intel_pm.c 257.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

V
Ville Syrjälä 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/**
 * intel_set_memory_cxsr - Configure CxSR state
 * @dev_priv: i915 device
 * @enable: Allow vs. disallow CxSR
 *
 * Allow or disallow the system to enter a special CxSR
 * (C-state self refresh) state. What typically happens in CxSR mode
 * is that several display FIFOs may get combined into a single larger
 * FIFO for a particular plane (so called max FIFO mode) to allow the
 * system to defer memory fetches longer, and the memory will enter
 * self refresh.
 *
 * Note that enabling CxSR does not guarantee that the system enter
 * this special mode, nor does it guarantee that the system stays
 * in that mode once entered. So this just allows/disallows the system
 * to autonomously utilize the CxSR mode. Other factors such as core
 * C-states will affect when/if the system actually enters/exits the
 * CxSR mode.
 *
 * Note that on VLV/CHV this actually only controls the max FIFO mode,
 * and the system is free to enter/exit memory self refresh at any time
 * even when the use of CxSR has been disallowed.
 *
 * While the system is actually in the CxSR/max FIFO mode, some plane
 * control registers will not get latched on vblank. Thus in order to
 * guarantee the system will respond to changes in the plane registers
 * we must always disallow CxSR prior to making changes to those registers.
 * Unfortunately the system will re-evaluate the CxSR conditions at
 * frame start which happens after vblank start (which is when the plane
 * registers would get latched), so we can't proceed with the plane update
 * during the same frame where we disallowed CxSR.
 *
 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
 * the hardware w.r.t. HPLL SR when writing to plane registers.
 * Disallowing just CxSR is sufficient.
 */
426
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427
{
428 429
	bool ret;

430
	mutex_lock(&dev_priv->wm.wm_mutex);
431
	ret = _intel_set_memory_cxsr(dev_priv, enable);
432 433 434 435
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		dev_priv->wm.vlv.cxsr = enable;
	else if (IS_G4X(dev_priv))
		dev_priv->wm.g4x.cxsr = enable;
436
	mutex_unlock(&dev_priv->wm.wm_mutex);
437 438

	return ret;
439
}
440

441 442 443 444 445 446 447 448 449 450 451 452 453 454
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
455
static const int pessimal_latency_ns = 5000;
456

457 458 459
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

460
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
461
{
462
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
463
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
464
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
465 466
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
467

468
	switch (pipe) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
489 490
		MISSING_CASE(pipe);
		return;
491 492
	}

493 494 495 496
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;
497 498
}

499
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

514
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

530
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
547 548 549 550 551
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
552 553
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
554 555 556 557 558
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params pineview_cursor_wm = {
561 562 563 564 565
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
568 569 570 571 572
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 574
};
static const struct intel_watermark_params i965_cursor_wm_info = {
575 576 577 578 579
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
580 581
};
static const struct intel_watermark_params i945_wm_info = {
582 583 584 585 586
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
587 588
};
static const struct intel_watermark_params i915_wm_info = {
589 590 591 592 593
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
594
};
595
static const struct intel_watermark_params i830_a_wm_info = {
596 597 598 599 600
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
601
};
602 603 604 605 606 607 608
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
609
static const struct intel_watermark_params i845_wm_info = {
610 611 612 613 614
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
615 616
};

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/**
 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 1 or "small buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the short term drain rate
 * of the FIFO, ie. it does not account for blanking periods
 * which would effectively reduce the average drain rate across
 * a longer period. The name "small" refers to the fact the
 * FIFO is relatively small compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *   |\   |\
 *   | \  | \
 * __---__---__ (- plane active, _ blanking)
 * -> time
 *
 * or perhaps like this:
 *
 *   |\|\  |\|\
 * __----__----__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method1(unsigned int pixel_rate,
				     unsigned int cpp,
				     unsigned int latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * cpp * latency;
	ret = DIV_ROUND_UP_ULL(ret, 10000);

	return ret;
}

/**
 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
 * @pixel_rate: Pipe pixel rate in kHz
 * @htotal: Pipe horizontal total
 * @width: Plane width in pixels
 * @cpp: Plane bytes per pixel
 * @latency: Memory wakeup latency in 0.1us units
 *
 * Compute the watermark using the method 2 or "large buffer"
 * formula. The caller may additonally add extra cachelines
 * to account for TLB misses and clock crossings.
 *
 * This method is concerned with the long term drain rate
 * of the FIFO, ie. it does account for blanking periods
 * which effectively reduce the average drain rate across
 * a longer period. The name "large" refers to the fact the
 * FIFO is relatively large compared to the amount of data
 * fetched.
 *
 * The FIFO level vs. time graph might look something like:
 *
 *    |\___       |\___
 *    |    \___   |    \___
 *    |        \  |        \
 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
 * -> time
 *
 * Returns:
 * The watermark in bytes
 */
static unsigned int intel_wm_method2(unsigned int pixel_rate,
				     unsigned int htotal,
				     unsigned int width,
				     unsigned int cpp,
				     unsigned int latency)
{
	unsigned int ret;

	/*
	 * FIXME remove once all users are computing
	 * watermarks in the correct place.
	 */
	if (WARN_ON_ONCE(htotal == 0))
		htotal = 1;

	ret = (latency * pixel_rate) / (htotal * 10000);
	ret = (ret + 1) * width * cpp;

	return ret;
}

713 714
/**
 * intel_calculate_wm - calculate watermark level
715
 * @pixel_rate: pixel clock
716
 * @wm: chip FIFO params
717
 * @cpp: bytes per pixel
718 719 720 721 722 723 724 725 726 727 728 729 730
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
731 732 733 734
static unsigned int intel_calculate_wm(int pixel_rate,
				       const struct intel_watermark_params *wm,
				       int fifo_size, int cpp,
				       unsigned int latency_ns)
735
{
736
	int entries, wm_size;
737 738 739 740 741 742 743

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
744 745 746 747 748
	entries = intel_wm_method1(pixel_rate, cpp,
				   latency_ns / 100);
	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
		wm->guard_size;
	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
749

750 751
	wm_size = fifo_size - entries;
	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
752 753

	/* Don't promote wm_size to unsigned... */
754
	if (wm_size > wm->max_wm)
755 756 757
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
758 759 760 761 762 763 764 765 766 767 768

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

769 770 771
	return wm_size;
}

772 773 774 775 776 777 778 779 780 781
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

782 783 784 785 786
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

810
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
811
{
812
	struct intel_crtc *crtc, *enabled = NULL;
813

814
	for_each_intel_crtc(&dev_priv->drm, crtc) {
815
		if (intel_crtc_active(crtc)) {
816 817 818 819 820 821 822 823 824
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

825
static void pineview_update_wm(struct intel_crtc *unused_crtc)
826
{
827
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
828
	struct intel_crtc *crtc;
829 830
	const struct cxsr_latency *latency;
	u32 reg;
831
	unsigned int wm;
832

833 834 835 836
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
837 838
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
839
		intel_set_memory_cxsr(dev_priv, false);
840 841 842
		return;
	}

843
	crtc = single_enabled_crtc(dev_priv);
844
	if (crtc) {
845 846 847 848
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
849
		int cpp = fb->format->cpp[0];
850
		int clock = adjusted_mode->crtc_clock;
851 852 853 854

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
855
					cpp, latency->display_sr);
856 857
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
858
		reg |= FW_WM(wm, SR);
859 860 861 862 863 864
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
865
					4, latency->cursor_sr);
866 867
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
868
		reg |= FW_WM(wm, CURSOR_SR);
869 870 871 872 873
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
874
					cpp, latency->display_hpll_disable);
875 876
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
877
		reg |= FW_WM(wm, HPLL_SR);
878 879 880 881 882
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
883
					4, latency->cursor_hpll_disable);
884 885
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
886
		reg |= FW_WM(wm, HPLL_CURSOR);
887 888 889
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

890
		intel_set_memory_cxsr(dev_priv, true);
891
	} else {
892
		intel_set_memory_cxsr(dev_priv, false);
893 894 895
	}
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/*
 * Documentation says:
 * "If the line size is small, the TLB fetches can get in the way of the
 *  data fetches, causing some lag in the pixel data return which is not
 *  accounted for in the above formulas. The following adjustment only
 *  needs to be applied if eight whole lines fit in the buffer at once.
 *  The WM is adjusted upwards by the difference between the FIFO size
 *  and the size of 8 whole lines. This adjustment is always performed
 *  in the actual pixel depth regardless of whether FBC is enabled or not."
 */
static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
	int tlb_miss = fifo_size * 64 - width * cpp * 8;

	return max(0, tlb_miss);
}

913 914
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
				const struct g4x_wm_values *wm)
915
{
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	I915_WRITE(DSPFW1,
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
	I915_WRITE(DSPFW2,
		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
		   FW_WM(wm->sr.fbc, FBC_SR) |
		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
	I915_WRITE(DSPFW3,
		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
		   FW_WM(wm->sr.cursor, CURSOR_SR) |
		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
		   FW_WM(wm->hpll.plane, HPLL_SR));
933

934
	POSTING_READ(DSPFW1);
935 936
}

937 938 939
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

940
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
941 942
				const struct vlv_wm_values *wm)
{
943 944 945
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
946 947
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

948 949 950 951 952 953
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
954

955 956 957 958 959 960 961 962 963 964 965
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

966
	I915_WRITE(DSPFW1,
967
		   FW_WM(wm->sr.plane, SR) |
968 969 970
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
971
	I915_WRITE(DSPFW2,
972 973 974
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
975
	I915_WRITE(DSPFW3,
976
		   FW_WM(wm->sr.cursor, CURSOR_SR));
977 978 979

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
980 981
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
982
		I915_WRITE(DSPFW8_CHV,
983 984
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
985
		I915_WRITE(DSPFW9_CHV,
986 987
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
988
		I915_WRITE(DSPHOWM,
989
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
990 991 992 993 994 995 996 997 998
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
999 1000
	} else {
		I915_WRITE(DSPFW7,
1001 1002
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003
		I915_WRITE(DSPHOWM,
1004
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1005 1006 1007 1008 1009 1010
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1011 1012 1013
	}

	POSTING_READ(DSPFW1);
1014 1015
}

1016 1017
#undef FW_WM_VLV

1018 1019 1020 1021 1022
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1023
	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1024

1025
	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
}

static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
	/*
	 * DSPCNTR[13] supposedly controls whether the
	 * primary plane can use the FIFO space otherwise
	 * reserved for the sprite plane. It's not 100% clear
	 * what the actual FIFO size is, but it looks like we
	 * can happily set both primary and sprite watermarks
	 * up to 127 cachelines. So that would seem to mean
	 * that either DSPCNTR[13] doesn't do anything, or that
	 * the total FIFO is >= 256 cachelines in size. Either
	 * way, we don't seem to have to worry about this
	 * repartitioning as the maximum watermark value the
	 * register can hold for each plane is lower than the
	 * minimum FIFO size.
	 */
	switch (plane_id) {
	case PLANE_CURSOR:
		return 63;
	case PLANE_PRIMARY:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
	case PLANE_SPRITE0:
		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
	default:
		MISSING_CASE(plane_id);
		return 0;
	}
}

static int g4x_fbc_fifo_size(int level)
{
	switch (level) {
	case G4X_WM_LEVEL_SR:
		return 7;
	case G4X_WM_LEVEL_HPLL:
		return 15;
	default:
		MISSING_CASE(level);
		return 0;
	}
}

static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
			       const struct intel_plane_state *plane_state,
			       int level)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	int clock, htotal, cpp, width, wm;
	int latency = dev_priv->wm.pri_latency[level] * 10;

	if (latency == 0)
		return USHRT_MAX;

	if (!intel_wm_plane_visible(crtc_state, plane_state))
		return 0;

	/*
	 * Not 100% sure which way ELK should go here as the
	 * spec only says CL/CTG should assume 32bpp and BW
	 * doesn't need to. But as these things followed the
	 * mobile vs. desktop lines on gen3 as well, let's
	 * assume ELK doesn't need this.
	 *
	 * The spec also fails to list such a restriction for
	 * the HPLL watermark, which seems a little strange.
	 * Let's use 32bpp for the HPLL watermark as well.
	 */
	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
	    level != G4X_WM_LEVEL_NORMAL)
		cpp = 4;
	else
		cpp = plane_state->base.fb->format->cpp[0];

	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;

	if (plane->id == PLANE_CURSOR)
		width = plane_state->base.crtc_w;
	else
		width = drm_rect_width(&plane_state->base.dst);

	if (plane->id == PLANE_CURSOR) {
		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
	} else if (plane->id == PLANE_PRIMARY &&
		   level == G4X_WM_LEVEL_NORMAL) {
		wm = intel_wm_method1(clock, cpp, latency);
	} else {
		int small, large;

		small = intel_wm_method1(clock, cpp, latency);
		large = intel_wm_method2(clock, htotal, width, cpp, latency);

		wm = min(small, large);
	}

	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
			      width, cpp);

	wm = DIV_ROUND_UP(wm, 64) + 2;

	return min_t(int, wm, USHRT_MAX);
}

static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
				 int level, enum plane_id plane_id, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->plane[plane_id] != value;
		raw->plane[plane_id] = value;
	}

	return dirty;
}

static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
			       int level, u16 value)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	bool dirty = false;

	/* NORMAL level doesn't have an FBC watermark */
	level = max(level, G4X_WM_LEVEL_SR);

	for (; level < intel_wm_num_levels(dev_priv); level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

		dirty |= raw->fbc != value;
		raw->fbc = value;
	}

	return dirty;
}

static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
				   const struct intel_plane_state *pstate,
				   uint32_t pri_val);

static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
	enum plane_id plane_id = plane->id;
	bool dirty = false;
	int level;

	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		if (plane_id == PLANE_PRIMARY)
			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
		goto out;
	}

	for (level = 0; level < num_levels; level++) {
		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
		int wm, max_wm;

		wm = g4x_compute_wm(crtc_state, plane_state, level);
		max_wm = g4x_plane_fifo_size(plane_id, level);

		if (wm > max_wm)
			break;

		dirty |= raw->plane[plane_id] != wm;
		raw->plane[plane_id] = wm;

		if (plane_id != PLANE_PRIMARY ||
		    level == G4X_WM_LEVEL_NORMAL)
			continue;

		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
					raw->plane[plane_id]);
		max_wm = g4x_fbc_fifo_size(level);

