intel_pm.c 227.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381 382 383 384
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
385 386
}

387
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
388
{
389 390
	bool ret;

391
	mutex_lock(&dev_priv->wm.wm_mutex);
392
	ret = _intel_set_memory_cxsr(dev_priv, enable);
393 394
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
395 396

	return ret;
397
}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
413
static const int pessimal_latency_ns = 5000;
414

415 416 417
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

418
static int vlv_get_fifo_size(struct intel_plane *plane)
419
{
420
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
421 422
	int sprite0_start, sprite1_start, size;

423 424 425 426
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

450 451
	switch (plane->id) {
	case PLANE_PRIMARY:
452 453
		size = sprite0_start;
		break;
454
	case PLANE_SPRITE0:
455 456
		size = sprite1_start - sprite0_start;
		break;
457
	case PLANE_SPRITE1:
458 459 460 461 462 463
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

464
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
465 466 467 468

	return size;
}

469
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
470 471 472 473 474 475 476 477 478 479 480 481 482 483
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

484
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

500
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
517 518 519 520 521
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
522 523
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
524 525 526 527 528
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
529 530
};
static const struct intel_watermark_params pineview_cursor_wm = {
531 532 533 534 535
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
536 537
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
538 539 540 541 542
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
543 544
};
static const struct intel_watermark_params g4x_wm_info = {
545 546 547 548 549
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
550 551
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
552 553 554 555 556
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
557 558
};
static const struct intel_watermark_params i965_cursor_wm_info = {
559 560 561 562 563
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
564 565
};
static const struct intel_watermark_params i945_wm_info = {
566 567 568 569 570
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
571 572
};
static const struct intel_watermark_params i915_wm_info = {
573 574 575 576 577
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
578
};
579
static const struct intel_watermark_params i830_a_wm_info = {
580 581 582 583 584
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
585
};
586 587 588 589 590 591 592
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
593
static const struct intel_watermark_params i845_wm_info = {
594 595 596 597 598
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
599 600 601 602 603 604
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
605
 * @cpp: bytes per pixel
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
621
					int fifo_size, int cpp,
622 623 624 625 626 627 628 629 630 631
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
632
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
633 634 635 636 637 638 639 640 641 642 643 644 645 646
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
647 648 649 650 651 652 653 654 655 656 657

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

658 659 660
	return wm_size;
}

661
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
662
{
663
	struct intel_crtc *crtc, *enabled = NULL;
664

665
	for_each_intel_crtc(&dev_priv->drm, crtc) {
666
		if (intel_crtc_active(crtc)) {
667 668 669 670 671 672 673 674 675
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

676
static void pineview_update_wm(struct intel_crtc *unused_crtc)
677
{
678
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
679
	struct intel_crtc *crtc;
680 681 682 683
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

684 685 686 687
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
688 689
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
690
		intel_set_memory_cxsr(dev_priv, false);
691 692 693
		return;
	}

694
	crtc = single_enabled_crtc(dev_priv);
695
	if (crtc) {
696 697 698 699
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
700
		int cpp = fb->format->cpp[0];
701
		int clock = adjusted_mode->crtc_clock;
702 703 704 705

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
706
					cpp, latency->display_sr);
707 708
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
709
		reg |= FW_WM(wm, SR);
710 711 712 713 714 715
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
716
					cpp, latency->cursor_sr);
717 718
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
719
		reg |= FW_WM(wm, CURSOR_SR);
720 721 722 723 724
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
725
					cpp, latency->display_hpll_disable);
726 727
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
728
		reg |= FW_WM(wm, HPLL_SR);
729 730 731 732 733
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
734
					cpp, latency->cursor_hpll_disable);
735 736
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
737
		reg |= FW_WM(wm, HPLL_CURSOR);
738 739 740
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

741
		intel_set_memory_cxsr(dev_priv, true);
742
	} else {
743
		intel_set_memory_cxsr(dev_priv, false);
744 745 746
	}
}

747
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
748 749 750 751 752 753 754 755
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
756
	struct intel_crtc *crtc;
757
	const struct drm_display_mode *adjusted_mode;
758
	const struct drm_framebuffer *fb;
759
	int htotal, hdisplay, clock, cpp;
760 761 762
	int line_time_us, line_count;
	int entries, tlb_miss;

763
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
764
	if (!intel_crtc_active(crtc)) {
765 766 767 768 769
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

770 771
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
772
	clock = adjusted_mode->crtc_clock;
773
	htotal = adjusted_mode->crtc_htotal;
774
	hdisplay = crtc->config->pipe_src_w;
775
	cpp = fb->format->cpp[0];
776 777

	/* Use the small buffer method to calculate plane watermark */
778
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
779 780 781 782 783 784 785 786 787
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
788
	line_time_us = max(htotal * 1000 / clock, 1);
789
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
790
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
809
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
810 811 812 813 814 815 816 817
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
818
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
819 820 821 822 823
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
824
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
825 826 827 828 829 830 831 832 833 834 835 836
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

837
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
838 839 840 841 842 843
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
844
	struct intel_crtc *crtc;
845
	const struct drm_display_mode *adjusted_mode;
846
	const struct drm_framebuffer *fb;
847
	int hdisplay, htotal, cpp, clock;
848 849 850 851 852 853 854 855 856 857
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

858
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
859 860
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
861
	clock = adjusted_mode->crtc_clock;
862
	htotal = adjusted_mode->crtc_htotal;
863
	hdisplay = crtc->config->pipe_src_w;
864
	cpp = fb->format->cpp[0];
865

866
	line_time_us = max(htotal * 1000 / clock, 1);
867
	line_count = (latency_ns / line_time_us + 1000) / 1000;
868
	line_size = hdisplay * cpp;
869 870

	/* Use the minimum of the small and large buffer method for primary */
871
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
872 873 874 875 876 877
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
878
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
879 880 881
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

882
	return g4x_check_srwm(dev_priv,
883 884 885 886
			      *display_wm, *cursor_wm,
			      display, cursor);
}

887 888 889
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

890
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
891 892
				const struct vlv_wm_values *wm)
{
893 894 895 896 897 898 899 900 901
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
902

903 904 905 906 907 908 909 910 911 912 913
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

914
	I915_WRITE(DSPFW1,
915
		   FW_WM(wm->sr.plane, SR) |
916 917 918
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
919
	I915_WRITE(DSPFW2,
920 921 922
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
923
	I915_WRITE(DSPFW3,
924
		   FW_WM(wm->sr.cursor, CURSOR_SR));
925 926 927

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
928 929
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
930
		I915_WRITE(DSPFW8_CHV,
931 932
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
933
		I915_WRITE(DSPFW9_CHV,
934 935
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
936
		I915_WRITE(DSPHOWM,
937
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
938 939 940 941 942 943 944 945 946
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
947 948
	} else {
		I915_WRITE(DSPFW7,
949 950
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
951
		I915_WRITE(DSPHOWM,
952
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
953 954 955 956 957 958
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
959 960 961
	}

	POSTING_READ(DSPFW1);
962 963
}

964 965
#undef FW_WM_VLV

966 967 968 969 970 971
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

972 973 974 975
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
976
				   unsigned int cpp,
977 978 979 980 981
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
982
	ret = (ret + 1) * horiz_pixels * cpp;
983 984 985 986 987
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

988
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
989 990 991 992
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

993 994
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

995 996 997
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
998 999

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1000 1001 1002
	}
}

1003 1004
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1005 1006
				     int level)
{
1007
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1008
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1009 1010
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1011
	int clock, htotal, cpp, width, wm;
1012 1013 1014 1015

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1016
	if (!plane_state->base.visible)
1017 1018
		return 0;

1019
	cpp = plane_state->base.fb->format->cpp[0];
1020 1021 1022
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1035
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1036 1037 1038 1039 1040 1041
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1058
		if (state->base.visible) {
1059
			wm_state->num_active_planes++;
1060
			total_rate += state->base.fb->format->cpp[0];
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1074
		if (!state->base.visible) {
1075 1076 1077 1078
			plane->wm.fifo_size = 0;
			continue;
		}

1079
		rate = state->base.fb->format->cpp[0];
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1109 1110 1111 1112 1113 1114 1115 1116
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1117 1118 1119 1120 1121 1122
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1123
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1124
		const int sr_fifo_size =
1125
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1126 1127
		struct intel_plane *plane;

1128 1129 1130 1131 1132 1133
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1134

1135
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1136 1137 1138
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1139 1140 1141 1142
		}
	}
}

1143
static void vlv_compute_wm(struct intel_crtc *crtc)
1144
{
1145
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1146 1147 1148 1149 1150 1151
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1152
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1153
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1154 1155 1156

	wm_state->num_active_planes = 0;

1157
	vlv_compute_fifo(crtc);
1158 1159 1160 1161

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1162
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1163 1164
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1165
		int level;
1166

1167
		if (!state->base.visible)
1168 1169 1170 1171
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
1172
			int wm = vlv_compute_wm_level(crtc->config, state, level);
1173
			int max_wm = plane->wm.fifo_size;
1174 1175 1176 1177 1178

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1179
			if (wm > max_wm)
1180 1181
				break;

1182
			wm_state->wm[level].plane[plane->id] = wm;
1183 1184 1185 1186 1187 1188 1189 1190
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1191
		if (plane->id == PLANE_CURSOR) {
1192 1193
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1194 1195
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1196 1197
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1198
					max(wm_state->sr[level].plane,
1199
					    wm_state->wm[level].plane[plane->id]);
1200 1201 1202 1203
		}
	}

	/* clear any (partially) filled invalid levels */
1204
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1205 1206 1207 1208 1209 1210 1211
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1223 1224
		switch (plane->id) {
		case PLANE_PRIMARY:
1225
			sprite0_start = plane->wm.fifo_size;
1226 1227
			break;
		case PLANE_SPRITE0:
1228
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1229 1230
			break;
		case PLANE_SPRITE1:
1231
			fifo_size = sprite1_start + plane->wm.fifo_size;
1232 1233 1234 1235 1236 1237 1238 1239
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1240 1241 1242 1243 1244 1245 1246 1247
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

1248 1249
	spin_lock(&dev_priv->wm.dsparb_lock);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1306 1307 1308 1309

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1310 1311 1312 1313
}

#undef VLV_FIFO

1314
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1315 1316 1317 1318 1319
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1320
	wm->level = dev_priv->wm.max_level;
1321 1322
	wm->cxsr = true;

1323
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1339 1340 1341
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1342
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1353 1354 1355 1356
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1357 1358 1359
	}
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1370
static void vlv_update_wm(struct intel_crtc *crtc)
1371
{
1372
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1373
	enum pipe pipe = crtc->pipe;
1374 1375
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1376

1377
	vlv_compute_wm(crtc);
1378
	vlv_merge_wm(dev_priv, &new_wm);
1379

1380
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1381
		/* FIXME should be part of crtc atomic commit */
1382
		vlv_pipe_set_fifo_size(crtc);
1383

1384
		return;
1385
	}
1386

1387
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1388 1389
		chv_set_memory_dvfs(dev_priv, false);

1390
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1391 1392
		chv_set_memory_pm5(dev_priv, false);

1393
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1394
		_intel_set_memory_cxsr(dev_priv, false);
1395

1396
	/* FIXME should be part of crtc atomic commit */
1397
	vlv_pipe_set_fifo_size(crtc);
1398

1399
	vlv_write_wm_values(dev_priv, &new_wm);
1400 1401 1402

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1403 1404 1405
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1406

1407
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1408
		_intel_set_memory_cxsr(dev_priv, true);
1409

1410
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1411 1412
		chv_set_memory_pm5(dev_priv, true);

1413
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1414 1415
		chv_set_memory_dvfs(dev_priv, true);

1416
	*old_wm = new_wm;
1417 1418
}

1419 1420
#define single_plane_enabled(mask) is_power_of_2(mask)

