intel_pm.c 257.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

V
Ville Syrjälä 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
426
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427
{
428 429
	bool ret;

430
	mutex_lock(&dev_priv->wm.wm_mutex);
431
	ret = _intel_set_memory_cxsr(dev_priv, enable);
432 433 434 435
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
436
	mutex_unlock(&dev_priv->wm.wm_mutex);
437 438

	return ret;
439
}
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
455
static const int pessimal_latency_ns = 5000;
456

457 458 459
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

460
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
461
{
462
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
463
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
464
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
465 466
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
467

468
	switch (pipe) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
489 490
		MISSING_CASE(pipe);
		return;
491 492
	}

493 494 495 496
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
497 498
}

499
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

514
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

530
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
547 548 549 550 551
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
552 553
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
554 555 556 557 558
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params pineview_cursor_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 574
};
static const struct intel_watermark_params i965_cursor_wm_info = {
575 576 577 578 579
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
580 581
};
static const struct intel_watermark_params i945_wm_info = {
582 583 584 585 586
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
587 588
};
static const struct intel_watermark_params i915_wm_info = {
589 590 591 592 593
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
594
};
595
static const struct intel_watermark_params i830_a_wm_info = {
596 597 598 599 600
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
601
};
602 603 604 605 606 607 608
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
609
static const struct intel_watermark_params i845_wm_info = {
610 611 612 613 614
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
615 616
};

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

713 714
/**
 * intel_calculate_wm - calculate watermark level
715
 * @pixel_rate: pixel clock
716
 * @wm: chip FIFO params
717
 * @cpp: bytes per pixel
718 719 720 721 722 723 724 725 726 727 728 729 730
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
731 732 733 734
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
735
{
736
	int entries, wm_size;
737 738 739 740 741 742 743

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
744 745 746 747 748
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
749

750 751
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
752 753

	/* Don't promote wm_size to unsigned... */
754
	if (wm_size > wm->max_wm)
755 756 757
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
758 759 760 761 762 763 764 765 766 767 768

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

769 770 771
	return wm_size;
}

772 773 774 775 776 777 778 779 780 781
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

782 783 784 785 786
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

810
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
811
{
812
	struct intel_crtc *crtc, *enabled = NULL;
813

814
	for_each_intel_crtc(&dev_priv->drm, crtc) {
815
		if (intel_crtc_active(crtc)) {
816 817 818 819 820 821 822 823 824
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

825
static void pineview_update_wm(struct intel_crtc *unused_crtc)
826
{
827
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
828
	struct intel_crtc *crtc;
829 830
	const struct cxsr_latency *latency;
	u32 reg;
831
	unsigned int wm;
832

833 834 835 836
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
837 838
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
839
		intel_set_memory_cxsr(dev_priv, false);
840 841 842
		return;
	}

843
	crtc = single_enabled_crtc(dev_priv);
844
	if (crtc) {
845 846 847 848
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
849
		int cpp = fb->format->cpp[0];
850
		int clock = adjusted_mode->crtc_clock;
851 852 853 854

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
855
					cpp, latency->display_sr);
856 857
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
858
		reg |= FW_WM(wm, SR);
859 860 861 862 863 864
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
865
					4, latency->cursor_sr);
866 867
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
868
		reg |= FW_WM(wm, CURSOR_SR);
869 870 871 872 873
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
874
					cpp, latency->display_hpll_disable);
875 876
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
877
		reg |= FW_WM(wm, HPLL_SR);
878 879 880 881 882
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
883
					4, latency->cursor_hpll_disable);
884 885
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
886
		reg |= FW_WM(wm, HPLL_CURSOR);
887 888 889
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

890
		intel_set_memory_cxsr(dev_priv, true);
891
	} else {
892
		intel_set_memory_cxsr(dev_priv, false);
893 894 895
	}
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

913 914
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
915
{
916 917 918 919 920
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe)
		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
938

939
	POSTING_READ(DSPFW1);
940 941
}

942 943 944
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

945
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
946 947
				const struct vlv_wm_values *wm)
{
948 949 950
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
951 952
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

953 954 955 956 957 958
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
959

960 961 962 963 964 965 966 967 968 969 970
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

971
	I915_WRITE(DSPFW1,
972
		   FW_WM(wm->sr.plane, SR) |
973 974 975
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
976
	I915_WRITE(DSPFW2,
977 978 979
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
980
	I915_WRITE(DSPFW3,
981
		   FW_WM(wm->sr.cursor, CURSOR_SR));
982 983 984

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
985 986
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
987
		I915_WRITE(DSPFW8_CHV,
988 989
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
990
		I915_WRITE(DSPFW9_CHV,
991 992
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
993
		I915_WRITE(DSPHOWM,
994
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
995 996 997 998 999 1000 1001 1002 1003
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1004 1005
	} else {
		I915_WRITE(DSPFW7,
1006 1007
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1008
		I915_WRITE(DSPHOWM,
1009
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1010 1011 1012 1013 1014 1015
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1016 1017 1018
	}

	POSTING_READ(DSPFW1);
1019 1020
}

1021 1022
#undef FW_WM_VLV

1023 1024 1025 1026 1027
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1028
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1029

1030
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	int clock, htotal, cpp, width, wm;
	int latency = dev_priv->wm.pri_latency[level] * 10;

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
		int small, large;

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

	return min_t(int, wm, USHRT_MAX);
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;

		if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1541 1542
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1543 1544
				   unsigned int htotal,
				   unsigned int width,
1545
				   unsigned int cpp,
1546 1547 1548 1549
				   unsigned int latency)
{
	unsigned int ret;

1550 1551
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1552 1553 1554 1555 1556
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1557
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1558 1559 1560 1561
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1562 1563
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1564 1565 1566
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1567 1568

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1569 1570 1571
	}
}

1572 1573
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1574 1575
				     int level)
{
1576
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1577
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1578 1579
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1580
	int clock, htotal, cpp, width, wm;
1581 1582 1583 1584

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1585
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1586 1587
		return 0;

1588
	cpp = plane_state->base.fb->format->cpp[0];
1589 1590 1591
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1592

1593
	if (plane->id == PLANE_CURSOR) {
1594 1595 1596 1597 1598 1599 1600 1601
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1602
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1603 1604 1605 1606 1607 1608
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1609 1610 1611 1612 1613 1614
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1615
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1616
{
1617
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1618
	const struct g4x_pipe_wm *raw =
1619
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1620
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1621 1622 1623
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1624
	int fifo_extra, fifo_left = fifo_size;
1625
	int sprite0_fifo_extra = 0;
1626 1627
	unsigned int total_rate;
	enum plane_id plane_id;
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1640 1641
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1642 1643
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1644

1645 1646
	if (total_rate > fifo_size)
		return -EINVAL;
1647

1648 1649
	if (total_rate == 0)
		total_rate = 1;
1650

1651
	for_each_plane_id_on_crtc(crtc, plane_id) {
1652 1653
		unsigned int rate;

1654 1655
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1656 1657 1658
			continue;
		}

1659 1660 1661
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1662 1663
	}

1664 1665 1666
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1667 1668 1669
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1670 1671

	/* spread the remainder evenly */
1672
	for_each_plane_id_on_crtc(crtc, plane_id) {
1673 1674 1675 1676 1677
		int plane_extra;

		if (fifo_left == 0)
			break;

1678
		if ((active_planes & BIT(plane_id)) == 0)
1679 1680 1681
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1682
		fifo_state->plane[plane_id] += plane_extra;
1683 1684 1685
		fifo_left -= plane_extra;
	}

1686 1687 1688 1689 1690 1691 1692 1693 1694
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1695 1696
}

1697 1698 1699 1700 1701 1702
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1703
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1714 1715 1716 1717 1718 1719 1720 1721
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1722 1723 1724 1725
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1726
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1727
				 int level, enum plane_id plane_id, u16 value)
1728
{
1729
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1730
	int num_levels = intel_wm_num_levels(dev_priv);
1731
	bool dirty = false;
1732

1733
	for (; level < num_levels; level++) {
1734
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1735

1736
		dirty |= raw->plane[plane_id] != value;
1737
		raw->plane[plane_id] = value;
1738
	}
1739 1740

	return dirty;
1741 1742
}

1743 1744
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1745
{
1746 1747
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1748
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1749
	int level;
1750
	bool dirty = false;
1751

1752
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1753 1754
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1755
	}
1756

1757
	for (level = 0; level < num_levels; level++) {
1758
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1759 1760
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1761

1762 1763
		if (wm > max_wm)
			break;
1764

1765
		dirty |= raw->plane[plane_id] != wm;
1766 1767
		raw->plane[plane_id] = wm;
	}
1768

1769
	/* mark all higher levels as invalid */
1770
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1771

1772 1773
out:
	if (dirty)
1774
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1775 1776 1777 1778 1779 1780
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1781
}
1782

1783 1784
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1785
{
1786
	const struct g4x_pipe_wm *raw =
1787 1788 1789
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1790

1791 1792
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1793

1794
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1795
{
1796 1797 1798 1799
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1813
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1814 1815 1816 1817
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1818
	unsigned int dirty = 0;
1819 1820 1821 1822 1823 1824 1825 1826

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1827

1828
		if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1859
	}
1860

1861
	/* initially allow all levels */
1862
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1863 1864 1865 1866 1867
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1868
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1869

1870
	for (level = 0; level < wm_state->num_levels; level++) {
1871
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1872
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1873

1874
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1875
			break;
1876

1877 1878 1879 1880 1881 1882 1883 1884
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1885
						 raw->plane[PLANE_SPRITE0],
1886 1887
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1888

1889 1890 1891
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1892 1893
	}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1904 1905
}

1906 1907 1908
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1909 1910
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1911
{
1912
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1913
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1914 1915
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1916
	int sprite0_start, sprite1_start, fifo_size;
1917

1918 1919 1920
	if (!crtc_state->fifo_changed)
		return;

1921 1922 1923
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1924

1925 1926
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1927

1928 1929
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1940

1941 1942 1943
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1944 1945
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1957 1958
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1959 1960
		break;
	case PIPE_B:
1961 1962
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1974 1975
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1976 1977
		break;
	case PIPE_C:
1978 1979
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

1991 1992
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
1993 1994 1995 1996
		break;
	default:
		break;
	}
1997

1998
	POSTING_READ_FW(DSPARB);
1999

2000
	spin_unlock(&dev_priv->uncore.lock);
2001 2002 2003 2004
}

#undef VLV_FIFO

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2015 2016
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2039 2040
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2041 2042 2043 2044

	return 0;
}

2045
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2046 2047 2048 2049 2050
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2051
	wm->level = dev_priv->wm.max_level;
2052 2053
	wm->cxsr = true;

2054
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2055
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2070 2071 2072
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2073
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2074
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075 2076 2077
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2078
		if (crtc->active && wm->cxsr)
2079 2080
			wm->sr = wm_state->sr[wm->level];

2081 2082 2083 2084
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2085 2086 2087
	}
}

2088
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2089
{
2090 2091
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2092

2093
	vlv_merge_wm(dev_priv, &new_wm);
2094

2095
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2096 2097
		return;

2098
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2099 2100
		chv_set_memory_dvfs(dev_priv, false);

2101
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2102 2103
		chv_set_memory_pm5(dev_priv, false);

2104
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2105
		_intel_set_memory_cxsr(dev_priv, false);
2106

2107
	vlv_write_wm_values(dev_priv, &new_wm);
2108

2109
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2110
		_intel_set_memory_cxsr(dev_priv, true);
2111

2112
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2113 2114
		chv_set_memory_pm5(dev_priv, true);

2115
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2116 2117
		chv_set_memory_dvfs(dev_priv, true);

2118
	*old_wm = new_wm;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2144 2145 2146 2147
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2148
static void i965_update_wm(struct intel_crtc *unused_crtc)
2149
{
2150
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2151
	struct intel_crtc *crtc;
2152 2153
	int srwm = 1;
	int cursor_sr = 16;
2154
	bool cxsr_enabled;
2155 2156