		/*
		 * FBC wm is not mandatory as we
		 * can always just disable its use.
		 */
		if (wm > max_wm)
			wm = USHRT_MAX;

		dirty |= raw->fbc != wm;
		raw->fbc = wm;
	}

	/* mark watermarks as invalid */
	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);

	if (plane_id == PLANE_PRIMARY)
		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

 out:
	if (dirty) {
		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
			      plane->base.name,
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);

		if (plane_id == PLANE_PRIMARY)
			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
	}

	return dirty;
}

static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
{
	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];

	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}

static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);

	if (level > dev_priv->wm.max_level)
		return false;

	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
			       struct g4x_wm_state *wm_state, int level)
{
	if (level <= G4X_WM_LEVEL_NORMAL) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm.plane[plane_id] = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_SR) {
		wm_state->cxsr = false;
		wm_state->sr.cursor = USHRT_MAX;
		wm_state->sr.plane = USHRT_MAX;
		wm_state->sr.fbc = USHRT_MAX;
	}

	if (level <= G4X_WM_LEVEL_HPLL) {
		wm_state->hpll_en = false;
		wm_state->hpll.cursor = USHRT_MAX;
		wm_state->hpll.plane = USHRT_MAX;
		wm_state->hpll.fbc = USHRT_MAX;
	}
}

static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
	const struct g4x_pipe_wm *raw;
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int i, level;
	unsigned int dirty = 0;

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;

		if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	if (!dirty)
		return 0;

	level = G4X_WM_LEVEL_NORMAL;
	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	for_each_plane_id_on_crtc(crtc, plane_id)
		wm_state->wm.plane[plane_id] = raw->plane[plane_id];

	level = G4X_WM_LEVEL_SR;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
	wm_state->sr.fbc = raw->fbc;

	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);

	level = G4X_WM_LEVEL_HPLL;

	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
		goto out;

	raw = &crtc_state->wm.g4x.raw[level];
	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
	wm_state->hpll.fbc = raw->fbc;

	wm_state->hpll_en = wm_state->cxsr;

	level++;

 out:
	if (level == G4X_WM_LEVEL_NORMAL)
		return -EINVAL;

	/* invalidate the higher levels */
	g4x_invalidate_wms(crtc, wm_state, level);

	/*
	 * Determine if the FBC watermark(s) can be used. IF
	 * this isn't the case we prefer to disable the FBC
	 ( watermark(s) rather than disable the SR/HPLL
	 * level(s) entirely.
	 */
	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;

	if (level >= G4X_WM_LEVEL_SR &&
	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
		wm_state->fbc_en = false;
	else if (level >= G4X_WM_LEVEL_HPLL &&
		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
		wm_state->fbc_en = false;

	return 0;
}

static int g4x_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
	const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
	const struct g4x_wm_state *active = &crtc->wm.active.g4x;
	enum plane_id plane_id;

	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
		!crtc_state->disable_cxsr;
	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;

	for_each_plane_id_on_crtc(crtc, plane_id) {
		intermediate->wm.plane[plane_id] =
			max(optimal->wm.plane[plane_id],
			    active->wm.plane[plane_id]);

		WARN_ON(intermediate->wm.plane[plane_id] >
			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
	}

	intermediate->sr.plane = max(optimal->sr.plane,
				     active->sr.plane);
	intermediate->sr.cursor = max(optimal->sr.cursor,
				      active->sr.cursor);
	intermediate->sr.fbc = max(optimal->sr.fbc,
				   active->sr.fbc);

	intermediate->hpll.plane = max(optimal->hpll.plane,
				       active->hpll.plane);
	intermediate->hpll.cursor = max(optimal->hpll.cursor,
					active->hpll.cursor);
	intermediate->hpll.fbc = max(optimal->hpll.fbc,
				     active->hpll.fbc);

	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
		intermediate->cxsr);
	WARN_ON((intermediate->sr.plane >
		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
		 intermediate->sr.cursor >
		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
		intermediate->hpll_en);

	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
		intermediate->fbc_en && intermediate->cxsr);
	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
		intermediate->fbc_en && intermediate->hpll_en);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;

	return 0;
}

static void g4x_merge_wm(struct drm_i915_private *dev_priv,
			 struct g4x_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

	wm->cxsr = true;
	wm->hpll_en = true;
	wm->fbc_en = true;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;
		if (!wm_state->hpll_en)
			wm->hpll_en = false;
		if (!wm_state->fbc_en)
			wm->fbc_en = false;

		num_active_crtcs++;
	}

	if (num_active_crtcs != 1) {
		wm->cxsr = false;
		wm->hpll_en = false;
		wm->fbc_en = false;
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm;
		if (crtc->active && wm->cxsr)
			wm->sr = wm_state->sr;
		if (crtc->active && wm->hpll_en)
			wm->hpll = wm_state->hpll;
	}
}

static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
	struct g4x_wm_values new_wm = {};

	g4x_merge_wm(dev_priv, &new_wm);

	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
		return;

	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, false);

	g4x_write_wm_values(dev_priv, &new_wm);

	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
		_intel_set_memory_cxsr(dev_priv, true);

	*old_wm = new_wm;
}

static void g4x_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void g4x_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	g4x_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1536 1537
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1538 1539
				   unsigned int htotal,
				   unsigned int width,
1540
				   unsigned int cpp,
1541 1542 1543 1544
				   unsigned int latency)
{
	unsigned int ret;

1545 1546
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
1547 1548 1549 1550 1551
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1552
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1553 1554 1555 1556
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1557 1558
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1559 1560 1561
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1562 1563

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1564 1565 1566
	}
}

1567 1568
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1569 1570
				     int level)
{
1571
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1572
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1573 1574
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1575
	int clock, htotal, cpp, width, wm;
1576 1577 1578 1579

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1580
	if (!intel_wm_plane_visible(crtc_state, plane_state))
1581 1582
		return 0;

1583
	cpp = plane_state->base.fb->format->cpp[0];
1584 1585 1586
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1587

1588
	if (plane->id == PLANE_CURSOR) {
1589 1590 1591 1592 1593 1594 1595 1596
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1597
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1598 1599 1600 1601 1602 1603
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1604 1605 1606 1607 1608 1609
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1610
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1611
{
1612
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1613
	const struct g4x_pipe_wm *raw =
1614
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1615
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1616 1617 1618
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1619
	int fifo_extra, fifo_left = fifo_size;
1620
	int sprite0_fifo_extra = 0;
1621 1622
	unsigned int total_rate;
	enum plane_id plane_id;
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1635 1636
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1637 1638
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1639

1640 1641
	if (total_rate > fifo_size)
		return -EINVAL;
1642

1643 1644
	if (total_rate == 0)
		total_rate = 1;
1645

1646
	for_each_plane_id_on_crtc(crtc, plane_id) {
1647 1648
		unsigned int rate;

1649 1650
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1651 1652 1653
			continue;
		}

1654 1655 1656
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1657 1658
	}

1659 1660 1661
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1662 1663 1664
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1665 1666

	/* spread the remainder evenly */
1667
	for_each_plane_id_on_crtc(crtc, plane_id) {
1668 1669 1670 1671 1672
		int plane_extra;

		if (fifo_left == 0)
			break;

1673
		if ((active_planes & BIT(plane_id)) == 0)
1674 1675 1676
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1677
		fifo_state->plane[plane_id] += plane_extra;
1678 1679 1680
		fifo_left -= plane_extra;
	}

1681 1682 1683 1684 1685 1686 1687 1688 1689
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1690 1691
}

1692 1693 1694 1695 1696 1697
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

1698
	for (; level < intel_wm_num_levels(dev_priv); level++) {
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1709 1710 1711 1712 1713 1714 1715 1716
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1717 1718 1719 1720
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1721
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1722
				 int level, enum plane_id plane_id, u16 value)
1723
{
1724
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1725
	int num_levels = intel_wm_num_levels(dev_priv);
1726
	bool dirty = false;
1727

1728
	for (; level < num_levels; level++) {
1729
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1730

1731
		dirty |= raw->plane[plane_id] != value;
1732
		raw->plane[plane_id] = value;
1733
	}
1734 1735

	return dirty;
1736 1737
}

1738 1739
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state)
1740
{
1741 1742
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
1743
	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1744
	int level;
1745
	bool dirty = false;
1746

1747
	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1748 1749
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1750
	}
1751

1752
	for (level = 0; level < num_levels; level++) {
1753
		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1754 1755
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1756

1757 1758
		if (wm > max_wm)
			break;
1759

1760
		dirty |= raw->plane[plane_id] != wm;
1761 1762
		raw->plane[plane_id] = wm;
	}
1763

1764
	/* mark all higher levels as invalid */
1765
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1766

1767 1768
out:
	if (dirty)
1769
		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1770 1771 1772 1773 1774 1775
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1776
}
1777

1778 1779
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				      enum plane_id plane_id, int level)
1780
{
1781
	const struct g4x_pipe_wm *raw =
1782 1783 1784
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1785

1786 1787
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1788

1789
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1790
{
1791 1792 1793 1794
	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1808
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1809 1810 1811 1812
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1813
	unsigned int dirty = 0;
1814 1815 1816 1817 1818 1819 1820 1821

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1822

1823
		if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1854
	}
1855

1856
	/* initially allow all levels */
1857
	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1858 1859 1860 1861 1862
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1863
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1864

1865
	for (level = 0; level < wm_state->num_levels; level++) {
1866
		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1867
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1868

1869
		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1870
			break;
1871

1872 1873 1874 1875 1876 1877 1878 1879
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1880
						 raw->plane[PLANE_SPRITE0],
1881 1882
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1883

1884 1885 1886
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1887 1888
	}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1899 1900
}

1901 1902 1903
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1904 1905
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1906
{
1907
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1908
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1909 1910
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1911
	int sprite0_start, sprite1_start, fifo_size;
1912

1913 1914 1915
	if (!crtc_state->fifo_changed)
		return;

1916 1917 1918
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1919

1920 1921
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1922

1923 1924
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1935

1936 1937 1938
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1939 1940
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1952 1953
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1954 1955
		break;
	case PIPE_B:
1956 1957
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1969 1970
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1971 1972
		break;
	case PIPE_C:
1973 1974
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

1986 1987
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
1988 1989 1990 1991
		break;
	default:
		break;
	}
1992

1993
	POSTING_READ_FW(DSPARB);
1994

1995
	spin_unlock(&dev_priv->uncore.lock);
1996 1997 1998 1999
}

#undef VLV_FIFO

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2010 2011
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2034 2035
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
2036 2037 2038 2039

	return 0;
}

2040
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2041 2042 2043 2044 2045
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

2046
	wm->level = dev_priv->wm.max_level;
2047 2048
	wm->cxsr = true;

2049
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2050
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

2065 2066 2067
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

2068
	for_each_intel_crtc(&dev_priv->drm, crtc) {
2069
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2070 2071 2072
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
2073
		if (crtc->active && wm->cxsr)
2074 2075
			wm->sr = wm_state->sr[wm->level];

2076 2077 2078 2079
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2080 2081 2082
	}
}

2083
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2084
{
2085 2086
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
2087

2088
	vlv_merge_wm(dev_priv, &new_wm);
2089

2090
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2091 2092
		return;

2093
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2094 2095
		chv_set_memory_dvfs(dev_priv, false);

2096
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2097 2098
		chv_set_memory_pm5(dev_priv, false);

2099
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2100
		_intel_set_memory_cxsr(dev_priv, false);
2101

2102
	vlv_write_wm_values(dev_priv, &new_wm);
2103

2104
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2105
		_intel_set_memory_cxsr(dev_priv, true);
2106

2107
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2108 2109
		chv_set_memory_pm5(dev_priv, true);

2110
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2111 2112
		chv_set_memory_dvfs(dev_priv, true);

2113
	*old_wm = new_wm;
2114 2115
}

2116 2117 2118 2119 2120 2121 2122
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2139 2140 2141 2142
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

2143
static void i965_update_wm(struct intel_crtc *unused_crtc)
2144
{
2145
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2146
	struct intel_crtc *crtc;
2147 2148
	int srwm = 1;
	int cursor_sr = 16;
2149
	bool cxsr_enabled;
2150 2151

	/* Calc sr entries for one plane configs */
2152
	crtc = single_enabled_crtc(dev_priv);
2153 2154 2155
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
2156 2157 2158 2159
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
2160
		int clock = adjusted_mode->crtc_clock;
2161
		int htotal = adjusted_mode->crtc_htotal;
2162
		int hdisplay = crtc->config->pipe_src_w;
2163
		int cpp = fb->format->cpp[0];
2164 2165
		int entries;

2166 2167
		entries = intel_wm_method2(clock, htotal,
					   hdisplay, cpp, sr_latency_ns / 100);
2168 2169 2170 2171 2172 2173 2174 2175
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

2176 2177 2178
		entries = intel_wm_method2(clock, htotal,
					   crtc->base.cursor->state->crtc_w, 4,
					   sr_latency_ns / 100);
2179
		entries = DIV_ROUND_UP(entries,
2180 2181
				       i965_cursor_wm_info.cacheline_size) +
			i965_cursor_wm_info.guard_size;
2182

2183
		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2184 2185 2186 2187 2188 2189
		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

2190
		cxsr_enabled = true;
2191
	} else {
2192
		cxsr_enabled = false;
2193
		/* Turn off self refresh if both pipes are enabled */
2194
		intel_set_memory_cxsr(dev_priv, false);
2195 2196 2197 2198 2199 2200
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
2201 2202 2203 2204 2205 2206
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
2207
	/* update cursor SR watermark */
2208
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2209 2210 2211

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
2212 2213
}

2214 2215
#undef FW_WM

2216
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2217
{
2218
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2219 2220 2221 2222 2223 2224
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
2225
	struct intel_crtc *crtc, *enabled = NULL;
2226

2227
	if (IS_I945GM(dev_priv))
2228
		wm_info = &i945_wm_info;
2229
	else if (!IS_GEN2(dev_priv))
2230 2231
		wm_info = &i915_wm_info;
	else
2232
		wm_info = &i830_a_wm_info;
2233

2234
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2235
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
2236 2237 2238 2239 2240 2241 2242
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2243
		if (IS_GEN2(dev_priv))
2244
			cpp = 4;
2245
		else
2246
			cpp = fb->format->cpp[0];
2247

2248
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2249
					       wm_info, fifo_size, cpp,
2250
					       pessimal_latency_ns);
2251
		enabled = crtc;
2252
	} else {
2253
		planea_wm = fifo_size - wm_info->guard_size;
2254 2255 2256 2257
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