1421
static void g4x_update_wm(struct intel_crtc *crtc)
1422
{
1423
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1424 1425 1426 1427
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1428
	bool cxsr_enabled;
1429

1430
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1431 1432
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1433
			    &planea_wm, &cursora_wm))
1434
		enabled |= 1 << PIPE_A;
1435

1436
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1437 1438
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1439
			    &planeb_wm, &cursorb_wm))
1440
		enabled |= 1 << PIPE_B;
1441 1442

	if (single_plane_enabled(enabled) &&
1443
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1444 1445 1446
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1447
			     &plane_sr, &cursor_sr)) {
1448
		cxsr_enabled = true;
1449
	} else {
1450
		cxsr_enabled = false;
1451
		intel_set_memory_cxsr(dev_priv, false);
1452 1453
		plane_sr = cursor_sr = 0;
	}
1454

1455 1456
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1457 1458 1459 1460 1461
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1462 1463 1464 1465
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1466
	I915_WRITE(DSPFW2,
1467
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1468
		   FW_WM(cursora_wm, CURSORA));
1469 1470
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1471
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1472
		   FW_WM(cursor_sr, CURSOR_SR));
1473 1474 1475

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1476 1477
}

1478
static void i965_update_wm(struct intel_crtc *unused_crtc)
1479
{
1480
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1481
	struct intel_crtc *crtc;
1482 1483
	int srwm = 1;
	int cursor_sr = 16;
1484
	bool cxsr_enabled;
1485 1486

	/* Calc sr entries for one plane configs */
1487
	crtc = single_enabled_crtc(dev_priv);
1488 1489 1490
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1491 1492 1493 1494
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1495
		int clock = adjusted_mode->crtc_clock;
1496
		int htotal = adjusted_mode->crtc_htotal;
1497
		int hdisplay = crtc->config->pipe_src_w;
1498
		int cpp = fb->format->cpp[0];
1499 1500 1501
		unsigned long line_time_us;
		int entries;

1502
		line_time_us = max(htotal * 1000 / clock, 1);
1503 1504 1505

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1506
			cpp * hdisplay;
1507 1508 1509 1510 1511 1512 1513 1514 1515
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1516
			cpp * crtc->base.cursor->state->crtc_w;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1528
		cxsr_enabled = true;
1529
	} else {
1530
		cxsr_enabled = false;
1531
		/* Turn off self refresh if both pipes are enabled */
1532
		intel_set_memory_cxsr(dev_priv, false);
1533 1534 1535 1536 1537 1538
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1539 1540 1541 1542 1543 1544
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1545
	/* update cursor SR watermark */
1546
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1547 1548 1549

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1550 1551
}

1552 1553
#undef FW_WM

1554
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1555
{
1556
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1557 1558 1559 1560 1561 1562
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1563
	struct intel_crtc *crtc, *enabled = NULL;
1564

1565
	if (IS_I945GM(dev_priv))
1566
		wm_info = &i945_wm_info;
1567
	else if (!IS_GEN2(dev_priv))
1568 1569
		wm_info = &i915_wm_info;
	else
1570
		wm_info = &i830_a_wm_info;
1571

1572
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1573
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1574 1575 1576 1577 1578 1579 1580
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1581
		if (IS_GEN2(dev_priv))
1582
			cpp = 4;
1583
		else
1584
			cpp = fb->format->cpp[0];
1585

1586
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1587
					       wm_info, fifo_size, cpp,
1588
					       pessimal_latency_ns);
1589
		enabled = crtc;
1590
	} else {
1591
		planea_wm = fifo_size - wm_info->guard_size;
1592 1593 1594 1595
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1596
	if (IS_GEN2(dev_priv))
1597
		wm_info = &i830_bc_wm_info;
1598

1599
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1600
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1601 1602 1603 1604 1605 1606 1607
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1608
		if (IS_GEN2(dev_priv))
1609
			cpp = 4;
1610
		else
1611
			cpp = fb->format->cpp[0];
1612

1613
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1614
					       wm_info, fifo_size, cpp,
1615
					       pessimal_latency_ns);
1616 1617 1618 1619
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1620
	} else {
1621
		planeb_wm = fifo_size - wm_info->guard_size;
1622 1623 1624
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1625 1626 1627

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1628
	if (IS_I915GM(dev_priv) && enabled) {
1629
		struct drm_i915_gem_object *obj;
1630

1631
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1632 1633

		/* self-refresh seems busted with untiled */
1634
		if (!i915_gem_object_is_tiled(obj))
1635 1636 1637
			enabled = NULL;
	}

1638 1639 1640 1641 1642 1643
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1644
	intel_set_memory_cxsr(dev_priv, false);
1645 1646

	/* Calc sr entries for one plane configs */
1647
	if (HAS_FW_BLC(dev_priv) && enabled) {
1648 1649
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1650 1651 1652 1653
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1654
		int clock = adjusted_mode->crtc_clock;
1655
		int htotal = adjusted_mode->crtc_htotal;
1656 1657
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1658 1659 1660
		unsigned long line_time_us;
		int entries;

1661
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1662
			cpp = 4;
1663
		else
1664
			cpp = fb->format->cpp[0];
1665

1666
		line_time_us = max(htotal * 1000 / clock, 1);
1667 1668 1669

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1670
			cpp * hdisplay;
1671 1672 1673 1674 1675 1676
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1677
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1678 1679
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1680
		else
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1697 1698
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1699 1700
}

1701
static void i845_update_wm(struct intel_crtc *unused_crtc)
1702
{
1703
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1704
	struct intel_crtc *crtc;
1705
	const struct drm_display_mode *adjusted_mode;
1706 1707 1708
	uint32_t fwater_lo;
	int planea_wm;

1709
	crtc = single_enabled_crtc(dev_priv);
1710 1711 1712
	if (crtc == NULL)
		return;

1713
	adjusted_mode = &crtc->config->base.adjusted_mode;
1714
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1715
				       &i845_wm_info,
1716
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1717
				       4, pessimal_latency_ns);
1718 1719 1720 1721 1722 1723 1724 1725
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1726
/* latency must be in 0.1us units. */
1727
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1728 1729 1730
{
	uint64_t ret;

1731 1732 1733
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1734
	ret = (uint64_t) pixel_rate * cpp * latency;
1735 1736 1737 1738 1739
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1740
/* latency must be in 0.1us units. */
1741
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1742
			       uint32_t horiz_pixels, uint8_t cpp,
1743 1744 1745 1746
			       uint32_t latency)
{
	uint32_t ret;

1747 1748
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1749 1750
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1751

1752
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1753
	ret = (ret + 1) * horiz_pixels * cpp;
1754 1755 1756 1757
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1758
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1759
			   uint8_t cpp)
1760
{
1761 1762 1763 1764 1765 1766
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1767
	if (WARN_ON(!cpp))
1768 1769 1770 1771
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1772
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1773 1774
}

1775
struct ilk_wm_maximums {
1776 1777 1778 1779 1780 1781
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1782 1783 1784 1785
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1786
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1787
				   const struct intel_plane_state *pstate,
1788 1789
				   uint32_t mem_value,
				   bool is_lp)
1790
{
1791
	uint32_t method1, method2;
1792
	int cpp;
1793

1794
	if (!cstate->base.active || !pstate->base.visible)
1795 1796
		return 0;

1797
	cpp = pstate->base.fb->format->cpp[0];
1798

1799
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1800 1801 1802 1803

	if (!is_lp)
		return method1;

1804
	method2 = ilk_wm_method2(cstate->pixel_rate,
1805
				 cstate->base.adjusted_mode.crtc_htotal,
1806
				 drm_rect_width(&pstate->base.dst),
1807
				 cpp, mem_value);
1808 1809

	return min(method1, method2);
1810 1811
}

1812 1813 1814 1815
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1816
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1817
				   const struct intel_plane_state *pstate,
1818 1819 1820
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1821
	int cpp;
1822

1823
	if (!cstate->base.active || !pstate->base.visible)
1824 1825
		return 0;

1826
	cpp = pstate->base.fb->format->cpp[0];
1827

1828 1829
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
1830
				 cstate->base.adjusted_mode.crtc_htotal,
1831
				 drm_rect_width(&pstate->base.dst),
1832
				 cpp, mem_value);
1833 1834 1835
	return min(method1, method2);
}

1836 1837 1838 1839
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1840
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1841
				   const struct intel_plane_state *pstate,
1842 1843
				   uint32_t mem_value)
{
1844 1845
	int cpp;

1846
	/*
1847 1848 1849 1850 1851 1852
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
1853
	 */
1854
	if (!cstate->base.active || !pstate->base.fb)
1855 1856
		return 0;

1857 1858
	cpp = pstate->base.fb->format->cpp[0];

1859
	return ilk_wm_method2(cstate->pixel_rate,
1860
			      cstate->base.adjusted_mode.crtc_htotal,
1861
			      pstate->base.crtc_w, cpp, mem_value);
1862 1863
}

1864
/* Only for WM_LP. */
1865
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1866
				   const struct intel_plane_state *pstate,
1867
				   uint32_t pri_val)
1868
{
1869
	int cpp;
1870

1871
	if (!cstate->base.active || !pstate->base.visible)
1872 1873
		return 0;

1874
	cpp = pstate->base.fb->format->cpp[0];
1875

1876
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1877 1878
}

1879 1880
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1881
{
1882
	if (INTEL_GEN(dev_priv) >= 8)
1883
		return 3072;
1884
	else if (INTEL_GEN(dev_priv) >= 7)
1885 1886 1887 1888 1889
		return 768;
	else
		return 512;
}

1890 1891 1892
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1893
{
1894
	if (INTEL_GEN(dev_priv) >= 8)
1895 1896
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1897
	else if (INTEL_GEN(dev_priv) >= 7)
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1908 1909
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1910
{
1911
	if (INTEL_GEN(dev_priv) >= 7)
1912 1913 1914 1915 1916
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1917
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1918
{
1919
	if (INTEL_GEN(dev_priv) >= 8)
1920 1921 1922 1923 1924
		return 31;
	else
		return 15;
}

1925 1926 1927
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1928
				     const struct intel_wm_config *config,
1929 1930 1931
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1932 1933
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1934 1935

	/* if sprites aren't enabled, sprites get nothing */
1936
	if (is_sprite && !config->sprites_enabled)
1937 1938 1939
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1940
	if (level == 0 || config->num_pipes_active > 1) {
1941
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1942 1943 1944 1945 1946 1947

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1948
		if (INTEL_GEN(dev_priv) <= 6)
1949 1950 1951
			fifo_size /= 2;
	}

1952
	if (config->sprites_enabled) {
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1964
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1965 1966 1967 1968
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1969 1970
				      int level,
				      const struct intel_wm_config *config)
1971 1972
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1973
	if (level > 0 && config->num_pipes_active > 1)
1974 1975 1976
		return 64;

	/* otherwise just report max that registers can hold */
1977
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1978 1979
}

1980
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1981 1982 1983
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1984
				    struct ilk_wm_maximums *max)
1985
{
1986 1987 1988
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1989
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1990 1991
}

1992
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1993 1994 1995
					int level,
					struct ilk_wm_maximums *max)
{
1996 1997 1998 1999
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2000 2001
}

2002
static bool ilk_validate_wm_level(int level,
2003
				  const struct ilk_wm_maximums *max,
2004
				  struct intel_wm_level *result)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2043
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2044
				 const struct intel_crtc *intel_crtc,
2045
				 int level,
2046
				 struct intel_crtc_state *cstate,
2047 2048 2049
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2050
				 struct intel_wm_level *result)
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2075 2076 2077
	result->enable = true;
}

2078
static uint32_t
2079
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2080
{
2081 2082
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2083 2084
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2085
	u32 linetime, ips_linetime;
2086

2087 2088 2089 2090
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2091
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2092
		return 0;
2093

2094 2095 2096
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2097 2098 2099
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2100
					 intel_state->cdclk.logical.cdclk);
2101