	/* Calc sr entries for one plane configs */
2157
	crtc = single_enabled_crtc(dev_priv);
2158 2159 2160
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2161 2162 2163 2164
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2165
		int clock = adjusted_mode->crtc_clock;
2166
		int htotal = adjusted_mode->crtc_htotal;
2167
		int hdisplay = crtc->config->pipe_src_w;
2168
		int cpp = fb->format->cpp[0];
2169 2170
		int entries;

2171 2172
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2173 2174 2175 2176 2177 2178 2179 2180
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2181 2182 2183
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2184
		entries = DIV_ROUND_UP(entries,
2185 2186
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2187

2188
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2189 2190 2191 2192 2193 2194
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2195
		cxsr_enabled = true;
2196
	} else {
2197
		cxsr_enabled = false;
2198
		/* Turn off self refresh if both pipes are enabled */
2199
		intel_set_memory_cxsr(dev_priv, false);
2200 2201 2202 2203 2204 2205
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2206 2207 2208 2209 2210 2211
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2212
	/* update cursor SR watermark */
2213
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2214 2215 2216

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2217 2218
}

2219 2220
#undef FW_WM

2221
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2222
{
2223
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2224 2225 2226 2227 2228 2229
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2230
	struct intel_crtc *crtc, *enabled = NULL;
2231

2232
	if (IS_I945GM(dev_priv))
2233
		wm_info = &i945_wm_info;
2234
	else if (!IS_GEN2(dev_priv))
2235 2236
		wm_info = &i915_wm_info;
	else
2237
		wm_info = &i830_a_wm_info;
2238

2239
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2240
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2241 2242 2243 2244 2245 2246 2247
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2248
		if (IS_GEN2(dev_priv))
2249
			cpp = 4;
2250
		else
2251
			cpp = fb->format->cpp[0];
2252

2253
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2254
					       wm_info, fifo_size, cpp,
2255
					       pessimal_latency_ns);
2256
		enabled = crtc;
2257
	} else {
2258
		planea_wm = fifo_size - wm_info->guard_size;
2259 2260 2261 2262
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2263
	if (IS_GEN2(dev_priv))
2264
		wm_info = &i830_bc_wm_info;
2265

2266
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2267
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2268 2269 2270 2271 2272 2273 2274
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2275
		if (IS_GEN2(dev_priv))
2276
			cpp = 4;
2277
		else
2278
			cpp = fb->format->cpp[0];
2279

2280
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2281
					       wm_info, fifo_size, cpp,
2282
					       pessimal_latency_ns);
2283 2284 2285 2286
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2287
	} else {
2288
		planeb_wm = fifo_size - wm_info->guard_size;
2289 2290 2291
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2292 2293 2294

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2295
	if (IS_I915GM(dev_priv) && enabled) {
2296
		struct drm_i915_gem_object *obj;
2297

2298
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2299 2300

		/* self-refresh seems busted with untiled */
2301
		if (!i915_gem_object_is_tiled(obj))
2302 2303 2304
			enabled = NULL;
	}

2305 2306 2307 2308 2309 2310
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2311
	intel_set_memory_cxsr(dev_priv, false);
2312 2313

	/* Calc sr entries for one plane configs */
2314
	if (HAS_FW_BLC(dev_priv) && enabled) {
2315 2316
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2317 2318 2319 2320
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2321
		int clock = adjusted_mode->crtc_clock;
2322
		int htotal = adjusted_mode->crtc_htotal;
2323 2324
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2325 2326
		int entries;

2327
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2328
			cpp = 4;
2329
		else
2330
			cpp = fb->format->cpp[0];
2331

2332 2333
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2334 2335 2336 2337 2338 2339
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2340
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2341 2342
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2343
		else
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2360 2361
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2362 2363
}

2364
static void i845_update_wm(struct intel_crtc *unused_crtc)
2365
{
2366
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2367
	struct intel_crtc *crtc;
2368
	const struct drm_display_mode *adjusted_mode;
2369 2370 2371
	uint32_t fwater_lo;
	int planea_wm;

2372
	crtc = single_enabled_crtc(dev_priv);
2373 2374 2375
	if (crtc == NULL)
		return;

2376
	adjusted_mode = &crtc->config->base.adjusted_mode;
2377
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2378
				       &i845_wm_info,
2379
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2380
				       4, pessimal_latency_ns);
2381 2382 2383 2384 2385 2386 2387 2388
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2389
/* latency must be in 0.1us units. */
2390 2391 2392
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2393
{
2394
	unsigned int ret;
2395

2396 2397
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2398 2399 2400 2401

	return ret;
}

2402
/* latency must be in 0.1us units. */
2403 2404 2405 2406 2407
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2408
{
2409
	unsigned int ret;
2410

2411 2412
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2413
	ret = DIV_ROUND_UP(ret, 64) + 2;
2414

2415 2416 2417
	return ret;
}

2418
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2419
			   uint8_t cpp)
2420
{
2421 2422 2423 2424 2425 2426
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2427
	if (WARN_ON(!cpp))
2428 2429 2430 2431
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2432
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2433 2434
}

2435
struct ilk_wm_maximums {
2436 2437 2438 2439 2440 2441
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2442 2443 2444 2445
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2446
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2447
				   const struct intel_plane_state *pstate,
2448 2449
				   uint32_t mem_value,
				   bool is_lp)
2450
{
2451
	uint32_t method1, method2;
2452
	int cpp;
2453

2454
	if (!intel_wm_plane_visible(cstate, pstate))
2455 2456
		return 0;

2457
	cpp = pstate->base.fb->format->cpp[0];
2458

2459
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2460 2461 2462 2463

	if (!is_lp)
		return method1;

2464
	method2 = ilk_wm_method2(cstate->pixel_rate,
2465
				 cstate->base.adjusted_mode.crtc_htotal,
2466
				 drm_rect_width(&pstate->base.dst),
2467
				 cpp, mem_value);
2468 2469

	return min(method1, method2);
2470 2471
}

2472 2473 2474 2475
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2476
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2477
				   const struct intel_plane_state *pstate,
2478 2479 2480
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2481
	int cpp;
2482

2483
	if (!intel_wm_plane_visible(cstate, pstate))
2484 2485
		return 0;

2486
	cpp = pstate->base.fb->format->cpp[0];
2487

2488 2489
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2490
				 cstate->base.adjusted_mode.crtc_htotal,
2491
				 drm_rect_width(&pstate->base.dst),
2492
				 cpp, mem_value);
2493 2494 2495
	return min(method1, method2);
}

2496 2497 2498 2499
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2500
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2501
				   const struct intel_plane_state *pstate,
2502 2503
				   uint32_t mem_value)
{
2504 2505
	int cpp;

2506
	if (!intel_wm_plane_visible(cstate, pstate))
2507 2508
		return 0;

2509 2510
	cpp = pstate->base.fb->format->cpp[0];

2511
	return ilk_wm_method2(cstate->pixel_rate,
2512
			      cstate->base.adjusted_mode.crtc_htotal,
2513
			      pstate->base.crtc_w, cpp, mem_value);
2514 2515
}

2516
/* Only for WM_LP. */
2517
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2518
				   const struct intel_plane_state *pstate,
2519
				   uint32_t pri_val)
2520
{
2521
	int cpp;
2522

2523
	if (!intel_wm_plane_visible(cstate, pstate))
2524 2525
		return 0;

2526
	cpp = pstate->base.fb->format->cpp[0];
2527

2528
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2529 2530
}

2531 2532
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2533
{
2534
	if (INTEL_GEN(dev_priv) >= 8)
2535
		return 3072;
2536
	else if (INTEL_GEN(dev_priv) >= 7)
2537 2538 2539 2540 2541
		return 768;
	else
		return 512;
}

2542 2543 2544
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2545
{
2546
	if (INTEL_GEN(dev_priv) >= 8)
2547 2548
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2549
	else if (INTEL_GEN(dev_priv) >= 7)
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2560 2561
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2562
{
2563
	if (INTEL_GEN(dev_priv) >= 7)
2564 2565 2566 2567 2568
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2569
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2570
{
2571
	if (INTEL_GEN(dev_priv) >= 8)
2572 2573 2574 2575 2576
		return 31;
	else
		return 15;
}

2577 2578 2579
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2580
				     const struct intel_wm_config *config,
2581 2582 2583
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2584 2585
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2586 2587

	/* if sprites aren't enabled, sprites get nothing */
2588
	if (is_sprite && !config->sprites_enabled)
2589 2590 2591
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2592
	if (level == 0 || config->num_pipes_active > 1) {
2593
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2594 2595 2596 2597 2598 2599

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2600
		if (INTEL_GEN(dev_priv) <= 6)
2601 2602 2603
			fifo_size /= 2;
	}

2604
	if (config->sprites_enabled) {
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2616
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2617 2618 2619 2620
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2621 2622
				      int level,
				      const struct intel_wm_config *config)
2623 2624
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2625
	if (level > 0 && config->num_pipes_active > 1)
2626 2627 2628
		return 64;

	/* otherwise just report max that registers can hold */
2629
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2630 2631
}

2632
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2633 2634 2635
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2636
				    struct ilk_wm_maximums *max)
2637
{
2638 2639 2640
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2641
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2642 2643
}

2644
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2645 2646 2647
					int level,
					struct ilk_wm_maximums *max)
{
2648 2649 2650 2651
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2652 2653
}

2654
static bool ilk_validate_wm_level(int level,
2655
				  const struct ilk_wm_maximums *max,
2656
				  struct intel_wm_level *result)
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2695
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2696
				 const struct intel_crtc *intel_crtc,
2697
				 int level,
2698
				 struct intel_crtc_state *cstate,
2699 2700 2701
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2702
				 struct intel_wm_level *result)
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2727 2728 2729
	result->enable = true;
}

2730
static uint32_t
2731
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2732
{
2733 2734
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2735 2736
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2737
	u32 linetime, ips_linetime;
2738

2739 2740 2741 2742
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2743
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2744
		return 0;
2745

2746 2747 2748
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2749 2750 2751
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2752
					 intel_state->cdclk.logical.cdclk);
2753

2754 2755
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2756 2757
}

2758 2759
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2760
{
2761
	if (IS_GEN9(dev_priv)) {
2762
		uint32_t val;
2763
		int ret, i;
2764
		int level, max_level = ilk_wm_max_level(dev_priv);
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2820
		/*
2821
		 * WaWmMemoryReadLatency:skl,glk
2822
		 *
2823
		 * punit doesn't take into account the read latency so we need
2824 2825
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2826
		 */
2827 2828 2829 2830 2831
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2832
				wm[level] += 2;
2833
			}
2834 2835
		}

2836
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2837 2838 2839 2840 2841
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2842 2843 2844 2845
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2846
	} else if (INTEL_GEN(dev_priv) >= 6) {
2847 2848 2849 2850 2851 2852
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2853
	} else if (INTEL_GEN(dev_priv) >= 5) {
2854 2855 2856 2857 2858 2859
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2860 2861 2862
	}
}

2863 2864
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2865 2866
{
	/* ILK sprite LP0 latency is 1300 ns */
2867
	if (IS_GEN5(dev_priv))
2868 2869 2870
		wm[0] = 13;
}

2871 2872
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2873 2874
{
	/* ILK cursor LP0 latency is 1300 ns */
2875
	if (IS_GEN5(dev_priv))
2876 2877 2878
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2879
	if (IS_IVYBRIDGE(dev_priv))
2880 2881 2882
		wm[3] *= 2;
}

2883
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2884 2885
{
	/* how many WM levels are we expecting */
2886
	if (INTEL_GEN(dev_priv) >= 9)
2887
		return 7;
2888
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2889
		return 4;
2890
	else if (INTEL_GEN(dev_priv) >= 6)
2891
		return 3;
2892
	else
2893 2894
		return 2;
}
2895

2896
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2897
				   const char *name,
2898
				   const uint16_t wm[8])
2899
{
2900
	int level, max_level = ilk_wm_max_level(dev_priv);
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2911 2912 2913 2914
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2915
		if (IS_GEN9(dev_priv))
2916 2917
			latency *= 10;
		else if (level > 0)
2918 2919 2920 2921 2922 2923 2924 2925
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2926 2927 2928
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2929
	int level, max_level = ilk_wm_max_level(dev_priv);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2941
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2957 2958 2959
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2960 2961
}

