rescuer)
1884
		return;
1885 1886

	/* mayday mayday mayday */
1887 1888
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1889
		wake_up_process(wq->rescuer->task);
1890
	}
1891 1892
}

1893
static void pool_mayday_timeout(unsigned long __pool)
1894
{
1895
	struct worker_pool *pool = (void *)__pool;
1896 1897
	struct work_struct *work;

1898
	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1899
	spin_lock(&pool->lock);
1900

1901
	if (need_to_create_worker(pool)) {
1902 1903 1904 1905 1906 1907
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1908
		list_for_each_entry(work, &pool->worklist, entry)
1909
			send_mayday(work);
L
Linus Torvalds 已提交
1910
	}
1911

1912
	spin_unlock(&pool->lock);
1913
	spin_unlock_irq(&wq_mayday_lock);
1914

1915
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1916 1917
}

1918 1919
/**
 * maybe_create_worker - create a new worker if necessary
1920
 * @pool: pool to create a new worker for
1921
 *
1922
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1923 1924
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1925
 * sent to all rescuers with works scheduled on @pool to resolve
1926 1927
 * possible allocation deadlock.
 *
1928 1929
 * On return, need_to_create_worker() is guaranteed to be %false and
 * may_start_working() %true.
1930 1931
 *
 * LOCKING:
1932
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1933 1934 1935 1936
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1937
 * %false if no action was taken and pool->lock stayed locked, %true
1938 1939
 * otherwise.
 */
1940
static bool maybe_create_worker(struct worker_pool *pool)
1941 1942
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1943
{
1944
	if (!need_to_create_worker(pool))
1945 1946
		return false;
restart:
1947
	spin_unlock_irq(&pool->lock);
1948

1949
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1950
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1951 1952 1953 1954

	while (true) {
		struct worker *worker;

1955
		worker = create_worker(pool);
1956
		if (worker) {
1957
			del_timer_sync(&pool->mayday_timer);
1958
			spin_lock_irq(&pool->lock);
1959
			start_worker(worker);
1960 1961
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1962 1963 1964
			return true;
		}

1965
		if (!need_to_create_worker(pool))
1966
			break;
L
Linus Torvalds 已提交
1967

1968 1969
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1970

1971
		if (!need_to_create_worker(pool))
1972 1973 1974
			break;
	}

1975
	del_timer_sync(&pool->mayday_timer);
1976
	spin_lock_irq(&pool->lock);
1977
	if (need_to_create_worker(pool))
1978 1979 1980 1981 1982 1983
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1984
 * @pool: pool to destroy workers for
1985
 *
1986
 * Destroy @pool workers which have been idle for longer than
1987 1988 1989
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1990
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1991 1992 1993
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1994
 * %false if no action was taken and pool->lock stayed locked, %true
1995 1996
 * otherwise.
 */
1997
static bool maybe_destroy_workers(struct worker_pool *pool)
1998 1999
{
	bool ret = false;
L
Linus Torvalds 已提交
2000

2001
	while (too_many_workers(pool)) {
2002 2003
		struct worker *worker;
		unsigned long expires;
2004

2005
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2006
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2007

2008
		if (time_before(jiffies, expires)) {
2009
			mod_timer(&pool->idle_timer, expires);
2010
			break;
2011
		}
L
Linus Torvalds 已提交
2012

2013 2014
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
2015
	}
2016

2017
	return ret;
2018 2019
}

2020
/**
2021 2022
 * manage_workers - manage worker pool
 * @worker: self
2023
 *
2024
 * Assume the manager role and manage the worker pool @worker belongs
2025
 * to.  At any given time, there can be only zero or one manager per
2026
 * pool.  The exclusion is handled automatically by this function.
2027 2028 2029 2030
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
2031 2032
 *
 * CONTEXT:
2033
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2034 2035 2036
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
2037 2038
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
2039
 */
2040
static bool manage_workers(struct worker *worker)
2041
{
2042
	struct worker_pool *pool = worker->pool;
2043
	bool ret = false;
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * Managership is governed by two mutexes - manager_arb and
	 * manager_mutex.  manager_arb handles arbitration of manager role.
	 * Anyone who successfully grabs manager_arb wins the arbitration
	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
	 * failure while holding pool->lock reliably indicates that someone
	 * else is managing the pool and the worker which failed trylock
	 * can proceed to executing work items.  This means that anyone
	 * grabbing manager_arb is responsible for actually performing
	 * manager duties.  If manager_arb is grabbed and released without
	 * actual management, the pool may stall indefinitely.
	 *
	 * manager_mutex is used for exclusion of actual management
	 * operations.  The holder of manager_mutex can be sure that none
	 * of management operations, including creation and destruction of
	 * workers, won't take place until the mutex is released.  Because
	 * manager_mutex doesn't interfere with manager role arbitration,
	 * it is guaranteed that the pool's management, while may be
	 * delayed, won't be disturbed by someone else grabbing
	 * manager_mutex.
	 */
2066
	if (!mutex_trylock(&pool->manager_arb))
2067
		return ret;
2068

2069
	/*
2070 2071
	 * With manager arbitration won, manager_mutex would be free in
	 * most cases.  trylock first without dropping @pool->lock.
2072
	 */
2073
	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2074
		spin_unlock_irq(&pool->lock);
2075
		mutex_lock(&pool->manager_mutex);
2076
		spin_lock_irq(&pool->lock);
2077 2078
		ret = true;
	}
2079

2080
	pool->flags &= ~POOL_MANAGE_WORKERS;
2081 2082

	/*
2083 2084
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2085
	 */
2086 2087
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2088

2089
	mutex_unlock(&pool->manager_mutex);
2090
	mutex_unlock(&pool->manager_arb);
2091
	return ret;
2092 2093
}

2094 2095
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2096
 * @worker: self
2097 2098 2099 2100 2101 2102 2103 2104 2105
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2106
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2107
 */
T
Tejun Heo 已提交
2108
static void process_one_work(struct worker *worker, struct work_struct *work)
2109 2110
__releases(&pool->lock)
__acquires(&pool->lock)
2111
{
2112
	struct pool_workqueue *pwq = get_work_pwq(work);
2113
	struct worker_pool *pool = worker->pool;
2114
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2115
	int work_color;
2116
	struct worker *collision;
2117 2118 2119 2120 2121 2122 2123 2124
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2125 2126 2127
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2128
#endif
2129 2130 2131
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2132
	 * unbound or a disassociated pool.
2133
	 */
2134
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2135
		     !(pool->flags & POOL_DISASSOCIATED) &&
2136
		     raw_smp_processor_id() != pool->cpu);
2137

2138 2139 2140 2141 2142 2143
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2144
	collision = find_worker_executing_work(pool, work);
2145 2146 2147 2148 2149
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2150
	/* claim and dequeue */
2151
	debug_work_deactivate(work);
2152
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2153
	worker->current_work = work;
2154
	worker->current_func = work->func;
2155
	worker->current_pwq = pwq;
2156
	work_color = get_work_color(work);
2157

2158 2159
	list_del_init(&work->entry);

2160 2161 2162 2163 2164 2165 2166
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2167
	/*
2168
	 * Unbound pool isn't concurrency managed and work items should be
2169 2170
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2171 2172
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2173

2174
	/*
2175
	 * Record the last pool and clear PENDING which should be the last
2176
	 * update to @work.  Also, do this inside @pool->lock so that
2177 2178
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2179
	 */
2180
	set_work_pool_and_clear_pending(work, pool->id);
2181

2182
	spin_unlock_irq(&pool->lock);
2183

2184
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2185
	lock_map_acquire(&lockdep_map);
2186
	trace_workqueue_execute_start(work);
2187
	worker->current_func(work);
2188 2189 2190 2191 2192
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2193
	lock_map_release(&lockdep_map);
2194
	lock_map_release(&pwq->wq->lockdep_map);
2195 2196

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2197 2198
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2199 2200
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2201 2202 2203 2204
		debug_show_held_locks(current);
		dump_stack();
	}

2205
	spin_lock_irq(&pool->lock);
2206

2207 2208 2209 2210
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2211
	/* we're done with it, release */
2212
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2213
	worker->current_work = NULL;
2214
	worker->current_func = NULL;
2215
	worker->current_pwq = NULL;
2216
	worker->desc_valid = false;
2217
	pwq_dec_nr_in_flight(pwq, work_color);
2218 2219
}

2220 2221 2222 2223 2224 2225 2226 2227 2228
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2229
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2230 2231 2232
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2233
{
2234 2235
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2236
						struct work_struct, entry);
T
Tejun Heo 已提交
2237
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2238 2239 2240
	}
}