2102 2103
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2104 2105
}

2106 2107
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2108
{
2109
	if (IS_GEN9(dev_priv)) {
2110
		uint32_t val;
2111
		int ret, i;
2112
		int level, max_level = ilk_wm_max_level(dev_priv);
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2168
		/*
2169
		 * WaWmMemoryReadLatency:skl,glk
2170
		 *
2171
		 * punit doesn't take into account the read latency so we need
2172 2173
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2174
		 */
2175 2176 2177 2178 2179
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2180
				wm[level] += 2;
2181
			}
2182 2183
		}

2184
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2185 2186 2187 2188 2189
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2190 2191 2192 2193
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2194
	} else if (INTEL_GEN(dev_priv) >= 6) {
2195 2196 2197 2198 2199 2200
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2201
	} else if (INTEL_GEN(dev_priv) >= 5) {
2202 2203 2204 2205 2206 2207
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2208 2209 2210
	}
}

2211 2212
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2213 2214
{
	/* ILK sprite LP0 latency is 1300 ns */
2215
	if (IS_GEN5(dev_priv))
2216 2217 2218
		wm[0] = 13;
}

2219 2220
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2221 2222
{
	/* ILK cursor LP0 latency is 1300 ns */
2223
	if (IS_GEN5(dev_priv))
2224 2225 2226
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2227
	if (IS_IVYBRIDGE(dev_priv))
2228 2229 2230
		wm[3] *= 2;
}

2231
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2232 2233
{
	/* how many WM levels are we expecting */
2234
	if (INTEL_GEN(dev_priv) >= 9)
2235
		return 7;
2236
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2237
		return 4;
2238
	else if (INTEL_GEN(dev_priv) >= 6)
2239
		return 3;
2240
	else
2241 2242
		return 2;
}
2243

2244
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2245
				   const char *name,
2246
				   const uint16_t wm[8])
2247
{
2248
	int level, max_level = ilk_wm_max_level(dev_priv);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2259 2260 2261 2262
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2263
		if (IS_GEN9(dev_priv))
2264 2265
			latency *= 10;
		else if (level > 0)
2266 2267 2268 2269 2270 2271 2272 2273
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2274 2275 2276
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2277
	int level, max_level = ilk_wm_max_level(dev_priv);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2289
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2305 2306 2307
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2308 2309
}

2310
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2311
{
2312
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2313 2314 2315 2316 2317 2318

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2319
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2320
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2321

2322 2323 2324
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2325

2326
	if (IS_GEN6(dev_priv))
2327
		snb_wm_latency_quirk(dev_priv);
2328 2329
}

2330
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2331
{
2332
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2333
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2334 2335
}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2359
/* Compute new watermarks for the pipe */
2360
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2361
{
2362 2363
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2364
	struct intel_pipe_wm *pipe_wm;
2365
	struct drm_device *dev = state->dev;
2366
	const struct drm_i915_private *dev_priv = to_i915(dev);
2367
	struct intel_plane *intel_plane;
2368
	struct intel_plane_state *pristate = NULL;
2369
	struct intel_plane_state *sprstate = NULL;
2370
	struct intel_plane_state *curstate = NULL;
2371
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2372
	struct ilk_wm_maximums max;
2373

2374
	pipe_wm = &cstate->wm.ilk.optimal;
2375

2376
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2377 2378 2379 2380 2381 2382
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2383 2384

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2385
			pristate = ps;
2386
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2387
			sprstate = ps;
2388
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2389
			curstate = ps;
2390 2391
	}

2392
	pipe_wm->pipe_enabled = cstate->base.active;
2393
	if (sprstate) {
2394 2395 2396 2397
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2398 2399
	}

2400 2401
	usable_level = max_level;

2402
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2403
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2404
		usable_level = 1;
2405 2406

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2407
	if (pipe_wm->sprites_scaled)
2408
		usable_level = 0;
2409

2410
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2411 2412 2413 2414
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2415

2416
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2417
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2418

2419
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2420
		return -EINVAL;
2421

2422
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2423 2424

	for (level = 1; level <= max_level; level++) {
2425
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2426

2427
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2428
				     pristate, sprstate, curstate, wm);
2429 2430 2431 2432 2433 2434

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2435 2436 2437 2438 2439 2440
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2441
			usable_level = level;
2442 2443
	}

2444
	return 0;
2445 2446
}

2447 2448 2449 2450 2451 2452 2453 2454 2455
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2456
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2457
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2458
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2459 2460 2461 2462 2463 2464

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2465
	*a = newstate->wm.ilk.optimal;
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2494
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2495 2496 2497 2498 2499
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2500 2501 2502 2503 2504 2505 2506 2507 2508
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2509 2510
	ret_wm->enable = true;

2511
	for_each_intel_crtc(dev, intel_crtc) {
2512
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2513 2514 2515 2516
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2517

2518 2519 2520 2521 2522
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2523
		if (!wm->enable)
2524
			ret_wm->enable = false;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2537
			 const struct intel_wm_config *config,
2538
			 const struct ilk_wm_maximums *max,
2539 2540
			 struct intel_pipe_wm *merged)
{
2541
	struct drm_i915_private *dev_priv = to_i915(dev);
2542
	int level, max_level = ilk_wm_max_level(dev_priv);
2543
	int last_enabled_level = max_level;
2544

2545
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2546
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2547
	    config->num_pipes_active > 1)
2548
		last_enabled_level = 0;
2549

2550
	/* ILK: FBC WM must be disabled always */
2551
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2552 2553 2554 2555 2556 2557 2558

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2559 2560 2561 2562 2563
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2564 2565 2566 2567 2568 2569

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2570 2571
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2572 2573 2574
			wm->fbc_val = 0;
		}
	}
2575 2576 2577 2578 2579 2580 2581

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2582
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2583
	    intel_fbc_is_active(dev_priv)) {
2584 2585 2586 2587 2588 2589
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2590 2591
}

2592 2593 2594 2595 2596 2597
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2598 2599 2600
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2601
	struct drm_i915_private *dev_priv = to_i915(dev);
2602

2603
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2604 2605 2606 2607 2608
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2609
static void ilk_compute_wm_results(struct drm_device *dev,
2610
				   const struct intel_pipe_wm *merged,
2611
				   enum intel_ddb_partitioning partitioning,
2612
				   struct ilk_wm_values *results)
2613
{
2614
	struct drm_i915_private *dev_priv = to_i915(dev);
2615 2616
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2617

2618
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2619
	results->partitioning = partitioning;
2620

2621
	/* LP1+ register values */
2622
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2623
		const struct intel_wm_level *r;
2624

2625
		level = ilk_wm_lp_to_level(wm_lp, merged);
2626

2627
		r = &merged->wm[level];
2628

2629 2630 2631 2632 2633
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2634
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2635 2636 2637
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2638 2639 2640
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2641
		if (INTEL_GEN(dev_priv) >= 8)
2642 2643 2644 2645 2646 2647
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2648 2649 2650 2651
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2652
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2653 2654 2655 2656
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2657
	}
2658

2659
	/* LP0 register values */
2660
	for_each_intel_crtc(dev, intel_crtc) {
2661
		enum pipe pipe = intel_crtc->pipe;
2662 2663
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2664 2665 2666 2667

		if (WARN_ON(!r->enable))
			continue;

2668
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2669

2670 2671 2672 2673
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2674 2675 2676
	}
}

2677 2678
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2679
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2680 2681
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2682
{
2683
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2684
	int level1 = 0, level2 = 0;
2685

2686 2687 2688 2689 2690
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2691 2692
	}

2693 2694
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2695 2696 2697
			return r2;
		else
			return r1;
2698
	} else if (level1 > level2) {
2699 2700 2701 2702 2703 2704
		return r1;
	} else {
		return r2;
	}
}

2705 2706 2707 2708 2709 2710 2711 2712
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2713
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2714 2715
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2716 2717 2718 2719 2720
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2721
	for_each_pipe(dev_priv, pipe) {
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2765 2766
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2767
{
2768
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2769
	bool changed = false;
2770

2771 2772 2773
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2774
		changed = true;
2775 2776 2777 2778
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2779
		changed = true;
2780 2781 2782 2783
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2784
		changed = true;
2785
	}
2786

2787 2788 2789 2790
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2791

2792 2793 2794 2795 2796 2797 2798
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2799 2800
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2801
{
2802
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2803 2804 2805
	unsigned int dirty;
	uint32_t val;

2806
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2807 2808 2809 2810 2811
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2812
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2813
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2814
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2815
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2816
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2817 2818
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2819
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2820
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2821
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2822
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2823
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2824 2825
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2826
	if (dirty & WM_DIRTY_DDB) {
2827
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2842 2843
	}

2844
	if (dirty & WM_DIRTY_FBC) {
2845 2846 2847 2848 2849 2850 2851 2852
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2853 2854 2855 2856
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2857
	if (INTEL_GEN(dev_priv) >= 7) {
2858 2859 2860 2861 2862
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2863

2864
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2865
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2866
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2867
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2868
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2869
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2870 2871

	dev_priv->wm.hw = *results;
2872 2873
}

2874
bool ilk_disable_lp_wm(struct drm_device *dev)
2875
{
2876
	struct drm_i915_private *dev_priv = to_i915(dev);
2877 2878 2879 2880

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2881
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2882

2883 2884 2885 2886 2887 2888 2889 2890
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

2891
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
2892 2893 2894 2895 2896
		return true;

	return false;
}

2897 2898 2899
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2900 2901 2902 2903 2904 2905 2906 2907
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2908 2909
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2922
intel_enable_sagv(struct drm_i915_private *dev_priv)
2923 2924 2925
{
	int ret;

2926 2927 2928 2929
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2945
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2946
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2947
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2948 2949 2950 2951 2952 2953
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2954
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2955 2956 2957 2958
	return 0;
}

int
2959
intel_disable_sagv(struct drm_i915_private *dev_priv)
2960
{
2961
	int ret;
2962

2963 2964 2965 2966
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2967 2968 2969 2970 2971 2972
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2973 2974 2975 2976
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
2977 2978 2979 2980 2981 2982
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2983
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2984
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2985
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2986
		return 0;
2987 2988 2989
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
2990 2991
	}

2992
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2993 2994 2995
	return 0;
}

2996
bool intel_can_enable_sagv(struct drm_atomic_state *state)
2997 2998 2999 3000
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3001 3002
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3003
	struct intel_crtc_state *cstate;
3004
	enum pipe pipe;
3005
	int level, latency;
3006

3007 3008 3009
	if (!intel_has_sagv(dev_priv))
		return false;

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3023
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3024
	cstate = to_intel_crtc_state(crtc->base.state);
3025

3026
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3027 3028
		return false;

3029
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3030 3031
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3032

3033
		/* Skip this plane if it's not enabled */
3034
		if (!wm->wm[0].plane_en)
3035 3036 3037
			continue;

		/* Find the highest enabled wm level for this plane */
3038
		for (level = ilk_wm_max_level(dev_priv);
3039
		     !wm->wm[level].plane_en; --level)
3040 3041
		     { }

3042 3043 3044
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3045
		    plane->base.state->fb->modifier ==
3046 3047 3048
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3049 3050 3051 3052 3053
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3054
		if (latency < SKL_SAGV_BLOCK_TIME)
3055 3056 3057 3058 3059 3060
			return false;
	}

	return true;
}

3061 3062
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3063
				   const struct intel_crtc_state *cstate,
3064 3065
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3066
{
3067 3068 3069
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3070
	struct drm_crtc *for_crtc = cstate->base.crtc;
3071 3072
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3073

3074
	if (WARN_ON(!state) || !cstate->base.active) {
3075 3076
		alloc->start = 0;
		alloc->end = 0;
3077
		*num_active = hweight32(dev_priv->active_crtcs);
3078 3079 3080
		return;
	}

3081 3082 3083 3084 3085
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3086 3087
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3088 3089 3090