2962
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2963
{
2964
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2965 2966 2967 2968 2969 2970

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2971
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2972
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2973

2974 2975 2976
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2977

2978
	if (IS_GEN6(dev_priv))
2979
		snb_wm_latency_quirk(dev_priv);
2980 2981
}

2982
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2983
{
2984
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2985
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2986 2987
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3011
/* Compute new watermarks for the pipe */
3012
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3013
{
3014 3015
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3016
	struct intel_pipe_wm *pipe_wm;
3017
	struct drm_device *dev = state->dev;
3018
	const struct drm_i915_private *dev_priv = to_i915(dev);
3019
	struct intel_plane *intel_plane;
3020
	struct intel_plane_state *pristate = NULL;
3021
	struct intel_plane_state *sprstate = NULL;
3022
	struct intel_plane_state *curstate = NULL;
3023
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3024
	struct ilk_wm_maximums max;
3025

3026
	pipe_wm = &cstate->wm.ilk.optimal;
3027

3028
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3029 3030 3031 3032 3033 3034
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
3035 3036

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3037
			pristate = ps;
3038
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3039
			sprstate = ps;
3040
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3041
			curstate = ps;
3042 3043
	}

3044
	pipe_wm->pipe_enabled = cstate->base.active;
3045
	if (sprstate) {
3046 3047 3048 3049
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3050 3051
	}

3052 3053
	usable_level = max_level;

3054
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3055
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3056
		usable_level = 1;
3057 3058

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3059
	if (pipe_wm->sprites_scaled)
3060
		usable_level = 0;
3061

3062
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3063 3064 3065 3066
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3067

3068
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3069
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3070

3071
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3072
		return -EINVAL;
3073

3074
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3075 3076

	for (level = 1; level <= max_level; level++) {
3077
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3078

3079
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3080
				     pristate, sprstate, curstate, wm);
3081 3082 3083 3084 3085 3086

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3087 3088 3089 3090 3091 3092
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
3093
			usable_level = level;
3094 3095
	}

3096
	return 0;
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3108
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3109
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3110
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3111 3112 3113 3114 3115 3116

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3117
	*a = newstate->wm.ilk.optimal;
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3146 3147
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3148 3149 3150 3151

	return 0;
}

3152 3153 3154 3155 3156 3157 3158 3159 3160
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3161 3162
	ret_wm->enable = true;

3163
	for_each_intel_crtc(dev, intel_crtc) {
3164
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3165 3166 3167 3168
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3169

3170 3171 3172 3173 3174
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3175
		if (!wm->enable)
3176
			ret_wm->enable = false;
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3189
			 const struct intel_wm_config *config,
3190
			 const struct ilk_wm_maximums *max,
3191 3192
			 struct intel_pipe_wm *merged)
{
3193
	struct drm_i915_private *dev_priv = to_i915(dev);
3194
	int level, max_level = ilk_wm_max_level(dev_priv);
3195
	int last_enabled_level = max_level;
3196

3197
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3198
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3199
	    config->num_pipes_active > 1)
3200
		last_enabled_level = 0;
3201

3202
	/* ILK: FBC WM must be disabled always */
3203
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3204 3205 3206 3207 3208 3209 3210

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3211 3212 3213 3214 3215
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3216 3217 3218 3219 3220 3221

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3222 3223
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3224 3225 3226
			wm->fbc_val = 0;
		}
	}
3227 3228 3229 3230 3231 3232 3233

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3234
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3235
	    intel_fbc_is_active(dev_priv)) {
3236 3237 3238 3239 3240 3241
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3242 3243
}

3244 3245 3246 3247 3248 3249
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3250 3251 3252
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3253
	struct drm_i915_private *dev_priv = to_i915(dev);
3254

3255
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3256 3257 3258 3259 3260
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3261
static void ilk_compute_wm_results(struct drm_device *dev,
3262
				   const struct intel_pipe_wm *merged,
3263
				   enum intel_ddb_partitioning partitioning,
3264
				   struct ilk_wm_values *results)
3265
{
3266
	struct drm_i915_private *dev_priv = to_i915(dev);
3267 3268
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3269

3270
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3271
	results->partitioning = partitioning;
3272

3273
	/* LP1+ register values */
3274
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3275
		const struct intel_wm_level *r;
3276

3277
		level = ilk_wm_lp_to_level(wm_lp, merged);
3278

3279
		r = &merged->wm[level];
3280

3281 3282 3283 3284 3285
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3286
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3287 3288 3289
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3290 3291 3292
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3293
		if (INTEL_GEN(dev_priv) >= 8)
3294 3295 3296 3297 3298 3299
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3300 3301 3302 3303
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3304
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3305 3306 3307 3308
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3309
	}
3310

3311
	/* LP0 register values */
3312
	for_each_intel_crtc(dev, intel_crtc) {
3313
		enum pipe pipe = intel_crtc->pipe;
3314 3315
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3316 3317 3318 3319

		if (WARN_ON(!r->enable))
			continue;

3320
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3321

3322 3323 3324 3325
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3326 3327 3328
	}
}

3329 3330
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3331
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3332 3333
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3334
{
3335
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3336
	int level1 = 0, level2 = 0;
3337

3338 3339 3340 3341 3342
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3343 3344
	}

3345 3346
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3347 3348 3349
			return r2;
		else
			return r1;
3350
	} else if (level1 > level2) {
3351 3352 3353 3354 3355 3356
		return r1;
	} else {
		return r2;
	}
}

3357 3358 3359 3360 3361 3362 3363 3364
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3365
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3366 3367
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3368 3369 3370 3371 3372
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3373
	for_each_pipe(dev_priv, pipe) {
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3417 3418
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3419
{
3420
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3421
	bool changed = false;
3422

3423 3424 3425
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3426
		changed = true;
3427 3428 3429 3430
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3431
		changed = true;
3432 3433 3434 3435
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3436
		changed = true;
3437
	}
3438

3439 3440 3441 3442
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3443

3444 3445 3446 3447 3448 3449 3450
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3451 3452
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3453
{
3454
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3455 3456 3457
	unsigned int dirty;
	uint32_t val;

3458
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3459 3460 3461 3462 3463
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3464
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3465
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3466
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3467
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3468
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3469 3470
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3471
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3472
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3473
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3474
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3475
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3476 3477
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3478
	if (dirty & WM_DIRTY_DDB) {
3479
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3494 3495
	}

3496
	if (dirty & WM_DIRTY_FBC) {
3497 3498 3499 3500 3501 3502 3503 3504
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3505 3506 3507 3508
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3509
	if (INTEL_GEN(dev_priv) >= 7) {
3510 3511 3512 3513 3514
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3515

3516
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3517
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3518
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3519
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3520
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3521
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3522 3523

	dev_priv->wm.hw = *results;
3524 3525
}

3526
bool ilk_disable_lp_wm(struct drm_device *dev)
3527
{
3528
	struct drm_i915_private *dev_priv = to_i915(dev);
3529 3530 3531 3532

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3533
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3534

3535 3536 3537 3538 3539 3540 3541 3542
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3543
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3544 3545 3546 3547 3548
		return true;

	return false;
}

3549 3550 3551
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3552 3553 3554 3555 3556 3557 3558 3559
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3560 3561
}

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3574
intel_enable_sagv(struct drm_i915_private *dev_priv)
3575 3576 3577
{
	int ret;

3578 3579 3580 3581
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3597
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3598
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3599
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3600 3601 3602 3603 3604 3605
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3606
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3607 3608 3609 3610
	return 0;
}

int
3611
intel_disable_sagv(struct drm_i915_private *dev_priv)
3612
{
3613
	int ret;
3614

3615 3616 3617 3618
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3619 3620 3621 3622 3623 3624
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3625 3626 3627 3628
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3629 3630 3631 3632 3633 3634
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3635
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3636
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3637
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3638
		return 0;
3639 3640 3641
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3642 3643
	}

3644
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3645 3646 3647
	return 0;
}

3648
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3649 3650 3651 3652
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3653 3654
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3655
	struct intel_crtc_state *cstate;
3656
	enum pipe pipe;
3657
	int level, latency;
3658

3659 3660 3661
	if (!intel_has_sagv(dev_priv))
		return false;

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3675
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3676
	cstate = to_intel_crtc_state(crtc->base.state);
3677

3678
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3679 3680
		return false;

3681
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3682 3683
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3684

3685
		/* Skip this plane if it's not enabled */
3686
		if (!wm->wm[0].plane_en)
3687 3688 3689
			continue;

		/* Find the highest enabled wm level for this plane */
3690
		for (level = ilk_wm_max_level(dev_priv);
3691
		     !wm->wm[level].plane_en; --level)
3692 3693
		     { }

3694 3695 3696
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3697
		    plane->base.state->fb->modifier ==
3698 3699 3700
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3701 3702 3703 3704 3705
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3706
		if (latency < SKL_SAGV_BLOCK_TIME)
3707 3708 3709 3710 3711 3712
			return false;
	}

	return true;
}

3713 3714
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3715
				   const struct intel_crtc_state *cstate,
3716 3717
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3718
{
3719 3720 3721
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3722
	struct drm_crtc *for_crtc = cstate->base.crtc;
3723 3724
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3725

3726
	if (WARN_ON(!state) || !cstate->base.active) {
3727 3728
		alloc->start = 0;
		alloc->end = 0;
3729
		*num_active = hweight32(dev_priv->active_crtcs);
3730 3731 3732
		return;
	}

3733 3734 3735 3736 3737
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3738 3739
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3740 3741 3742

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3743
	/*
3744 3745 3746 3747 3748 3749
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3750
	 */
3751
	if (!intel_state->active_pipe_changes) {
3752 3753 3754 3755 3756
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3757
		return;
3758
	}
3759 3760 3761 3762 3763 3764

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3765 3766
}

3767
static unsigned int skl_cursor_allocation(int num_active)
3768
{
3769
	if (num_active == 1)
3770 3771 3772 3773 3774
		return 32;

	return 8;
}

3775 3776 3777 3778
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3779 3780
	if (entry->end)
		entry->end += 1;
3781 3782
}

3783 3784
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3785
{
3786
	struct intel_crtc *crtc;
3787

3788 3789
	memset(ddb, 0, sizeof(*ddb));

3790
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3791
		enum intel_display_power_domain power_domain;
3792 3793
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3794 3795 3796

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3797 3798
			continue;

3799 3800 3801 3802 3803 3804 3805
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3806

3807 3808
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3809 3810

		intel_display_power_put(dev_priv, power_domain);
3811 3812 3813
	}
}

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
3831 3832
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3833
{
3834
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3835 3836 3837
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3838
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3839 3840 3841
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
	if (plane->id == PLANE_CURSOR) {
		src_w = pstate->base.src_w;
		src_h = pstate->base.src_h;
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
		src_w = drm_rect_width(&pstate->base.src);
		src_h = drm_rect_height(&pstate->base.src);
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3854
	if (drm_rotation_90_or_270(pstate->base.rotation))
3855 3856 3857 3858 3859 3860 3861 3862 3863
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3864
static unsigned int
3865 3866 3867
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3868
{
3869
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3870
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3871
	uint32_t down_scale_amount, data_rate;
3872
	uint32_t width = 0, height = 0;
3873 3874
	struct drm_framebuffer *fb;
	u32 format;
3875

3876
	if (!intel_pstate->base.visible)
3877
		return 0;
3878 3879

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3880
	format = fb->format->format;
3881

3882
	if (plane->id == PLANE_CURSOR)
3883 3884 3885
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3886

3887 3888
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3889

3890
	if (drm_rotation_90_or_270(pstate->rotation))
3891
		swap(width, height);
3892 3893