2258
	if (IS_GEN2(dev_priv))
2259
		wm_info = &i830_bc_wm_info;
2260

2261
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2262
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
2263 2264 2265 2266 2267 2268 2269
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

2270
		if (IS_GEN2(dev_priv))
2271
			cpp = 4;
2272
		else
2273
			cpp = fb->format->cpp[0];
2274

2275
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2276
					       wm_info, fifo_size, cpp,
2277
					       pessimal_latency_ns);
2278 2279 2280 2281
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
2282
	} else {
2283
		planeb_wm = fifo_size - wm_info->guard_size;
2284 2285 2286
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
2287 2288 2289

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

2290
	if (IS_I915GM(dev_priv) && enabled) {
2291
		struct drm_i915_gem_object *obj;
2292

2293
		obj = intel_fb_obj(enabled->base.primary->state->fb);
2294 2295

		/* self-refresh seems busted with untiled */
2296
		if (!i915_gem_object_is_tiled(obj))
2297 2298 2299
			enabled = NULL;
	}

2300 2301 2302 2303 2304 2305
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
2306
	intel_set_memory_cxsr(dev_priv, false);
2307 2308

	/* Calc sr entries for one plane configs */
2309
	if (HAS_FW_BLC(dev_priv) && enabled) {
2310 2311
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
2312 2313 2314 2315
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
2316
		int clock = adjusted_mode->crtc_clock;
2317
		int htotal = adjusted_mode->crtc_htotal;
2318 2319
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
2320 2321
		int entries;

2322
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2323
			cpp = 4;
2324
		else
2325
			cpp = fb->format->cpp[0];
2326

2327 2328
		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
					   sr_latency_ns / 100);
2329 2330 2331 2332 2333 2334
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

2335
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2336 2337
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2338
		else
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

2355 2356
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
2357 2358
}

2359
static void i845_update_wm(struct intel_crtc *unused_crtc)
2360
{
2361
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2362
	struct intel_crtc *crtc;
2363
	const struct drm_display_mode *adjusted_mode;
2364 2365 2366
	uint32_t fwater_lo;
	int planea_wm;

2367
	crtc = single_enabled_crtc(dev_priv);
2368 2369 2370
	if (crtc == NULL)
		return;

2371
	adjusted_mode = &crtc->config->base.adjusted_mode;
2372
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2373
				       &i845_wm_info,
2374
				       dev_priv->display.get_fifo_size(dev_priv, 0),
2375
				       4, pessimal_latency_ns);
2376 2377 2378 2379 2380 2381 2382 2383
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

2384
/* latency must be in 0.1us units. */
2385 2386 2387
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
				   unsigned int cpp,
				   unsigned int latency)
2388
{
2389
	unsigned int ret;
2390

2391 2392
	ret = intel_wm_method1(pixel_rate, cpp, latency);
	ret = DIV_ROUND_UP(ret, 64) + 2;
2393 2394 2395 2396

	return ret;
}

2397
/* latency must be in 0.1us units. */
2398 2399 2400 2401 2402
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
				   unsigned int htotal,
				   unsigned int width,
				   unsigned int cpp,
				   unsigned int latency)
2403
{
2404
	unsigned int ret;
2405

2406 2407
	ret = intel_wm_method2(pixel_rate, htotal,
			       width, cpp, latency);
2408
	ret = DIV_ROUND_UP(ret, 64) + 2;
2409

2410 2411 2412
	return ret;
}

2413
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2414
			   uint8_t cpp)
2415
{
2416 2417 2418 2419 2420 2421
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
2422
	if (WARN_ON(!cpp))
2423 2424 2425 2426
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

2427
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2428 2429
}

2430
struct ilk_wm_maximums {
2431 2432 2433 2434 2435 2436
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

2437 2438 2439 2440
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2441
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2442
				   const struct intel_plane_state *pstate,
2443 2444
				   uint32_t mem_value,
				   bool is_lp)
2445
{
2446
	uint32_t method1, method2;
2447
	int cpp;
2448

2449
	if (!intel_wm_plane_visible(cstate, pstate))
2450 2451
		return 0;

2452
	cpp = pstate->base.fb->format->cpp[0];
2453

2454
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2455 2456 2457 2458

	if (!is_lp)
		return method1;

2459
	method2 = ilk_wm_method2(cstate->pixel_rate,
2460
				 cstate->base.adjusted_mode.crtc_htotal,
2461
				 drm_rect_width(&pstate->base.dst),
2462
				 cpp, mem_value);
2463 2464

	return min(method1, method2);
2465 2466
}

2467 2468 2469 2470
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2471
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2472
				   const struct intel_plane_state *pstate,
2473 2474 2475
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2476
	int cpp;
2477

2478
	if (!intel_wm_plane_visible(cstate, pstate))
2479 2480
		return 0;

2481
	cpp = pstate->base.fb->format->cpp[0];
2482

2483 2484
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2485
				 cstate->base.adjusted_mode.crtc_htotal,
2486
				 drm_rect_width(&pstate->base.dst),
2487
				 cpp, mem_value);
2488 2489 2490
	return min(method1, method2);
}

2491 2492 2493 2494
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2495
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2496
				   const struct intel_plane_state *pstate,
2497 2498
				   uint32_t mem_value)
{
2499 2500
	int cpp;

2501
	if (!intel_wm_plane_visible(cstate, pstate))
2502 2503
		return 0;

2504 2505
	cpp = pstate->base.fb->format->cpp[0];

2506
	return ilk_wm_method2(cstate->pixel_rate,
2507
			      cstate->base.adjusted_mode.crtc_htotal,
2508
			      pstate->base.crtc_w, cpp, mem_value);
2509 2510
}

2511
/* Only for WM_LP. */
2512
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2513
				   const struct intel_plane_state *pstate,
2514
				   uint32_t pri_val)
2515
{
2516
	int cpp;
2517

2518
	if (!intel_wm_plane_visible(cstate, pstate))
2519 2520
		return 0;

2521
	cpp = pstate->base.fb->format->cpp[0];
2522

2523
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2524 2525
}

2526 2527
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2528
{
2529
	if (INTEL_GEN(dev_priv) >= 8)
2530
		return 3072;
2531
	else if (INTEL_GEN(dev_priv) >= 7)
2532 2533 2534 2535 2536
		return 768;
	else
		return 512;
}

2537 2538 2539
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2540
{
2541
	if (INTEL_GEN(dev_priv) >= 8)
2542 2543
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2544
	else if (INTEL_GEN(dev_priv) >= 7)
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2555 2556
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2557
{
2558
	if (INTEL_GEN(dev_priv) >= 7)
2559 2560 2561 2562 2563
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2564
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2565
{
2566
	if (INTEL_GEN(dev_priv) >= 8)
2567 2568 2569 2570 2571
		return 31;
	else
		return 15;
}

2572 2573 2574
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2575
				     const struct intel_wm_config *config,
2576 2577 2578
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2579 2580
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2581 2582

	/* if sprites aren't enabled, sprites get nothing */
2583
	if (is_sprite && !config->sprites_enabled)
2584 2585 2586
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2587
	if (level == 0 || config->num_pipes_active > 1) {
2588
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2589 2590 2591 2592 2593 2594

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2595
		if (INTEL_GEN(dev_priv) <= 6)
2596 2597 2598
			fifo_size /= 2;
	}

2599
	if (config->sprites_enabled) {
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2611
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2612 2613 2614 2615
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2616 2617
				      int level,
				      const struct intel_wm_config *config)
2618 2619
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2620
	if (level > 0 && config->num_pipes_active > 1)
2621 2622 2623
		return 64;

	/* otherwise just report max that registers can hold */
2624
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2625 2626
}

2627
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2628 2629 2630
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2631
				    struct ilk_wm_maximums *max)
2632
{
2633 2634 2635
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2636
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2637 2638
}

2639
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2640 2641 2642
					int level,
					struct ilk_wm_maximums *max)
{
2643 2644 2645 2646
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2647 2648
}

2649
static bool ilk_validate_wm_level(int level,
2650
				  const struct ilk_wm_maximums *max,
2651
				  struct intel_wm_level *result)
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2690
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2691
				 const struct intel_crtc *intel_crtc,
2692
				 int level,
2693
				 struct intel_crtc_state *cstate,
2694 2695 2696
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2697
				 struct intel_wm_level *result)
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2722 2723 2724
	result->enable = true;
}

2725
static uint32_t
2726
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2727
{
2728 2729
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2730 2731
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2732
	u32 linetime, ips_linetime;
2733

2734 2735 2736 2737
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2738
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2739
		return 0;
2740

2741 2742 2743
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2744 2745 2746
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2747
					 intel_state->cdclk.logical.cdclk);
2748

2749 2750
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2751 2752
}

2753 2754
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2755
{
2756
	if (IS_GEN9(dev_priv)) {
2757
		uint32_t val;
2758
		int ret, i;
2759
		int level, max_level = ilk_wm_max_level(dev_priv);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2815
		/*
2816
		 * WaWmMemoryReadLatency:skl,glk
2817
		 *
2818
		 * punit doesn't take into account the read latency so we need
2819 2820
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2821
		 */
2822 2823 2824 2825 2826
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2827
				wm[level] += 2;
2828
			}
2829 2830
		}

2831
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2832 2833 2834 2835 2836
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2837 2838 2839 2840
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2841
	} else if (INTEL_GEN(dev_priv) >= 6) {
2842 2843 2844 2845 2846 2847
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2848
	} else if (INTEL_GEN(dev_priv) >= 5) {
2849 2850 2851 2852 2853 2854
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2855 2856 2857
	}
}

2858 2859
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2860 2861
{
	/* ILK sprite LP0 latency is 1300 ns */
2862
	if (IS_GEN5(dev_priv))
2863 2864 2865
		wm[0] = 13;
}

2866 2867
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2868 2869
{
	/* ILK cursor LP0 latency is 1300 ns */
2870
	if (IS_GEN5(dev_priv))
2871 2872 2873
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2874
	if (IS_IVYBRIDGE(dev_priv))
2875 2876 2877
		wm[3] *= 2;
}

2878
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2879 2880
{
	/* how many WM levels are we expecting */
2881
	if (INTEL_GEN(dev_priv) >= 9)
2882
		return 7;
2883
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2884
		return 4;
2885
	else if (INTEL_GEN(dev_priv) >= 6)
2886
		return 3;
2887
	else
2888 2889
		return 2;
}
2890

2891
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2892
				   const char *name,
2893
				   const uint16_t wm[8])
2894
{
2895
	int level, max_level = ilk_wm_max_level(dev_priv);
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2906 2907 2908 2909
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2910
		if (IS_GEN9(dev_priv))
2911 2912
			latency *= 10;
		else if (level > 0)
2913 2914 2915 2916 2917 2918 2919 2920
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2921 2922 2923
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2924
	int level, max_level = ilk_wm_max_level(dev_priv);
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2936
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2952 2953 2954
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2955 2956
}

2957
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2958
{
2959
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2960 2961 2962 2963 2964 2965

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2966
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2967
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2968

2969 2970 2971
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2972

2973
	if (IS_GEN6(dev_priv))
2974
		snb_wm_latency_quirk(dev_priv);
2975 2976
}

2977
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2978
{
2979
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2980
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2981 2982
}

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

3006
/* Compute new watermarks for the pipe */
3007
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3008
{
3009 3010
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3011
	struct intel_pipe_wm *pipe_wm;
3012
	struct drm_device *dev = state->dev;
3013
	const struct drm_i915_private *dev_priv = to_i915(dev);
3014
	struct intel_plane *intel_plane;
3015
	struct intel_plane_state *pristate = NULL;
3016
	struct intel_plane_state *sprstate = NULL;
3017
	struct intel_plane_state *curstate = NULL;
3018
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3019
	struct ilk_wm_maximums max;
3020

3021
	pipe_wm = &cstate->wm.ilk.optimal;
3022

3023
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3024 3025 3026 3027 3028 3029
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
3030 3031

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3032
			pristate = ps;
3033
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3034
			sprstate = ps;
3035
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3036
			curstate = ps;
3037 3038
	}

3039
	pipe_wm->pipe_enabled = cstate->base.active;
3040
	if (sprstate) {
3041 3042 3043 3044
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3045 3046
	}

3047 3048
	usable_level = max_level;

3049
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3050
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3051
		usable_level = 1;
3052 3053

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3054
	if (pipe_wm->sprites_scaled)
3055
		usable_level = 0;
3056

3057
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3058 3059 3060 3061
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3062

3063
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3064
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3065

3066
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3067
		return -EINVAL;
3068

3069
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3070 3071

	for (level = 1; level <= max_level; level++) {
3072
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3073

3074
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3075
				     pristate, sprstate, curstate, wm);
3076 3077 3078 3079 3080 3081

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
3082 3083 3084 3085 3086 3087
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
3088
			usable_level = level;
3089 3090
	}

3091
	return 0;
3092 3093
}

3094 3095 3096 3097 3098 3099 3100 3101 3102
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
3103
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3104
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3105
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3106 3107 3108 3109 3110 3111

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
3112
	*a = newstate->wm.ilk.optimal;
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
3141 3142
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
3143 3144 3145 3146

	return 0;
}

3147 3148 3149 3150 3151 3152 3153 3154 3155
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

3156 3157
	ret_wm->enable = true;

3158
	for_each_intel_crtc(dev, intel_crtc) {
3159
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3160 3161 3162 3163
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
3164

3165 3166 3167 3168 3169
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
3170
		if (!wm->enable)
3171
			ret_wm->enable = false;
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
3184
			 const struct intel_wm_config *config,
3185
			 const struct ilk_wm_maximums *max,
3186 3187
			 struct intel_pipe_wm *merged)
{
3188
	struct drm_i915_private *dev_priv = to_i915(dev);
3189
	int level, max_level = ilk_wm_max_level(dev_priv);
3190
	int last_enabled_level = max_level;
3191

3192
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3193
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3194
	    config->num_pipes_active > 1)
3195
		last_enabled_level = 0;
3196

3197
	/* ILK: FBC WM must be disabled always */
3198
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3199 3200 3201 3202 3203 3204 3205

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

3206 3207 3208 3209 3210
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
3211 3212 3213 3214 3215 3216

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
3217 3218
			if (wm->enable)
				merged->fbc_wm_enabled = false;
3219 3220 3221
			wm->fbc_val = 0;
		}
	}
3222 3223 3224 3225 3226 3227 3228