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3091
	/*
3092 3093 3094 3095 3096 3097
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3098
	 */
3099
	if (!intel_state->active_pipe_changes) {
3100 3101 3102 3103 3104
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3105
		return;
3106
	}
3107 3108 3109 3110 3111 3112

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3113 3114
}

3115
static unsigned int skl_cursor_allocation(int num_active)
3116
{
3117
	if (num_active == 1)
3118 3119 3120 3121 3122
		return 32;

	return 8;
}

3123 3124 3125 3126
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3127 3128
	if (entry->end)
		entry->end += 1;
3129 3130
}

3131 3132
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3133
{
3134
	struct intel_crtc *crtc;
3135

3136 3137
	memset(ddb, 0, sizeof(*ddb));

3138
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3139
		enum intel_display_power_domain power_domain;
3140 3141
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3142 3143 3144

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3145 3146
			continue;

3147 3148 3149 3150 3151 3152 3153
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3154

3155 3156
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3157 3158

		intel_display_power_put(dev_priv, power_domain);
3159 3160 3161
	}
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3184
	if (WARN_ON(!pstate->base.visible))
3185 3186 3187
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3188 3189 3190 3191
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3192
	if (drm_rotation_90_or_270(pstate->base.rotation))
3193 3194 3195 3196 3197 3198 3199 3200 3201
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3202
static unsigned int
3203 3204 3205
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3206
{
3207
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3208
	uint32_t down_scale_amount, data_rate;
3209
	uint32_t width = 0, height = 0;
3210 3211
	struct drm_framebuffer *fb;
	u32 format;
3212

3213
	if (!intel_pstate->base.visible)
3214
		return 0;
3215 3216

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3217
	format = fb->format->format;
3218

3219 3220 3221 3222
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3223

3224 3225
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3226

3227
	if (drm_rotation_90_or_270(pstate->rotation))
3228
		swap(width, height);
3229 3230

	/* for planar format */
3231
	if (format == DRM_FORMAT_NV12) {
3232
		if (y)  /* y-plane data rate */
3233
			data_rate = width * height *
3234
				fb->format->cpp[0];
3235
		else    /* uv-plane data rate */
3236
			data_rate = (width / 2) * (height / 2) *
3237
				fb->format->cpp[1];
3238 3239
	} else {
		/* for packed formats */
3240
		data_rate = width * height * fb->format->cpp[0];
3241 3242
	}

3243 3244 3245
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3246 3247 3248 3249 3250 3251 3252 3253
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3254 3255 3256
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3257
{
3258 3259
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3260 3261
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3262
	unsigned int total_data_rate = 0;
3263 3264 3265

	if (WARN_ON(!state))
		return 0;
3266

3267
	/* Calculate and cache data rate for each plane */
3268
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3269 3270
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3271 3272 3273 3274

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3275
		plane_data_rate[plane_id] = rate;
3276 3277

		total_data_rate += rate;
3278 3279 3280 3281

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3282
		plane_y_data_rate[plane_id] = rate;
3283

3284
		total_data_rate += rate;
3285 3286 3287 3288 3289
	}

	return total_data_rate;
}

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3304
	if (y && fb->format->format != DRM_FORMAT_NV12)
3305 3306 3307
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3308 3309
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3310 3311
		return 8;

3312 3313
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3314

3315
	if (drm_rotation_90_or_270(pstate->rotation))
3316 3317 3318
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3319
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3320 3321 3322 3323
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3324
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3325
		plane_bpp = fb->format->cpp[1];
3326
	else
3327
		plane_bpp = fb->format->cpp[0];
3328

3329
	if (drm_rotation_90_or_270(pstate->rotation)) {
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3353 3354 3355 3356 3357 3358 3359 3360
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3361
		enum plane_id plane_id = to_intel_plane(plane)->id;
3362

3363
		if (plane_id == PLANE_CURSOR)
3364 3365 3366 3367 3368
			continue;

		if (!pstate->visible)
			continue;

3369 3370
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3371 3372 3373 3374 3375
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3376
static int
3377
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3378 3379
		      struct skl_ddb_allocation *ddb /* out */)
{
3380
	struct drm_atomic_state *state = cstate->base.state;
3381
	struct drm_crtc *crtc = cstate->base.crtc;
3382 3383 3384
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3385
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3386
	uint16_t alloc_size, start;
3387 3388
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3389
	unsigned int total_data_rate;
3390
	enum plane_id plane_id;
3391
	int num_active;
3392 3393
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3394

3395 3396 3397 3398
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3399 3400 3401
	if (WARN_ON(!state))
		return 0;

3402
	if (!cstate->base.active) {
3403
		alloc->start = alloc->end = 0;
3404 3405 3406
		return 0;
	}

3407
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3408
	alloc_size = skl_ddb_entry_size(alloc);
3409 3410
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3411
		return 0;
3412 3413
	}

3414
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3415

3416 3417 3418 3419 3420
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3421

3422 3423 3424
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3425 3426
	}

3427 3428 3429
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3430
	/*
3431 3432
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3433 3434 3435
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3436 3437 3438
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3439
	if (total_data_rate == 0)
3440
		return 0;
3441

3442
	start = alloc->start;
3443
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3444 3445
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3446

3447
		if (plane_id == PLANE_CURSOR)
3448 3449
			continue;

3450
		data_rate = plane_data_rate[plane_id];
3451 3452

		/*
3453
		 * allocation for (packed formats) or (uv-plane part of planar format):
3454 3455 3456
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3457
		plane_blocks = minimum[plane_id];
3458 3459
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3460

3461 3462
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3463 3464
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3465
		}
3466 3467

		start += plane_blocks;
3468 3469 3470 3471

		/*
		 * allocation for y_plane part of planar format:
		 */
3472
		y_data_rate = plane_y_data_rate[plane_id];
3473

3474
		y_plane_blocks = y_minimum[plane_id];
3475 3476
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3477

3478
		if (y_data_rate) {
3479 3480
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3481
		}
3482 3483

		start += y_plane_blocks;
3484 3485
	}

3486
	return 0;
3487 3488
}

3489 3490
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3491
 * for the read latency) and cpp should always be <= 8, so that
3492 3493 3494
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3495 3496
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3497
{
3498 3499
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3500 3501

	if (latency == 0)
3502
		return FP_16_16_MAX;
3503

3504 3505
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3506 3507 3508
	return ret;
}

3509 3510 3511 3512
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3513
{
3514
	uint32_t wm_intermediate_val;
3515
	uint_fixed_16_16_t ret;
3516 3517

	if (latency == 0)
3518
		return FP_16_16_MAX;
3519 3520

	wm_intermediate_val = latency * pixel_rate;
3521 3522 3523
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3524 3525 3526
	return ret;
}

3527 3528 3529 3530 3531 3532 3533 3534
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3535
	if (WARN_ON(!pstate->base.visible))
3536 3537 3538 3539 3540 3541
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3542
	adjusted_pixel_rate = cstate->pixel_rate;
3543 3544 3545 3546 3547 3548 3549 3550
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3551 3552 3553 3554 3555 3556 3557 3558
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3559
{
3560 3561
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3562
	uint32_t latency = dev_priv->wm.skl_latency[level];
3563 3564 3565 3566 3567
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3568
	uint32_t res_blocks, res_lines;
3569
	uint8_t cpp;
3570
	uint32_t width = 0, height = 0;
3571
	uint32_t plane_pixel_rate;
3572 3573
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3574 3575 3576
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3577
	bool y_tiled, x_tiled;
3578

3579
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3580 3581 3582
		*enabled = false;
		return 0;
	}
3583

3584 3585 3586 3587
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3588 3589 3590 3591
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3592
	if (apply_memory_bw_wa && x_tiled)
3593 3594
		latency += 15;

3595 3596
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3597

3598
	if (drm_rotation_90_or_270(pstate->rotation))
3599 3600
		swap(width, height);

3601
	cpp = fb->format->cpp[0];
3602 3603
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3604
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3605
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3606 3607
			fb->format->cpp[1] :
			fb->format->cpp[0];
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3619 3620 3621
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3622 3623 3624 3625 3626
		}
	} else {
		y_min_scanlines = 4;
	}

3627 3628 3629
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3630
	plane_bytes_per_line = width * cpp;
3631
	if (y_tiled) {
3632 3633
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3634
		plane_blocks_per_line =
3635
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3636
	} else if (x_tiled) {
3637 3638
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3639
	} else {
3640 3641
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3642 3643
	}

3644 3645
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3646
				 cstate->base.adjusted_mode.crtc_htotal,
3647
				 latency,
3648
				 plane_blocks_per_line);
3649

3650 3651
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3652

3653
	if (y_tiled) {
3654
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3655
	} else {
3656 3657 3658
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3659 3660 3661
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3662 3663 3664
		else
			selected_result = method1;
	}
3665

3666 3667 3668
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3669

3670
	if (level >= 1 && level <= 7) {
3671
		if (y_tiled) {
3672
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3673
			res_lines += y_min_scanlines;
3674
		} else {
3675
			res_blocks++;
3676
		}
3677
	}
3678

3679 3680
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3681 3682 3683 3684 3685 3686 3687 3688

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3689 3690
			struct drm_plane *plane = pstate->plane;

3691
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3692 3693
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3694 3695 3696
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3697
	}
3698 3699 3700

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3701
	*enabled = true;
3702

3703
	return 0;
3704 3705
}

3706 3707 3708 3709
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3710
		     struct intel_plane *intel_plane,
3711 3712
		     int level,
		     struct skl_wm_level *result)
3713
{
3714
	struct drm_atomic_state *state = cstate->base.state;
3715
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3716 3717
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3718
	uint16_t ddb_blocks;
3719
	enum pipe pipe = intel_crtc->pipe;
3720
	int ret;
L
Lyude 已提交
3721 3722 3723 3724 3725

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3726

3727
	/*
L
Lyude 已提交
3728 3729 3730 3731 3732 3733 3734 3735 3736
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3737
	 */
L
Lyude 已提交
3738 3739
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3740

L
Lyude 已提交
3741
	WARN_ON(!intel_pstate->base.fb);
3742

3743
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3744

L
Lyude 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3755 3756

	return 0;
3757 3758
}

3759
static uint32_t
3760
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3761
{
M
Mahesh Kumar 已提交
3762 3763
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3764
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3765
	uint32_t linetime_wm;
3766

3767
	if (!cstate->base.active)
3768 3769
		return 0;

3770
	pixel_rate = cstate->pixel_rate;
3771 3772

	if (WARN_ON(pixel_rate == 0))
3773
		return 0;
3774

M
Mahesh Kumar 已提交
3775 3776 3777 3778 3779 3780 3781 3782
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3783 3784
}

3785
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3786
				      struct skl_wm_level *trans_wm /* out */)
3787
{
3788
	if (!cstate->base.active)
3789
		return;
3790 3791

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3792
	trans_wm->plane_en = false;
3793 3794
}

3795 3796 3797
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3798
{
3799
	struct drm_device *dev = cstate->base.crtc->dev;
3800
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3801 3802
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3803
	int level, max_level = ilk_wm_max_level(dev_priv);
3804
	int ret;
3805

L
Lyude 已提交
3806 3807 3808 3809 3810 3811 3812 3813 3814
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3815
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3825
	}
3826
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3827

3828
	return 0;
3829 3830
}

3831 3832
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3833 3834 3835 3836 3837 3838 3839 3840
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3856 3857 3858
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3859
			       enum plane_id plane_id)
3860 3861 3862 3863
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3864
	int level, max_level = ilk_wm_max_level(dev_priv);
3865 3866 3867
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3868
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3869
				   &wm->wm[level]);
3870
	}
3871
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3872
			   &wm->trans_wm);
3873

3874 3875 3876 3877
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3878 3879
}