	/* for planar format */
3894
	if (format == DRM_FORMAT_NV12) {
3895
		if (y)  /* y-plane data rate */
3896
			data_rate = width * height *
3897
				fb->format->cpp[0];
3898
		else    /* uv-plane data rate */
3899
			data_rate = (width / 2) * (height / 2) *
3900
				fb->format->cpp[1];
3901 3902
	} else {
		/* for packed formats */
3903
		data_rate = width * height * fb->format->cpp[0];
3904 3905
	}

3906
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
3907 3908

	return (uint64_t)data_rate * down_scale_amount >> 16;
3909 3910 3911 3912 3913 3914 3915 3916
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3917 3918 3919
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3920
{
3921 3922
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3923 3924
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3925
	unsigned int total_data_rate = 0;
3926 3927 3928

	if (WARN_ON(!state))
		return 0;
3929

3930
	/* Calculate and cache data rate for each plane */
3931
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3932 3933
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3934 3935 3936 3937

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3938
		plane_data_rate[plane_id] = rate;
3939 3940

		total_data_rate += rate;
3941 3942 3943 3944

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3945
		plane_y_data_rate[plane_id] = rate;
3946

3947
		total_data_rate += rate;
3948 3949 3950 3951 3952
	}

	return total_data_rate;
}

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3967
	if (y && fb->format->format != DRM_FORMAT_NV12)
3968 3969 3970
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3971 3972
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3973 3974
		return 8;

3975 3976
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3977

3978
	if (drm_rotation_90_or_270(pstate->rotation))
3979 3980 3981
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3982
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3983 3984 3985 3986
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3987
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3988
		plane_bpp = fb->format->cpp[1];
3989
	else
3990
		plane_bpp = fb->format->cpp[0];
3991

3992
	if (drm_rotation_90_or_270(pstate->rotation)) {
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4016 4017 4018 4019 4020 4021 4022 4023
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4024
		enum plane_id plane_id = to_intel_plane(plane)->id;
4025

4026
		if (plane_id == PLANE_CURSOR)
4027 4028 4029 4030 4031
			continue;

		if (!pstate->visible)
			continue;

4032 4033
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4034 4035 4036 4037 4038
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4039
static int
4040
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4041 4042
		      struct skl_ddb_allocation *ddb /* out */)
{
4043
	struct drm_atomic_state *state = cstate->base.state;
4044
	struct drm_crtc *crtc = cstate->base.crtc;
4045 4046 4047
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4048
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4049
	uint16_t alloc_size, start;
4050 4051
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4052
	unsigned int total_data_rate;
4053
	enum plane_id plane_id;
4054
	int num_active;
4055 4056
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4057

4058 4059 4060 4061
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4062 4063 4064
	if (WARN_ON(!state))
		return 0;

4065
	if (!cstate->base.active) {
4066
		alloc->start = alloc->end = 0;
4067 4068 4069
		return 0;
	}

4070
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4071
	alloc_size = skl_ddb_entry_size(alloc);
4072 4073
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4074
		return 0;
4075 4076
	}

4077
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4078

4079 4080 4081 4082 4083
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4084

4085 4086 4087
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
4088 4089
	}

4090 4091 4092
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4093
	/*
4094 4095
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4096 4097 4098
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4099 4100 4101
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4102
	if (total_data_rate == 0)
4103
		return 0;
4104

4105
	start = alloc->start;
4106
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4107 4108
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
4109

4110
		if (plane_id == PLANE_CURSOR)
4111 4112
			continue;

4113
		data_rate = plane_data_rate[plane_id];
4114 4115

		/*
4116
		 * allocation for (packed formats) or (uv-plane part of planar format):
4117 4118 4119
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4120
		plane_blocks = minimum[plane_id];
4121 4122
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4123

4124 4125
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4126 4127
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4128
		}
4129 4130

		start += plane_blocks;
4131 4132 4133 4134

		/*
		 * allocation for y_plane part of planar format:
		 */
4135
		y_data_rate = plane_y_data_rate[plane_id];
4136

4137
		y_plane_blocks = y_minimum[plane_id];
4138 4139
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
4140

4141
		if (y_data_rate) {
4142 4143
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4144
		}
4145 4146

		start += y_plane_blocks;
4147 4148
	}

4149
	return 0;
4150 4151
}

4152 4153
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4154
 * for the read latency) and cpp should always be <= 8, so that
4155 4156 4157
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4158 4159
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
4160
{
4161 4162
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4163 4164

	if (latency == 0)
4165
		return FP_16_16_MAX;
4166

4167 4168
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
4169 4170 4171
	return ret;
}

4172 4173 4174 4175
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4176
{
4177
	uint32_t wm_intermediate_val;
4178
	uint_fixed_16_16_t ret;
4179 4180

	if (latency == 0)
4181
		return FP_16_16_MAX;
4182 4183

	wm_intermediate_val = latency * pixel_rate;
4184 4185 4186
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
4187 4188 4189
	return ret;
}

4190 4191 4192 4193 4194 4195 4196 4197
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
4198
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4199 4200 4201 4202 4203 4204
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4205
	adjusted_pixel_rate = cstate->pixel_rate;
4206
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4207 4208 4209 4210 4211 4212 4213

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

4214 4215 4216 4217 4218 4219 4220 4221
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
4222
{
4223
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4224 4225
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
4226
	uint32_t latency = dev_priv->wm.skl_latency[level];
4227 4228 4229 4230 4231
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
4232
	uint32_t res_blocks, res_lines;
4233
	uint8_t cpp;
4234
	uint32_t width = 0, height = 0;
4235
	uint32_t plane_pixel_rate;
4236 4237
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
4238 4239 4240
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4241
	bool y_tiled, x_tiled;
4242

4243 4244
	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4245 4246 4247
		*enabled = false;
		return 0;
	}
4248

4249 4250 4251 4252
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

4253 4254 4255 4256
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

4257
	if (apply_memory_bw_wa && x_tiled)
4258 4259
		latency += 15;

4260 4261 4262 4263 4264 4265 4266
	if (plane->id == PLANE_CURSOR) {
		width = intel_pstate->base.crtc_w;
		height = intel_pstate->base.crtc_h;
	} else {
		width = drm_rect_width(&intel_pstate->base.src) >> 16;
		height = drm_rect_height(&intel_pstate->base.src) >> 16;
	}
4267

4268
	if (drm_rotation_90_or_270(pstate->rotation))
4269 4270
		swap(width, height);

4271
	cpp = fb->format->cpp[0];
4272 4273
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

4274
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
4275
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
4276 4277
			fb->format->cpp[1] :
			fb->format->cpp[0];
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
4289 4290 4291
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
4292 4293 4294 4295 4296
		}
	} else {
		y_min_scanlines = 4;
	}

4297 4298 4299
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

4300
	plane_bytes_per_line = width * cpp;
4301
	if (y_tiled) {
4302 4303
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
4304
		plane_blocks_per_line =
4305
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
4306
	} else if (x_tiled) {
4307 4308
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4309
	} else {
4310 4311
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4312 4313
	}

4314 4315
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
4316
				 cstate->base.adjusted_mode.crtc_htotal,
4317
				 latency,
4318
				 plane_blocks_per_line);
4319

4320 4321
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
4322

4323
	if (y_tiled) {
4324
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
4325
	} else {
4326 4327 4328
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
4329 4330 4331
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
4332 4333 4334
		else
			selected_result = method1;
	}
4335

4336 4337 4338
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
4339

4340
	if (level >= 1 && level <= 7) {
4341
		if (y_tiled) {
4342
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
4343
			res_lines += y_min_scanlines;
4344
		} else {
4345
			res_blocks++;
4346
		}
4347
	}
4348

4349 4350
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4351 4352 4353 4354 4355 4356 4357 4358

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
4359 4360
			struct drm_plane *plane = pstate->plane;

4361
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4362 4363
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
4364 4365 4366
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4367
	}
4368 4369 4370

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4371
	*enabled = true;
4372

4373
	return 0;
4374 4375
}

4376 4377 4378 4379
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
4380
		     struct intel_plane *intel_plane,
4381 4382
		     int level,
		     struct skl_wm_level *result)
4383
{
4384
	struct drm_atomic_state *state = cstate->base.state;
4385
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
4386 4387
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
4388
	uint16_t ddb_blocks;
4389
	enum pipe pipe = intel_crtc->pipe;
4390
	int ret;
L
Lyude 已提交
4391 4392 4393 4394 4395

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
4396

4397
	/*
L
Lyude 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
4407
	 */
L
Lyude 已提交
4408 4409
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
4410

L
Lyude 已提交
4411
	WARN_ON(!intel_pstate->base.fb);
4412

4413
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4414

L
Lyude 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
4425 4426

	return 0;
4427 4428
}

4429
static uint32_t
4430
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4431
{
M
Mahesh Kumar 已提交
4432 4433
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4434
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
4435
	uint32_t linetime_wm;
4436

4437
	if (!cstate->base.active)
4438 4439
		return 0;

4440
	pixel_rate = cstate->pixel_rate;
4441 4442

	if (WARN_ON(pixel_rate == 0))
4443
		return 0;
4444

M
Mahesh Kumar 已提交
4445 4446 4447 4448 4449 4450 4451 4452
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
4453 4454
}

4455
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4456
				      struct skl_wm_level *trans_wm /* out */)
4457
{
4458
	if (!cstate->base.active)
4459
		return;
4460 4461

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
4462
	trans_wm->plane_en = false;
4463 4464
}

4465 4466 4467
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4468
{
4469
	struct drm_device *dev = cstate->base.crtc->dev;
4470
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
4471 4472
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4473
	int level, max_level = ilk_wm_max_level(dev_priv);
4474
	int ret;
4475

L
Lyude 已提交
4476 4477 4478 4479 4480 4481 4482 4483 4484
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
4485
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
4486 4487 4488 4489 4490 4491 4492 4493 4494

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
4495
	}
4496
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4497

4498
	return 0;
4499 4500
}

4501 4502
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4503 4504 4505 4506 4507 4508 4509 4510
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4526 4527 4528
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4529
			       enum plane_id plane_id)
4530 4531 4532 4533
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4534
	int level, max_level = ilk_wm_max_level(dev_priv);
4535 4536 4537
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4538
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4539
				   &wm->wm[level]);
4540
	}
4541
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4542
			   &wm->trans_wm);
4543

4544 4545 4546 4547
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4548 4549
}

4550 4551 4552
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4553 4554 4555 4556
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4557
	int level, max_level = ilk_wm_max_level(dev_priv);
4558 4559 4560
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4561 4562
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4563
	}
4564
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4565

4566
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4567
			    &ddb->plane[pipe][PLANE_CURSOR]);
4568 4569
}

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4584 4585
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4586
{
4587
	return a->start < b->end && b->start < a->end;
4588 4589
}

4590 4591 4592
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4593
{
4594
	int i;
4595

4596 4597 4598
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4599
			return true;
4600

4601
	return false;
4602 4603
}

4604
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4605
			      const struct skl_pipe_wm *old_pipe_wm,
4606
			      struct skl_pipe_wm *pipe_wm, /* out */
4607
			      struct skl_ddb_allocation *ddb, /* out */
4608
			      bool *changed /* out */)
4609
{
4610
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4611
	int ret;
4612

4613 4614 4615
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4616

4617
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4618 4619 4620
		*changed = false;
	else
		*changed = true;
4621

4622
	return 0;
4623 4624
}

4625 4626 4627 4628 4629 4630 4631
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4632
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4633 4634 4635 4636 4637
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4638
static int
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4655
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4656
		enum plane_id plane_id = to_intel_plane(plane)->id;
4657

4658 4659 4660 4661
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4672 4673 4674 4675 4676 4677 4678
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4679
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4680
	uint32_t realloc_pipes = pipes_modified(state);
4681 4682 4683 4684 4685 4686 4687 4688
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4689 4690 4691 4692 4693 4694
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4695 4696
		intel_state->active_pipe_changes = ~0;

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4720
	if (intel_state->active_pipe_changes) {
4721
		realloc_pipes = ~0;
4722 4723
		intel_state->wm_results.dirty_pipes = ~0;
	}
4724