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
3229
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3230
	    intel_fbc_is_active(dev_priv)) {
3231 3232 3233 3234 3235 3236
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
3237 3238
}

3239 3240 3241 3242 3243 3244
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

3245 3246 3247
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
3248
	struct drm_i915_private *dev_priv = to_i915(dev);
3249

3250
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3251 3252 3253 3254 3255
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

3256
static void ilk_compute_wm_results(struct drm_device *dev,
3257
				   const struct intel_pipe_wm *merged,
3258
				   enum intel_ddb_partitioning partitioning,
3259
				   struct ilk_wm_values *results)
3260
{
3261
	struct drm_i915_private *dev_priv = to_i915(dev);
3262 3263
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
3264

3265
	results->enable_fbc_wm = merged->fbc_wm_enabled;
3266
	results->partitioning = partitioning;
3267

3268
	/* LP1+ register values */
3269
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3270
		const struct intel_wm_level *r;
3271

3272
		level = ilk_wm_lp_to_level(wm_lp, merged);
3273

3274
		r = &merged->wm[level];
3275

3276 3277 3278 3279 3280
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
3281
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3282 3283 3284
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

3285 3286 3287
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

3288
		if (INTEL_GEN(dev_priv) >= 8)
3289 3290 3291 3292 3293 3294
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

3295 3296 3297 3298
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
3299
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3300 3301 3302 3303
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3304
	}
3305

3306
	/* LP0 register values */
3307
	for_each_intel_crtc(dev, intel_crtc) {
3308
		enum pipe pipe = intel_crtc->pipe;
3309 3310
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
3311 3312 3313 3314

		if (WARN_ON(!r->enable))
			continue;

3315
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3316

3317 3318 3319 3320
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
3321 3322 3323
	}
}

3324 3325
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
3326
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3327 3328
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
3329
{
3330
	int level, max_level = ilk_wm_max_level(to_i915(dev));
3331
	int level1 = 0, level2 = 0;
3332

3333 3334 3335 3336 3337
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
3338 3339
	}

3340 3341
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3342 3343 3344
			return r2;
		else
			return r1;
3345
	} else if (level1 > level2) {
3346 3347 3348 3349 3350 3351
		return r1;
	} else {
		return r2;
	}
}

3352 3353 3354 3355 3356 3357 3358 3359
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

3360
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3361 3362
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
3363 3364 3365 3366 3367
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

3368
	for_each_pipe(dev_priv, pipe) {
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

3412 3413
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
3414
{
3415
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3416
	bool changed = false;
3417

3418 3419 3420
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3421
		changed = true;
3422 3423 3424 3425
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3426
		changed = true;
3427 3428 3429 3430
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3431
		changed = true;
3432
	}
3433

3434 3435 3436 3437
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
3438

3439 3440 3441 3442 3443 3444 3445
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
3446 3447
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
3448
{
3449
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3450 3451 3452
	unsigned int dirty;
	uint32_t val;

3453
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3454 3455 3456 3457 3458
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

3459
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3460
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3461
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3462
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3463
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3464 3465
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3466
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3467
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3468
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3469
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3470
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3471 3472
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3473
	if (dirty & WM_DIRTY_DDB) {
3474
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3489 3490
	}

3491
	if (dirty & WM_DIRTY_FBC) {
3492 3493 3494 3495 3496 3497 3498 3499
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3500 3501 3502 3503
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3504
	if (INTEL_GEN(dev_priv) >= 7) {
3505 3506 3507 3508 3509
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3510

3511
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3512
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3513
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3514
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3515
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3516
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3517 3518

	dev_priv->wm.hw = *results;
3519 3520
}

3521
bool ilk_disable_lp_wm(struct drm_device *dev)
3522
{
3523
	struct drm_i915_private *dev_priv = to_i915(dev);
3524 3525 3526 3527

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3528
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3529

3530 3531 3532 3533 3534 3535 3536 3537
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3538
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3539 3540 3541 3542 3543
		return true;

	return false;
}

3544 3545 3546
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3547 3548 3549 3550 3551 3552 3553 3554
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3555 3556
}

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3569
intel_enable_sagv(struct drm_i915_private *dev_priv)
3570 3571 3572
{
	int ret;

3573 3574 3575 3576
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3592
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3593
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3594
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3595 3596 3597 3598 3599 3600
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3601
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3602 3603 3604 3605
	return 0;
}

int
3606
intel_disable_sagv(struct drm_i915_private *dev_priv)
3607
{
3608
	int ret;
3609

3610 3611 3612 3613
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3614 3615 3616 3617 3618 3619
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3620 3621 3622 3623
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3624 3625 3626 3627 3628 3629
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3630
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3631
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3632
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3633
		return 0;
3634 3635 3636
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3637 3638
	}

3639
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3640 3641 3642
	return 0;
}

3643
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3644 3645 3646 3647
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3648 3649
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3650
	struct intel_crtc_state *cstate;
3651
	enum pipe pipe;
3652
	int level, latency;
3653

3654 3655 3656
	if (!intel_has_sagv(dev_priv))
		return false;

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3670
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3671
	cstate = to_intel_crtc_state(crtc->base.state);
3672

3673
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3674 3675
		return false;

3676
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3677 3678
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3679

3680
		/* Skip this plane if it's not enabled */
3681
		if (!wm->wm[0].plane_en)
3682 3683 3684
			continue;

		/* Find the highest enabled wm level for this plane */
3685
		for (level = ilk_wm_max_level(dev_priv);
3686
		     !wm->wm[level].plane_en; --level)
3687 3688
		     { }

3689 3690 3691
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3692
		    plane->base.state->fb->modifier ==
3693 3694 3695
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3696 3697 3698 3699 3700
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3701
		if (latency < SKL_SAGV_BLOCK_TIME)
3702 3703 3704 3705 3706 3707
			return false;
	}

	return true;
}

3708 3709
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3710
				   const struct intel_crtc_state *cstate,
3711 3712
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3713
{
3714 3715 3716
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3717
	struct drm_crtc *for_crtc = cstate->base.crtc;
3718 3719
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3720

3721
	if (WARN_ON(!state) || !cstate->base.active) {
3722 3723
		alloc->start = 0;
		alloc->end = 0;
3724
		*num_active = hweight32(dev_priv->active_crtcs);
3725 3726 3727
		return;
	}

3728 3729 3730 3731 3732
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3733 3734
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3735 3736 3737

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3738
	/*
3739 3740 3741 3742 3743 3744
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3745
	 */
3746
	if (!intel_state->active_pipe_changes) {
3747 3748 3749 3750 3751
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3752
		return;
3753
	}
3754 3755 3756 3757 3758 3759

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3760 3761
}

3762
static unsigned int skl_cursor_allocation(int num_active)
3763
{
3764
	if (num_active == 1)
3765 3766 3767 3768 3769
		return 32;

	return 8;
}

3770 3771 3772 3773
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3774 3775
	if (entry->end)
		entry->end += 1;
3776 3777
}

3778 3779
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3780
{
3781
	struct intel_crtc *crtc;
3782

3783 3784
	memset(ddb, 0, sizeof(*ddb));

3785
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3786
		enum intel_display_power_domain power_domain;
3787 3788
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3789 3790 3791

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3792 3793
			continue;

3794 3795 3796 3797 3798 3799 3800
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3801

3802 3803
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3804 3805

		intel_display_power_put(dev_priv, power_domain);
3806 3807 3808
	}
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
3826 3827
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3828
{
3829
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3830 3831 3832
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3833
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3834 3835 3836
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	if (plane->id == PLANE_CURSOR) {
		src_w = pstate->base.src_w;
		src_h = pstate->base.src_h;
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
		src_w = drm_rect_width(&pstate->base.src);
		src_h = drm_rect_height(&pstate->base.src);
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3849
	if (drm_rotation_90_or_270(pstate->base.rotation))
3850 3851 3852 3853 3854 3855 3856 3857 3858
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3859
static unsigned int
3860 3861 3862
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3863
{
3864
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3865
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3866
	uint32_t down_scale_amount, data_rate;
3867
	uint32_t width = 0, height = 0;
3868 3869
	struct drm_framebuffer *fb;
	u32 format;
3870

3871
	if (!intel_pstate->base.visible)
3872
		return 0;
3873 3874

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3875
	format = fb->format->format;
3876

3877
	if (plane->id == PLANE_CURSOR)
3878 3879 3880
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3881

3882 3883
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3884

3885
	if (drm_rotation_90_or_270(pstate->rotation))
3886
		swap(width, height);
3887 3888

	/* for planar format */
3889
	if (format == DRM_FORMAT_NV12) {
3890
		if (y)  /* y-plane data rate */
3891
			data_rate = width * height *
3892
				fb->format->cpp[0];
3893
		else    /* uv-plane data rate */
3894
			data_rate = (width / 2) * (height / 2) *
3895
				fb->format->cpp[1];
3896 3897
	} else {
		/* for packed formats */
3898
		data_rate = width * height * fb->format->cpp[0];
3899 3900
	}

3901
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
3902 3903

	return (uint64_t)data_rate * down_scale_amount >> 16;
3904 3905 3906 3907 3908 3909 3910 3911
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3912 3913 3914
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3915
{
3916 3917
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3918 3919
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3920
	unsigned int total_data_rate = 0;
3921 3922 3923

	if (WARN_ON(!state))
		return 0;
3924

3925
	/* Calculate and cache data rate for each plane */
3926
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3927 3928
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3929 3930 3931 3932

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3933
		plane_data_rate[plane_id] = rate;
3934 3935

		total_data_rate += rate;
3936 3937 3938 3939

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3940
		plane_y_data_rate[plane_id] = rate;
3941

3942
		total_data_rate += rate;
3943 3944 3945 3946 3947
	}

	return total_data_rate;
}

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3962
	if (y && fb->format->format != DRM_FORMAT_NV12)
3963 3964 3965
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3966 3967
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3968 3969
		return 8;

3970 3971
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3972

3973
	if (drm_rotation_90_or_270(pstate->rotation))
3974 3975 3976
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3977
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3978 3979 3980 3981
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3982
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3983
		plane_bpp = fb->format->cpp[1];
3984
	else
3985
		plane_bpp = fb->format->cpp[0];
3986

3987
	if (drm_rotation_90_or_270(pstate->rotation)) {
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

4011 4012 4013 4014 4015 4016 4017 4018
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4019
		enum plane_id plane_id = to_intel_plane(plane)->id;
4020

4021
		if (plane_id == PLANE_CURSOR)
4022 4023 4024 4025 4026
			continue;

		if (!pstate->visible)
			continue;

4027 4028
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4029 4030 4031 4032 4033
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

4034
static int
4035
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4036 4037
		      struct skl_ddb_allocation *ddb /* out */)
{
4038
	struct drm_atomic_state *state = cstate->base.state;
4039
	struct drm_crtc *crtc = cstate->base.crtc;
4040 4041 4042
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4043
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4044
	uint16_t alloc_size, start;
4045 4046
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
4047
	unsigned int total_data_rate;
4048
	enum plane_id plane_id;
4049
	int num_active;
4050 4051
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4052

4053 4054 4055 4056
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

4057 4058 4059
	if (WARN_ON(!state))
		return 0;

4060
	if (!cstate->base.active) {
4061
		alloc->start = alloc->end = 0;
4062 4063 4064
		return 0;
	}

4065
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4066
	alloc_size = skl_ddb_entry_size(alloc);
4067 4068
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4069
		return 0;
4070 4071
	}

4072
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4073

4074 4075 4076 4077 4078
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
4079

4080 4081 4082
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
4083 4084
	}

4085 4086 4087
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

4088
	/*
4089 4090
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
4091 4092 4093
	 *
	 * FIXME: we may not allocate every single block here.
	 */
4094 4095 4096
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
4097
	if (total_data_rate == 0)
4098
		return 0;
4099

4100
	start = alloc->start;
4101
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4102 4103
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
4104

4105
		if (plane_id == PLANE_CURSOR)
4106 4107
			continue;

4108
		data_rate = plane_data_rate[plane_id];
4109 4110

		/*
4111
		 * allocation for (packed formats) or (uv-plane part of planar format):
4112 4113 4114
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
4115
		plane_blocks = minimum[plane_id];
4116 4117
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
4118

4119 4120
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
4121 4122
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4123
		}
4124 4125

		start += plane_blocks;
4126 4127 4128 4129

		/*
		 * allocation for y_plane part of planar format:
		 */
4130
		y_data_rate = plane_y_data_rate[plane_id];
4131

4132
		y_plane_blocks = y_minimum[plane_id];
4133 4134
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
4135

4136
		if (y_data_rate) {
4137 4138
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4139
		}
4140 4141

		start += y_plane_blocks;
4142 4143
	}

4144
	return 0;
4145 4146
}

4147 4148
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4149
 * for the read latency) and cpp should always be <= 8, so that
4150 4151 4152
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
4153 4154
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
4155
{
4156 4157
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
4158 4159

	if (latency == 0)
4160
		return FP_16_16_MAX;
4161

4162 4163
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
4164 4165 4166
	return ret;
}

4167 4168 4169 4170
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
4171
{
4172
	uint32_t wm_intermediate_val;
4173
	uint_fixed_16_16_t ret;
4174 4175

	if (latency == 0)
4176
		return FP_16_16_MAX;
4177 4178

	wm_intermediate_val = latency * pixel_rate;
4179 4180 4181
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
4182 4183 4184
	return ret;
}

4185 4186 4187 4188 4189 4190 4191 4192
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
4193
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4194 4195 4196 4197 4198 4199
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
4200
	adjusted_pixel_rate = cstate->pixel_rate;
4201
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4202 4203 4204 4205 4206 4207 4208

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

4209 4210 4211 4212 4213 4214 4215 4216
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
4217
{
4218
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4219 4220
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
4221
	uint32_t latency = dev_priv->wm.skl_latency[level];
4222 4223 4224 4225 4226
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
4227
	uint32_t res_blocks, res_lines;
4228
	uint8_t cpp;
4229
	uint32_t width = 0, height = 0;
4230
	uint32_t plane_pixel_rate;
4231 4232
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
4233 4234 4235
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4236
	bool y_tiled, x_tiled;
4237

4238 4239
	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4240 4241 4242
		*enabled = false;
		return 0;
	}
4243