3880 3881 3882
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3883 3884 3885 3886
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3887
	int level, max_level = ilk_wm_max_level(dev_priv);
3888 3889 3890
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3891 3892
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3893
	}
3894
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3895

3896
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3897
			    &ddb->plane[pipe][PLANE_CURSOR]);
3898 3899
}

3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3914 3915
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3916
{
3917
	return a->start < b->end && b->start < a->end;
3918 3919
}

3920 3921 3922
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3923
{
3924
	int i;
3925

3926 3927 3928
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3929
			return true;
3930

3931
	return false;
3932 3933
}

3934
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3935
			      const struct skl_pipe_wm *old_pipe_wm,
3936
			      struct skl_pipe_wm *pipe_wm, /* out */
3937
			      struct skl_ddb_allocation *ddb, /* out */
3938
			      bool *changed /* out */)
3939
{
3940
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3941
	int ret;
3942

3943 3944 3945
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3946

3947
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3948 3949 3950
		*changed = false;
	else
		*changed = true;
3951

3952
	return 0;
3953 3954
}

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3968
static int
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3985
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3986
		enum plane_id plane_id = to_intel_plane(plane)->id;
3987

3988 3989 3990 3991
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4002 4003 4004 4005 4006 4007 4008
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4009
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4010
	uint32_t realloc_pipes = pipes_modified(state);
4011 4012 4013 4014 4015 4016 4017 4018
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4019 4020 4021 4022 4023 4024
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4025 4026
		intel_state->active_pipe_changes = ~0;

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4050
	if (intel_state->active_pipe_changes) {
4051
		realloc_pipes = ~0;
4052 4053
		intel_state->wm_results.dirty_pipes = ~0;
	}
4054

4055 4056 4057 4058 4059 4060
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4061 4062 4063 4064 4065 4066 4067
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4068
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4069 4070
		if (ret)
			return ret;
4071

4072
		ret = skl_ddb_add_affected_planes(cstate);
4073 4074
		if (ret)
			return ret;
4075 4076 4077 4078 4079
	}

	return 0;
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4103
	int i;
4104 4105

	for_each_crtc_in_state(state, crtc, cstate, i) {
4106 4107
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4108

4109
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4110
			enum plane_id plane_id = intel_plane->id;
4111 4112
			const struct skl_ddb_entry *old, *new;

4113 4114
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4115 4116 4117 4118

			if (skl_ddb_entry_equal(old, new))
				continue;

4119 4120 4121 4122 4123
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4124 4125 4126 4127
		}
	}
}

4128 4129 4130 4131 4132
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4133 4134 4135
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4136
	bool changed = false;
4137
	int ret, i;
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4152 4153 4154
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4155 4156 4157 4158
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4172 4173
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4174 4175

		pipe_wm = &intel_cstate->wm.skl.optimal;
4176 4177
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4191 4192
	skl_print_wm_changes(state);

4193 4194 4195
	return 0;
}

4196 4197 4198 4199 4200 4201
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4202
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4203
	enum pipe pipe = crtc->pipe;
4204
	enum plane_id plane_id;
4205 4206 4207

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4208 4209

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4210

4211 4212 4213 4214 4215 4216 4217 4218
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4219 4220
}

4221 4222
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4223
{
4224
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4225
	struct drm_device *dev = intel_crtc->base.dev;
4226
	struct drm_i915_private *dev_priv = to_i915(dev);
4227
	struct skl_wm_values *results = &state->wm_results;
4228
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4229
	enum pipe pipe = intel_crtc->pipe;
4230

4231
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4232 4233
		return;

4234
	mutex_lock(&dev_priv->wm.wm_mutex);
4235

4236 4237
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4238 4239

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4240 4241

	mutex_unlock(&dev_priv->wm.wm_mutex);
4242 4243
}

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4262
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4263
{
4264
	struct drm_device *dev = &dev_priv->drm;
4265
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4266
	struct ilk_wm_maximums max;
4267
	struct intel_wm_config config = {};
4268
	struct ilk_wm_values results = {};
4269
	enum intel_ddb_partitioning partitioning;
4270

4271 4272 4273 4274
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4275 4276

	/* 5/6 split only in single pipe config on IVB+ */
4277
	if (INTEL_GEN(dev_priv) >= 7 &&
4278 4279 4280
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4281

4282
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4283
	} else {
4284
		best_lp_wm = &lp_wm_1_2;
4285 4286
	}

4287
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4288
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4289

4290
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4291

4292
	ilk_write_wm_values(dev_priv, &results);
4293 4294
}

4295 4296
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4297
{
4298 4299
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4300

4301
	mutex_lock(&dev_priv->wm.wm_mutex);
4302
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4303 4304 4305
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4306

4307 4308
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4309 4310 4311
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4312

4313 4314
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4315
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4316 4317 4318
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4319 4320
}

4321 4322
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4323
{
4324 4325 4326 4327
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4328 4329
}

4330 4331
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4332
{
4333
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4334 4335
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4336 4337
	int level, max_level;
	enum plane_id plane_id;
4338
	uint32_t val;
4339

4340
	max_level = ilk_wm_max_level(dev_priv);
4341

4342 4343
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4344

4345
		for (level = 0; level <= max_level; level++) {
4346 4347
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4348 4349
			else
				val = I915_READ(CUR_WM(pipe, level));
4350

4351
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4352 4353
		}

4354 4355
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4356 4357 4358 4359
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4360 4361
	}

4362 4363
	if (!intel_crtc->active)
		return;
4364

4365
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4366 4367 4368 4369
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4370
	struct drm_i915_private *dev_priv = to_i915(dev);
4371
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4372
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4373
	struct drm_crtc *crtc;
4374 4375
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4376

4377
	skl_ddb_get_hw_state(dev_priv, ddb);
4378 4379 4380 4381 4382 4383
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4384
		if (intel_crtc->active)
4385 4386
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4387

4388 4389 4390 4391 4392 4393 4394
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4395 4396
}

4397 4398 4399
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4400
	struct drm_i915_private *dev_priv = to_i915(dev);
4401
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4402
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4403
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4404
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4405
	enum pipe pipe = intel_crtc->pipe;
4406
	static const i915_reg_t wm0_pipe_reg[] = {
4407 4408 4409 4410 4411 4412
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4413
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4414
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4415

4416 4417
	memset(active, 0, sizeof(*active));

4418
	active->pipe_enabled = intel_crtc->active;
4419 4420

	if (active->pipe_enabled) {
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4435
		int level, max_level = ilk_wm_max_level(dev_priv);
4436 4437 4438 4439 4440 4441 4442 4443 4444

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4445 4446

	intel_crtc->wm.active.ilk = *active;
4447 4448
}

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4463
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4464
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4465
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4466
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4467
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4468
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4469
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4470 4471 4472 4473 4474
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4475 4476 4477
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4478 4479

	tmp = I915_READ(DSPFW2);
4480 4481 4482
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4483 4484 4485 4486 4487 4488

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4489 4490
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4491 4492

		tmp = I915_READ(DSPFW8_CHV);
4493 4494
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4495 4496

		tmp = I915_READ(DSPFW9_CHV);
4497 4498
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4499 4500 4501

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4502 4503 4504 4505 4506 4507 4508 4509 4510
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4511 4512
	} else {
		tmp = I915_READ(DSPFW7);
4513 4514
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4515 4516 4517

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4518 4519 4520 4521 4522 4523
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4540 4541
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4553 4554 4555 4556 4557 4558 4559 4560 4561
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4562
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4576 4577 4578 4579 4580 4581

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4582 4583 4584 4585 4586
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4587 4588 4589 4590 4591

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4592 4593
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4594
	struct drm_i915_private *dev_priv = to_i915(dev);
4595
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4596 4597
	struct drm_crtc *crtc;

4598
	for_each_crtc(dev, crtc)
4599 4600 4601 4602 4603 4604 4605
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4606
	if (INTEL_GEN(dev_priv) >= 7) {
4607 4608 4609
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4610

4611
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4612 4613
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4614
	else if (IS_IVYBRIDGE(dev_priv))
4615 4616
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4617 4618 4619 4620 4621

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4654
void intel_update_watermarks(struct intel_crtc *crtc)
4655
{
4656
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4657 4658

	if (dev_priv->display.update_wm)
4659
		dev_priv->display.update_wm(crtc);
4660 4661
}

4662
/*
4663 4664 4665 4666 4667 4668 4669 4670
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4671
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4672 4673 4674
{
	u16 rgvswctl;

4675 4676
	assert_spin_locked(&mchdev_lock);

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4694
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4695
{
4696
	u32 rgvmodectl;
4697 4698
	u8 fmax, fmin, fstart, vstart;

4699 4700
	spin_lock_irq(&mchdev_lock);

4701 4702
	rgvmodectl = I915_READ(MEMMODECTL);

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4723
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4724 4725
		PXVFREQ_PX_SHIFT;

4726 4727
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4728

4729 4730 4731
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4748
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4749
		DRM_ERROR("stuck trying to change perf mode\n");
4750
	mdelay(1);
4751

4752
	ironlake_set_drps(dev_priv, fstart);
4753

4754 4755
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4756
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4757
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4758
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4759 4760

	spin_unlock_irq(&mchdev_lock);
4761 4762
}

4763
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4764
{
4765 4766 4767 4768 4769
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4770 4771 4772 4773 4774 4775 4776 4777 4778

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4779
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4780
	mdelay(1);
4781 4782
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4783
	mdelay(1);
4784

4785
	spin_unlock_irq(&mchdev_lock);
4786 4787
}

4788 4789 4790 4791 4792
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4793
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4794
{
4795
	u32 limits;
4796

4797 4798 4799 4800 4801 4802
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4803
	if (IS_GEN9(dev_priv)) {
4804 4805 4806 4807 4808 4809 4810 4811
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4812 4813 4814 4815

	return limits;
}

4816 4817 4818
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4819 4820
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4821 4822 4823 4824

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4825 4826
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4827 4828 4829 4830
			new_power = BETWEEN;
		break;

	case BETWEEN:
4831 4832
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4833
			new_power = LOW_POWER;
4834 4835
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4836 4837 4838 4839
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4840 4841
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4842 4843 4844 4845
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4846
	if (val <= dev_priv->rps.min_freq_softlimit)
4847
		new_power = LOW_POWER;
4848
	if (val >= dev_priv->rps.max_freq_softlimit)
4849 4850 4851 4852 4853 4854 4855 4856
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4857 4858
		ei_up = 16000;
		threshold_up = 95;
4859 4860

		/* Downclock if less than 85% busy over 32ms */
4861 4862
		ei_down = 32000;
		threshold_down = 85;
4863 4864 4865 4866
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4867 4868
		ei_up = 13000;
		threshold_up = 90;
4869 4870

		/* Downclock if less than 75% busy over 32ms */
4871 4872
		ei_down = 32000;
		threshold_down = 75;
4873 4874 4875 4876
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4877 4878
		ei_up = 10000;
		threshold_up = 85;
4879 4880

		/* Downclock if less than 60% busy over 32ms */
4881 4882
		ei_down = 32000;
		threshold_down = 60;
4883 4884 4885
		break;
	}

4886 4887 4888 4889 4890 4891
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

4892
	I915_WRITE(GEN6_RP_UP_EI,
4893
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4894
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4895 4896
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4897 4898

	I915_WRITE(GEN6_RP_DOWN_EI,
4899
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4900
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4911

4912
skip_hw_write:
4913
	dev_priv->rps.power = new_power;
4914 4915
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4916 4917 4918
	dev_priv->rps.last_adj = 0;
}

4919 4920 4921 4922 4923
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4924
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4925
	if (val < dev_priv->rps.max_freq_softlimit)
4926
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4927

4928 4929
	mask &= dev_priv->pm_rps_events;

4930
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4931 4932
}

4933 4934 4935
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4936
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4937
{
C
Chris Wilson 已提交
4938 4939 4940 4941 4942
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4943