T
Tejun Heo 已提交
2241 2242
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2243
 * @__worker: self
T
Tejun Heo 已提交
2244
 *
2245 2246 2247 2248 2249
 * The worker thread function.  All workers belong to a worker_pool -
 * either a per-cpu one or dynamic unbound one.  These workers process all
 * work items regardless of their specific target workqueue.  The only
 * exception is work items which belong to workqueues with a rescuer which
 * will be explained in rescuer_thread().
T
Tejun Heo 已提交
2250
 */
T
Tejun Heo 已提交
2251
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2252
{
T
Tejun Heo 已提交
2253
	struct worker *worker = __worker;
2254
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2255

2256 2257
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2258
woke_up:
2259
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2260

2261 2262
	/* am I supposed to die? */
	if (unlikely(worker->flags & WORKER_DIE)) {
2263
		spin_unlock_irq(&pool->lock);
2264 2265 2266
		WARN_ON_ONCE(!list_empty(&worker->entry));
		worker->task->flags &= ~PF_WQ_WORKER;
		return 0;
T
Tejun Heo 已提交
2267
	}
2268

T
Tejun Heo 已提交
2269
	worker_leave_idle(worker);
2270
recheck:
2271
	/* no more worker necessary? */
2272
	if (!need_more_worker(pool))
2273 2274 2275
		goto sleep;

	/* do we need to manage? */
2276
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2277 2278
		goto recheck;

T
Tejun Heo 已提交
2279 2280 2281 2282 2283
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2284
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2285

2286
	/*
2287 2288 2289 2290 2291
	 * Finish PREP stage.  We're guaranteed to have at least one idle
	 * worker or that someone else has already assumed the manager
	 * role.  This is where @worker starts participating in concurrency
	 * management if applicable and concurrency management is restored
	 * after being rebound.  See rebind_workers() for details.
2292
	 */
2293
	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2294 2295

	do {
T
Tejun Heo 已提交
2296
		struct work_struct *work =
2297
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2298 2299 2300 2301 2302 2303
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2304
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2305 2306 2307
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2308
		}
2309
	} while (keep_working(pool));
2310 2311

	worker_set_flags(worker, WORKER_PREP, false);
2312
sleep:
2313
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2314
		goto recheck;
2315

T
Tejun Heo 已提交
2316
	/*
2317 2318 2319 2320 2321
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2322 2323 2324
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2325
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2326 2327
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2328 2329
}

2330 2331
/**
 * rescuer_thread - the rescuer thread function
2332
 * @__rescuer: self
2333 2334
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
2335
 * workqueue which has WQ_MEM_RECLAIM set.
2336
 *
2337
 * Regular work processing on a pool may block trying to create a new
2338 2339 2340 2341 2342
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2343 2344
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2345 2346 2347 2348
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2349
static int rescuer_thread(void *__rescuer)
2350
{
2351 2352
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2353 2354 2355
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2356 2357 2358 2359 2360 2361

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2362 2363 2364
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2365 2366
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2367
		rescuer->task->flags &= ~PF_WQ_WORKER;
2368
		return 0;
2369
	}
2370

2371
	/* see whether any pwq is asking for help */
2372
	spin_lock_irq(&wq_mayday_lock);
2373 2374 2375 2376

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2377
		struct worker_pool *pool = pwq->pool;
2378 2379 2380
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2381 2382
		list_del_init(&pwq->mayday_node);

2383
		spin_unlock_irq(&wq_mayday_lock);
2384 2385

		/* migrate to the target cpu if possible */
2386
		worker_maybe_bind_and_lock(pool);
2387
		rescuer->pool = pool;
2388 2389 2390 2391 2392

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2393
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2394
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2395
			if (get_work_pwq(work) == pwq)
2396 2397 2398
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2399 2400

		/*
2401
		 * Leave this pool.  If keep_working() is %true, notify a
2402 2403 2404
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2405 2406
		if (keep_working(pool))
			wake_up_worker(pool);
2407

2408
		rescuer->pool = NULL;
2409
		spin_unlock(&pool->lock);
2410
		spin_lock(&wq_mayday_lock);
2411 2412
	}

2413
	spin_unlock_irq(&wq_mayday_lock);
2414

2415 2416
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2417 2418
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2419 2420
}

O
Oleg Nesterov 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2432 2433
/**
 * insert_wq_barrier - insert a barrier work
2434
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2435
 * @barr: wq_barrier to insert
2436 2437
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2438
 *
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2451
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2452 2453
 *
 * CONTEXT:
2454
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2455
 */
2456
static void insert_wq_barrier(struct pool_workqueue *pwq,
2457 2458
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2459
{
2460 2461 2462
	struct list_head *head;
	unsigned int linked = 0;

2463
	/*
2464
	 * debugobject calls are safe here even with pool->lock locked
2465 2466 2467 2468
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2469
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2470
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2471
	init_completion(&barr->done);
2472

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2488
	debug_work_activate(&barr->work);
2489
	insert_work(pwq, &barr->work, head,
2490
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2491 2492
}

2493
/**
2494
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2495 2496 2497 2498
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2499
 * Prepare pwqs for workqueue flushing.
2500
 *
2501 2502 2503 2504 2505
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2506 2507 2508 2509 2510 2511 2512
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2513
 * If @work_color is non-negative, all pwqs should have the same
2514 2515 2516 2517
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
2518
 * mutex_lock(wq->mutex).
2519 2520 2521 2522 2523
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2524
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2525
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2526
{
2527
	bool wait = false;
2528
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2529

2530
	if (flush_color >= 0) {
2531
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2532
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2533
	}
2534

2535
	for_each_pwq(pwq, wq) {
2536
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2537

2538
		spin_lock_irq(&pool->lock);
2539

2540
		if (flush_color >= 0) {
2541
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2542

2543 2544 2545
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2546 2547 2548
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2549

2550
		if (work_color >= 0) {
2551
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2552
			pwq->work_color = work_color;
2553
		}
L
Linus Torvalds 已提交
2554

2555
		spin_unlock_irq(&pool->lock);
L
Linus Torvalds 已提交
2556
	}
2557

2558
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2559
		complete(&wq->first_flusher->done);
2560

2561
	return wait;
L
Linus Torvalds 已提交
2562 2563
}

2564
/**
L
Linus Torvalds 已提交
2565
 * flush_workqueue - ensure that any scheduled work has run to completion.
2566
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2567
 *
2568 2569
 * This function sleeps until all work items which were queued on entry
 * have finished execution, but it is not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2570
 */
2571
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2572
{
2573 2574 2575 2576 2577 2578
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2579

2580 2581
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2582

2583
	mutex_lock(&wq->mutex);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2596
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2597 2598 2599 2600 2601
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2602
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2603 2604 2605

			wq->first_flusher = &this_flusher;

2606
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2607 2608 2609 2610 2611 2612 2613 2614
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2615
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2616
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2617
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

2628
	mutex_unlock(&wq->mutex);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

2641
	mutex_lock(&wq->mutex);
2642

2643 2644 2645 2646
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2647 2648
	wq->first_flusher = NULL;

2649 2650
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2663 2664
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2684
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2685 2686 2687
		}

		if (list_empty(&wq->flusher_queue)) {
2688
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2689 2690 2691 2692 2693
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2694
		 * the new first flusher and arm pwqs.
2695
		 */
2696 2697
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2698 2699 2700 2701

		list_del_init(&next->list);
		wq->first_flusher = next;

2702
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
2713
	mutex_unlock(&wq->mutex);
L
Linus Torvalds 已提交
2714
}
2715
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2731
	struct pool_workqueue *pwq;
2732 2733 2734 2735

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
2736
	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2737
	 */
2738
	mutex_lock(&wq->mutex);
2739
	if (!wq->nr_drainers++)
2740
		wq->flags |= __WQ_DRAINING;
2741
	mutex_unlock(&wq->mutex);
2742 2743 2744
reflush:
	flush_workqueue(wq);

2745
	mutex_lock(&wq->mutex);
2746

2747
	for_each_pwq(pwq, wq) {
2748
		bool drained;
2749

2750
		spin_lock_irq(&pwq->pool->lock);
2751
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2752
		spin_unlock_irq(&pwq->pool->lock);
2753 2754

		if (drained)
2755 2756 2757 2758
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2759
			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
V
Valentin Ilie 已提交
2760
				wq->name, flush_cnt);
2761

2762
		mutex_unlock(&wq->mutex);
2763 2764 2765 2766
		goto reflush;
	}

	if (!--wq->nr_drainers)
2767
		wq->flags &= ~__WQ_DRAINING;
2768
	mutex_unlock(&wq->mutex);
2769 2770 2771
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2772
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2773
{
2774
	struct worker *worker = NULL;
2775
	struct worker_pool *pool;
2776
	struct pool_workqueue *pwq;
2777 2778

	might_sleep();
2779 2780

	local_irq_disable();
2781
	pool = get_work_pool(work);
2782 2783
	if (!pool) {
		local_irq_enable();
2784
		return false;
2785
	}
2786