4244 4245 4246 4247
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

4248 4249 4250 4251
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

4252
	if (apply_memory_bw_wa && x_tiled)
4253 4254
		latency += 15;

4255 4256 4257 4258 4259 4260 4261
	if (plane->id == PLANE_CURSOR) {
		width = intel_pstate->base.crtc_w;
		height = intel_pstate->base.crtc_h;
	} else {
		width = drm_rect_width(&intel_pstate->base.src) >> 16;
		height = drm_rect_height(&intel_pstate->base.src) >> 16;
	}
4262

4263
	if (drm_rotation_90_or_270(pstate->rotation))
4264 4265
		swap(width, height);

4266
	cpp = fb->format->cpp[0];
4267 4268
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

4269
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
4270
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
4271 4272
			fb->format->cpp[1] :
			fb->format->cpp[0];
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
4284 4285 4286
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
4287 4288 4289 4290 4291
		}
	} else {
		y_min_scanlines = 4;
	}

4292 4293 4294
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

4295
	plane_bytes_per_line = width * cpp;
4296
	if (y_tiled) {
4297 4298
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
4299
		plane_blocks_per_line =
4300
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
4301
	} else if (x_tiled) {
4302 4303
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4304
	} else {
4305 4306
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4307 4308
	}

4309 4310
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
4311
				 cstate->base.adjusted_mode.crtc_htotal,
4312
				 latency,
4313
				 plane_blocks_per_line);
4314

4315 4316
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
4317

4318
	if (y_tiled) {
4319
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
4320
	} else {
4321 4322 4323
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
4324 4325 4326
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
4327 4328 4329
		else
			selected_result = method1;
	}
4330

4331 4332 4333
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
4334

4335
	if (level >= 1 && level <= 7) {
4336
		if (y_tiled) {
4337
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
4338
			res_lines += y_min_scanlines;
4339
		} else {
4340
			res_blocks++;
4341
		}
4342
	}
4343

4344 4345
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
4346 4347 4348 4349 4350 4351 4352 4353

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
4354 4355
			struct drm_plane *plane = pstate->plane;

4356
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4357 4358
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
4359 4360 4361
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
4362
	}
4363 4364 4365

	*out_blocks = res_blocks;
	*out_lines = res_lines;
4366
	*enabled = true;
4367

4368
	return 0;
4369 4370
}

4371 4372 4373 4374
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
4375
		     struct intel_plane *intel_plane,
4376 4377
		     int level,
		     struct skl_wm_level *result)
4378
{
4379
	struct drm_atomic_state *state = cstate->base.state;
4380
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
4381 4382
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
4383
	uint16_t ddb_blocks;
4384
	enum pipe pipe = intel_crtc->pipe;
4385
	int ret;
L
Lyude 已提交
4386 4387 4388 4389 4390

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
4391

4392
	/*
L
Lyude 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
4402
	 */
L
Lyude 已提交
4403 4404
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
4405

L
Lyude 已提交
4406
	WARN_ON(!intel_pstate->base.fb);
4407

4408
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4409

L
Lyude 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
4420 4421

	return 0;
4422 4423
}

4424
static uint32_t
4425
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4426
{
M
Mahesh Kumar 已提交
4427 4428
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
4429
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
4430
	uint32_t linetime_wm;
4431

4432
	if (!cstate->base.active)
4433 4434
		return 0;

4435
	pixel_rate = cstate->pixel_rate;
4436 4437

	if (WARN_ON(pixel_rate == 0))
4438
		return 0;
4439

M
Mahesh Kumar 已提交
4440 4441 4442 4443 4444 4445 4446 4447
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
4448 4449
}

4450
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4451
				      struct skl_wm_level *trans_wm /* out */)
4452
{
4453
	if (!cstate->base.active)
4454
		return;
4455 4456

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
4457
	trans_wm->plane_en = false;
4458 4459
}

4460 4461 4462
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4463
{
4464
	struct drm_device *dev = cstate->base.crtc->dev;
4465
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
4466 4467
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4468
	int level, max_level = ilk_wm_max_level(dev_priv);
4469
	int ret;
4470

L
Lyude 已提交
4471 4472 4473 4474 4475 4476 4477 4478 4479
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
4480
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
4481 4482 4483 4484 4485 4486 4487 4488 4489

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
4490
	}
4491
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4492

4493
	return 0;
4494 4495
}

4496 4497
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4498 4499 4500 4501 4502 4503 4504 4505
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4521 4522 4523
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4524
			       enum plane_id plane_id)
4525 4526 4527 4528
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4529
	int level, max_level = ilk_wm_max_level(dev_priv);
4530 4531 4532
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4533
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4534
				   &wm->wm[level]);
4535
	}
4536
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4537
			   &wm->trans_wm);
4538

4539 4540 4541 4542
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4543 4544
}

4545 4546 4547
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4548 4549 4550 4551
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4552
	int level, max_level = ilk_wm_max_level(dev_priv);
4553 4554 4555
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4556 4557
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4558
	}
4559
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4560

4561
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4562
			    &ddb->plane[pipe][PLANE_CURSOR]);
4563 4564
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4579 4580
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4581
{
4582
	return a->start < b->end && b->start < a->end;
4583 4584
}

4585 4586 4587
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4588
{
4589
	int i;
4590

4591 4592 4593
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4594
			return true;
4595

4596
	return false;
4597 4598
}

4599
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4600
			      const struct skl_pipe_wm *old_pipe_wm,
4601
			      struct skl_pipe_wm *pipe_wm, /* out */
4602
			      struct skl_ddb_allocation *ddb, /* out */
4603
			      bool *changed /* out */)
4604
{
4605
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4606
	int ret;
4607

4608 4609 4610
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4611

4612
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4613 4614 4615
		*changed = false;
	else
		*changed = true;
4616

4617
	return 0;
4618 4619
}

4620 4621 4622 4623 4624 4625 4626
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4627
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4628 4629 4630 4631 4632
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4633
static int
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4650
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4651
		enum plane_id plane_id = to_intel_plane(plane)->id;
4652

4653 4654 4655 4656
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4667 4668 4669 4670 4671 4672 4673
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4674
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4675
	uint32_t realloc_pipes = pipes_modified(state);
4676 4677 4678 4679 4680 4681 4682 4683
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4684 4685 4686 4687 4688 4689
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4690 4691
		intel_state->active_pipe_changes = ~0;

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4715
	if (intel_state->active_pipe_changes) {
4716
		realloc_pipes = ~0;
4717 4718
		intel_state->wm_results.dirty_pipes = ~0;
	}
4719

4720 4721 4722 4723 4724 4725
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4726 4727 4728 4729 4730 4731 4732
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4733
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4734 4735
		if (ret)
			return ret;
4736

4737
		ret = skl_ddb_add_affected_planes(cstate);
4738 4739
		if (ret)
			return ret;
4740 4741 4742 4743 4744
	}

	return 0;
}

4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4768
	int i;
4769

4770
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4771 4772
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4773

4774
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4775
			enum plane_id plane_id = intel_plane->id;
4776 4777
			const struct skl_ddb_entry *old, *new;

4778 4779
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4780 4781 4782 4783

			if (skl_ddb_entry_equal(old, new))
				continue;

4784 4785 4786 4787 4788
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4789 4790 4791 4792
		}
	}
}

4793 4794 4795 4796 4797
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4798 4799 4800
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4801
	bool changed = false;
4802
	int ret, i;
4803 4804 4805 4806 4807 4808 4809 4810 4811

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4812
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4813 4814 4815 4816
		changed = true;
	if (!changed)
		return 0;

4817 4818 4819
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4820 4821 4822 4823
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4834
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4835 4836
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4837 4838
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4839 4840

		pipe_wm = &intel_cstate->wm.skl.optimal;
4841 4842
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4856 4857
	skl_print_wm_changes(state);

4858 4859 4860
	return 0;
}

4861 4862 4863 4864 4865 4866
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4867
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4868
	enum pipe pipe = crtc->pipe;
4869
	enum plane_id plane_id;
4870 4871 4872

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4873 4874

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4875

4876 4877 4878 4879 4880 4881 4882 4883
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4884 4885
}

4886 4887
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4888
{
4889
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4890
	struct drm_device *dev = intel_crtc->base.dev;
4891
	struct drm_i915_private *dev_priv = to_i915(dev);
4892
	struct skl_wm_values *results = &state->wm_results;
4893
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4894
	enum pipe pipe = intel_crtc->pipe;
4895

4896
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4897 4898
		return;

4899
	mutex_lock(&dev_priv->wm.wm_mutex);
4900

4901 4902
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4903 4904

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4905 4906

	mutex_unlock(&dev_priv->wm.wm_mutex);
4907 4908
}

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4927
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4928
{
4929
	struct drm_device *dev = &dev_priv->drm;
4930
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4931
	struct ilk_wm_maximums max;
4932
	struct intel_wm_config config = {};
4933
	struct ilk_wm_values results = {};
4934
	enum intel_ddb_partitioning partitioning;
4935

4936 4937 4938 4939
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4940 4941

	/* 5/6 split only in single pipe config on IVB+ */
4942
	if (INTEL_GEN(dev_priv) >= 7 &&
4943 4944 4945
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4946

4947
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4948
	} else {
4949
		best_lp_wm = &lp_wm_1_2;
4950 4951
	}

4952
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4953
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4954

4955
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4956

4957
	ilk_write_wm_values(dev_priv, &results);
4958 4959
}

4960 4961
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4962
{
4963 4964
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4965

4966
	mutex_lock(&dev_priv->wm.wm_mutex);
4967
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4968 4969 4970
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4971

4972 4973
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4974 4975 4976
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4977

4978 4979
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4980
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4981 4982 4983
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4984 4985
}

4986 4987
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4988
{
4989 4990 4991 4992
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4993 4994
}

4995 4996
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4997
{
4998
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4999 5000
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
5001 5002
	int level, max_level;
	enum plane_id plane_id;
5003
	uint32_t val;
5004

5005
	max_level = ilk_wm_max_level(dev_priv);
5006

5007 5008
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
5009

5010
		for (level = 0; level <= max_level; level++) {
5011 5012
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5013 5014
			else
				val = I915_READ(CUR_WM(pipe, level));
5015

5016
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5017 5018
		}

5019 5020
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5021 5022 5023 5024
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5025 5026
	}

5027 5028
	if (!intel_crtc->active)
		return;
5029

5030
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5031 5032 5033 5034
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
5035
	struct drm_i915_private *dev_priv = to_i915(dev);
5036
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5037
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5038
	struct drm_crtc *crtc;
5039 5040
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
5041

5042
	skl_ddb_get_hw_state(dev_priv, ddb);
5043 5044 5045 5046 5047 5048
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

5049
		if (intel_crtc->active)
5050 5051
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
5052

5053 5054 5055 5056 5057 5058 5059
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
5060 5061
}

5062 5063 5064
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
5065
	struct drm_i915_private *dev_priv = to_i915(dev);
5066
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5067
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5068
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5069
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5070
	enum pipe pipe = intel_crtc->pipe;
5071
	static const i915_reg_t wm0_pipe_reg[] = {
5072 5073 5074 5075 5076 5077
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5078
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5079
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5080

5081 5082
	memset(active, 0, sizeof(*active));

5083
	active->pipe_enabled = intel_crtc->active;
5084 5085

	if (active->pipe_enabled) {
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
5100
		int level, max_level = ilk_wm_max_level(dev_priv);
5101 5102 5103 5104 5105 5106 5107 5108 5109

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
5110 5111

	intel_crtc->wm.active.ilk = *active;
5112 5113
}

5114 5115 5116 5117 5118
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
			       struct g4x_wm_values *wm)
{
	uint32_t tmp;

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}

5145 5146 5147 5148 5149 5150 5151 5152 5153
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

5154
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5155
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5156
		wm->ddl[pipe].plane[PLANE_CURSOR] =
5157
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5158
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5159
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5160
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5161 5162 5163 5164 5165
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
5166 5167 5168
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5169 5170

	tmp = I915_READ(DSPFW2);
5171 5172 5173
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5174 5175 5176 5177 5178 5179

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
5180 5181
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5182 5183

		tmp = I915_READ(DSPFW8_CHV);
5184 5185
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5186 5187

		tmp = I915_READ(DSPFW9_CHV);
5188 5189
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5190 5191 5192

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5193 5194 5195 5196 5197 5198 5199 5200 5201
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5202 5203
	} else {
		tmp = I915_READ(DSPFW7);
5204 5205
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5206 5207 5208

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5209 5210 5211 5212 5213 5214
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5215 5216 5217 5218 5219 5220
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
void g4x_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
	struct intel_crtc *crtc;

	g4x_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;

	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct g4x_wm_state *active = &crtc->wm.active.g4x;
		struct g4x_pipe_wm *raw;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level, max_level;

		active->cxsr = wm->cxsr;
		active->hpll_en = wm->hpll_en;
		active->fbc_en = wm->fbc_en;

		active->sr = wm->sr;
		active->hpll = wm->hpll;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			active->wm.plane[plane_id] =
				wm->pipe[pipe].plane[plane_id];
		}

		if (wm->cxsr && wm->hpll_en)
			max_level = G4X_WM_LEVEL_HPLL;
		else if (wm->cxsr)
			max_level = G4X_WM_LEVEL_SR;
		else
			max_level = G4X_WM_LEVEL_NORMAL;

		level = G4X_WM_LEVEL_NORMAL;
		raw = &crtc_state->wm.g4x.raw[level];
		for_each_plane_id_on_crtc(crtc, plane_id)
			raw->plane[plane_id] = active->wm.plane[plane_id];

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->sr.plane;
		raw->plane[PLANE_CURSOR] = active->sr.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->sr.fbc;

		if (++level > max_level)
			goto out;

		raw = &crtc_state->wm.g4x.raw[level];
		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
		raw->plane[PLANE_SPRITE0] = 0;
		raw->fbc = active->hpll.fbc;

	out:
		for_each_plane_id_on_crtc(crtc, plane_id)
			g4x_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);

		crtc_state->wm.g4x.optimal = *active;
		crtc_state->wm.g4x.intermediate = *active;