4944
		if (IS_GEN9(dev_priv))
4945 4946
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4947
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4948 4949 4950 4951 4952 4953 4954
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4955
	}
4956 4957 4958 4959

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4960
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4961
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4962

4963
	dev_priv->rps.cur_freq = val;
4964
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4965 4966

	return 0;
4967 4968
}

4969
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4970
{
4971 4972
	int err;

4973
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4974 4975 4976
		      "Odd GPU freq value\n"))
		val &= ~1;

4977 4978
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4979
	if (val != dev_priv->rps.cur_freq) {
4980 4981 4982 4983
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

4984
		gen6_set_rps_thresholds(dev_priv, val);
4985
	}
4986 4987 4988

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4989 4990

	return 0;
4991 4992
}

4993
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4994 4995
 *
 * * If Gfx is Idle, then
4996 4997 4998
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4999 5000 5001
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5002
	u32 val = dev_priv->rps.idle_freq;
5003
	int err;
5004

5005
	if (dev_priv->rps.cur_freq <= val)
5006 5007
		return;

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5020
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5021
	err = valleyview_set_rps(dev_priv, val);
5022
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5023 5024 5025

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5026 5027
}

5028 5029 5030 5031
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5032 5033
		u8 freq;

5034 5035 5036 5037
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5038

5039 5040
		gen6_enable_rps_interrupts(dev_priv);

5041 5042 5043 5044 5045 5046
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5047
		if (intel_set_rps(dev_priv,
5048
				  clamp(freq,
5049 5050 5051
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5052 5053 5054 5055
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5056 5057
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5058 5059 5060 5061 5062 5063 5064
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5065
	mutex_lock(&dev_priv->rps.hw_lock);
5066
	if (dev_priv->rps.enabled) {
5067
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5068
			vlv_set_rps_idle(dev_priv);
5069
		else
5070
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5071
		dev_priv->rps.last_adj = 0;
5072 5073
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5074
	}
5075
	mutex_unlock(&dev_priv->rps.hw_lock);
5076

5077
	spin_lock(&dev_priv->rps.client_lock);
5078 5079
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5080
	spin_unlock(&dev_priv->rps.client_lock);
5081 5082
}

5083
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5084 5085
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5086
{
5087 5088 5089
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5090
	if (!(dev_priv->gt.awake &&
5091
	      dev_priv->rps.enabled &&
5092
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5093
		return;
5094

5095 5096 5097
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5098
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5099 5100
		rps = NULL;

5101 5102 5103 5104 5105
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5106
			schedule_work(&dev_priv->rps.work);
5107 5108
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5109

5110 5111 5112
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5113 5114
		} else
			dev_priv->rps.boosts++;
5115
	}
5116
	spin_unlock(&dev_priv->rps.client_lock);
5117 5118
}

5119
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5120
{
5121 5122
	int err;

5123 5124 5125 5126
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5127 5128 5129 5130 5131
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5132
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5133
		err = valleyview_set_rps(dev_priv, val);
5134
	else
5135 5136 5137
		err = gen6_set_rps(dev_priv, val);

	return err;
5138 5139
}

5140
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5141 5142
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5143
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5144 5145
}

5146
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5147 5148 5149 5150
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5151
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5152 5153
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5154
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5155
	I915_WRITE(GEN6_RP_CONTROL, 0);
5156 5157
}

5158
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5159 5160 5161 5162
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5163
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5164
{
5165 5166
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5167
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5168

5169
	I915_WRITE(GEN6_RC_CONTROL, 0);
5170

5171
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5172 5173
}

5174
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5175
{
5176
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5177 5178 5179 5180 5181
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5182
	if (HAS_RC6p(dev_priv))
5183 5184 5185 5186 5187
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5188 5189

	else
5190 5191
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5192 5193
}

5194
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5195
{
5196
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5197 5198
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5210 5211

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5212
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5213 5214 5215 5216 5217 5218 5219 5220
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5221 5222 5223
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5224
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5225 5226 5227 5228 5229 5230 5231
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5232
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5233 5234 5235
		enable_rc6 = false;
	}

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5250 5251 5252 5253 5254 5255
		enable_rc6 = false;
	}

	return enable_rc6;
}

5256
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5257
{
5258
	/* No RC6 before Ironlake and code is gone for ilk. */
5259
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5260 5261
		return 0;

5262 5263 5264
	if (!enable_rc6)
		return 0;

5265
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5266 5267 5268 5269
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5270
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5271 5272 5273
	if (enable_rc6 >= 0) {
		int mask;

5274
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5275 5276 5277 5278 5279 5280
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5281 5282 5283
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5284 5285 5286

		return enable_rc6 & mask;
	}
5287

5288
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5289
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5290 5291

	return INTEL_RC6_ENABLE;
5292 5293
}

5294
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5295 5296
{
	/* All of these values are in units of 50MHz */
5297

5298
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5299
	if (IS_GEN9_LP(dev_priv)) {
5300
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5301 5302 5303 5304
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5305
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5306 5307 5308 5309
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5310
	/* hw_max = RP0 until we check for overclocking */
5311
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5312

5313
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5314
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5315
	    IS_GEN9_BC(dev_priv)) {
5316 5317 5318 5319 5320
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5321
			dev_priv->rps.efficient_freq =
5322 5323 5324 5325
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5326 5327
	}

5328
	if (IS_GEN9_BC(dev_priv)) {
5329
		/* Store the frequency values in 16.66 MHZ units, which is
5330 5331
		 * the natural hardware unit for SKL
		 */
5332 5333 5334 5335 5336 5337
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5338 5339
}

5340
static void reset_rps(struct drm_i915_private *dev_priv,
5341
		      int (*set)(struct drm_i915_private *, u8))
5342 5343 5344 5345 5346 5347 5348
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5349 5350
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5351 5352
}

J
Jesse Barnes 已提交
5353
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5355 5356 5357
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5358 5359 5360 5361 5362 5363 5364 5365
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5366 5367
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5368 5369 5370
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5371
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5372 5373 5374 5375

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5376
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5377
{
5378
	struct intel_engine_cs *engine;
5379
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5380 5381 5382 5383 5384 5385 5386
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5387
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5388 5389 5390 5391 5392

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5393 5394

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5395
	if (IS_SKYLAKE(dev_priv))
5396 5397 5398
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5399 5400
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5401
	for_each_engine(engine, dev_priv, id)
5402
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5403

5404
	if (HAS_GUC(dev_priv))
5405 5406
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5407 5408
	I915_WRITE(GEN6_RC_SLEEP, 0);

5409 5410 5411 5412
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5413
	/* 3a: Enable RC6 */
5414
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5415
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5416
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5417 5418 5419
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5420

5421 5422
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5423
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5424
	 */
5425
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5426 5427 5428 5429
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5430

5431
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5432 5433
}

5434
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5435
{
5436
	struct intel_engine_cs *engine;
5437
	enum intel_engine_id id;
5438
	uint32_t rc6_mask = 0;
5439 5440 5441 5442 5443 5444

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5445
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5446 5447 5448 5449 5450 5451 5452 5453

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5454
	for_each_engine(engine, dev_priv, id)
5455
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5456
	I915_WRITE(GEN6_RC_SLEEP, 0);
5457
	if (IS_BROADWELL(dev_priv))
5458 5459 5460
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5461 5462

	/* 3: Enable RC6 */
5463
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5464
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5465 5466
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5467 5468 5469 5470 5471 5472 5473
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5474 5475

	/* 4 Program defaults and thresholds for RPS*/
5476 5477 5478 5479
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5494 5495

	/* 5: Enable RPS */
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5506
	reset_rps(dev_priv, gen6_set_rps);
5507

5508
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5509 5510
}

5511
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5512
{
5513
	struct intel_engine_cs *engine;
5514
	enum intel_engine_id id;
5515
	u32 rc6vids, rc6_mask = 0;
5516 5517
	u32 gtfifodbg;
	int rc6_mode;
5518
	int ret;
5519

5520
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5521

5522 5523 5524 5525 5526 5527 5528 5529 5530
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5531 5532
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5533 5534 5535 5536
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5548
	for_each_engine(engine, dev_priv, id)
5549
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5550 5551 5552

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5553
	if (IS_IVYBRIDGE(dev_priv))
5554 5555 5556
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5557
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5558 5559
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5560
	/* Check if we are enabling RC6 */
5561
	rc6_mode = intel_enable_rc6();
5562 5563 5564
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5565
	/* We don't use those on Haswell */
5566
	if (!IS_HASWELL(dev_priv)) {
5567 5568
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5569

5570 5571 5572
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5573

5574
	intel_print_rc6_info(dev_priv, rc6_mask);
5575 5576 5577 5578 5579 5580

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5581 5582
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5583 5584
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5585
	reset_rps(dev_priv, gen6_set_rps);
5586

5587 5588
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5589
	if (IS_GEN6(dev_priv) && ret) {
5590
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5591
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5592 5593 5594 5595 5596 5597 5598 5599 5600
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5601
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5602 5603
}

5604
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5605 5606
{
	int min_freq = 15;
5607 5608
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5609
	unsigned int max_gpu_freq, min_gpu_freq;
5610
	int scaling_factor = 180;
5611
	struct cpufreq_policy *policy;
5612

5613
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5614

5615 5616 5617 5618 5619 5620 5621 5622 5623
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5624
		max_ia_freq = tsc_khz;
5625
	}
5626 5627 5628 5629

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5630
	min_ring_freq = I915_READ(DCLK) & 0xf;
5631 5632
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5633

5634
	if (IS_GEN9_BC(dev_priv)) {
5635 5636 5637 5638 5639 5640 5641 5642
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5643 5644 5645 5646 5647
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5648 5649
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5650 5651
		unsigned int ia_freq = 0, ring_freq = 0;

5652
		if (IS_GEN9_BC(dev_priv)) {
5653 5654 5655 5656 5657
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5658
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5659 5660
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5661
		} else if (IS_HASWELL(dev_priv)) {
5662
			ring_freq = mult_frac(gpu_freq, 5, 4);
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5679

B
Ben Widawsky 已提交
5680 5681
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5682 5683 5684
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5685 5686 5687
	}
}

5688
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5689 5690 5691
{
	u32 val, rp0;

5692
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5693

5694
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5709
	}
5710 5711 5712

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5726 5727 5728 5729
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5730 5731 5732
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5733 5734 5735
	return rp1;
}

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5758
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5759 5760 5761
{
	u32 val, rp0;

5762
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5775
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5776
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5777
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5778 5779 5780 5781 5782
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5783
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5784
{
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5796 5797
}

5798 5799 5800 5801 5802 5803 5804 5805 5806
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5807 5808 5809 5810 5811 5812 5813 5814 5815

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5816
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5817
{
5818
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5819
	unsigned long pctx_paddr, paddr;
5820 5821 5822 5823 5824
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5825
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5826
		paddr = (dev_priv->mm.stolen_base +
5827
			 (ggtt->stolen_size - pctx_size));
5828 5829 5830 5831

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5832 5833

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5834 5835
}

5836
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5849
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5850
								      pcbr_offset,
5851
								      I915_GTT_OFFSET_NONE,
5852 5853 5854 5855
								      pctx_size);
		goto out;
	}

5856 5857
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5858 5859 5860 5861 5862 5863 5864 5865
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5866
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5867 5868
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5869
		goto out;
5870 5871 5872 5873 5874 5875
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5876
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5877 5878 5879
	dev_priv->vlv_pctx = pctx;
}

5880
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5881 5882 5883 5884
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5885
	i915_gem_object_put(dev_priv->vlv_pctx);
5886 5887 5888
	dev_priv->vlv_pctx = NULL;
}

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5900
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5901
{
5902
	u32 val;
5903

5904
	valleyview_setup_pctx(dev_priv);
5905

5906 5907
	vlv_init_gpll_ref_freq(dev_priv);

5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5921
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5922