4725 4726 4727 4728 4729 4730
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4731 4732 4733 4734 4735 4736 4737
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4738
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4739 4740
		if (ret)
			return ret;
4741

4742
		ret = skl_ddb_add_affected_planes(cstate);
4743 4744
		if (ret)
			return ret;
4745 4746 4747 4748 4749
	}

	return 0;
}

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4773
	int i;
4774

4775
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4776 4777
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4778

4779
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4780
			enum plane_id plane_id = intel_plane->id;
4781 4782
			const struct skl_ddb_entry *old, *new;

4783 4784
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4785 4786 4787 4788

			if (skl_ddb_entry_equal(old, new))
				continue;

4789 4790 4791 4792 4793
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4794 4795 4796 4797
		}
	}
}

4798 4799 4800 4801 4802
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4803 4804 4805
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4806
	bool changed = false;
4807
	int ret, i;
4808 4809 4810 4811 4812 4813 4814 4815 4816

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4817
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4818 4819 4820 4821
		changed = true;
	if (!changed)
		return 0;

4822 4823 4824
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4825 4826 4827 4828
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4839
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4840 4841
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4842 4843
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4844 4845

		pipe_wm = &intel_cstate->wm.skl.optimal;
4846 4847
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4861 4862
	skl_print_wm_changes(state);

4863 4864 4865
	return 0;
}

4866 4867 4868 4869 4870 4871
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4872
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4873
	enum pipe pipe = crtc->pipe;
4874
	enum plane_id plane_id;
4875 4876 4877

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4878 4879

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4880

4881 4882 4883 4884 4885 4886 4887 4888
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4889 4890
}

4891 4892
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4893
{
4894
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4895
	struct drm_device *dev = intel_crtc->base.dev;
4896
	struct drm_i915_private *dev_priv = to_i915(dev);
4897
	struct skl_wm_values *results = &state->wm_results;
4898
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4899
	enum pipe pipe = intel_crtc->pipe;
4900

4901
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4902 4903
		return;

4904
	mutex_lock(&dev_priv->wm.wm_mutex);
4905

4906 4907
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4908 4909

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4910 4911

	mutex_unlock(&dev_priv->wm.wm_mutex);
4912 4913
}

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4932
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4933
{
4934
	struct drm_device *dev = &dev_priv->drm;
4935
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4936
	struct ilk_wm_maximums max;
4937
	struct intel_wm_config config = {};
4938
	struct ilk_wm_values results = {};
4939
	enum intel_ddb_partitioning partitioning;
4940

4941 4942 4943 4944
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4945 4946

	/* 5/6 split only in single pipe config on IVB+ */
4947
	if (INTEL_GEN(dev_priv) >= 7 &&
4948 4949 4950
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4951

4952
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4953
	} else {
4954
		best_lp_wm = &lp_wm_1_2;
4955 4956
	}

4957
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4958
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4959

4960
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4961

4962
	ilk_write_wm_values(dev_priv, &results);
4963 4964
}

4965 4966
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4967
{
4968 4969
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4970

4971
	mutex_lock(&dev_priv->wm.wm_mutex);
4972
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4973 4974 4975
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4976

4977 4978
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4979 4980 4981
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4982

4983 4984
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4985
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4986 4987 4988
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4989 4990
}

4991 4992
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4993
{
4994 4995 4996 4997
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4998 4999
}

5000 5001
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
5002
{
5003
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5004 5005
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5006 5007
	int level, max_level;
	enum plane_id plane_id;
5008
	uint32_t val;
5009

5010
	max_level = ilk_wm_max_level(dev_priv);
5011

5012 5013
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5014

5015
		for (level = 0; level <= max_level; level++) {
5016 5017
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5018 5019
			else
				val = I915_READ(CUR_WM(pipe, level));
5020

5021
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5022 5023
		}

5024 5025
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5026 5027 5028 5029
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5030 5031
	}

5032 5033
	if (!intel_crtc->active)
		return;
5034

5035
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5036 5037 5038 5039
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5040
	struct drm_i915_private *dev_priv = to_i915(dev);
5041
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5042
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5043
	struct drm_crtc *crtc;
5044 5045
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5046

5047
	skl_ddb_get_hw_state(dev_priv, ddb);
5048 5049 5050 5051 5052 5053
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5054
		if (intel_crtc->active)
5055 5056
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5057

5058 5059 5060 5061 5062 5063 5064
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5065 5066
}

5067 5068 5069
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5070
	struct drm_i915_private *dev_priv = to_i915(dev);
5071
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5072
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5073
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5074
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5075
	enum pipe pipe = intel_crtc->pipe;
5076
	static const i915_reg_t wm0_pipe_reg[] = {
5077 5078 5079 5080 5081 5082
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5083
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5084
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5085

5086 5087
	memset(active, 0, sizeof(*active));

5088
	active->pipe_enabled = intel_crtc->active;
5089 5090

	if (active->pipe_enabled) {
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5105
		int level, max_level = ilk_wm_max_level(dev_priv);
5106 5107 5108 5109 5110 5111 5112 5113 5114

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5115 5116

	intel_crtc->wm.active.ilk = *active;
5117 5118
}

5119 5120 5121 5122 5123
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5150 5151 5152 5153 5154 5155 5156 5157 5158
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5159
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5160
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5161
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5162
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5163
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5164
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5165
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5166 5167 5168 5169 5170
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5171 5172 5173
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5174 5175

	tmp = I915_READ(DSPFW2);
5176 5177 5178
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5179 5180 5181 5182 5183 5184

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5185 5186
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5187 5188

		tmp = I915_READ(DSPFW8_CHV);
5189 5190
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5191 5192

		tmp = I915_READ(DSPFW9_CHV);
5193 5194
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5195 5196 5197

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5198 5199 5200 5201 5202 5203 5204 5205 5206
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5207 5208
	} else {
		tmp = I915_READ(DSPFW7);
5209 5210
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5211 5212 5213

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5214 5215 5216 5217 5218 5219
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5220 5221 5222 5223 5224 5225
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5367 5368 5369 5370
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5371
	struct intel_crtc *crtc;
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5386 5387 5388 5389 5390 5391 5392 5393 5394
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5395
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5409 5410 5411 5412

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5429
			struct g4x_pipe_wm *raw =
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5451
		crtc_state->wm.vlv.intermediate = *active;
5452

5453
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5454 5455 5456 5457 5458
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5459
	}
5460 5461 5462 5463 5464

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5489
			struct g4x_pipe_wm *raw =
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5514 5515
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5516
	struct drm_i915_private *dev_priv = to_i915(dev);
5517
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5518 5519
	struct drm_crtc *crtc;

5520
	for_each_crtc(dev, crtc)
5521 5522 5523 5524 5525 5526 5527
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5528
	if (INTEL_GEN(dev_priv) >= 7) {
5529 5530 5531
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5532

5533
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5534 5535
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5536
	else if (IS_IVYBRIDGE(dev_priv))
5537 5538
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5539 5540 5541 5542 5543

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5576
void intel_update_watermarks(struct intel_crtc *crtc)
5577
{
5578
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5579 5580

	if (dev_priv->display.update_wm)
5581
		dev_priv->display.update_wm(crtc);
5582 5583
}

5584
/*
5585 5586 5587 5588 5589 5590 5591 5592
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5593
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5594 5595 5596
{
	u16 rgvswctl;

5597
	lockdep_assert_held(&mchdev_lock);
5598

5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5616
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5617
{
5618
	u32 rgvmodectl;
5619 5620
	u8 fmax, fmin, fstart, vstart;

5621 5622
	spin_lock_irq(&mchdev_lock);

5623 5624
	rgvmodectl = I915_READ(MEMMODECTL);

5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5645
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5646 5647
		PXVFREQ_PX_SHIFT;

5648 5649
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5650

5651 5652 5653
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5670
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5671
		DRM_ERROR("stuck trying to change perf mode\n");
5672
	mdelay(1);
5673

5674
	ironlake_set_drps(dev_priv, fstart);
5675

5676 5677
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5678
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5679
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5680
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5681 5682

	spin_unlock_irq(&mchdev_lock);
5683 5684
}

5685
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5686
{
5687 5688 5689 5690 5691
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5692 5693 5694 5695 5696 5697 5698 5699 5700

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5701
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5702
	mdelay(1);
5703 5704
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5705
	mdelay(1);
5706

5707
	spin_unlock_irq(&mchdev_lock);
5708 5709
}

5710 5711 5712 5713 5714
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5715
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5716
{
5717
	u32 limits;
5718

5719 5720 5721 5722 5723 5724
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5725
	if (IS_GEN9(dev_priv)) {
5726 5727 5728 5729 5730 5731 5732 5733
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5734 5735 5736 5737

	return limits;
}

5738 5739 5740
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5741 5742
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5743 5744 5745 5746

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5747 5748
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5749 5750 5751 5752
			new_power = BETWEEN;
		break;

	case BETWEEN:
5753 5754
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5755
			new_power = LOW_POWER;
5756 5757
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5758 5759 5760 5761
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5762 5763
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5764 5765 5766 5767
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5768
	if (val <= dev_priv->rps.min_freq_softlimit)
5769
		new_power = LOW_POWER;
5770
	if (val >= dev_priv->rps.max_freq_softlimit)
5771 5772 5773 5774 5775 5776 5777 5778
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5779 5780
		ei_up = 16000;
		threshold_up = 95;
5781 5782

		/* Downclock if less than 85% busy over 32ms */
5783 5784
		ei_down = 32000;
		threshold_down = 85;
5785 5786 5787 5788
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5789 5790
		ei_up = 13000;
		threshold_up = 90;
5791 5792

		/* Downclock if less than 75% busy over 32ms */
5793 5794
		ei_down = 32000;
		threshold_down = 75;
5795 5796 5797 5798
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5799 5800
		ei_up = 10000;
		threshold_up = 85;
5801 5802

		/* Downclock if less than 60% busy over 32ms */
5803 5804
		ei_down = 32000;
		threshold_down = 60;
5805 5806 5807
		break;
	}

5808 5809 5810 5811 5812 5813
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5814
	I915_WRITE(GEN6_RP_UP_EI,
5815
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5816
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5817 5818
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5819 5820

	I915_WRITE(GEN6_RP_DOWN_EI,
5821
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5822
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5833

5834
skip_hw_write:
5835
	dev_priv->rps.power = new_power;
5836 5837
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5838 5839 5840
	dev_priv->rps.last_adj = 0;
}

5841 5842 5843 5844
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5845
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5846
	if (val > dev_priv->rps.min_freq_softlimit)
5847
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5848
	if (val < dev_priv->rps.max_freq_softlimit)
5849
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5850

5851 5852
	mask &= dev_priv->pm_rps_events;

5853
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5854 5855
}

5856 5857 5858
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5859
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5860
{
C
Chris Wilson 已提交
5861 5862 5863 5864 5865
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5866

5867
		if (IS_GEN9(dev_priv))
5868 5869
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5870
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5871 5872 5873 5874 5875 5876 5877
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5878
	}
5879 5880 5881 5882

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5883
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5884
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5885

5886
	dev_priv->rps.cur_freq = val;
5887
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5888 5889

	return 0;
5890 5891
}

5892
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5893
{
5894 5895
	int err;

5896
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5897 5898 5899
		      "Odd GPU freq value\n"))
		val &= ~1;

5900 5901
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5902
	if (val != dev_priv->rps.cur_freq) {
5903 5904 5905 5906
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5907
		gen6_set_rps_thresholds(dev_priv, val);
5908
	}
5909 5910 5911

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5912 5913

	return 0;
5914 5915
}

5916
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5917 5918
 *
 * * If Gfx is Idle, then
5919 5920 5921
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5922 5923 5924
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5925
	u32 val = dev_priv->rps.idle_freq;
5926
	int err;
5927

5928
	if (dev_priv->rps.cur_freq <= val)
5929 5930
		return;

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5943
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5944
	err = valleyview_set_rps(dev_priv, val);
5945
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5946 5947 5948

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5949 5950
}

5951 5952 5953 5954
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5955 5956
		u8 freq;

5957
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5958 5959 5960
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5961