2787
	spin_lock(&pool->lock);
2788
	/* see the comment in try_to_grab_pending() with the same code */
2789 2790 2791
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2792
			goto already_gone;
2793
	} else {
2794
		worker = find_worker_executing_work(pool, work);
2795
		if (!worker)
T
Tejun Heo 已提交
2796
			goto already_gone;
2797
		pwq = worker->current_pwq;
2798
	}
2799

2800
	insert_wq_barrier(pwq, barr, work, worker);
2801
	spin_unlock_irq(&pool->lock);
2802

2803 2804 2805 2806 2807 2808
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2809
	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2810
		lock_map_acquire(&pwq->wq->lockdep_map);
2811
	else
2812 2813
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2814

2815
	return true;
T
Tejun Heo 已提交
2816
already_gone:
2817
	spin_unlock_irq(&pool->lock);
2818
	return false;
2819
}
2820 2821 2822 2823 2824

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2825 2826
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2827 2828 2829 2830 2831 2832 2833 2834 2835
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2836 2837 2838
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2839
	if (start_flush_work(work, &barr)) {
2840 2841 2842
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2843
	} else {
2844
		return false;
2845 2846
	}
}
2847
EXPORT_SYMBOL_GPL(flush_work);
2848

2849
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2850
{
2851
	unsigned long flags;
2852 2853 2854
	int ret;

	do {
2855 2856 2857 2858 2859 2860
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2861
			flush_work(work);
2862 2863
	} while (unlikely(ret < 0));

2864 2865 2866 2867
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2868
	flush_work(work);
2869
	clear_work_data(work);
2870 2871 2872
	return ret;
}

2873
/**
2874 2875
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2876
 *
2877 2878 2879 2880
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2881
 *
2882 2883
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2884
 *
2885
 * The caller must ensure that the workqueue on which @work was last
2886
 * queued can't be destroyed before this function returns.
2887 2888 2889
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2890
 */
2891
bool cancel_work_sync(struct work_struct *work)
2892
{
2893
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2894
}
2895
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2896

2897
/**
2898 2899
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2900
 *
2901 2902 2903
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2904
 *
2905 2906 2907
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2908
 */
2909 2910
bool flush_delayed_work(struct delayed_work *dwork)
{
2911
	local_irq_disable();
2912
	if (del_timer_sync(&dwork->timer))
2913
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2914
	local_irq_enable();
2915 2916 2917 2918
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2919
/**
2920 2921
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2922
 *
2923 2924 2925 2926 2927
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2928
 *
2929
 * This function is safe to call from any context including IRQ handler.
2930
 */
2931
bool cancel_delayed_work(struct delayed_work *dwork)
2932
{
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2943 2944
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2945
	local_irq_restore(flags);
2946
	return ret;
2947
}
2948
EXPORT_SYMBOL(cancel_delayed_work);
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2960
{
2961
	return __cancel_work_timer(&dwork->work, true);
2962
}
2963
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2964

2965
/**
2966
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2967 2968
 * @func: the function to call
 *
2969 2970
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2971
 * schedule_on_each_cpu() is very slow.
2972 2973 2974
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2975
 */
2976
int schedule_on_each_cpu(work_func_t func)
2977 2978
{
	int cpu;
2979
	struct work_struct __percpu *works;
2980

2981 2982
	works = alloc_percpu(struct work_struct);
	if (!works)
2983
		return -ENOMEM;
2984

2985 2986
	get_online_cpus();

2987
	for_each_online_cpu(cpu) {
2988 2989 2990
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
2991
		schedule_work_on(cpu, work);
2992
	}
2993 2994 2995 2996

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

2997
	put_online_cpus();
2998
	free_percpu(works);
2999 3000 3001
	return 0;
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3026 3027
void flush_scheduled_work(void)
{
3028
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3029
}
3030
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3031

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3044
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3045 3046
{
	if (!in_interrupt()) {
3047
		fn(&ew->work);
3048 3049 3050
		return 0;
	}

3051
	INIT_WORK(&ew->work, fn);
3052 3053 3054 3055 3056 3057
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
#ifdef CONFIG_SYSFS
/*
 * Workqueues with WQ_SYSFS flag set is visible to userland via
 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
 * following attributes.
 *
 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
 *  max_active	RW int	: maximum number of in-flight work items
 *
 * Unbound workqueues have the following extra attributes.
 *
 *  id		RO int	: the associated pool ID
 *  nice	RW int	: nice value of the workers
 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
 */
struct wq_device {
	struct workqueue_struct		*wq;
	struct device			dev;
};

static struct workqueue_struct *dev_to_wq(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	return wq_dev->wq;
}

static ssize_t wq_per_cpu_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
}

static ssize_t wq_max_active_show(struct device *dev,
				  struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);

	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
}

static ssize_t wq_max_active_store(struct device *dev,
				   struct device_attribute *attr,
				   const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int val;

	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
		return -EINVAL;

	workqueue_set_max_active(wq, val);
	return count;
}

static struct device_attribute wq_sysfs_attrs[] = {
	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
	__ATTR_NULL,
};

3121 3122
static ssize_t wq_pool_ids_show(struct device *dev,
				struct device_attribute *attr, char *buf)
3123 3124
{
	struct workqueue_struct *wq = dev_to_wq(dev);
3125 3126
	const char *delim = "";
	int node, written = 0;
3127 3128

	rcu_read_lock_sched();
3129 3130 3131 3132 3133 3134 3135
	for_each_node(node) {
		written += scnprintf(buf + written, PAGE_SIZE - written,
				     "%s%d:%d", delim, node,
				     unbound_pwq_by_node(wq, node)->pool->id);
		delim = " ";
	}
	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	rcu_read_unlock_sched();

	return written;
}

static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3147 3148 3149
	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
	mutex_unlock(&wq->mutex);
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162

	return written;
}

/* prepare workqueue_attrs for sysfs store operations */
static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
{
	struct workqueue_attrs *attrs;

	attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!attrs)
		return NULL;

3163 3164 3165
	mutex_lock(&wq->mutex);
	copy_workqueue_attrs(attrs, wq->unbound_attrs);
	mutex_unlock(&wq->mutex);
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	return attrs;
}

static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
	    attrs->nice >= -20 && attrs->nice <= 19)
		ret = apply_workqueue_attrs(wq, attrs);
	else
		ret = -EINVAL;

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

static ssize_t wq_cpumask_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

3196 3197 3198
	mutex_lock(&wq->mutex);
	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
	mutex_unlock(&wq->mutex);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
	return written;
}

static ssize_t wq_cpumask_store(struct device *dev,
				struct device_attribute *attr,
				const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = cpumask_parse(buf, attrs->cpumask);
	if (!ret)
		ret = apply_workqueue_attrs(wq, attrs);

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	int written;

	mutex_lock(&wq->mutex);
	written = scnprintf(buf, PAGE_SIZE, "%d\n",
			    !wq->unbound_attrs->no_numa);
	mutex_unlock(&wq->mutex);

	return written;
}

static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
			     const char *buf, size_t count)
{
	struct workqueue_struct *wq = dev_to_wq(dev);
	struct workqueue_attrs *attrs;
	int v, ret;

	attrs = wq_sysfs_prep_attrs(wq);
	if (!attrs)
		return -ENOMEM;

	ret = -EINVAL;
	if (sscanf(buf, "%d", &v) == 1) {
		attrs->no_numa = !v;
		ret = apply_workqueue_attrs(wq, attrs);
	}

	free_workqueue_attrs(attrs);
	return ret ?: count;
}

3259
static struct device_attribute wq_sysfs_unbound_attrs[] = {
3260
	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3261 3262
	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3263
	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	__ATTR_NULL,
};

static struct bus_type wq_subsys = {
	.name				= "workqueue",
	.dev_attrs			= wq_sysfs_attrs,
};

static int __init wq_sysfs_init(void)
{
	return subsys_virtual_register(&wq_subsys, NULL);
}
core_initcall(wq_sysfs_init);

static void wq_device_release(struct device *dev)
{
	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);

	kfree(wq_dev);
}

/**
 * workqueue_sysfs_register - make a workqueue visible in sysfs
 * @wq: the workqueue to register
 *
 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
 * which is the preferred method.
 *
 * Workqueue user should use this function directly iff it wants to apply
 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
 * apply_workqueue_attrs() may race against userland updating the
 * attributes.
 *
 * Returns 0 on success, -errno on failure.
 */
int workqueue_sysfs_register(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev;
	int ret;

	/*
	 * Adjusting max_active or creating new pwqs by applyting
	 * attributes breaks ordering guarantee.  Disallow exposing ordered
	 * workqueues.
	 */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return -EINVAL;