5923 5924 5925
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5926
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5927 5928 5929 5930
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5931
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5932 5933
			 dev_priv->rps.efficient_freq);

5934 5935
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5936
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5937 5938
			 dev_priv->rps.rp1_freq);

5939 5940
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5941
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5942 5943 5944
			 dev_priv->rps.min_freq);
}

5945
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5946
{
5947
	u32 val;
5948

5949
	cherryview_setup_pctx(dev_priv);
5950

5951 5952
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5953
	mutex_lock(&dev_priv->sb_lock);
5954
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5955
	mutex_unlock(&dev_priv->sb_lock);
5956

5957 5958 5959 5960
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5961
	default:
5962 5963 5964
		dev_priv->mem_freq = 1600;
		break;
	}
5965
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5966

5967 5968 5969
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5970
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5971 5972 5973 5974
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5975
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5976 5977
			 dev_priv->rps.efficient_freq);

5978 5979
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5980
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5981 5982
			 dev_priv->rps.rp1_freq);

5983
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
5984
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5985
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5986 5987
			 dev_priv->rps.min_freq);

5988 5989 5990 5991 5992
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5993 5994
}

5995
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5996
{
5997
	valleyview_cleanup_pctx(dev_priv);
5998 5999
}

6000
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6001
{
6002
	struct intel_engine_cs *engine;
6003
	enum intel_engine_id id;
6004
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6005 6006 6007

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6008 6009
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6020
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6021

6022 6023 6024
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6025 6026 6027 6028 6029
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6030
	for_each_engine(engine, dev_priv, id)
6031
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6032 6033
	I915_WRITE(GEN6_RC_SLEEP, 0);

6034 6035
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6047 6048
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6049
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6050 6051 6052

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6053
	/* 4 Program defaults and thresholds for RPS*/
6054
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6065
		   GEN6_RP_MEDIA_IS_GFX |
6066 6067 6068 6069
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6070 6071 6072 6073 6074 6075
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6076 6077
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6078 6079 6080
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6081
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6082 6083
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6084
	reset_rps(dev_priv, valleyview_set_rps);
6085

6086
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6087 6088
}

6089
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6090
{
6091
	struct intel_engine_cs *engine;
6092
	enum intel_engine_id id;
6093
	u32 gtfifodbg, val, rc6_mode = 0;
6094 6095 6096

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6097 6098
	valleyview_check_pctx(dev_priv);

6099 6100
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6101 6102
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6103 6104 6105
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6106
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6107
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6108

6109 6110 6111
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6112
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6132
	for_each_engine(engine, dev_priv, id)
6133
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6134

6135
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6136 6137

	/* allows RC6 residency counter to work */
6138
	I915_WRITE(VLV_COUNTER_CONTROL,
6139 6140
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6141 6142
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6143

6144
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6145
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6146

6147
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6148

6149
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6150

D
Deepak S 已提交
6151 6152 6153 6154 6155 6156
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6157
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6158

6159 6160 6161
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6162
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6163 6164
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6165
	reset_rps(dev_priv, valleyview_set_rps);
6166

6167
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6168 6169
}

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6199
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6200 6201 6202 6203 6204 6205
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6206 6207
	assert_spin_locked(&mchdev_lock);

6208
	diff1 = now - dev_priv->ips.last_time1;
6209 6210 6211 6212 6213 6214 6215

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6216
		return dev_priv->ips.chipset_power;
6217 6218 6219 6220 6221 6222 6223 6224

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6225 6226
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6227 6228
		diff += total_count;
	} else {
6229
		diff = total_count - dev_priv->ips.last_count1;
6230 6231 6232
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6233 6234
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6245 6246
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6247

6248
	dev_priv->ips.chipset_power = ret;
6249 6250 6251 6252

	return ret;
}

6253 6254 6255 6256
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6257
	if (INTEL_INFO(dev_priv)->gen != 5)
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6296
{
6297 6298 6299
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6300
	if (INTEL_INFO(dev_priv)->is_mobile)
6301 6302 6303
		return vm > 0 ? vm : 0;

	return vd;
6304 6305
}

6306
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6307
{
6308
	u64 now, diff, diffms;
6309 6310
	u32 count;

6311
	assert_spin_locked(&mchdev_lock);
6312

6313 6314 6315
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6316 6317 6318 6319 6320 6321 6322

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6323 6324
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6325 6326
		diff += count;
	} else {
6327
		diff = count - dev_priv->ips.last_count2;
6328 6329
	}

6330 6331
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6332 6333 6334 6335

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6336
	dev_priv->ips.gfx_power = diff;
6337 6338
}

6339 6340
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6341
	if (INTEL_INFO(dev_priv)->gen != 5)
6342 6343
		return;

6344
	spin_lock_irq(&mchdev_lock);
6345 6346 6347

	__i915_update_gfx_val(dev_priv);

6348
	spin_unlock_irq(&mchdev_lock);
6349 6350
}

6351
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6352 6353 6354 6355
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6356 6357
	assert_spin_locked(&mchdev_lock);

6358
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6378
	corr2 = (corr * dev_priv->ips.corr);
6379 6380 6381 6382

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6383
	__i915_update_gfx_val(dev_priv);
6384

6385
	return dev_priv->ips.gfx_power + state2;
6386 6387
}

6388 6389 6390 6391
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6392
	if (INTEL_INFO(dev_priv)->gen != 5)
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6415
	spin_lock_irq(&mchdev_lock);
6416 6417 6418 6419
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6420 6421
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6422 6423 6424 6425

	ret = chipset_val + graphics_val;

out_unlock:
6426
	spin_unlock_irq(&mchdev_lock);
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6442
	spin_lock_irq(&mchdev_lock);
6443 6444 6445 6446 6447 6448
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6449 6450
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6451 6452

out_unlock:
6453
	spin_unlock_irq(&mchdev_lock);
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6470
	spin_lock_irq(&mchdev_lock);
6471 6472 6473 6474 6475 6476
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6477 6478
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6479 6480

out_unlock:
6481
	spin_unlock_irq(&mchdev_lock);
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6496
	spin_lock_irq(&mchdev_lock);
6497 6498
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6499
	spin_unlock_irq(&mchdev_lock);
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6516
	spin_lock_irq(&mchdev_lock);
6517 6518 6519 6520 6521 6522
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6523
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6524

6525
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6526 6527 6528
		ret = false;

out_unlock:
6529
	spin_unlock_irq(&mchdev_lock);
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6557 6558
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6559
	spin_lock_irq(&mchdev_lock);
6560
	i915_mch_dev = dev_priv;
6561
	spin_unlock_irq(&mchdev_lock);
6562 6563 6564 6565 6566 6567

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6568
	spin_lock_irq(&mchdev_lock);
6569
	i915_mch_dev = NULL;
6570
	spin_unlock_irq(&mchdev_lock);
6571
}
6572

6573
static void intel_init_emon(struct drm_i915_private *dev_priv)
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6590
		I915_WRITE(PEW(i), 0);
6591
	for (i = 0; i < 3; i++)
6592
		I915_WRITE(DEW(i), 0);
6593 6594 6595

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6596
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6617
		I915_WRITE(PXW(i), val);
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6633
		I915_WRITE(PXWL(i), 0);
6634 6635 6636 6637 6638 6639

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6640
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6641 6642
}

6643
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6644
{
6645 6646 6647 6648 6649 6650 6651 6652
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6653

6654
	mutex_lock(&dev_priv->drm.struct_mutex);
6655 6656 6657
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6658 6659 6660 6661
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6662
	else if (INTEL_GEN(dev_priv) >= 6)
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6692 6693 6694
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6695
	mutex_unlock(&dev_priv->rps.hw_lock);
6696
	mutex_unlock(&dev_priv->drm.struct_mutex);
6697 6698

	intel_autoenable_gt_powersave(dev_priv);
6699 6700
}

6701
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6702
{
6703
	if (IS_VALLEYVIEW(dev_priv))
6704
		valleyview_cleanup_gt_powersave(dev_priv);
6705 6706 6707

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6708 6709
}

6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6729 6730 6731 6732
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6733 6734

	gen6_reset_rps_interrupts(dev_priv);
6735 6736
}

6737
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6738
{
6739 6740
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6741

6742
	mutex_lock(&dev_priv->rps.hw_lock);
6743

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6755
	}
6756 6757 6758

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6759 6760
}

6761
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6762
{
6763 6764 6765
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6766 6767
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6768

6769 6770 6771
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6772

6773
	mutex_lock(&dev_priv->rps.hw_lock);
6774 6775 6776 6777 6778

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6779
	} else if (INTEL_GEN(dev_priv) >= 9) {
6780 6781
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
6782
		if (IS_GEN9_BC(dev_priv))
6783
			gen6_update_ring_freq(dev_priv);
6784 6785
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6786
		gen6_update_ring_freq(dev_priv);
6787
	} else if (INTEL_GEN(dev_priv) >= 6) {
6788
		gen6_enable_rps(dev_priv);
6789
		gen6_update_ring_freq(dev_priv);
6790 6791 6792
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6793
	}
6794 6795 6796 6797 6798 6799 6800

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6801
	dev_priv->rps.enabled = true;
6802 6803
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6804

6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6815
	rcs = dev_priv->engine[RCS];
6816
	if (rcs->last_retired_context)
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6868
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6869 6870 6871 6872 6873 6874 6875 6876 6877
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6878
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6879
{
6880
	enum pipe pipe;
6881

6882
	for_each_pipe(dev_priv, pipe) {
6883 6884 6885
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6886 6887 6888

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6889 6890 6891
	}
}

6892
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6904
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6905
{
6906
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6907

6908 6909 6910 6911
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6912 6913 6914
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6932
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6933 6934 6935
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6936

6937
	ilk_init_lp_watermarks(dev_priv);
6938 6939 6940 6941 6942 6943 6944 6945

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6946
	if (IS_IRONLAKE_M(dev_priv)) {
6947
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6948 6949 6950 6951 6952 6953 6954 6955
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6956 6957
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6958 6959 6960 6961 6962 6963
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6964

6965
	/* WaDisableRenderCachePipelinedFlush:ilk */
6966 6967
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6968

6969 6970 6971
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6972
	g4x_disable_trickle_feed(dev_priv);
6973

6974
	ibx_init_clock_gating(dev_priv);
6975 6976
}

6977
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6978 6979
{
	int pipe;
6980
	uint32_t val;
6981 6982 6983 6984 6985 6986

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6987 6988 6989
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6990 6991
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6992 6993 6994
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6995
	for_each_pipe(dev_priv, pipe) {
6996 6997 6998
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6999
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7000
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7001 7002 7003
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7004 7005
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7006
	/* WADP0ClockGatingDisable */
7007
	for_each_pipe(dev_priv, pipe) {
7008 7009 7010
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7011 7012
}

7013
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7014 7015 7016 7017
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7018 7019 7020
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7021 7022
}

7023
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7024
{
7025
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7026

7027
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7028 7029 7030 7031 7032

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7033
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7034 7035 7036
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7037 7038 7039
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7040 7041 7042
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7043 7044 7045 7046
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7047 7048
	 */
	I915_WRITE(GEN6_GT_MODE,
7049
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7050

7051
	ilk_init_lp_watermarks(dev_priv);
7052 7053

	I915_WRITE(CACHE_MODE_0,
7054
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7070
	 *
7071 7072
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7073 7074 7075 7076 7077
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7078
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7079 7080
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7081

7082 7083 7084 7085 7086 7087 7088 7089
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7090 7091 7092 7093 7094 7095 7096 7097
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7098 7099
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7100 7101 7102 7103 7104 7105 7106
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7107 7108 7109 7110
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7111

7112
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7113

7114
	cpt_init_clock_gating(dev_priv);
7115

7116
	gen6_check_mch_setup(dev_priv);
7117 7118 7119 7120 7121 7122
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7123
	/*
7124
	 * WaVSThreadDispatchOverride:ivb,vlv
7125 7126 7127 7128
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7129 7130 7131 7132 7133 7134 7135 7136
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7137
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7138 7139 7140 7141 7142
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7143
	if (HAS_PCH_LPT_LP(dev_priv))
7144 7145 7146
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7147 7148