5962 5963
		gen6_enable_rps_interrupts(dev_priv);

5964 5965 5966 5967 5968 5969
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5970
		if (intel_set_rps(dev_priv,
5971
				  clamp(freq,
5972 5973 5974
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5975 5976 5977 5978
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5979 5980
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5981 5982 5983 5984 5985 5986 5987
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5988
	mutex_lock(&dev_priv->rps.hw_lock);
5989
	if (dev_priv->rps.enabled) {
5990
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5991
			vlv_set_rps_idle(dev_priv);
5992
		else
5993
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5994
		dev_priv->rps.last_adj = 0;
5995 5996
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5997
	}
5998
	mutex_unlock(&dev_priv->rps.hw_lock);
5999

6000
	spin_lock(&dev_priv->rps.client_lock);
6001 6002
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
6003
	spin_unlock(&dev_priv->rps.client_lock);
6004 6005
}

6006
void gen6_rps_boost(struct drm_i915_private *dev_priv,
6007 6008
		    struct intel_rps_client *rps,
		    unsigned long submitted)
6009
{
6010 6011 6012
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6013
	if (!(dev_priv->gt.awake &&
6014
	      dev_priv->rps.enabled &&
6015
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
6016
		return;
6017

6018 6019 6020
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
6021
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
6022 6023
		rps = NULL;

6024 6025 6026 6027 6028
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
6029
			schedule_work(&dev_priv->rps.work);
6030 6031
		}
		spin_unlock_irq(&dev_priv->irq_lock);
6032

6033 6034 6035
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
6036 6037
		} else
			dev_priv->rps.boosts++;
6038
	}
6039
	spin_unlock(&dev_priv->rps.client_lock);
6040 6041
}

6042
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6043
{
6044 6045
	int err;

6046 6047 6048 6049
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

6050 6051 6052 6053 6054
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

6055
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6056
		err = valleyview_set_rps(dev_priv, val);
6057
	else
6058 6059 6060
		err = gen6_set_rps(dev_priv, val);

	return err;
6061 6062
}

6063
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6064 6065
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6066
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6067 6068
}

6069
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6070 6071 6072 6073
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6074
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6075 6076
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6077
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6078
	I915_WRITE(GEN6_RP_CONTROL, 0);
6079 6080
}

6081
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6082 6083 6084 6085
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6086
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6087
{
6088 6089
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
6090
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6091

6092
	I915_WRITE(GEN6_RC_CONTROL, 0);
6093

6094
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6095 6096
}

6097
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6098
{
6099
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6100 6101 6102 6103 6104
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6105
	if (HAS_RC6p(dev_priv))
6106 6107 6108 6109 6110
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6111 6112

	else
6113 6114
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6115 6116
}

6117
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6118
{
6119
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6120 6121
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6133 6134

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6135
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6136 6137 6138 6139 6140 6141 6142 6143
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6144 6145 6146
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6147
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6148 6149 6150 6151 6152 6153 6154
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6155
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6156 6157 6158
		enable_rc6 = false;
	}

6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6173 6174 6175 6176 6177 6178
		enable_rc6 = false;
	}

	return enable_rc6;
}

6179
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6180
{
6181
	/* No RC6 before Ironlake and code is gone for ilk. */
6182
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6183 6184
		return 0;

6185 6186 6187
	if (!enable_rc6)
		return 0;

6188
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6189 6190 6191 6192
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6193
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6194 6195 6196
	if (enable_rc6 >= 0) {
		int mask;

6197
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6198 6199 6200 6201 6202 6203
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6204 6205 6206
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6207 6208 6209

		return enable_rc6 & mask;
	}
6210

6211
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6212
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6213 6214

	return INTEL_RC6_ENABLE;
6215 6216
}

6217
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6218 6219
{
	/* All of these values are in units of 50MHz */
6220

6221
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6222
	if (IS_GEN9_LP(dev_priv)) {
6223
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6224 6225 6226 6227
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
6228
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6229 6230 6231 6232
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
6233
	/* hw_max = RP0 until we check for overclocking */
6234
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6235

6236
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6237
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6238
	    IS_GEN9_BC(dev_priv)) {
6239 6240 6241 6242 6243
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6244
			dev_priv->rps.efficient_freq =
6245 6246 6247 6248
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
6249 6250
	}

6251
	if (IS_GEN9_BC(dev_priv)) {
6252
		/* Store the frequency values in 16.66 MHZ units, which is
6253 6254
		 * the natural hardware unit for SKL
		 */
6255 6256 6257 6258 6259 6260
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
6261 6262
}

6263
static void reset_rps(struct drm_i915_private *dev_priv,
6264
		      int (*set)(struct drm_i915_private *, u8))
6265 6266 6267 6268 6269 6270 6271
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

6272 6273
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6274 6275
}

J
Jesse Barnes 已提交
6276
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6277
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6278 6279 6280
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6281 6282 6283 6284 6285 6286 6287 6288
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6289 6290
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6291 6292 6293
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6294
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6295 6296 6297 6298

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6299
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6300
{
6301
	struct intel_engine_cs *engine;
6302
	enum intel_engine_id id;
Z
Zhe Wang 已提交
6303 6304 6305 6306 6307 6308 6309
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6310
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6311 6312 6313 6314 6315

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
6316 6317

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6318
	if (IS_SKYLAKE(dev_priv))
6319 6320 6321
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
6322 6323
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6324
	for_each_engine(engine, dev_priv, id)
6325
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6326

6327
	if (HAS_GUC(dev_priv))
6328 6329
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6330 6331
	I915_WRITE(GEN6_RC_SLEEP, 0);

6332 6333 6334 6335
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6336
	/* 3a: Enable RC6 */
6337
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6338
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6339
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6340 6341 6342
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
6343

6344 6345
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6346
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6347
	 */
6348
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6349 6350 6351 6352
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6353

6354
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6355 6356
}

6357
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6358
{
6359
	struct intel_engine_cs *engine;
6360
	enum intel_engine_id id;
6361
	uint32_t rc6_mask = 0;
6362 6363 6364 6365 6366 6367

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6368
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6369 6370 6371 6372 6373 6374 6375 6376

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6377
	for_each_engine(engine, dev_priv, id)
6378
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6379
	I915_WRITE(GEN6_RC_SLEEP, 0);
6380
	if (IS_BROADWELL(dev_priv))
6381 6382 6383
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6384 6385

	/* 3: Enable RC6 */
6386
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6387
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6388 6389
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
6390 6391 6392 6393 6394 6395 6396
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
6397 6398

	/* 4 Program defaults and thresholds for RPS*/
6399 6400 6401 6402
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6417 6418

	/* 5: Enable RPS */
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

6429
	reset_rps(dev_priv, gen6_set_rps);
6430

6431
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6432 6433
}

6434
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6435
{
6436
	struct intel_engine_cs *engine;
6437
	enum intel_engine_id id;
6438
	u32 rc6vids, rc6_mask = 0;
6439 6440
	u32 gtfifodbg;
	int rc6_mode;
6441
	int ret;
6442

6443
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6444

6445 6446 6447 6448 6449 6450 6451 6452 6453
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6454 6455
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6456 6457 6458 6459
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6460
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6471
	for_each_engine(engine, dev_priv, id)
6472
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6473 6474 6475

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6476
	if (IS_IVYBRIDGE(dev_priv))
6477 6478 6479
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6480
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6481 6482
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6483
	/* Check if we are enabling RC6 */
6484
	rc6_mode = intel_enable_rc6();
6485 6486 6487
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6488
	/* We don't use those on Haswell */
6489
	if (!IS_HASWELL(dev_priv)) {
6490 6491
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6492

6493 6494 6495
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6496

6497
	intel_print_rc6_info(dev_priv, rc6_mask);
6498 6499 6500 6501 6502 6503

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6504 6505
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6506 6507
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

6508
	reset_rps(dev_priv, gen6_set_rps);
6509

6510 6511
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6512
	if (IS_GEN6(dev_priv) && ret) {
6513
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6514
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6515 6516 6517 6518 6519 6520 6521 6522 6523
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6524
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6525 6526
}

6527
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6528 6529
{
	int min_freq = 15;
6530 6531
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6532
	unsigned int max_gpu_freq, min_gpu_freq;
6533
	int scaling_factor = 180;
6534
	struct cpufreq_policy *policy;
6535

6536
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6537

6538 6539 6540 6541 6542 6543 6544 6545 6546
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6547
		max_ia_freq = tsc_khz;
6548
	}
6549 6550 6551 6552

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6553
	min_ring_freq = I915_READ(DCLK) & 0xf;
6554 6555
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6556

6557
	if (IS_GEN9_BC(dev_priv)) {
6558 6559 6560 6561 6562 6563 6564 6565
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

6566 6567 6568 6569 6570
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6571 6572
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6573 6574
		unsigned int ia_freq = 0, ring_freq = 0;

6575
		if (IS_GEN9_BC(dev_priv)) {
6576 6577 6578 6579 6580
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6581
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6582 6583
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6584
		} else if (IS_HASWELL(dev_priv)) {
6585
			ring_freq = mult_frac(gpu_freq, 5, 4);
6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6602

B
Ben Widawsky 已提交
6603 6604
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6605 6606 6607
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6608 6609 6610
	}
}

6611
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6612 6613 6614
{
	u32 val, rp0;

6615
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6616

6617
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6632
	}
6633 6634 6635

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6649 6650 6651 6652
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6653 6654 6655
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6656 6657 6658
	return rp1;
}

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6681
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6682 6683 6684
{
	u32 val, rp0;

6685
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6698
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6699
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6700
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6701 6702 6703 6704 6705
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6706
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6707
{
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6719 6720
}

6721 6722 6723 6724 6725 6726 6727 6728 6729
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6730 6731 6732 6733 6734 6735 6736 6737 6738

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6739
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6740
{
6741
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6742
	unsigned long pctx_paddr, paddr;
6743 6744 6745 6746 6747
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6748
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6749
		paddr = (dev_priv->mm.stolen_base +
6750
			 (ggtt->stolen_size - pctx_size));
6751 6752 6753 6754

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6755 6756

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6757 6758
}

6759
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6772
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6773
								      pcbr_offset,
6774
								      I915_GTT_OFFSET_NONE,
6775 6776 6777 6778
								      pctx_size);
		goto out;
	}

6779 6780
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6781 6782 6783 6784 6785 6786 6787 6788
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6789
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6790 6791
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6792
		goto out;
6793 6794 6795 6796 6797 6798
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6799
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6800 6801 6802
	dev_priv->vlv_pctx = pctx;
}

6803
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6804 6805 6806 6807
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6808
	i915_gem_object_put(dev_priv->vlv_pctx);
6809 6810 6811
	dev_priv->vlv_pctx = NULL;
}

6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6823
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6824
{
6825
	u32 val;
6826

6827
	valleyview_setup_pctx(dev_priv);
6828

6829 6830
	vlv_init_gpll_ref_freq(dev_priv);

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6844
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6845

6846 6847 6848
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6849
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6850 6851 6852 6853
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6854
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6855 6856
			 dev_priv->rps.efficient_freq);

6857 6858
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6859
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6860 6861
			 dev_priv->rps.rp1_freq);

6862 6863
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6864
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6865 6866 6867
			 dev_priv->rps.min_freq);
}

6868
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6869
{
6870
	u32 val;
6871

6872
	cherryview_setup_pctx(dev_priv);
6873

6874 6875
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6876
	mutex_lock(&dev_priv->sb_lock);
6877
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6878
	mutex_unlock(&dev_priv->sb_lock);
6879

6880 6881 6882 6883
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6884
	default:
6885 6886 6887
		dev_priv->mem_freq = 1600;
		break;
	}
6888
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6889

6890 6891 6892
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6893
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6894 6895 6896 6897
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6898
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6899 6900
			 dev_priv->rps.efficient_freq);

6901 6902
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6903
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6904 6905
			 dev_priv->rps.rp1_freq);

6906
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6907
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6908
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6909 6910
			 dev_priv->rps.min_freq);

6911 6912 6913 6914 6915
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6916 6917
}