	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
	if (!wq_dev)
		return -ENOMEM;

	wq_dev->wq = wq;
	wq_dev->dev.bus = &wq_subsys;
	wq_dev->dev.init_name = wq->name;
	wq_dev->dev.release = wq_device_release;

	/*
	 * unbound_attrs are created separately.  Suppress uevent until
	 * everything is ready.
	 */
	dev_set_uevent_suppress(&wq_dev->dev, true);

	ret = device_register(&wq_dev->dev);
	if (ret) {
		kfree(wq_dev);
		wq->wq_dev = NULL;
		return ret;
	}

	if (wq->flags & WQ_UNBOUND) {
		struct device_attribute *attr;

		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
			ret = device_create_file(&wq_dev->dev, attr);
			if (ret) {
				device_unregister(&wq_dev->dev);
				wq->wq_dev = NULL;
				return ret;
			}
		}
	}

	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
	return 0;
}

/**
 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
 * @wq: the workqueue to unregister
 *
 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
 */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
{
	struct wq_device *wq_dev = wq->wq_dev;

	if (!wq->wq_dev)
		return;

	wq->wq_dev = NULL;
	device_unregister(&wq_dev->dev);
}
#else	/* CONFIG_SYSFS */
static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
#endif	/* CONFIG_SYSFS */

T
Tejun Heo 已提交
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

3403
	cpumask_copy(attrs->cpumask, cpu_possible_mask);
T
Tejun Heo 已提交
3404 3405 3406 3407 3408 3409
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
3423 3424
	hash = jhash(cpumask_bits(attrs->cpumask),
		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3439 3440 3441 3442 3443
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3444 3445 3446
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3447 3448
 */
static int init_worker_pool(struct worker_pool *pool)
3449 3450
{
	spin_lock_init(&pool->lock);
3451 3452
	pool->id = -1;
	pool->cpu = -1;
3453
	pool->node = NUMA_NO_NODE;
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
3467
	mutex_init(&pool->manager_mutex);
3468
	idr_init(&pool->worker_idr);
T
Tejun Heo 已提交
3469

3470 3471 3472 3473
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3474 3475 3476 3477
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3478 3479
}

3480 3481 3482 3483
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

3484
	idr_destroy(&pool->worker_idr);
3485 3486 3487 3488 3489 3490 3491 3492 3493
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3494 3495 3496
 * safe manner.  get_unbound_pool() calls this function on its failure path
 * and this function should be able to release pools which went through,
 * successfully or not, init_worker_pool().
3497 3498
 *
 * Should be called with wq_pool_mutex held.
3499 3500 3501 3502 3503
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

3504 3505 3506
	lockdep_assert_held(&wq_pool_mutex);

	if (--pool->refcnt)
3507 3508 3509 3510
		return;

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3511
	    WARN_ON(!list_empty(&pool->worklist)))
3512 3513 3514 3515 3516 3517 3518
		return;

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

3519 3520 3521 3522 3523
	/*
	 * Become the manager and destroy all workers.  Grabbing
	 * manager_arb prevents @pool's workers from blocking on
	 * manager_mutex.
	 */
3524
	mutex_lock(&pool->manager_arb);
3525
	mutex_lock(&pool->manager_mutex);
3526 3527 3528 3529 3530 3531 3532
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
3533
	mutex_unlock(&pool->manager_mutex);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
3552 3553
 *
 * Should be called with wq_pool_mutex held.
3554 3555 3556 3557 3558
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
3559
	int node;
3560

3561
	lockdep_assert_held(&wq_pool_mutex);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

	/* do we already have a matching pool? */
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

3576 3577 3578
	if (workqueue_freezing)
		pool->flags |= POOL_FREEZING;

T
Tejun Heo 已提交
3579
	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3580 3581
	copy_workqueue_attrs(pool->attrs, attrs);

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	/* if cpumask is contained inside a NUMA node, we belong to that node */
	if (wq_numa_enabled) {
		for_each_node(node) {
			if (cpumask_subset(pool->attrs->cpumask,
					   wq_numa_possible_cpumask[node])) {
				pool->node = node;
				break;
			}
		}
	}

3593 3594 3595 3596
	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
3597
	if (create_and_start_worker(pool) < 0)
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
		goto fail;

	/* install */
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	return pool;
fail:
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

T
Tejun Heo 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static void rcu_free_pwq(struct rcu_head *rcu)
{
	kmem_cache_free(pwq_cache,
			container_of(rcu, struct pool_workqueue, rcu));
}

/*
 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
 * and needs to be destroyed.
 */
static void pwq_unbound_release_workfn(struct work_struct *work)
{
	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
						  unbound_release_work);
	struct workqueue_struct *wq = pwq->wq;
	struct worker_pool *pool = pwq->pool;
3626
	bool is_last;
T
Tejun Heo 已提交
3627 3628 3629 3630

	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
		return;

3631
	/*
3632
	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3633 3634 3635
	 * necessary on release but do it anyway.  It's easier to verify
	 * and consistent with the linking path.
	 */
3636
	mutex_lock(&wq->mutex);
T
Tejun Heo 已提交
3637
	list_del_rcu(&pwq->pwqs_node);
3638
	is_last = list_empty(&wq->pwqs);
3639
	mutex_unlock(&wq->mutex);
T
Tejun Heo 已提交
3640

3641
	mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
3642
	put_unbound_pool(pool);
3643 3644
	mutex_unlock(&wq_pool_mutex);

T
Tejun Heo 已提交
3645 3646 3647 3648 3649 3650
	call_rcu_sched(&pwq->rcu, rcu_free_pwq);

	/*
	 * If we're the last pwq going away, @wq is already dead and no one
	 * is gonna access it anymore.  Free it.
	 */
3651 3652
	if (is_last) {
		free_workqueue_attrs(wq->unbound_attrs);
T
Tejun Heo 已提交
3653
		kfree(wq);
3654
	}
T
Tejun Heo 已提交
3655 3656
}

3657
/**
3658
 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3659 3660
 * @pwq: target pool_workqueue
 *
3661 3662 3663
 * If @pwq isn't freezing, set @pwq->max_active to the associated
 * workqueue's saved_max_active and activate delayed work items
 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3664
 */
3665
static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3666
{
3667 3668 3669 3670
	struct workqueue_struct *wq = pwq->wq;
	bool freezable = wq->flags & WQ_FREEZABLE;

	/* for @wq->saved_max_active */
3671
	lockdep_assert_held(&wq->mutex);
3672 3673 3674 3675 3676

	/* fast exit for non-freezable wqs */
	if (!freezable && pwq->max_active == wq->saved_max_active)
		return;

3677
	spin_lock_irq(&pwq->pool->lock);
3678 3679 3680

	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
		pwq->max_active = wq->saved_max_active;
3681

3682 3683 3684
		while (!list_empty(&pwq->delayed_works) &&
		       pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
3685 3686 3687 3688 3689 3690

		/*
		 * Need to kick a worker after thawed or an unbound wq's
		 * max_active is bumped.  It's a slow path.  Do it always.
		 */
		wake_up_worker(pwq->pool);
3691 3692 3693 3694
	} else {
		pwq->max_active = 0;
	}

3695
	spin_unlock_irq(&pwq->pool->lock);
3696 3697
}

3698
/* initialize newly alloced @pwq which is associated with @wq and @pool */
3699 3700
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
		     struct worker_pool *pool)
3701 3702 3703
{
	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);

3704 3705
	memset(pwq, 0, sizeof(*pwq));

3706 3707 3708
	pwq->pool = pool;
	pwq->wq = wq;
	pwq->flush_color = -1;
T
Tejun Heo 已提交
3709
	pwq->refcnt = 1;
3710
	INIT_LIST_HEAD(&pwq->delayed_works);
3711
	INIT_LIST_HEAD(&pwq->pwqs_node);
3712
	INIT_LIST_HEAD(&pwq->mayday_node);
T
Tejun Heo 已提交
3713
	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3714
}
3715

3716
/* sync @pwq with the current state of its associated wq and link it */
3717
static void link_pwq(struct pool_workqueue *pwq)
3718 3719 3720 3721
{
	struct workqueue_struct *wq = pwq->wq;

	lockdep_assert_held(&wq->mutex);
3722

3723 3724 3725 3726
	/* may be called multiple times, ignore if already linked */
	if (!list_empty(&pwq->pwqs_node))
		return;

3727 3728
	/*
	 * Set the matching work_color.  This is synchronized with
3729
	 * wq->mutex to avoid confusing flush_workqueue().
3730
	 */
3731
	pwq->work_color = wq->work_color;
3732 3733 3734 3735 3736

	/* sync max_active to the current setting */
	pwq_adjust_max_active(pwq);