	/* WADPOClockGatingDisable:hsw */
7149 7150
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7151
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7152 7153
}

7154
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7155
{
7156
	if (HAS_PCH_LPT_LP(dev_priv)) {
7157 7158 7159 7160 7161 7162 7163
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7187
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7188
{
7189
	gen9_init_clock_gating(dev_priv);
7190 7191 7192 7193 7194

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7195 7196 7197 7198 7199

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7200 7201 7202 7203

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7204 7205
}

7206
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7207
{
7208
	gen9_init_clock_gating(dev_priv);
7209 7210 7211 7212

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7213 7214 7215 7216

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7217 7218
}

7219
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7220
{
7221
	enum pipe pipe;
B
Ben Widawsky 已提交
7222

7223
	ilk_init_lp_watermarks(dev_priv);
7224

7225
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7226
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7227

7228
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7229 7230 7231
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7232
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7233
	for_each_pipe(dev_priv, pipe) {
7234
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7235
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7236
			   BDW_DPRS_MASK_VBLANK_SRD);
7237
	}
7238

7239 7240 7241 7242 7243
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7244

7245 7246
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7247 7248 7249 7250

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7251

7252 7253
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7254

7255 7256 7257 7258 7259 7260 7261
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7262 7263 7264 7265
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7266
	lpt_init_clock_gating(dev_priv);
7267 7268 7269 7270 7271 7272 7273 7274

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7275 7276
}

7277
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7278
{
7279
	ilk_init_lp_watermarks(dev_priv);
7280

7281 7282 7283 7284 7285
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7286
	/* This is required by WaCatErrorRejectionIssue:hsw */
7287 7288 7289 7290
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7291 7292 7293
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7294

7295 7296 7297
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7298 7299 7300 7301
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7302
	/* WaDisable4x2SubspanOptimization:hsw */
7303 7304
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7305

7306 7307 7308
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7309 7310 7311 7312
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7313 7314
	 */
	I915_WRITE(GEN7_GT_MODE,
7315
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7316

7317 7318 7319 7320
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7321
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7322 7323
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7324 7325 7326
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7327

7328
	lpt_init_clock_gating(dev_priv);
7329 7330
}

7331
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7332
{
7333
	uint32_t snpcr;
7334

7335
	ilk_init_lp_watermarks(dev_priv);
7336

7337
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7338

7339
	/* WaDisableEarlyCull:ivb */
7340 7341 7342
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7343
	/* WaDisableBackToBackFlipFix:ivb */
7344 7345 7346 7347
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7348
	/* WaDisablePSDDualDispatchEnable:ivb */
7349
	if (IS_IVB_GT1(dev_priv))
7350 7351 7352
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7353 7354 7355
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7356
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7357 7358 7359
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7360
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7361 7362 7363
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7364
		   GEN7_WA_L3_CHICKEN_MODE);
7365
	if (IS_IVB_GT1(dev_priv))
7366 7367
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7368 7369 7370 7371
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7372 7373
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7374
	}
7375

7376
	/* WaForceL3Serialization:ivb */
7377 7378 7379
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7380
	/*
7381
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7382
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7383 7384
	 */
	I915_WRITE(GEN6_UCGCTL2,
7385
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7386

7387
	/* This is required by WaCatErrorRejectionIssue:ivb */
7388 7389 7390 7391
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7392
	g4x_disable_trickle_feed(dev_priv);
7393 7394

	gen7_setup_fixed_func_scheduler(dev_priv);
7395

7396 7397 7398 7399 7400
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7401

7402
	/* WaDisable4x2SubspanOptimization:ivb */
7403 7404
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7405

7406 7407 7408
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7409 7410 7411 7412
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7413 7414
	 */
	I915_WRITE(GEN7_GT_MODE,
7415
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7416

7417 7418 7419 7420
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7421

7422
	if (!HAS_PCH_NOP(dev_priv))
7423
		cpt_init_clock_gating(dev_priv);
7424

7425
	gen6_check_mch_setup(dev_priv);
7426 7427
}

7428
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7429
{
7430
	/* WaDisableEarlyCull:vlv */
7431 7432 7433
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7434
	/* WaDisableBackToBackFlipFix:vlv */
7435 7436 7437 7438
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7439
	/* WaPsdDispatchEnable:vlv */
7440
	/* WaDisablePSDDualDispatchEnable:vlv */
7441
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7442 7443
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7444

7445 7446 7447
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7448
	/* WaForceL3Serialization:vlv */
7449 7450 7451
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7452
	/* WaDisableDopClockGating:vlv */
7453 7454 7455
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7456
	/* This is required by WaCatErrorRejectionIssue:vlv */
7457 7458 7459 7460
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7461 7462
	gen7_setup_fixed_func_scheduler(dev_priv);

7463
	/*
7464
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7465
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7466 7467
	 */
	I915_WRITE(GEN6_UCGCTL2,
7468
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7469

7470 7471 7472 7473 7474
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7475

7476 7477 7478 7479
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7480 7481
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7482

7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7494 7495 7496 7497 7498 7499
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7500
	/*
7501
	 * WaDisableVLVClockGating_VBIIssue:vlv
7502 7503 7504
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7505
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7506 7507
}

7508
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7509
{
7510 7511 7512 7513 7514
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7515 7516 7517 7518

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7519 7520 7521 7522

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7523 7524 7525 7526

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7527

7528 7529 7530 7531 7532 7533 7534
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7535 7536 7537 7538 7539
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7540 7541
}

7542
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7554
	if (IS_GM45(dev_priv))
7555 7556
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7557 7558 7559 7560

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7561

7562 7563 7564
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7565
	g4x_disable_trickle_feed(dev_priv);
7566 7567
}

7568
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7569 7570 7571 7572 7573 7574
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7575 7576
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7577 7578 7579

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7580 7581
}

7582
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7583 7584 7585 7586 7587 7588 7589
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7590 7591
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7592 7593 7594

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7595 7596
}

7597
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7598 7599 7600 7601 7602 7603
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7604

7605
	if (IS_PINEVIEW(dev_priv))
7606
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7607 7608 7609

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7610 7611

	/* interrupts should cause a wake up from C3 */
7612
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7613 7614 7615

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7616 7617 7618

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7619 7620
}

7621
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7622 7623
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7624 7625 7626 7627

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7628 7629 7630

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7631 7632
}

7633
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7634
{
7635 7636 7637
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7638 7639
}

7640
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7641
{
7642
	dev_priv->display.init_clock_gating(dev_priv);
7643 7644
}

7645
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7646
{
7647 7648
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7649 7650
}

7651
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7668
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7669
	else if (IS_KABYLAKE(dev_priv))
7670
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7671
	else if (IS_BROXTON(dev_priv))
7672
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7673 7674
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7691
	else if (IS_I965GM(dev_priv))
7692
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7693
	else if (IS_I965G(dev_priv))
7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7707
/* Set up chip specific power management-related functions */
7708
void intel_init_pm(struct drm_i915_private *dev_priv)
7709
{
7710
	intel_fbc_init(dev_priv);
7711

7712
	/* For cxsr */
7713
	if (IS_PINEVIEW(dev_priv))
7714
		i915_pineview_get_mem_freq(dev_priv);
7715
	else if (IS_GEN5(dev_priv))
7716
		i915_ironlake_get_mem_freq(dev_priv);
7717

7718
	/* For FIFO watermark updates */
7719
	if (INTEL_GEN(dev_priv) >= 9) {
7720
		skl_setup_wm_latency(dev_priv);
7721
		dev_priv->display.initial_watermarks = skl_initial_wm;
7722
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7723
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7724
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7725
		ilk_setup_wm_latency(dev_priv);
7726

7727
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7728
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7729
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7730
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7731
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7732 7733 7734 7735 7736 7737
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7738 7739 7740 7741
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7742
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7743
		vlv_setup_wm_latency(dev_priv);
7744
		dev_priv->display.update_wm = vlv_update_wm;
7745
	} else if (IS_PINEVIEW(dev_priv)) {
7746
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7747 7748 7749 7750 7751 7752 7753 7754 7755
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7756
			intel_set_memory_cxsr(dev_priv, false);
7757 7758 7759
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7760
	} else if (IS_G4X(dev_priv)) {
7761
		dev_priv->display.update_wm = g4x_update_wm;
7762
	} else if (IS_GEN4(dev_priv)) {
7763
		dev_priv->display.update_wm = i965_update_wm;
7764
	} else if (IS_GEN3(dev_priv)) {
7765 7766
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7767
	} else if (IS_GEN2(dev_priv)) {
7768
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7769
			dev_priv->display.update_wm = i845_update_wm;
7770
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7771 7772
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7773
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7774 7775 7776
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7777 7778 7779
	}
}

7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7792
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7824
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7825
{
7826 7827
	int status;

7828
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7829

7830 7831 7832 7833 7834 7835
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7836 7837 7838 7839
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7840 7841 7842
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7843

7844 7845 7846
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7847 7848 7849 7850
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7851 7852
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7853

7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7865 7866 7867
	return 0;
}

7868
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7869
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7870
{
7871 7872
	int status;

7873
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7874

7875 7876 7877 7878 7879 7880
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7881 7882 7883 7884
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7885
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7886
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7887
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7888

7889 7890 7891
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7892 7893 7894 7895
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7896
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7897

7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7909 7910
	return 0;
}
7911

7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7933
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7934 7935
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
7936
 * for @timeout_base_ms and if this times out for another 50 ms with
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
7972
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
7973
	 * account for interrupts that could reduce the number of these
7974 7975
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
7976 7977 7978 7979
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
7980
	ret = wait_for_atomic(COND, 50);
7981 7982 7983 7984 7985 7986 7987
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

7988 7989
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7990 7991 7992 7993 7994
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7995 7996
}

7997
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7998
{
7999
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8000 8001
}

8002
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8003
{
8004 8005 8006 8007 8008
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8009 8010
}

8011
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8012
{
8013
	/* CHV needs even values */
8014
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8015 8016
}

8017
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8018
{
8019
	if (IS_GEN9(dev_priv))
8020 8021
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8022
	else if (IS_CHERRYVIEW(dev_priv))
8023
		return chv_gpu_freq(dev_priv, val);
8024
	else if (IS_VALLEYVIEW(dev_priv))
8025 8026 8027
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8028 8029
}

8030 8031
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8032
	if (IS_GEN9(dev_priv))
8033 8034
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8035
	else if (IS_CHERRYVIEW(dev_priv))
8036
		return chv_freq_opcode(dev_priv, val);
8037
	else if (IS_VALLEYVIEW(dev_priv))
8038 8039
		return byt_freq_opcode(dev_priv, val);
	else
8040
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8041
}
8042

8043 8044
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8045
	struct drm_i915_gem_request *req;
8046 8047 8048 8049 8050
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8051
	struct drm_i915_gem_request *req = boost->req;
8052

8053
	if (!i915_gem_request_completed(req))
8054
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8055

8056
	i915_gem_request_put(req);
8057 8058 8059
	kfree(boost);
}

8060
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8061 8062 8063
{
	struct request_boost *boost;

8064
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8065 8066
		return;

8067
	if (i915_gem_request_completed(req))
8068 8069
		return;

8070 8071 8072 8073
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8074
	boost->req = i915_gem_request_get(req);
8075 8076

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8077
	queue_work(req->i915->wq, &boost->work);
8078 8079
}

8080
void intel_pm_setup(struct drm_i915_private *dev_priv)
8081
{
D
Daniel Vetter 已提交
8082
	mutex_init(&dev_priv->rps.hw_lock);
8083
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8084

8085 8086
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8087
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8088

8089
	dev_priv->pm.suspended = false;
8090
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8091
}