6918
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6919
{
6920
	valleyview_cleanup_pctx(dev_priv);
6921 6922
}

6923
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6924
{
6925
	struct intel_engine_cs *engine;
6926
	enum intel_engine_id id;
6927
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6928 6929 6930

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6931 6932
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6943
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6944

6945 6946 6947
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6948 6949 6950 6951 6952
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6953
	for_each_engine(engine, dev_priv, id)
6954
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6955 6956
	I915_WRITE(GEN6_RC_SLEEP, 0);

6957 6958
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6970 6971
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6972
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6973 6974 6975

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6976
	/* 4 Program defaults and thresholds for RPS*/
6977
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6988
		   GEN6_RP_MEDIA_IS_GFX |
6989 6990 6991 6992
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6993 6994 6995 6996 6997 6998
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6999 7000
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

7001 7002 7003
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7004
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7005 7006
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7007
	reset_rps(dev_priv, valleyview_set_rps);
7008

7009
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7010 7011
}

7012
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7013
{
7014
	struct intel_engine_cs *engine;
7015
	enum intel_engine_id id;
7016
	u32 gtfifodbg, val, rc6_mode = 0;
7017 7018 7019

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7020 7021
	valleyview_check_pctx(dev_priv);

7022 7023
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7024 7025
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7026 7027 7028
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7029
	/* If VLV, Forcewake all wells, else re-direct to regular path */
7030
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7031

7032 7033 7034
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7035
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7055
	for_each_engine(engine, dev_priv, id)
7056
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7057

7058
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7059 7060

	/* allows RC6 residency counter to work */
7061
	I915_WRITE(VLV_COUNTER_CONTROL,
7062 7063
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7064
				      VLV_RENDER_RC0_COUNT_EN |
7065 7066
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7067

7068
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7069
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7070

7071
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7072

7073
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7074

D
Deepak S 已提交
7075 7076 7077 7078 7079 7080
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7081
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7082

7083 7084 7085
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7086
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7087 7088
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7089
	reset_rps(dev_priv, valleyview_set_rps);
7090

7091
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7092 7093
}

7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7123
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7124 7125 7126 7127 7128 7129
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7130
	lockdep_assert_held(&mchdev_lock);
7131

7132
	diff1 = now - dev_priv->ips.last_time1;
7133 7134 7135 7136 7137 7138 7139

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7140
		return dev_priv->ips.chipset_power;
7141 7142 7143 7144 7145 7146 7147 7148

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7149 7150
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7151 7152
		diff += total_count;
	} else {
7153
		diff = total_count - dev_priv->ips.last_count1;
7154 7155 7156
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7157 7158
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7169 7170
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7171

7172
	dev_priv->ips.chipset_power = ret;
7173 7174 7175 7176

	return ret;
}

7177 7178 7179 7180
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7181
	if (INTEL_INFO(dev_priv)->gen != 5)
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7220
{
7221 7222 7223
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7224
	if (INTEL_INFO(dev_priv)->is_mobile)
7225 7226 7227
		return vm > 0 ? vm : 0;

	return vd;
7228 7229
}

7230
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7231
{
7232
	u64 now, diff, diffms;
7233 7234
	u32 count;

7235
	lockdep_assert_held(&mchdev_lock);
7236

7237 7238 7239
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7240 7241 7242 7243 7244 7245 7246

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7247 7248
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7249 7250
		diff += count;
	} else {
7251
		diff = count - dev_priv->ips.last_count2;
7252 7253
	}

7254 7255
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7256 7257 7258 7259

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7260
	dev_priv->ips.gfx_power = diff;
7261 7262
}

7263 7264
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7265
	if (INTEL_INFO(dev_priv)->gen != 5)
7266 7267
		return;

7268
	spin_lock_irq(&mchdev_lock);
7269 7270 7271

	__i915_update_gfx_val(dev_priv);

7272
	spin_unlock_irq(&mchdev_lock);
7273 7274
}

7275
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7276 7277 7278 7279
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7280
	lockdep_assert_held(&mchdev_lock);
7281

7282
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7302
	corr2 = (corr * dev_priv->ips.corr);
7303 7304 7305 7306

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7307
	__i915_update_gfx_val(dev_priv);
7308

7309
	return dev_priv->ips.gfx_power + state2;
7310 7311
}

7312 7313 7314 7315
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7316
	if (INTEL_INFO(dev_priv)->gen != 5)
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7339
	spin_lock_irq(&mchdev_lock);
7340 7341 7342 7343
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7344 7345
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7346 7347 7348 7349

	ret = chipset_val + graphics_val;

out_unlock:
7350
	spin_unlock_irq(&mchdev_lock);
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7366
	spin_lock_irq(&mchdev_lock);
7367 7368 7369 7370 7371 7372
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7373 7374
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7375 7376

out_unlock:
7377
	spin_unlock_irq(&mchdev_lock);
7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7394
	spin_lock_irq(&mchdev_lock);
7395 7396 7397 7398 7399 7400
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7401 7402
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7403 7404

out_unlock:
7405
	spin_unlock_irq(&mchdev_lock);
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7420
	spin_lock_irq(&mchdev_lock);
7421 7422
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7423
	spin_unlock_irq(&mchdev_lock);
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7440
	spin_lock_irq(&mchdev_lock);
7441 7442 7443 7444 7445 7446
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7447
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7448

7449
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7450 7451 7452
		ret = false;

out_unlock:
7453
	spin_unlock_irq(&mchdev_lock);
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7481 7482
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7483
	spin_lock_irq(&mchdev_lock);
7484
	i915_mch_dev = dev_priv;
7485
	spin_unlock_irq(&mchdev_lock);
7486 7487 7488 7489 7490 7491

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7492
	spin_lock_irq(&mchdev_lock);
7493
	i915_mch_dev = NULL;
7494
	spin_unlock_irq(&mchdev_lock);
7495
}
7496

7497
static void intel_init_emon(struct drm_i915_private *dev_priv)
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7514
		I915_WRITE(PEW(i), 0);
7515
	for (i = 0; i < 3; i++)
7516
		I915_WRITE(DEW(i), 0);
7517 7518 7519

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7520
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7541
		I915_WRITE(PXW(i), val);
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7557
		I915_WRITE(PXWL(i), 0);
7558 7559 7560 7561 7562 7563

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7564
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7565 7566
}

7567
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7568
{
7569 7570 7571 7572 7573 7574 7575 7576
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7577

7578
	mutex_lock(&dev_priv->drm.struct_mutex);
7579 7580 7581
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
7582 7583 7584 7585
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7586
	else if (INTEL_GEN(dev_priv) >= 6)
7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

7616 7617 7618
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

7619
	mutex_unlock(&dev_priv->rps.hw_lock);
7620
	mutex_unlock(&dev_priv->drm.struct_mutex);
7621 7622

	intel_autoenable_gt_powersave(dev_priv);
7623 7624
}

7625
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7626
{
7627
	if (IS_VALLEYVIEW(dev_priv))
7628
		valleyview_cleanup_gt_powersave(dev_priv);
7629 7630 7631

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
7632 7633
}

7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7653 7654 7655 7656
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7657 7658

	gen6_reset_rps_interrupts(dev_priv);
7659 7660
}

7661
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7662
{
7663 7664
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7665

7666
	mutex_lock(&dev_priv->rps.hw_lock);
7667

7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7679
	}
7680 7681 7682

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7683 7684
}

7685
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7686
{
7687 7688 7689
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7690 7691
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7692

7693 7694 7695
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7696

7697
	mutex_lock(&dev_priv->rps.hw_lock);
7698 7699 7700 7701 7702

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7703
	} else if (INTEL_GEN(dev_priv) >= 9) {
7704 7705
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7706
		if (IS_GEN9_BC(dev_priv))
7707
			gen6_update_ring_freq(dev_priv);
7708 7709
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7710
		gen6_update_ring_freq(dev_priv);
7711
	} else if (INTEL_GEN(dev_priv) >= 6) {
7712
		gen6_enable_rps(dev_priv);
7713
		gen6_update_ring_freq(dev_priv);
7714 7715 7716
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7717
	}
7718 7719 7720 7721 7722 7723 7724

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7725
	dev_priv->rps.enabled = true;
7726 7727
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7728

7729 7730 7731 7732 7733 7734 7735 7736 7737 7738
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7739
	rcs = dev_priv->engine[RCS];
7740
	if (rcs->last_retired_context)
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7756
	i915_add_request(req);
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7792
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7793 7794 7795 7796 7797 7798 7799 7800 7801
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7802
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7803
{
7804
	enum pipe pipe;
7805

7806
	for_each_pipe(dev_priv, pipe) {
7807 7808 7809
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7810 7811 7812

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7813 7814 7815
	}
}

7816
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7828
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7829
{
7830
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7831

7832 7833 7834 7835
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7836 7837 7838
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7856
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7857 7858 7859
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7860

7861
	ilk_init_lp_watermarks(dev_priv);
7862 7863 7864 7865 7866 7867 7868 7869

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7870
	if (IS_IRONLAKE_M(dev_priv)) {
7871
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7872 7873 7874 7875 7876 7877 7878 7879
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7880 7881
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7882 7883 7884 7885 7886 7887
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7888

7889
	/* WaDisableRenderCachePipelinedFlush:ilk */
7890 7891
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7892

7893 7894 7895
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7896
	g4x_disable_trickle_feed(dev_priv);
7897

7898
	ibx_init_clock_gating(dev_priv);
7899 7900
}

7901
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7902 7903
{
	int pipe;
7904
	uint32_t val;
7905 7906 7907 7908 7909 7910

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7911 7912 7913
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7914 7915
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7916 7917 7918
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7919
	for_each_pipe(dev_priv, pipe) {
7920 7921 7922
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7923
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7924
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7925 7926 7927
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7928 7929
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7930
	/* WADP0ClockGatingDisable */
7931
	for_each_pipe(dev_priv, pipe) {
7932 7933 7934
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7935 7936
}

7937
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7938 7939 7940 7941
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7942 7943 7944
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7945 7946
}

7947
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7948
{
7949
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7950

7951
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7952 7953 7954 7955 7956

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7957
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7958 7959 7960
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7961 7962 7963
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7964 7965 7966
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7967 7968 7969 7970
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7971 7972
	 */
	I915_WRITE(GEN6_GT_MODE,
7973
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7974

7975
	ilk_init_lp_watermarks(dev_priv);
7976 7977

	I915_WRITE(CACHE_MODE_0,
7978
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7994
	 *
7995 7996
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7997 7998 7999 8000 8001
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

8002
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8003 8004
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8005

8006 8007 8008 8009 8010 8011 8012 8013
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8014 8015 8016 8017 8018 8019 8020 8021
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8022 8023
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8024 8025 8026 8027 8028 8029 8030
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8031 8032 8033 8034
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8035

8036
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8037

8038
	cpt_init_clock_gating(dev_priv);
8039

8040
	gen6_check_mch_setup(dev_priv);
8041 8042 8043 8044 8045 8046
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8047
	/*
8048
	 * WaVSThreadDispatchOverride:ivb,vlv
8049 8050 8051 8052
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8053 8054 8055 8056 8057 8058 8059 8060
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8061
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8062 8063 8064 8065 8066
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8067
	if (HAS_PCH_LPT_LP(dev_priv))
8068 8069 8070
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8071 8072

	/* WADPOClockGatingDisable:hsw */
8073 8074
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8075
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8076 8077
}

8078
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8079
{
8080
	if (HAS_PCH_LPT_LP(dev_priv)) {
8081 8082 8083 8084 8085 8086 8087
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8111
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8112
{
8113
	gen9_init_clock_gating(dev_priv);
8114 8115 8116 8117 8118

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8119 8120 8121 8122 8123

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8124 8125 8126 8127

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8128 8129
}

8130
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8131
{
8132
	gen9_init_clock_gating(dev_priv);
8133 8134 8135 8136

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8137 8138 8139 8140

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8141 8142
}

8143
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8144
{
8145
	enum pipe pipe;
B
Ben Widawsky 已提交
8146