	/* link in @pwq */
3737
	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3738
}
3739

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
					const struct workqueue_attrs *attrs)
{
	struct worker_pool *pool;
	struct pool_workqueue *pwq;

	lockdep_assert_held(&wq_pool_mutex);

	pool = get_unbound_pool(attrs);
	if (!pool)
		return NULL;

3753
	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3754 3755 3756
	if (!pwq) {
		put_unbound_pool(pool);
		return NULL;
3757
	}
3758

3759 3760
	init_pwq(pwq, wq, pool);
	return pwq;
3761 3762
}

3763 3764 3765 3766 3767 3768 3769
/* undo alloc_unbound_pwq(), used only in the error path */
static void free_unbound_pwq(struct pool_workqueue *pwq)
{
	lockdep_assert_held(&wq_pool_mutex);

	if (pwq) {
		put_unbound_pool(pwq->pool);
3770
		kmem_cache_free(pwq_cache, pwq);
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
	}
}

/**
 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
 * @attrs: the wq_attrs of interest
 * @node: the target NUMA node
 * @cpu_going_down: if >= 0, the CPU to consider as offline
 * @cpumask: outarg, the resulting cpumask
 *
 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
 * @cpu_going_down is >= 0, that cpu is considered offline during
 * calculation.  The result is stored in @cpumask.  This function returns
 * %true if the resulting @cpumask is different from @attrs->cpumask,
 * %false if equal.
 *
 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
 * enabled and @node has online CPUs requested by @attrs, the returned
 * cpumask is the intersection of the possible CPUs of @node and
 * @attrs->cpumask.
 *
 * The caller is responsible for ensuring that the cpumask of @node stays
 * stable.
 */
static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
				 int cpu_going_down, cpumask_t *cpumask)
{
3798
	if (!wq_numa_enabled || attrs->no_numa)
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
		goto use_dfl;

	/* does @node have any online CPUs @attrs wants? */
	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
	if (cpu_going_down >= 0)
		cpumask_clear_cpu(cpu_going_down, cpumask);

	if (cpumask_empty(cpumask))
		goto use_dfl;

	/* yeap, return possible CPUs in @node that @attrs wants */
	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
	return !cpumask_equal(cpumask, attrs->cpumask);

use_dfl:
	cpumask_copy(cpumask, attrs->cpumask);
	return false;
}

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
						   int node,
						   struct pool_workqueue *pwq)
{
	struct pool_workqueue *old_pwq;

	lockdep_assert_held(&wq->mutex);

	/* link_pwq() can handle duplicate calls */
	link_pwq(pwq);

	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
	return old_pwq;
}

3835 3836 3837 3838 3839
/**
 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
 * @wq: the target workqueue
 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
 *
3840 3841 3842 3843 3844 3845
 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
 * machines, this function maps a separate pwq to each NUMA node with
 * possibles CPUs in @attrs->cpumask so that work items are affine to the
 * NUMA node it was issued on.  Older pwqs are released as in-flight work
 * items finish.  Note that a work item which repeatedly requeues itself
 * back-to-back will stay on its current pwq.
3846 3847 3848 3849 3850 3851 3852
 *
 * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
 * failure.
 */
int apply_workqueue_attrs(struct workqueue_struct *wq,
			  const struct workqueue_attrs *attrs)
{
3853 3854
	struct workqueue_attrs *new_attrs, *tmp_attrs;
	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3855
	int node, ret;
3856

3857
	/* only unbound workqueues can change attributes */
3858 3859 3860
	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
		return -EINVAL;

3861 3862 3863 3864
	/* creating multiple pwqs breaks ordering guarantee */
	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
		return -EINVAL;

3865
	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3866
	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3867 3868
	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3869 3870
		goto enomem;

3871
	/* make a copy of @attrs and sanitize it */
3872 3873 3874
	copy_workqueue_attrs(new_attrs, attrs);
	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
	/*
	 * We may create multiple pwqs with differing cpumasks.  Make a
	 * copy of @new_attrs which will be modified and used to obtain
	 * pools.
	 */
	copy_workqueue_attrs(tmp_attrs, new_attrs);

	/*
	 * CPUs should stay stable across pwq creations and installations.
	 * Pin CPUs, determine the target cpumask for each node and create
	 * pwqs accordingly.
	 */
	get_online_cpus();

3889
	mutex_lock(&wq_pool_mutex);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

	/*
	 * If something goes wrong during CPU up/down, we'll fall back to
	 * the default pwq covering whole @attrs->cpumask.  Always create
	 * it even if we don't use it immediately.
	 */
	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
	if (!dfl_pwq)
		goto enomem_pwq;

	for_each_node(node) {
		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
			if (!pwq_tbl[node])
				goto enomem_pwq;
		} else {
			dfl_pwq->refcnt++;
			pwq_tbl[node] = dfl_pwq;
		}
	}

3911
	mutex_unlock(&wq_pool_mutex);
3912

3913
	/* all pwqs have been created successfully, let's install'em */
3914
	mutex_lock(&wq->mutex);
3915

3916
	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3917 3918

	/* save the previous pwq and install the new one */
3919
	for_each_node(node)
3920 3921 3922 3923 3924
		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);

	/* @dfl_pwq might not have been used, ensure it's linked */
	link_pwq(dfl_pwq);
	swap(wq->dfl_pwq, dfl_pwq);
3925 3926

	mutex_unlock(&wq->mutex);
3927

3928 3929 3930 3931 3932 3933
	/* put the old pwqs */
	for_each_node(node)
		put_pwq_unlocked(pwq_tbl[node]);
	put_pwq_unlocked(dfl_pwq);

	put_online_cpus();
3934 3935 3936
	ret = 0;
	/* fall through */
out_free:
3937
	free_workqueue_attrs(tmp_attrs);
3938
	free_workqueue_attrs(new_attrs);
3939
	kfree(pwq_tbl);
3940
	return ret;
3941

3942 3943 3944 3945 3946 3947 3948
enomem_pwq:
	free_unbound_pwq(dfl_pwq);
	for_each_node(node)
		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
			free_unbound_pwq(pwq_tbl[node]);
	mutex_unlock(&wq_pool_mutex);
	put_online_cpus();
3949
enomem:
3950 3951
	ret = -ENOMEM;
	goto out_free;
3952 3953
}

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
/**
 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
 * @wq: the target workqueue
 * @cpu: the CPU coming up or going down
 * @online: whether @cpu is coming up or going down
 *
 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
 * @wq accordingly.
 *
 * If NUMA affinity can't be adjusted due to memory allocation failure, it
 * falls back to @wq->dfl_pwq which may not be optimal but is always
 * correct.
 *
 * Note that when the last allowed CPU of a NUMA node goes offline for a
 * workqueue with a cpumask spanning multiple nodes, the workers which were
 * already executing the work items for the workqueue will lose their CPU
 * affinity and may execute on any CPU.  This is similar to how per-cpu
 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
 * affinity, it's the user's responsibility to flush the work item from
 * CPU_DOWN_PREPARE.
 */
static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
				   bool online)
{
	int node = cpu_to_node(cpu);
	int cpu_off = online ? -1 : cpu;
	struct pool_workqueue *old_pwq = NULL, *pwq;
	struct workqueue_attrs *target_attrs;
	cpumask_t *cpumask;

	lockdep_assert_held(&wq_pool_mutex);

	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
		return;

	/*
	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
	 * Let's use a preallocated one.  The following buf is protected by
	 * CPU hotplug exclusion.
	 */
	target_attrs = wq_update_unbound_numa_attrs_buf;
	cpumask = target_attrs->cpumask;

	mutex_lock(&wq->mutex);
3999 4000
	if (wq->unbound_attrs->no_numa)
		goto out_unlock;
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
	pwq = unbound_pwq_by_node(wq, node);

	/*
	 * Let's determine what needs to be done.  If the target cpumask is
	 * different from wq's, we need to compare it to @pwq's and create
	 * a new one if they don't match.  If the target cpumask equals
	 * wq's, the default pwq should be used.  If @pwq is already the
	 * default one, nothing to do; otherwise, install the default one.
	 */
	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
			goto out_unlock;
	} else {
		if (pwq == wq->dfl_pwq)
			goto out_unlock;
		else
			goto use_dfl_pwq;
	}

	mutex_unlock(&wq->mutex);

	/* create a new pwq */
	pwq = alloc_unbound_pwq(wq, target_attrs);
	if (!pwq) {
		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
			   wq->name);
		goto out_unlock;
	}

	/*
	 * Install the new pwq.  As this function is called only from CPU
	 * hotplug callbacks and applying a new attrs is wrapped with
	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
	 * inbetween.
	 */
	mutex_lock(&wq->mutex);
	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
	goto out_unlock;

use_dfl_pwq:
	spin_lock_irq(&wq->dfl_pwq->pool->lock);
	get_pwq(wq->dfl_pwq);
	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
out_unlock:
	mutex_unlock(&wq->mutex);
	put_pwq_unlocked(old_pwq);
}