		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
	}

	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}

void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < 3; level++) {
			struct g4x_pipe_wm *raw =
				&crtc_state->wm.g4x.raw[level];

			raw->plane[plane_id] = 0;
			wm_state->wm.plane[plane_id] = 0;
		}

		if (plane_id == PLANE_PRIMARY) {
			for (level = 0; level < 3; level++) {
				struct g4x_pipe_wm *raw =
					&crtc_state->wm.g4x.raw[level];
				raw->fbc = 0;
			}

			wm_state->sr.fbc = 0;
			wm_state->hpll.fbc = 0;
			wm_state->fbc_en = false;
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.g4x.intermediate =
			crtc_state->wm.g4x.optimal;
		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
	}

	g4x_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5362 5363 5364 5365
void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5366
	struct intel_crtc *crtc;
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

5381 5382 5383 5384 5385 5386 5387 5388 5389
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
5390
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
5404 5405 5406 5407

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
5424
			struct g4x_pipe_wm *raw =
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
5446
		crtc_state->wm.vlv.intermediate = *active;
5447

5448
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5449 5450 5451 5452 5453
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5454
	}
5455 5456 5457 5458 5459

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
5484
			struct g4x_pipe_wm *raw =
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

5509 5510
void ilk_wm_get_hw_state(struct drm_device *dev)
{
5511
	struct drm_i915_private *dev_priv = to_i915(dev);
5512
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5513 5514
	struct drm_crtc *crtc;

5515
	for_each_crtc(dev, crtc)
5516 5517 5518 5519 5520 5521 5522
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5523
	if (INTEL_GEN(dev_priv) >= 7) {
5524 5525 5526
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
5527

5528
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5529 5530
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5531
	else if (IS_IVYBRIDGE(dev_priv))
5532 5533
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5534 5535 5536 5537 5538

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
5571
void intel_update_watermarks(struct intel_crtc *crtc)
5572
{
5573
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5574 5575

	if (dev_priv->display.update_wm)
5576
		dev_priv->display.update_wm(crtc);
5577 5578
}

5579
/*
5580 5581 5582 5583 5584 5585 5586 5587
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

5588
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5589 5590 5591
{
	u16 rgvswctl;

5592
	lockdep_assert_held(&mchdev_lock);
5593

5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

5611
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5612
{
5613
	u32 rgvmodectl;
5614 5615
	u8 fmax, fmin, fstart, vstart;

5616 5617
	spin_lock_irq(&mchdev_lock);

5618 5619
	rgvmodectl = I915_READ(MEMMODECTL);

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5640
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5641 5642
		PXVFREQ_PX_SHIFT;

5643 5644
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5645

5646 5647 5648
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5665
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5666
		DRM_ERROR("stuck trying to change perf mode\n");
5667
	mdelay(1);
5668

5669
	ironlake_set_drps(dev_priv, fstart);
5670

5671 5672
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5673
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5674
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5675
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5676 5677

	spin_unlock_irq(&mchdev_lock);
5678 5679
}

5680
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5681
{
5682 5683 5684 5685 5686
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5687 5688 5689 5690 5691 5692 5693 5694 5695

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5696
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5697
	mdelay(1);
5698 5699
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5700
	mdelay(1);
5701

5702
	spin_unlock_irq(&mchdev_lock);
5703 5704
}

5705 5706 5707 5708 5709
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5710
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5711
{
5712
	u32 limits;
5713

5714 5715 5716 5717 5718 5719
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5720
	if (IS_GEN9(dev_priv)) {
5721 5722 5723 5724 5725 5726 5727 5728
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5729 5730 5731 5732

	return limits;
}

5733 5734 5735
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5736 5737
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5738 5739 5740 5741

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5742 5743
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5744 5745 5746 5747
			new_power = BETWEEN;
		break;

	case BETWEEN:
5748 5749
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5750
			new_power = LOW_POWER;
5751 5752
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5753 5754 5755 5756
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5757 5758
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5759 5760 5761 5762
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5763
	if (val <= dev_priv->rps.min_freq_softlimit)
5764
		new_power = LOW_POWER;
5765
	if (val >= dev_priv->rps.max_freq_softlimit)
5766 5767 5768 5769 5770 5771 5772 5773
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5774 5775
		ei_up = 16000;
		threshold_up = 95;
5776 5777

		/* Downclock if less than 85% busy over 32ms */
5778 5779
		ei_down = 32000;
		threshold_down = 85;
5780 5781 5782 5783
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5784 5785
		ei_up = 13000;
		threshold_up = 90;
5786 5787

		/* Downclock if less than 75% busy over 32ms */
5788 5789
		ei_down = 32000;
		threshold_down = 75;
5790 5791 5792 5793
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5794 5795
		ei_up = 10000;
		threshold_up = 85;
5796 5797

		/* Downclock if less than 60% busy over 32ms */
5798 5799
		ei_down = 32000;
		threshold_down = 60;
5800 5801 5802
		break;
	}

5803 5804 5805 5806 5807 5808
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5809
	I915_WRITE(GEN6_RP_UP_EI,
5810
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5811
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5812 5813
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5814 5815

	I915_WRITE(GEN6_RP_DOWN_EI,
5816
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5817
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5828

5829
skip_hw_write:
5830
	dev_priv->rps.power = new_power;
5831 5832
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5833 5834 5835
	dev_priv->rps.last_adj = 0;
}

5836 5837 5838 5839
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5840
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5841
	if (val > dev_priv->rps.min_freq_softlimit)
5842
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5843
	if (val < dev_priv->rps.max_freq_softlimit)
5844
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5845

5846 5847
	mask &= dev_priv->pm_rps_events;

5848
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5849 5850
}

5851 5852 5853
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5854
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5855
{
C
Chris Wilson 已提交
5856 5857 5858 5859 5860
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5861

5862
		if (IS_GEN9(dev_priv))
5863 5864
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5865
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5866 5867 5868 5869 5870 5871 5872
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5873
	}
5874 5875 5876 5877

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5878
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5879
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5880

5881
	dev_priv->rps.cur_freq = val;
5882
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5883 5884

	return 0;
5885 5886
}

5887
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5888
{
5889 5890
	int err;

5891
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5892 5893 5894
		      "Odd GPU freq value\n"))
		val &= ~1;

5895 5896
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5897
	if (val != dev_priv->rps.cur_freq) {
5898 5899 5900 5901
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5902
		gen6_set_rps_thresholds(dev_priv, val);
5903
	}
5904 5905 5906

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5907 5908

	return 0;
5909 5910
}

5911
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5912 5913
 *
 * * If Gfx is Idle, then
5914 5915 5916
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5917 5918 5919
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5920
	u32 val = dev_priv->rps.idle_freq;
5921
	int err;
5922

5923
	if (dev_priv->rps.cur_freq <= val)
5924 5925
		return;

5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5938
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5939
	err = valleyview_set_rps(dev_priv, val);
5940
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5941 5942 5943

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5944 5945
}

5946 5947 5948 5949
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5950 5951
		u8 freq;

5952
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5953 5954 5955
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5956

5957 5958
		gen6_enable_rps_interrupts(dev_priv);

5959 5960 5961 5962 5963 5964
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5965
		if (intel_set_rps(dev_priv,
5966
				  clamp(freq,
5967 5968 5969
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5970 5971 5972 5973
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5974 5975
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5976 5977 5978 5979 5980 5981 5982
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5983
	mutex_lock(&dev_priv->rps.hw_lock);
5984
	if (dev_priv->rps.enabled) {
5985
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5986
			vlv_set_rps_idle(dev_priv);
5987
		else
5988
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5989
		dev_priv->rps.last_adj = 0;
5990 5991
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5992
	}
5993
	mutex_unlock(&dev_priv->rps.hw_lock);
5994

5995
	spin_lock(&dev_priv->rps.client_lock);
5996 5997
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5998
	spin_unlock(&dev_priv->rps.client_lock);
5999 6000
}

6001
void gen6_rps_boost(struct drm_i915_private *dev_priv,
6002 6003
		    struct intel_rps_client *rps,
		    unsigned long submitted)
6004
{
6005 6006 6007
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
6008
	if (!(dev_priv->gt.awake &&
6009
	      dev_priv->rps.enabled &&
6010
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
6011
		return;
6012

6013 6014 6015
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
6016
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
6017 6018
		rps = NULL;

6019 6020 6021 6022 6023
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
6024
			schedule_work(&dev_priv->rps.work);
6025 6026
		}
		spin_unlock_irq(&dev_priv->irq_lock);
6027

6028 6029 6030
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
6031 6032
		} else
			dev_priv->rps.boosts++;
6033
	}
6034
	spin_unlock(&dev_priv->rps.client_lock);
6035 6036
}

6037
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6038
{
6039 6040
	int err;

6041 6042 6043 6044
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

6045 6046 6047 6048 6049
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

6050
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6051
		err = valleyview_set_rps(dev_priv, val);
6052
	else
6053 6054 6055
		err = gen6_set_rps(dev_priv, val);

	return err;
6056 6057
}

6058
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6059 6060
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6061
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
6062 6063
}

6064
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6065 6066 6067 6068
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

6069
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6070 6071
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
6072
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6073
	I915_WRITE(GEN6_RP_CONTROL, 0);
6074 6075
}

6076
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6077 6078 6079 6080
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

6081
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6082
{
6083 6084
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
6085
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6086

6087
	I915_WRITE(GEN6_RC_CONTROL, 0);
6088

6089
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6090 6091
}

6092
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
6093
{
6094
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6095 6096 6097 6098 6099
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
6100
	if (HAS_RC6p(dev_priv))
6101 6102 6103 6104 6105
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6106 6107

	else
6108 6109
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
6110 6111
}

6112
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6113
{
6114
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6115 6116
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
6128 6129

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6130
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6131 6132 6133 6134 6135 6136 6137 6138
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6139 6140 6141
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
6142
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6143 6144 6145 6146 6147 6148 6149
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6150
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6151 6152 6153
		enable_rc6 = false;
	}

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6168 6169 6170 6171 6172 6173
		enable_rc6 = false;
	}

	return enable_rc6;
}

6174
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6175
{
6176
	/* No RC6 before Ironlake and code is gone for ilk. */
6177
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
6178 6179
		return 0;

6180 6181 6182
	if (!enable_rc6)
		return 0;

6183
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6184 6185 6186 6187
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

6188
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
6189 6190 6191
	if (enable_rc6 >= 0) {
		int mask;

6192
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
6193 6194 6195 6196 6197 6198
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
6199 6200 6201
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
6202 6203 6204

		return enable_rc6 & mask;
	}
6205

6206
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
6207
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6208 6209

	return INTEL_RC6_ENABLE;
6210 6211
}

6212
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6213 6214
{
	/* All of these values are in units of 50MHz */
6215

6216
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6217
	if (IS_GEN9_LP(dev_priv)) {
6218
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6219 6220 6221 6222
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
6223
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6224 6225 6226 6227
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
6228
	/* hw_max = RP0 until we check for overclocking */
6229
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6230

6231
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6232
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6233
	    IS_GEN9_BC(dev_priv)) {
6234 6235 6236 6237 6238
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
6239
			dev_priv->rps.efficient_freq =
6240 6241 6242 6243
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
6244 6245
	}

6246
	if (IS_GEN9_BC(dev_priv)) {
6247
		/* Store the frequency values in 16.66 MHZ units, which is
6248 6249
		 * the natural hardware unit for SKL
		 */
6250 6251 6252 6253 6254 6255
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
6256 6257
}

6258
static void reset_rps(struct drm_i915_private *dev_priv,
6259
		      int (*set)(struct drm_i915_private *, u8))
6260 6261 6262 6263 6264 6265 6266
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

6267 6268
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
6269 6270
}

J
Jesse Barnes 已提交
6271
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
6272
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
6273 6274 6275
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

6276 6277 6278 6279 6280 6281 6282 6283
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
6284 6285
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

6286 6287 6288
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6289
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
6290 6291 6292 6293

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

6294
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
6295
{
6296
	struct intel_engine_cs *engine;
6297
	enum intel_engine_id id;
Z
Zhe Wang 已提交
6298 6299 6300 6301 6302 6303 6304
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6305
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6306 6307 6308 6309 6310

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
6311 6312

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6313
	if (IS_SKYLAKE(dev_priv))
6314 6315 6316
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
6317 6318
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6319
	for_each_engine(engine, dev_priv, id)
6320
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6321

6322
	if (HAS_GUC(dev_priv))
6323 6324
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
6325 6326
	I915_WRITE(GEN6_RC_SLEEP, 0);

6327 6328 6329 6330
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
6331
	/* 3a: Enable RC6 */
6332
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
6333
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6334
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6335 6336 6337
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
6338

6339 6340
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6341
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6342
	 */
6343
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6344 6345 6346 6347
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6348

6349
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
6350 6351
}

6352
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6353
{
6354
	struct intel_engine_cs *engine;
6355
	enum intel_engine_id id;
6356
	uint32_t rc6_mask = 0;
6357 6358 6359 6360 6361 6362

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6363
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6364 6365 6366 6367 6368 6369 6370 6371

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6372
	for_each_engine(engine, dev_priv, id)
6373
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6374
	I915_WRITE(GEN6_RC_SLEEP, 0);
6375
	if (IS_BROADWELL(dev_priv))
6376 6377 6378
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6379 6380

	/* 3: Enable RC6 */
6381
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6382
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6383 6384
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
6385 6386 6387 6388 6389 6390 6391
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
6392 6393

	/* 4 Program defaults and thresholds for RPS*/
6394 6395 6396 6397
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6412 6413

	/* 5: Enable RPS */
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

6424
	reset_rps(dev_priv, gen6_set_rps);
6425

6426
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6427 6428
}

6429
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6430
{
6431
	struct intel_engine_cs *engine;
6432
	enum intel_engine_id id;
6433
	u32 rc6vids, rc6_mask = 0;
6434 6435
	u32 gtfifodbg;
	int rc6_mode;
6436
	int ret;
6437

6438
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6439

6440 6441 6442 6443 6444 6445 6446 6447 6448
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
6449 6450
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6451 6452 6453 6454
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6455
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6466
	for_each_engine(engine, dev_priv, id)
6467
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6468 6469 6470

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6471
	if (IS_IVYBRIDGE(dev_priv))
6472 6473 6474
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6475
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6476 6477
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

6478
	/* Check if we are enabling RC6 */
6479
	rc6_mode = intel_enable_rc6();
6480 6481 6482
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

6483
	/* We don't use those on Haswell */
6484
	if (!IS_HASWELL(dev_priv)) {
6485 6486
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6487

6488 6489 6490
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
6491

6492
	intel_print_rc6_info(dev_priv, rc6_mask);
6493 6494 6495 6496 6497 6498

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

6499 6500
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6501 6502
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