8147
	ilk_init_lp_watermarks(dev_priv);
8148

8149
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8150
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8151

8152
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8153 8154 8155
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8156
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8157
	for_each_pipe(dev_priv, pipe) {
8158
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8159
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8160
			   BDW_DPRS_MASK_VBLANK_SRD);
8161
	}
8162

8163 8164 8165 8166 8167
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8168

8169 8170
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8171 8172 8173 8174

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8175

8176 8177
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8178

8179 8180 8181 8182 8183 8184 8185
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

8186 8187 8188 8189
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8190
	lpt_init_clock_gating(dev_priv);
8191 8192 8193 8194 8195 8196 8197 8198

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8199 8200
}

8201
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8202
{
8203
	ilk_init_lp_watermarks(dev_priv);
8204

8205 8206 8207 8208 8209
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8210
	/* This is required by WaCatErrorRejectionIssue:hsw */
8211 8212 8213 8214
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8215 8216 8217
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8218

8219 8220 8221
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8222 8223 8224 8225
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8226
	/* WaDisable4x2SubspanOptimization:hsw */
8227 8228
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8229

8230 8231 8232
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8233 8234 8235 8236
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8237 8238
	 */
	I915_WRITE(GEN7_GT_MODE,
8239
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8240

8241 8242 8243 8244
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8245
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8246 8247
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8248 8249 8250
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8251

8252
	lpt_init_clock_gating(dev_priv);
8253 8254
}

8255
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8256
{
8257
	uint32_t snpcr;
8258

8259
	ilk_init_lp_watermarks(dev_priv);
8260

8261
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8262

8263
	/* WaDisableEarlyCull:ivb */
8264 8265 8266
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8267
	/* WaDisableBackToBackFlipFix:ivb */
8268 8269 8270 8271
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8272
	/* WaDisablePSDDualDispatchEnable:ivb */
8273
	if (IS_IVB_GT1(dev_priv))
8274 8275 8276
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8277 8278 8279
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8280
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8281 8282 8283
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8284
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8285 8286 8287
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8288
		   GEN7_WA_L3_CHICKEN_MODE);
8289
	if (IS_IVB_GT1(dev_priv))
8290 8291
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8292 8293 8294 8295
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8296 8297
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8298
	}
8299

8300
	/* WaForceL3Serialization:ivb */
8301 8302 8303
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8304
	/*
8305
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8306
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8307 8308
	 */
	I915_WRITE(GEN6_UCGCTL2,
8309
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8310

8311
	/* This is required by WaCatErrorRejectionIssue:ivb */
8312 8313 8314 8315
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8316
	g4x_disable_trickle_feed(dev_priv);
8317 8318

	gen7_setup_fixed_func_scheduler(dev_priv);
8319

8320 8321 8322 8323 8324
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8325

8326
	/* WaDisable4x2SubspanOptimization:ivb */
8327 8328
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8329

8330 8331 8332
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8333 8334 8335 8336
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8337 8338
	 */
	I915_WRITE(GEN7_GT_MODE,
8339
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8340

8341 8342 8343 8344
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8345

8346
	if (!HAS_PCH_NOP(dev_priv))
8347
		cpt_init_clock_gating(dev_priv);
8348

8349
	gen6_check_mch_setup(dev_priv);
8350 8351
}

8352
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8353
{
8354
	/* WaDisableEarlyCull:vlv */
8355 8356 8357
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8358
	/* WaDisableBackToBackFlipFix:vlv */
8359 8360 8361 8362
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8363
	/* WaPsdDispatchEnable:vlv */
8364
	/* WaDisablePSDDualDispatchEnable:vlv */
8365
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8366 8367
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8368

8369 8370 8371
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8372
	/* WaForceL3Serialization:vlv */
8373 8374 8375
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8376
	/* WaDisableDopClockGating:vlv */
8377 8378 8379
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8380
	/* This is required by WaCatErrorRejectionIssue:vlv */
8381 8382 8383 8384
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8385 8386
	gen7_setup_fixed_func_scheduler(dev_priv);

8387
	/*
8388
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8389
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8390 8391
	 */
	I915_WRITE(GEN6_UCGCTL2,
8392
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8393

8394 8395 8396 8397 8398
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8399

8400 8401 8402 8403
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8404 8405
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8406

8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8418 8419 8420 8421 8422 8423
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8424
	/*
8425
	 * WaDisableVLVClockGating_VBIIssue:vlv
8426 8427 8428
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8429
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8430 8431
}

8432
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8433
{
8434 8435 8436 8437 8438
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8439 8440 8441 8442

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8443 8444 8445 8446

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8447 8448 8449 8450

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8451

8452 8453 8454 8455 8456 8457 8458
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8459 8460 8461 8462 8463
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8464 8465
}

8466
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8478
	if (IS_GM45(dev_priv))
8479 8480
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8481 8482 8483 8484

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8485

8486 8487 8488
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8489
	g4x_disable_trickle_feed(dev_priv);
8490 8491
}

8492
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8493 8494 8495 8496 8497 8498
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8499 8500
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8501 8502 8503

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8504 8505
}

8506
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8507 8508 8509 8510 8511 8512 8513
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8514 8515
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8516 8517 8518

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8519 8520
}

8521
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8522 8523 8524 8525 8526 8527
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8528

8529
	if (IS_PINEVIEW(dev_priv))
8530
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8531 8532 8533

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8534 8535

	/* interrupts should cause a wake up from C3 */
8536
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8537 8538 8539

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8540 8541 8542

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8543 8544
}

8545
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8546 8547
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8548 8549 8550 8551

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8552 8553 8554

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8555 8556
}

8557
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8558
{
8559 8560 8561
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8562 8563
}

8564
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8565
{
8566
	dev_priv->display.init_clock_gating(dev_priv);
8567 8568
}

8569
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8570
{
8571 8572
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8573 8574
}

8575
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
8592
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8593
	else if (IS_KABYLAKE(dev_priv))
8594
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8595
	else if (IS_BROXTON(dev_priv))
8596
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8597 8598
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8615
	else if (IS_I965GM(dev_priv))
8616
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8617
	else if (IS_I965G(dev_priv))
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8631
/* Set up chip specific power management-related functions */
8632
void intel_init_pm(struct drm_i915_private *dev_priv)
8633
{
8634
	intel_fbc_init(dev_priv);
8635

8636
	/* For cxsr */
8637
	if (IS_PINEVIEW(dev_priv))
8638
		i915_pineview_get_mem_freq(dev_priv);
8639
	else if (IS_GEN5(dev_priv))
8640
		i915_ironlake_get_mem_freq(dev_priv);
8641

8642
	/* For FIFO watermark updates */
8643
	if (INTEL_GEN(dev_priv) >= 9) {
8644
		skl_setup_wm_latency(dev_priv);
8645
		dev_priv->display.initial_watermarks = skl_initial_wm;
8646
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8647
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8648
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8649
		ilk_setup_wm_latency(dev_priv);
8650

8651
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8652
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8653
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8654
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8655
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8656 8657 8658 8659 8660 8661
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8662 8663 8664 8665
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8666
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8667
		vlv_setup_wm_latency(dev_priv);
8668
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8669
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8670
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8671
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8672
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8673 8674 8675 8676 8677 8678
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8679
	} else if (IS_PINEVIEW(dev_priv)) {
8680
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8681 8682 8683 8684 8685 8686 8687 8688 8689
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8690
			intel_set_memory_cxsr(dev_priv, false);
8691 8692 8693
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8694
	} else if (IS_GEN4(dev_priv)) {
8695
		dev_priv->display.update_wm = i965_update_wm;
8696
	} else if (IS_GEN3(dev_priv)) {
8697 8698
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8699
	} else if (IS_GEN2(dev_priv)) {
8700
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8701
			dev_priv->display.update_wm = i845_update_wm;
8702
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8703 8704
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8705
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8706 8707 8708
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8709 8710 8711
	}
}

8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8724
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8725 8726 8727 8728
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
8729
		MISSING_CASE(flags);
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8756
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8757
{
8758 8759
	int status;

8760
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8761

8762 8763 8764 8765 8766 8767
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8768 8769 8770 8771
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8772 8773 8774
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8775

8776 8777 8778
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8779 8780 8781 8782
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8783 8784
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8785

8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8797 8798 8799
	return 0;
}

8800
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8801
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8802
{
8803 8804
	int status;

8805
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8806

8807 8808 8809 8810 8811 8812
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8813 8814 8815 8816
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8817
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8818
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8819
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8820

8821 8822 8823
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8824 8825 8826 8827
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8828
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8829

8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8841 8842
	return 0;
}
8843

8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8865
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8866 8867
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8868
 * for @timeout_base_ms and if this times out for another 50 ms with
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8904
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8905
	 * account for interrupts that could reduce the number of these
8906 8907
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8908 8909 8910 8911
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8912
	ret = wait_for_atomic(COND, 50);
8913 8914 8915 8916 8917 8918 8919
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8920 8921
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8922 8923 8924 8925 8926
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8927 8928
}

8929
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8930
{
8931
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8932 8933
}

8934
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8935
{
8936 8937 8938 8939 8940
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8941 8942
}

8943
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8944
{
8945
	/* CHV needs even values */
8946
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8947 8948
}

8949
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8950
{
8951
	if (IS_GEN9(dev_priv))
8952 8953
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8954
	else if (IS_CHERRYVIEW(dev_priv))
8955
		return chv_gpu_freq(dev_priv, val);
8956
	else if (IS_VALLEYVIEW(dev_priv))
8957 8958 8959
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8960 8961
}

8962 8963
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8964
	if (IS_GEN9(dev_priv))
8965 8966
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8967
	else if (IS_CHERRYVIEW(dev_priv))
8968
		return chv_freq_opcode(dev_priv, val);
8969
	else if (IS_VALLEYVIEW(dev_priv))
8970 8971
		return byt_freq_opcode(dev_priv, val);
	else
8972
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8973
}
8974

8975 8976
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8977
	struct drm_i915_gem_request *req;
8978 8979 8980 8981 8982
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8983
	struct drm_i915_gem_request *req = boost->req;
8984

8985
	if (!i915_gem_request_completed(req))
8986
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8987

8988
	i915_gem_request_put(req);
8989 8990 8991
	kfree(boost);
}

8992
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8993 8994 8995
{
	struct request_boost *boost;

8996
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8997 8998
		return;

8999
	if (i915_gem_request_completed(req))
9000 9001
		return;

9002 9003 9004 9005
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

9006
	boost->req = i915_gem_request_get(req);
9007 9008

	INIT_WORK(&boost->work, __intel_rps_boost_work);
9009
	queue_work(req->i915->wq, &boost->work);
9010 9011
}

9012
void intel_pm_setup(struct drm_i915_private *dev_priv)
9013
{
D
Daniel Vetter 已提交
9014
	mutex_init(&dev_priv->rps.hw_lock);
9015
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
9016

9017 9018
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
9019
	INIT_LIST_HEAD(&dev_priv->rps.clients);
9020

9021
	dev_priv->pm.suspended = false;
9022
	atomic_set(&dev_priv->pm.wakeref_count, 0);
9023
}
9024

9025 9026 9027
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9028
	u32 lower, upper, tmp;
9029
	int loop = 2;
9030 9031 9032 9033 9034 9035 9036 9037 9038

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9039 9040 9041 9042 9043
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9044
	 */
9045 9046
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9058
	} while (upper != tmp && --loop);
9059

9060 9061 9062 9063 9064
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9065 9066 9067 9068 9069
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9070 9071
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9072
{
9073
	u64 time_hw, units, div;
9074 9075 9076 9077 9078 9079 9080 9081

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9082
		units = 1000;
9083 9084
		div = dev_priv->czclk_freq;

9085
		time_hw = vlv_residency_raw(dev_priv, reg);
9086
	} else if (IS_GEN9_LP(dev_priv)) {
9087
		units = 1000;
9088 9089
		div = 1200;		/* 833.33ns */

9090 9091 9092 9093 9094 9095 9096
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9097 9098

	intel_runtime_pm_put(dev_priv);
9099
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9100
}