4052
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
4053
{
4054
	bool highpri = wq->flags & WQ_HIGHPRI;
4055 4056 4057
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
4058 4059
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
4060 4061 4062
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
4063 4064
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
4065
			struct worker_pool *cpu_pools =
4066
				per_cpu(cpu_worker_pools, cpu);
4067

4068 4069 4070
			init_pwq(pwq, wq, &cpu_pools[highpri]);

			mutex_lock(&wq->mutex);
4071
			link_pwq(pwq);
4072
			mutex_unlock(&wq->mutex);
4073
		}
4074
		return 0;
4075
	} else {
4076
		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4077
	}
T
Tejun Heo 已提交
4078 4079
}

4080 4081
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
4082
{
4083 4084 4085
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
4086 4087
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
4088

4089
	return clamp_val(max_active, 1, lim);
4090 4091
}

4092
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4093 4094 4095
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
4096
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
4097
{
4098
	size_t tbl_size = 0;
4099
	va_list args;
L
Linus Torvalds 已提交
4100
	struct workqueue_struct *wq;
4101
	struct pool_workqueue *pwq;
4102

4103 4104 4105 4106
	/* see the comment above the definition of WQ_POWER_EFFICIENT */
	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
		flags |= WQ_UNBOUND;

4107
	/* allocate wq and format name */
4108 4109 4110 4111
	if (flags & WQ_UNBOUND)
		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);

	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4112
	if (!wq)
4113
		return NULL;
4114

4115 4116 4117 4118 4119 4120
	if (flags & WQ_UNBOUND) {
		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
		if (!wq->unbound_attrs)
			goto err_free_wq;
	}

4121 4122
	va_start(args, lock_name);
	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4123
	va_end(args);
L
Linus Torvalds 已提交
4124

4125
	max_active = max_active ?: WQ_DFL_ACTIVE;
4126
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4127

4128
	/* init wq */
4129
	wq->flags = flags;
4130
	wq->saved_max_active = max_active;
4131
	mutex_init(&wq->mutex);
4132
	atomic_set(&wq->nr_pwqs_to_flush, 0);
4133
	INIT_LIST_HEAD(&wq->pwqs);
4134 4135
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
4136
	INIT_LIST_HEAD(&wq->maydays);
4137

4138
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4139
	INIT_LIST_HEAD(&wq->list);
4140

4141
	if (alloc_and_link_pwqs(wq) < 0)
4142
		goto err_free_wq;
T
Tejun Heo 已提交
4143

4144 4145 4146 4147 4148
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM) {
4149 4150
		struct worker *rescuer;

4151
		rescuer = alloc_worker();
4152
		if (!rescuer)
4153
			goto err_destroy;
4154

4155 4156
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4157
					       wq->name);
4158 4159 4160 4161
		if (IS_ERR(rescuer->task)) {
			kfree(rescuer);
			goto err_destroy;
		}
4162

4163
		wq->rescuer = rescuer;
4164
		rescuer->task->flags |= PF_NO_SETAFFINITY;
4165
		wake_up_process(rescuer->task);
4166 4167
	}

4168 4169 4170
	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
		goto err_destroy;

4171
	/*
4172 4173 4174
	 * wq_pool_mutex protects global freeze state and workqueues list.
	 * Grab it, adjust max_active and add the new @wq to workqueues
	 * list.
4175
	 */
4176
	mutex_lock(&wq_pool_mutex);
4177

4178
	mutex_lock(&wq->mutex);
4179 4180
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4181
	mutex_unlock(&wq->mutex);
4182

T
Tejun Heo 已提交
4183
	list_add(&wq->list, &workqueues);
4184

4185
	mutex_unlock(&wq_pool_mutex);
T
Tejun Heo 已提交
4186

4187
	return wq;
4188 4189

err_free_wq:
4190
	free_workqueue_attrs(wq->unbound_attrs);
4191 4192 4193 4194
	kfree(wq);
	return NULL;
err_destroy:
	destroy_workqueue(wq);
T
Tejun Heo 已提交
4195
	return NULL;
4196
}
4197
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
4198

4199 4200 4201 4202 4203 4204 4205 4206
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
4207
	struct pool_workqueue *pwq;
4208
	int node;
4209

4210 4211
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
4212

4213
	/* sanity checks */
4214
	mutex_lock(&wq->mutex);
4215
	for_each_pwq(pwq, wq) {
4216 4217
		int i;

4218 4219
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
4220
				mutex_unlock(&wq->mutex);
4221
				return;
4222 4223 4224
			}
		}

4225
		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
T
Tejun Heo 已提交
4226
		    WARN_ON(pwq->nr_active) ||
4227
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4228
			mutex_unlock(&wq->mutex);
4229
			return;
4230
		}
4231
	}
4232
	mutex_unlock(&wq->mutex);
4233

4234 4235 4236 4237
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
4238
	mutex_lock(&wq_pool_mutex);
4239
	list_del_init(&wq->list);
4240
	mutex_unlock(&wq_pool_mutex);
4241

4242 4243
	workqueue_sysfs_unregister(wq);

4244
	if (wq->rescuer) {
4245
		kthread_stop(wq->rescuer->task);
4246
		kfree(wq->rescuer);
4247
		wq->rescuer = NULL;
4248 4249
	}

T
Tejun Heo 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	if (!(wq->flags & WQ_UNBOUND)) {
		/*
		 * The base ref is never dropped on per-cpu pwqs.  Directly
		 * free the pwqs and wq.
		 */
		free_percpu(wq->cpu_pwqs);
		kfree(wq);
	} else {
		/*
		 * We're the sole accessor of @wq at this point.  Directly
4260 4261
		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
		 * @wq will be freed when the last pwq is released.
T
Tejun Heo 已提交
4262
		 */
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
		for_each_node(node) {
			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
			put_pwq_unlocked(pwq);
		}

		/*
		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
		 * put.  Don't access it afterwards.
		 */
		pwq = wq->dfl_pwq;
		wq->dfl_pwq = NULL;
4275
		put_pwq_unlocked(pwq);
4276
	}
4277 4278 4279
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
4292
	struct pool_workqueue *pwq;
4293

4294 4295 4296 4297
	/* disallow meddling with max_active for ordered workqueues */
	if (WARN_ON(wq->flags & __WQ_ORDERED))
		return;

4298
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4299

4300
	mutex_lock(&wq->mutex);
4301 4302 4303

	wq->saved_max_active = max_active;

4304 4305
	for_each_pwq(pwq, wq)
		pwq_adjust_max_active(pwq);
4306

4307
	mutex_unlock(&wq->mutex);
4308
}
4309
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
/**
 * current_is_workqueue_rescuer - is %current workqueue rescuer?
 *
 * Determine whether %current is a workqueue rescuer.  Can be used from
 * work functions to determine whether it's being run off the rescuer task.
 */
bool current_is_workqueue_rescuer(void)
{
	struct worker *worker = current_wq_worker();

4321
	return worker && worker->rescue_wq;
4322 4323
}

4324
/**
4325 4326 4327
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
4328
 *
4329 4330 4331
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
4332
 *
4333 4334 4335 4336 4337 4338
 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
 * Note that both per-cpu and unbound workqueues may be associated with
 * multiple pool_workqueues which have separate congested states.  A
 * workqueue being congested on one CPU doesn't mean the workqueue is also
 * contested on other CPUs / NUMA nodes.
 *
4339 4340
 * RETURNS:
 * %true if congested, %false otherwise.
4341
 */
4342
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
4343
{
4344
	struct pool_workqueue *pwq;
4345 4346
	bool ret;

4347
	rcu_read_lock_sched();
4348

4349 4350 4351
	if (cpu == WORK_CPU_UNBOUND)
		cpu = smp_processor_id();

4352 4353 4354
	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
4355
		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4356

4357
	ret = !list_empty(&pwq->delayed_works);
4358
	rcu_read_unlock_sched();
4359 4360

	return ret;
L
Linus Torvalds 已提交
4361
}
4362
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
4363

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
4376
{
4377
	struct worker_pool *pool;
4378 4379
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
4380

4381 4382
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
4383

4384 4385
	local_irq_save(flags);
	pool = get_work_pool(work);
4386
	if (pool) {
4387
		spin_lock(&pool->lock);
4388 4389
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
4390
		spin_unlock(&pool->lock);
4391
	}
4392
	local_irq_restore(flags);
L
Linus Torvalds 已提交
4393