6503
	reset_rps(dev_priv, gen6_set_rps);
6504

6505 6506
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6507
	if (IS_GEN6(dev_priv) && ret) {
6508
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6509
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6510 6511 6512 6513 6514 6515 6516 6517 6518
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

6519
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6520 6521
}

6522
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6523 6524
{
	int min_freq = 15;
6525 6526
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
6527
	unsigned int max_gpu_freq, min_gpu_freq;
6528
	int scaling_factor = 180;
6529
	struct cpufreq_policy *policy;
6530

6531
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6532

6533 6534 6535 6536 6537 6538 6539 6540 6541
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
6542
		max_ia_freq = tsc_khz;
6543
	}
6544 6545 6546 6547

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

6548
	min_ring_freq = I915_READ(DCLK) & 0xf;
6549 6550
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6551

6552
	if (IS_GEN9_BC(dev_priv)) {
6553 6554 6555 6556 6557 6558 6559 6560
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

6561 6562 6563 6564 6565
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
6566 6567
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
6568 6569
		unsigned int ia_freq = 0, ring_freq = 0;

6570
		if (IS_GEN9_BC(dev_priv)) {
6571 6572 6573 6574 6575
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
6576
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
6577 6578
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
6579
		} else if (IS_HASWELL(dev_priv)) {
6580
			ring_freq = mult_frac(gpu_freq, 5, 4);
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
6597

B
Ben Widawsky 已提交
6598 6599
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6600 6601 6602
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
6603 6604 6605
	}
}

6606
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6607 6608 6609
{
	u32 val, rp0;

6610
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6611

6612
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
6627
	}
6628 6629 6630

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6644 6645 6646 6647
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6648 6649 6650
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6651 6652 6653
	return rp1;
}

6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6676
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6677 6678 6679
{
	u32 val, rp0;

6680
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6693
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6694
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6695
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6696 6697 6698 6699 6700
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6701
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6702
{
6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6714 6715
}

6716 6717 6718 6719 6720 6721 6722 6723 6724
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6725 6726 6727 6728 6729 6730 6731 6732 6733

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6734
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6735
{
6736
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6737
	unsigned long pctx_paddr, paddr;
6738 6739 6740 6741 6742
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6743
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6744
		paddr = (dev_priv->mm.stolen_base +
6745
			 (ggtt->stolen_size - pctx_size));
6746 6747 6748 6749

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6750 6751

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6752 6753
}

6754
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6767
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6768
								      pcbr_offset,
6769
								      I915_GTT_OFFSET_NONE,
6770 6771 6772 6773
								      pctx_size);
		goto out;
	}

6774 6775
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6776 6777 6778 6779 6780 6781 6782 6783
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6784
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6785 6786
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6787
		goto out;
6788 6789 6790 6791 6792 6793
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6794
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6795 6796 6797
	dev_priv->vlv_pctx = pctx;
}

6798
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6799 6800 6801 6802
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6803
	i915_gem_object_put(dev_priv->vlv_pctx);
6804 6805 6806
	dev_priv->vlv_pctx = NULL;
}

6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6818
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6819
{
6820
	u32 val;
6821

6822
	valleyview_setup_pctx(dev_priv);
6823

6824 6825
	vlv_init_gpll_ref_freq(dev_priv);

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6839
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6840

6841 6842 6843
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6844
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6845 6846 6847 6848
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6849
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6850 6851
			 dev_priv->rps.efficient_freq);

6852 6853
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6854
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6855 6856
			 dev_priv->rps.rp1_freq);

6857 6858
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6859
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6860 6861 6862
			 dev_priv->rps.min_freq);
}

6863
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6864
{
6865
	u32 val;
6866

6867
	cherryview_setup_pctx(dev_priv);
6868

6869 6870
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6871
	mutex_lock(&dev_priv->sb_lock);
6872
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6873
	mutex_unlock(&dev_priv->sb_lock);
6874

6875 6876 6877 6878
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6879
	default:
6880 6881 6882
		dev_priv->mem_freq = 1600;
		break;
	}
6883
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6884

6885 6886 6887
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6888
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6889 6890 6891 6892
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6893
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6894 6895
			 dev_priv->rps.efficient_freq);

6896 6897
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6898
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6899 6900
			 dev_priv->rps.rp1_freq);

6901
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6902
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6903
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6904 6905
			 dev_priv->rps.min_freq);

6906 6907 6908 6909 6910
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6911 6912
}

6913
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6914
{
6915
	valleyview_cleanup_pctx(dev_priv);
6916 6917
}

6918
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6919
{
6920
	struct intel_engine_cs *engine;
6921
	enum intel_engine_id id;
6922
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6923 6924 6925

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6926 6927
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6938
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6939

6940 6941 6942
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6943 6944 6945 6946 6947
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6948
	for_each_engine(engine, dev_priv, id)
6949
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6950 6951
	I915_WRITE(GEN6_RC_SLEEP, 0);

6952 6953
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6965 6966
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6967
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6968 6969 6970

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6971
	/* 4 Program defaults and thresholds for RPS*/
6972
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6983
		   GEN6_RP_MEDIA_IS_GFX |
6984 6985 6986 6987
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6988 6989 6990 6991 6992 6993
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6994 6995
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6996 6997 6998
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6999
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7000 7001
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7002
	reset_rps(dev_priv, valleyview_set_rps);
7003

7004
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7005 7006
}

7007
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7008
{
7009
	struct intel_engine_cs *engine;
7010
	enum intel_engine_id id;
7011
	u32 gtfifodbg, val, rc6_mode = 0;
7012 7013 7014

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

7015 7016
	valleyview_check_pctx(dev_priv);

7017 7018
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
7019 7020
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
7021 7022 7023
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

7024
	/* If VLV, Forcewake all wells, else re-direct to regular path */
7025
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7026

7027 7028 7029
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

7030
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

7050
	for_each_engine(engine, dev_priv, id)
7051
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7052

7053
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7054 7055

	/* allows RC6 residency counter to work */
7056
	I915_WRITE(VLV_COUNTER_CONTROL,
7057 7058
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
7059
				      VLV_RENDER_RC0_COUNT_EN |
7060 7061
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
7062

7063
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7064
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
7065

7066
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
7067

7068
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7069

D
Deepak S 已提交
7070 7071 7072 7073 7074 7075
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

7076
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7077

7078 7079 7080
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

7081
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7082 7083
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

7084
	reset_rps(dev_priv, valleyview_set_rps);
7085

7086
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7087 7088
}

7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

7118
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7119 7120 7121 7122 7123 7124
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

7125
	lockdep_assert_held(&mchdev_lock);
7126

7127
	diff1 = now - dev_priv->ips.last_time1;
7128 7129 7130 7131 7132 7133 7134

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
7135
		return dev_priv->ips.chipset_power;
7136 7137 7138 7139 7140 7141 7142 7143

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
7144 7145
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
7146 7147
		diff += total_count;
	} else {
7148
		diff = total_count - dev_priv->ips.last_count1;
7149 7150 7151
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7152 7153
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

7164 7165
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
7166

7167
	dev_priv->ips.chipset_power = ret;
7168 7169 7170 7171

	return ret;
}

7172 7173 7174 7175
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7176
	if (INTEL_INFO(dev_priv)->gen != 5)
7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7215
{
7216 7217 7218
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

7219
	if (INTEL_INFO(dev_priv)->is_mobile)
7220 7221 7222
		return vm > 0 ? vm : 0;

	return vd;
7223 7224
}

7225
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7226
{
7227
	u64 now, diff, diffms;
7228 7229
	u32 count;

7230
	lockdep_assert_held(&mchdev_lock);
7231

7232 7233 7234
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
7235 7236 7237 7238 7239 7240 7241

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

7242 7243
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
7244 7245
		diff += count;
	} else {
7246
		diff = count - dev_priv->ips.last_count2;
7247 7248
	}

7249 7250
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
7251 7252 7253 7254

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
7255
	dev_priv->ips.gfx_power = diff;
7256 7257
}

7258 7259
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
7260
	if (INTEL_INFO(dev_priv)->gen != 5)
7261 7262
		return;

7263
	spin_lock_irq(&mchdev_lock);
7264 7265 7266

	__i915_update_gfx_val(dev_priv);

7267
	spin_unlock_irq(&mchdev_lock);
7268 7269
}

7270
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7271 7272 7273 7274
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

7275
	lockdep_assert_held(&mchdev_lock);
7276

7277
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
7297
	corr2 = (corr * dev_priv->ips.corr);
7298 7299 7300 7301

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

7302
	__i915_update_gfx_val(dev_priv);
7303

7304
	return dev_priv->ips.gfx_power + state2;
7305 7306
}

7307 7308 7309 7310
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

7311
	if (INTEL_INFO(dev_priv)->gen != 5)
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

7334
	spin_lock_irq(&mchdev_lock);
7335 7336 7337 7338
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

7339 7340
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
7341 7342 7343 7344

	ret = chipset_val + graphics_val;

out_unlock:
7345
	spin_unlock_irq(&mchdev_lock);
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7361
	spin_lock_irq(&mchdev_lock);
7362 7363 7364 7365 7366 7367
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7368 7369
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
7370 7371

out_unlock:
7372
	spin_unlock_irq(&mchdev_lock);
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7389
	spin_lock_irq(&mchdev_lock);
7390 7391 7392 7393 7394 7395
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7396 7397
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
7398 7399

out_unlock:
7400
	spin_unlock_irq(&mchdev_lock);
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

7415
	spin_lock_irq(&mchdev_lock);
7416 7417
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
7418
	spin_unlock_irq(&mchdev_lock);
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

7435
	spin_lock_irq(&mchdev_lock);
7436 7437 7438 7439 7440 7441
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

7442
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
7443

7444
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7445 7446 7447
		ret = false;

out_unlock:
7448
	spin_unlock_irq(&mchdev_lock);
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
7476 7477
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7478
	spin_lock_irq(&mchdev_lock);
7479
	i915_mch_dev = dev_priv;
7480
	spin_unlock_irq(&mchdev_lock);
7481 7482 7483 7484 7485 7486

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
7487
	spin_lock_irq(&mchdev_lock);
7488
	i915_mch_dev = NULL;
7489
	spin_unlock_irq(&mchdev_lock);
7490
}
7491

7492
static void intel_init_emon(struct drm_i915_private *dev_priv)
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
7509
		I915_WRITE(PEW(i), 0);
7510
	for (i = 0; i < 3; i++)
7511
		I915_WRITE(DEW(i), 0);
7512 7513 7514

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
7515
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7536
		I915_WRITE(PXW(i), val);
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
7552
		I915_WRITE(PXWL(i), 0);
7553 7554 7555 7556 7557 7558

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

7559
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7560 7561
}

7562
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7563
{
7564 7565 7566 7567 7568 7569 7570 7571
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
7572

7573
	mutex_lock(&dev_priv->drm.struct_mutex);
7574 7575 7576
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
7577 7578 7579 7580
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
7581
	else if (INTEL_GEN(dev_priv) >= 6)
7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

7611 7612 7613
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

7614
	mutex_unlock(&dev_priv->rps.hw_lock);
7615
	mutex_unlock(&dev_priv->drm.struct_mutex);
7616 7617

	intel_autoenable_gt_powersave(dev_priv);
7618 7619
}

7620
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7621
{
7622
	if (IS_VALLEYVIEW(dev_priv))
7623
		valleyview_cleanup_gt_powersave(dev_priv);
7624 7625 7626

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
7627 7628
}

7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7648 7649 7650 7651
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7652 7653

	gen6_reset_rps_interrupts(dev_priv);
7654 7655
}

7656
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7657
{
7658 7659
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7660

7661
	mutex_lock(&dev_priv->rps.hw_lock);
7662

7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7674
	}
7675 7676 7677

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7678 7679
}

7680
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7681
{
7682 7683 7684
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7685 7686
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7687

7688 7689 7690
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7691

7692
	mutex_lock(&dev_priv->rps.hw_lock);
7693 7694 7695 7696 7697

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7698
	} else if (INTEL_GEN(dev_priv) >= 9) {
7699 7700
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7701
		if (IS_GEN9_BC(dev_priv))
7702
			gen6_update_ring_freq(dev_priv);
7703 7704
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7705
		gen6_update_ring_freq(dev_priv);
7706
	} else if (INTEL_GEN(dev_priv) >= 6) {
7707
		gen6_enable_rps(dev_priv);
7708
		gen6_update_ring_freq(dev_priv);
7709 7710 7711
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7712
	}
7713 7714 7715 7716 7717 7718 7719

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7720
	dev_priv->rps.enabled = true;
7721 7722
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7723

7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7734
	rcs = dev_priv->engine[RCS];
7735
	if (rcs->last_retired_context)
7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7751
	i915_add_request(req);
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7787
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7788 7789 7790 7791 7792 7793 7794 7795 7796
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7797
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7798
{
7799
	enum pipe pipe;
7800

7801
	for_each_pipe(dev_priv, pipe) {
7802 7803 7804
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7805 7806 7807

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7808 7809 7810
	}
}

7811
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7823
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7824
{
7825
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7826

7827 7828 7829 7830
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7831 7832 7833
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7851
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7852 7853 7854
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7855

7856
	ilk_init_lp_watermarks(dev_priv);
7857 7858 7859 7860 7861 7862 7863 7864

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7865
	if (IS_IRONLAKE_M(dev_priv)) {
7866
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7867 7868 7869 7870 7871 7872 7873 7874
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7875 7876
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7877 7878 7879 7880 7881 7882
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7883

7884
	/* WaDisableRenderCachePipelinedFlush:ilk */
7885 7886
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7887

7888 7889 7890
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7891
	g4x_disable_trickle_feed(dev_priv);
7892

7893
	ibx_init_clock_gating(dev_priv);
7894 7895
}

7896
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7897 7898
{
	int pipe;
7899
	uint32_t val;
7900 7901 7902 7903 7904 7905

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7906 7907 7908
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7909 7910
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7911 7912 7913
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7914
	for_each_pipe(dev_priv, pipe) {
7915 7916 7917
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7918
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7919
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7920 7921 7922
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7923 7924
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7925
	/* WADP0ClockGatingDisable */
7926
	for_each_pipe(dev_priv, pipe) {
7927 7928 7929
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7930 7931
}

7932
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7933 7934 7935 7936
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7937 7938 7939
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7940 7941
}

7942
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7943
{
7944
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7945

7946
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7947 7948 7949 7950 7951