4394
	return ret;
L
Linus Torvalds 已提交
4395
}
4396
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
/**
 * set_worker_desc - set description for the current work item
 * @fmt: printf-style format string
 * @...: arguments for the format string
 *
 * This function can be called by a running work function to describe what
 * the work item is about.  If the worker task gets dumped, this
 * information will be printed out together to help debugging.  The
 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 */
void set_worker_desc(const char *fmt, ...)
{
	struct worker *worker = current_wq_worker();
	va_list args;

	if (worker) {
		va_start(args, fmt);
		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
		va_end(args);
		worker->desc_valid = true;
	}
}

/**
 * print_worker_info - print out worker information and description
 * @log_lvl: the log level to use when printing
 * @task: target task
 *
 * If @task is a worker and currently executing a work item, print out the
 * name of the workqueue being serviced and worker description set with
 * set_worker_desc() by the currently executing work item.
 *
 * This function can be safely called on any task as long as the
 * task_struct itself is accessible.  While safe, this function isn't
 * synchronized and may print out mixups or garbages of limited length.
 */
void print_worker_info(const char *log_lvl, struct task_struct *task)
{
	work_func_t *fn = NULL;
	char name[WQ_NAME_LEN] = { };
	char desc[WORKER_DESC_LEN] = { };
	struct pool_workqueue *pwq = NULL;
	struct workqueue_struct *wq = NULL;
	bool desc_valid = false;
	struct worker *worker;

	if (!(task->flags & PF_WQ_WORKER))
		return;

	/*
	 * This function is called without any synchronization and @task
	 * could be in any state.  Be careful with dereferences.
	 */
	worker = probe_kthread_data(task);

	/*
	 * Carefully copy the associated workqueue's workfn and name.  Keep
	 * the original last '\0' in case the original contains garbage.
	 */
	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
	probe_kernel_read(name, wq->name, sizeof(name) - 1);

	/* copy worker description */
	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
	if (desc_valid)
		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);

	if (fn || name[0] || desc[0]) {
		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
		if (desc[0])
			pr_cont(" (%s)", desc);
		pr_cont("\n");
	}
}

4475 4476 4477
/*
 * CPU hotplug.
 *
4478
 * There are two challenges in supporting CPU hotplug.  Firstly, there
4479
 * are a lot of assumptions on strong associations among work, pwq and
4480
 * pool which make migrating pending and scheduled works very
4481
 * difficult to implement without impacting hot paths.  Secondly,
4482
 * worker pools serve mix of short, long and very long running works making
4483 4484
 * blocked draining impractical.
 *
4485
 * This is solved by allowing the pools to be disassociated from the CPU
4486 4487
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
4488
 */
L
Linus Torvalds 已提交
4489

4490
static void wq_unbind_fn(struct work_struct *work)
4491
{
4492
	int cpu = smp_processor_id();
4493
	struct worker_pool *pool;
4494
	struct worker *worker;
4495
	int wi;
4496

4497
	for_each_cpu_worker_pool(pool, cpu) {
4498
		WARN_ON_ONCE(cpu != smp_processor_id());
4499

4500
		mutex_lock(&pool->manager_mutex);
4501
		spin_lock_irq(&pool->lock);
4502

4503
		/*
4504
		 * We've blocked all manager operations.  Make all workers
4505 4506 4507 4508 4509
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
4510
		for_each_pool_worker(worker, wi, pool)
4511
			worker->flags |= WORKER_UNBOUND;
4512

4513
		pool->flags |= POOL_DISASSOCIATED;
4514

4515
		spin_unlock_irq(&pool->lock);
4516
		mutex_unlock(&pool->manager_mutex);
4517

4518 4519 4520 4521 4522 4523 4524
		/*
		 * Call schedule() so that we cross rq->lock and thus can
		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
		 * This is necessary as scheduler callbacks may be invoked
		 * from other cpus.
		 */
		schedule();
4525

4526 4527 4528 4529 4530 4531 4532 4533
		/*
		 * Sched callbacks are disabled now.  Zap nr_running.
		 * After this, nr_running stays zero and need_more_worker()
		 * and keep_working() are always true as long as the
		 * worklist is not empty.  This pool now behaves as an
		 * unbound (in terms of concurrency management) pool which
		 * are served by workers tied to the pool.
		 */
4534
		atomic_set(&pool->nr_running, 0);
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544

		/*
		 * With concurrency management just turned off, a busy
		 * worker blocking could lead to lengthy stalls.  Kick off
		 * unbound chain execution of currently pending work items.
		 */
		spin_lock_irq(&pool->lock);
		wake_up_worker(pool);
		spin_unlock_irq(&pool->lock);
	}
4545 4546
}

T
Tejun Heo 已提交
4547 4548 4549 4550
/**
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
 *
4551
 * @pool->cpu is coming online.  Rebind all workers to the CPU.
T
Tejun Heo 已提交
4552 4553 4554
 */
static void rebind_workers(struct worker_pool *pool)
{
4555 4556
	struct worker *worker;
	int wi;
T
Tejun Heo 已提交
4557 4558 4559

	lockdep_assert_held(&pool->manager_mutex);

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	/*
	 * Restore CPU affinity of all workers.  As all idle workers should
	 * be on the run-queue of the associated CPU before any local
	 * wake-ups for concurrency management happen, restore CPU affinty
	 * of all workers first and then clear UNBOUND.  As we're called
	 * from CPU_ONLINE, the following shouldn't fail.
	 */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
T
Tejun Heo 已提交
4570

4571
	spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4572

4573 4574
	for_each_pool_worker(worker, wi, pool) {
		unsigned int worker_flags = worker->flags;
T
Tejun Heo 已提交
4575 4576

		/*
4577 4578 4579 4580 4581 4582
		 * A bound idle worker should actually be on the runqueue
		 * of the associated CPU for local wake-ups targeting it to
		 * work.  Kick all idle workers so that they migrate to the
		 * associated CPU.  Doing this in the same loop as
		 * replacing UNBOUND with REBOUND is safe as no worker will
		 * be bound before @pool->lock is released.
T
Tejun Heo 已提交
4583
		 */
4584 4585
		if (worker_flags & WORKER_IDLE)
			wake_up_process(worker->task);
T
Tejun Heo 已提交
4586

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
		/*
		 * We want to clear UNBOUND but can't directly call
		 * worker_clr_flags() or adjust nr_running.  Atomically
		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
		 * @worker will clear REBOUND using worker_clr_flags() when
		 * it initiates the next execution cycle thus restoring
		 * concurrency management.  Note that when or whether
		 * @worker clears REBOUND doesn't affect correctness.
		 *
		 * ACCESS_ONCE() is necessary because @worker->flags may be
		 * tested without holding any lock in
		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
		 * fail incorrectly leading to premature concurrency
		 * management operations.
		 */
		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
		worker_flags |= WORKER_REBOUND;
		worker_flags &= ~WORKER_UNBOUND;
		ACCESS_ONCE(worker->flags) = worker_flags;
T
Tejun Heo 已提交
4606
	}
4607 4608

	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
4609 4610
}

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
/**
 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
 * @pool: unbound pool of interest
 * @cpu: the CPU which is coming up
 *
 * An unbound pool may end up with a cpumask which doesn't have any online
 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
 * online CPU before, cpus_allowed of all its workers should be restored.
 */
static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
{
	static cpumask_t cpumask;
	struct worker *worker;
	int wi;

	lockdep_assert_held(&pool->manager_mutex);

	/* is @cpu allowed for @pool? */
	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
		return;

	/* is @cpu the only online CPU? */
	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
	if (cpumask_weight(&cpumask) != 1)
		return;

	/* as we're called from CPU_ONLINE, the following shouldn't fail */
	for_each_pool_worker(worker, wi, pool)
		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
						  pool->attrs->cpumask) < 0);
}

T
Tejun Heo 已提交
4644 4645 4646 4647
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
4648
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
4649 4650
					       unsigned long action,
					       void *hcpu)
4651
{
4652
	int cpu = (unsigned long)hcpu;
4653
	struct worker_pool *pool;
4654
	struct workqueue_struct *wq;
4655
	int pi;
4656

T
Tejun Heo 已提交
4657
	switch (action & ~CPU_TASKS_FROZEN) {
4658
	case CPU_UP_PREPARE:
4659
		for_each_cpu_worker_pool(pool, cpu) {
4660 4661
			if (pool->nr_workers)
				continue;
4662
			if (create_and_start_worker(pool) < 0)
4663
				return NOTIFY_BAD;
4664
		}
T
Tejun Heo 已提交
4665
		break;
4666

4667 4668
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
4669
		mutex_lock(&wq_pool_mutex);
4670 4671

		for_each_pool(pool, pi) {
4672
			mutex_lock(&pool->manager_mutex);
4673

4674 4675 4676 4677
			if (pool->cpu == cpu) {
				spin_lock_irq(&pool->lock);
				pool->flags &= ~POOL_DISASSOCIATED;
				spin_unlock_irq(&pool->lock);
4678

4679 4680 4681 4682
				rebind_workers(pool);
			} else if (pool->cpu < 0) {
				restore_unbound_workers_cpumask(pool, cpu);
			}
4683

4684
			mutex_unlock(&pool->manager_mutex);
4685
		}
4686

4687 4688 4689 4690
		/* update NUMA affinity of unbound workqueues */
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, true);

4691
		mutex_unlock(&wq_pool_mutex);
4692
		break;
4693
	}
4694 4695 4696 4697 4698 4699 4700
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
4701
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4702 4703 4704
						 unsigned long action,
						 void *hcpu)
{
4705
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
4706
	struct work_struct unbind_work;
4707
	struct workqueue_struct *wq;
T
Tejun Heo 已提交
4708

4709 4710
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
4711
		/* unbinding per-cpu workers should happen on the local CPU */
4712
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4713
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4714 4715 4716 4717 4718 4719 4720 4721

		/* update NUMA affinity of unbound workqueues */
		mutex_lock(&wq_pool_mutex);
		list_for_each_entry(wq, &workqueues, list)
			wq_update_unbound_numa(wq, cpu, false);
		mutex_unlock(&wq_pool_mutex);

		/* wait for per-cpu unbinding to finish */
T
Tejun Heo 已提交
4722 4723
		flush_work(&unbind_work);
		break;
4724 4725 4726 4727
	}
	return NOTIFY_OK;
}

4728
#ifdef CONFIG_SMP
4729

4730
struct work_for_cpu {
4731
	struct work_struct work;
4732 4733 4734 4735 4736
	long (*fn)(void *);
	void *arg;
	long ret;
};

4737
static void work_for_cpu_fn(struct work_struct *work)
4738
{
4739 4740
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

4741 4742 4743 4744 4745 4746 4747 4748 4749
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
4750 4751
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
4752
 * The caller must not hold any locks which would prevent @fn from completing.
4753
 */
4754
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4755
{
4756
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4757

4758 4759 4760
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
4761 4762 4763 4764 4765
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

4766 4767 4768 4769 4770
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
4771
 * Start freezing workqueues.  After this function returns, all freezable
4772
 * workqueues will queue new works to their delayed_works list instead of
4773
 * pool->worklist.
4774 4775
 *
 * CONTEXT:
4776
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4777 4778 4779
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
4780
	struct worker_pool *pool;
4781 4782
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4783
	int pi;
4784

4785
	mutex_lock(&wq_pool_mutex);
4786

4787
	WARN_ON_ONCE(workqueue_freezing);
4788 4789
	workqueue_freezing = true;

4790
	/* set FREEZING */
4791
	for_each_pool(pool, pi) {
4792
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
4793 4794
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
4795
		spin_unlock_irq(&pool->lock);
4796
	}
4797

4798
	list_for_each_entry(wq, &workqueues, list) {
4799
		mutex_lock(&wq->mutex);
4800 4801
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4802
		mutex_unlock(&wq->mutex);
4803
	}
4804

4805
	mutex_unlock(&wq_pool_mutex);
4806 4807 4808
}

/**
4809
 * freeze_workqueues_busy - are freezable workqueues still busy?
4810 4811 4812 4813 4814
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
4815
 * Grabs and releases wq_pool_mutex.
4816 4817
 *
 * RETURNS:
4818 4819
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
4820 4821 4822 4823
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
4824 4825
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
4826

4827
	mutex_lock(&wq_pool_mutex);
4828

4829
	WARN_ON_ONCE(!workqueue_freezing);
4830

4831 4832 4833
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
4834 4835 4836 4837
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
4838
		rcu_read_lock_sched();
4839
		for_each_pwq(pwq, wq) {
4840
			WARN_ON_ONCE(pwq->nr_active < 0);
4841
			if (pwq->nr_active) {
4842
				busy = true;
4843
				rcu_read_unlock_sched();
4844 4845 4846
				goto out_unlock;
			}
		}
4847
		rcu_read_unlock_sched();
4848 4849
	}
out_unlock:
4850
	mutex_unlock(&wq_pool_mutex);
4851 4852 4853 4854 4855 4856 4857
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
4858
 * frozen works are transferred to their respective pool worklists.
4859 4860
 *
 * CONTEXT:
4861
 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4862 4863 4864
 */
void thaw_workqueues(void)
{
4865 4866 4867
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
4868
	int pi;
4869

4870
	mutex_lock(&wq_pool_mutex);
4871 4872 4873 4874

	if (!workqueue_freezing)
		goto out_unlock;

4875
	/* clear FREEZING */
4876
	for_each_pool(pool, pi) {
4877
		spin_lock_irq(&pool->lock);
4878 4879
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
4880
		spin_unlock_irq(&pool->lock);
4881
	}
4882

4883 4884
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
4885
		mutex_lock(&wq->mutex);
4886 4887
		for_each_pwq(pwq, wq)
			pwq_adjust_max_active(pwq);
4888
		mutex_unlock(&wq->mutex);
4889 4890 4891 4892
	}

	workqueue_freezing = false;
out_unlock:
4893
	mutex_unlock(&wq_pool_mutex);
4894 4895 4896
}
#endif /* CONFIG_FREEZER */

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
static void __init wq_numa_init(void)
{
	cpumask_var_t *tbl;
	int node, cpu;

	/* determine NUMA pwq table len - highest node id + 1 */
	for_each_node(node)
		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);

	if (num_possible_nodes() <= 1)
		return;

4909 4910 4911 4912 4913
	if (wq_disable_numa) {
		pr_info("workqueue: NUMA affinity support disabled\n");
		return;
	}

4914 4915 4916
	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
	BUG_ON(!wq_update_unbound_numa_attrs_buf);

4917 4918 4919 4920 4921 4922 4923 4924 4925
	/*
	 * We want masks of possible CPUs of each node which isn't readily
	 * available.  Build one from cpu_to_node() which should have been
	 * fully initialized by now.
	 */
	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
	BUG_ON(!tbl);

	for_each_node(node)
4926 4927
		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
				node_online(node) ? node : NUMA_NO_NODE));
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

	for_each_possible_cpu(cpu) {
		node = cpu_to_node(cpu);
		if (WARN_ON(node == NUMA_NO_NODE)) {
			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
			/* happens iff arch is bonkers, let's just proceed */
			return;
		}
		cpumask_set_cpu(cpu, tbl[node]);
	}

	wq_numa_possible_cpumask = tbl;
	wq_numa_enabled = true;
}

4943
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
4944
{
T
Tejun Heo 已提交
4945 4946
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
4947

4948 4949
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4950
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4951

4952 4953 4954 4955
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4956
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4957
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4958

4959 4960
	wq_numa_init();

4961
	/* initialize CPU pools */
4962
	for_each_possible_cpu(cpu) {
4963
		struct worker_pool *pool;
4964

T
Tejun Heo 已提交
4965
		i = 0;
4966
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4967
			BUG_ON(init_worker_pool(pool));
4968
			pool->cpu = cpu;
4969
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4970
			pool->attrs->nice = std_nice[i++];
4971
			pool->node = cpu_to_node(cpu);
T
Tejun Heo 已提交
4972

T
Tejun Heo 已提交
4973
			/* alloc pool ID */
4974
			mutex_lock(&wq_pool_mutex);
T
Tejun Heo 已提交
4975
			BUG_ON(worker_pool_assign_id(pool));
4976
			mutex_unlock(&wq_pool_mutex);
4977
		}
4978 4979
	}

4980
	/* create the initial worker */
4981
	for_each_online_cpu(cpu) {
4982
		struct worker_pool *pool;
4983

4984
		for_each_cpu_worker_pool(pool, cpu) {
4985
			pool->flags &= ~POOL_DISASSOCIATED;
4986
			BUG_ON(create_and_start_worker(pool) < 0);
4987
		}
4988 4989
	}

4990 4991 4992 4993 4994 4995 4996 4997 4998
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
		attrs->nice = std_nice[i];
		unbound_std_wq_attrs[i] = attrs;
	}

4999
	system_wq = alloc_workqueue("events", 0, 0);
5000
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5001
	system_long_wq = alloc_workqueue("events_long", 0, 0);
5002 5003
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
5004 5005
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
5006 5007 5008 5009 5010
	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
					      WQ_POWER_EFFICIENT, 0);
	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
					      0);
5011
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5012 5013 5014
	       !system_unbound_wq || !system_freezable_wq ||
	       !system_power_efficient_wq ||
	       !system_freezable_power_efficient_wq);
5015
	return 0;
L
Linus Torvalds 已提交
5016
}
5017
early_initcall(init_workqueues);