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7952
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7953 7954 7955
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7956 7957 7958
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7959 7960 7961
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7962 7963 7964 7965
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7966 7967
	 */
	I915_WRITE(GEN6_GT_MODE,
7968
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7969

7970
	ilk_init_lp_watermarks(dev_priv);
7971 7972

	I915_WRITE(CACHE_MODE_0,
7973
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7989
	 *
7990 7991
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7992 7993 7994 7995 7996
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7997
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7998 7999
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8000

8001 8002 8003 8004 8005 8006 8007 8008
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

8009 8010 8011 8012 8013 8014 8015 8016
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
8017 8018
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
8019 8020 8021 8022 8023 8024 8025
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8026 8027 8028 8029
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8030

8031
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
8032

8033
	cpt_init_clock_gating(dev_priv);
8034

8035
	gen6_check_mch_setup(dev_priv);
8036 8037 8038 8039 8040 8041
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

8042
	/*
8043
	 * WaVSThreadDispatchOverride:ivb,vlv
8044 8045 8046 8047
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
8048 8049 8050 8051 8052 8053 8054 8055
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

8056
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8057 8058 8059 8060 8061
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
8062
	if (HAS_PCH_LPT_LP(dev_priv))
8063 8064 8065
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
8066 8067

	/* WADPOClockGatingDisable:hsw */
8068 8069
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8070
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8071 8072
}

8073
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8074
{
8075
	if (HAS_PCH_LPT_LP(dev_priv)) {
8076 8077 8078 8079 8080 8081 8082
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

8106
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8107
{
8108
	gen9_init_clock_gating(dev_priv);
8109 8110 8111 8112 8113

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8114 8115 8116 8117 8118

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8119 8120 8121 8122

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8123 8124
}

8125
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8126
{
8127
	gen9_init_clock_gating(dev_priv);
8128 8129 8130 8131

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
8132 8133 8134 8135

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8136 8137
}

8138
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
8139
{
8140
	enum pipe pipe;
B
Ben Widawsky 已提交
8141

8142
	ilk_init_lp_watermarks(dev_priv);
8143

8144
	/* WaSwitchSolVfFArbitrationPriority:bdw */
8145
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8146

8147
	/* WaPsrDPAMaskVBlankInSRD:bdw */
8148 8149 8150
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

8151
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8152
	for_each_pipe(dev_priv, pipe) {
8153
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8154
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8155
			   BDW_DPRS_MASK_VBLANK_SRD);
8156
	}
8157

8158 8159 8160 8161 8162
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8163

8164 8165
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8166 8167 8168 8169

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8170

8171 8172
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8173

8174 8175 8176 8177 8178 8179 8180
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

8181 8182 8183 8184
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

8185
	lpt_init_clock_gating(dev_priv);
8186 8187 8188 8189 8190 8191 8192 8193

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
8194 8195
}

8196
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8197
{
8198
	ilk_init_lp_watermarks(dev_priv);
8199

8200 8201 8202 8203 8204
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

8205
	/* This is required by WaCatErrorRejectionIssue:hsw */
8206 8207 8208 8209
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8210 8211 8212
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8213

8214 8215 8216
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8217 8218 8219 8220
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

8221
	/* WaDisable4x2SubspanOptimization:hsw */
8222 8223
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8224

8225 8226 8227
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8228 8229 8230 8231
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8232 8233
	 */
	I915_WRITE(GEN7_GT_MODE,
8234
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8235

8236 8237 8238 8239
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

8240
	/* WaSwitchSolVfFArbitrationPriority:hsw */
8241 8242
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

8243 8244 8245
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8246

8247
	lpt_init_clock_gating(dev_priv);
8248 8249
}

8250
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8251
{
8252
	uint32_t snpcr;
8253

8254
	ilk_init_lp_watermarks(dev_priv);
8255

8256
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8257

8258
	/* WaDisableEarlyCull:ivb */
8259 8260 8261
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8262
	/* WaDisableBackToBackFlipFix:ivb */
8263 8264 8265 8266
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8267
	/* WaDisablePSDDualDispatchEnable:ivb */
8268
	if (IS_IVB_GT1(dev_priv))
8269 8270 8271
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

8272 8273 8274
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8275
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8276 8277 8278
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

8279
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8280 8281 8282
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8283
		   GEN7_WA_L3_CHICKEN_MODE);
8284
	if (IS_IVB_GT1(dev_priv))
8285 8286
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8287 8288 8289 8290
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8291 8292
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8293
	}
8294

8295
	/* WaForceL3Serialization:ivb */
8296 8297 8298
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8299
	/*
8300
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8301
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8302 8303
	 */
	I915_WRITE(GEN6_UCGCTL2,
8304
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8305

8306
	/* This is required by WaCatErrorRejectionIssue:ivb */
8307 8308 8309 8310
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8311
	g4x_disable_trickle_feed(dev_priv);
8312 8313

	gen7_setup_fixed_func_scheduler(dev_priv);
8314

8315 8316 8317 8318 8319
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
8320

8321
	/* WaDisable4x2SubspanOptimization:ivb */
8322 8323
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8324

8325 8326 8327
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
8328 8329 8330 8331
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8332 8333
	 */
	I915_WRITE(GEN7_GT_MODE,
8334
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8335

8336 8337 8338 8339
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8340

8341
	if (!HAS_PCH_NOP(dev_priv))
8342
		cpt_init_clock_gating(dev_priv);
8343

8344
	gen6_check_mch_setup(dev_priv);
8345 8346
}

8347
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8348
{
8349
	/* WaDisableEarlyCull:vlv */
8350 8351 8352
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

8353
	/* WaDisableBackToBackFlipFix:vlv */
8354 8355 8356 8357
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

8358
	/* WaPsdDispatchEnable:vlv */
8359
	/* WaDisablePSDDualDispatchEnable:vlv */
8360
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8361 8362
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8363

8364 8365 8366
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8367
	/* WaForceL3Serialization:vlv */
8368 8369 8370
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

8371
	/* WaDisableDopClockGating:vlv */
8372 8373 8374
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

8375
	/* This is required by WaCatErrorRejectionIssue:vlv */
8376 8377 8378 8379
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

8380 8381
	gen7_setup_fixed_func_scheduler(dev_priv);

8382
	/*
8383
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8384
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8385 8386
	 */
	I915_WRITE(GEN6_UCGCTL2,
8387
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8388

8389 8390 8391 8392 8393
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8394

8395 8396 8397 8398
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
8399 8400
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8401

8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

8413 8414 8415 8416 8417 8418
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

8419
	/*
8420
	 * WaDisableVLVClockGating_VBIIssue:vlv
8421 8422 8423
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
8424
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8425 8426
}

8427
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8428
{
8429 8430 8431 8432 8433
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8434 8435 8436 8437

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8438 8439 8440 8441

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8442 8443 8444 8445

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8446

8447 8448 8449 8450 8451 8452 8453
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

8454 8455 8456 8457 8458
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8459 8460
}

8461
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
8473
	if (IS_GM45(dev_priv))
8474 8475
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8476 8477 8478 8479

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8480

8481 8482 8483
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

8484
	g4x_disable_trickle_feed(dev_priv);
8485 8486
}

8487
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8488 8489 8490 8491 8492 8493
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
8494 8495
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8496 8497 8498

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8499 8500
}

8501
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8502 8503 8504 8505 8506 8507 8508
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
8509 8510
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8511 8512 8513

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8514 8515
}

8516
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8517 8518 8519 8520 8521 8522
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
8523

8524
	if (IS_PINEVIEW(dev_priv))
8525
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8526 8527 8528

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8529 8530

	/* interrupts should cause a wake up from C3 */
8531
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8532 8533 8534

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8535 8536 8537

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8538 8539
}

8540
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8541 8542
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8543 8544 8545 8546

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8547 8548 8549

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8550 8551
}

8552
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8553
{
8554 8555 8556
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8557 8558
}

8559
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8560
{
8561
	dev_priv->display.init_clock_gating(dev_priv);
8562 8563
}

8564
void intel_suspend_hw(struct drm_i915_private *dev_priv)
8565
{
8566 8567
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
8568 8569
}

8570
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
8587
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8588
	else if (IS_KABYLAKE(dev_priv))
8589
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8590
	else if (IS_BROXTON(dev_priv))
8591
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8592 8593
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8610
	else if (IS_I965GM(dev_priv))
8611
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8612
	else if (IS_I965G(dev_priv))
8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

8626
/* Set up chip specific power management-related functions */
8627
void intel_init_pm(struct drm_i915_private *dev_priv)
8628
{
8629
	intel_fbc_init(dev_priv);
8630

8631
	/* For cxsr */
8632
	if (IS_PINEVIEW(dev_priv))
8633
		i915_pineview_get_mem_freq(dev_priv);
8634
	else if (IS_GEN5(dev_priv))
8635
		i915_ironlake_get_mem_freq(dev_priv);
8636

8637
	/* For FIFO watermark updates */
8638
	if (INTEL_GEN(dev_priv) >= 9) {
8639
		skl_setup_wm_latency(dev_priv);
8640
		dev_priv->display.initial_watermarks = skl_initial_wm;
8641
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8642
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8643
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8644
		ilk_setup_wm_latency(dev_priv);
8645

8646
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8647
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8648
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8649
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8650
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8651 8652 8653 8654 8655 8656
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8657 8658 8659 8660
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8661
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8662
		vlv_setup_wm_latency(dev_priv);
8663
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8664
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8665
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8666
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8667
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8668 8669 8670 8671 8672 8673
	} else if (IS_G4X(dev_priv)) {
		g4x_setup_wm_latency(dev_priv);
		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8674
	} else if (IS_PINEVIEW(dev_priv)) {
8675
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8676 8677 8678 8679 8680 8681 8682 8683 8684
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8685
			intel_set_memory_cxsr(dev_priv, false);
8686 8687 8688
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8689
	} else if (IS_GEN4(dev_priv)) {
8690
		dev_priv->display.update_wm = i965_update_wm;
8691
	} else if (IS_GEN3(dev_priv)) {
8692 8693
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8694
	} else if (IS_GEN2(dev_priv)) {
8695
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8696
			dev_priv->display.update_wm = i845_update_wm;
8697
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8698 8699
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8700
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8701 8702 8703
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8704 8705 8706
	}
}

8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8719
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8720 8721 8722 8723
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
8724
		MISSING_CASE(flags);
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8751
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8752
{
8753 8754
	int status;

8755
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8756

8757 8758 8759 8760 8761 8762
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8763 8764 8765 8766
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8767 8768 8769
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8770

8771 8772 8773
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8774 8775 8776 8777
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8778 8779
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8780

8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8792 8793 8794
	return 0;
}

8795
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8796
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8797
{
8798 8799
	int status;

8800
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8801

8802 8803 8804 8805 8806 8807
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8808 8809 8810 8811
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8812
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8813
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8814
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8815

8816 8817 8818
	if (__intel_wait_for_register_fw(dev_priv,
					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
					 500, 0, NULL)) {
B
Ben Widawsky 已提交
8819 8820 8821 8822
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8823
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8824

8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8836 8837
	return 0;
}
8838

8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8860
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8861 8862
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8863
 * for @timeout_base_ms and if this times out for another 50 ms with
8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8899
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8900
	 * account for interrupts that could reduce the number of these
8901 8902
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8903 8904 8905 8906
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8907
	ret = wait_for_atomic(COND, 50);
8908 8909 8910 8911 8912 8913 8914
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8915 8916
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8917 8918 8919 8920 8921
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8922 8923
}

8924
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8925
{
8926
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8927 8928
}

8929
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8930
{
8931 8932 8933 8934 8935
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8936 8937
}

8938
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8939
{
8940
	/* CHV needs even values */
8941
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8942 8943
}

8944
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8945
{
8946
	if (IS_GEN9(dev_priv))
8947 8948
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8949
	else if (IS_CHERRYVIEW(dev_priv))
8950
		return chv_gpu_freq(dev_priv, val);
8951
	else if (IS_VALLEYVIEW(dev_priv))
8952 8953 8954
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8955 8956
}

8957 8958
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8959
	if (IS_GEN9(dev_priv))
8960 8961
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8962
	else if (IS_CHERRYVIEW(dev_priv))
8963
		return chv_freq_opcode(dev_priv, val);
8964
	else if (IS_VALLEYVIEW(dev_priv))
8965 8966
		return byt_freq_opcode(dev_priv, val);
	else
8967
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8968
}
8969

8970 8971
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8972
	struct drm_i915_gem_request *req;
8973 8974 8975 8976 8977
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8978
	struct drm_i915_gem_request *req = boost->req;
8979

8980
	if (!i915_gem_request_completed(req))
8981
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8982

8983
	i915_gem_request_put(req);
8984 8985 8986
	kfree(boost);
}

8987
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8988 8989 8990
{
	struct request_boost *boost;

8991
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8992 8993
		return;

8994
	if (i915_gem_request_completed(req))
8995 8996
		return;

8997 8998 8999 9000
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

9001
	boost->req = i915_gem_request_get(req);
9002 9003

	INIT_WORK(&boost->work, __intel_rps_boost_work);
9004
	queue_work(req->i915->wq, &boost->work);
9005 9006
}

9007
void intel_pm_setup(struct drm_i915_private *dev_priv)
9008
{
D
Daniel Vetter 已提交
9009
	mutex_init(&dev_priv->rps.hw_lock);
9010
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
9011

9012 9013
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
9014
	INIT_LIST_HEAD(&dev_priv->rps.clients);
9015

9016
	dev_priv->pm.suspended = false;
9017
	atomic_set(&dev_priv->pm.wakeref_count, 0);
9018
}
9019

9020 9021 9022
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
9023
	u32 lower, upper, tmp;
9024
	int loop = 2;
9025 9026 9027 9028 9029 9030 9031 9032 9033

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
9034 9035 9036 9037 9038
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
9039
	 */
9040 9041
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
9053
	} while (upper != tmp && --loop);
9054

9055 9056 9057 9058 9059
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

9060 9061 9062 9063 9064
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

9065 9066
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
9067
{
9068
	u64 time_hw, units, div;
9069 9070 9071 9072 9073 9074 9075 9076

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9077
		units = 1000;
9078 9079
		div = dev_priv->czclk_freq;

9080
		time_hw = vlv_residency_raw(dev_priv, reg);
9081
	} else if (IS_GEN9_LP(dev_priv)) {
9082
		units = 1000;
9083 9084
		div = 1200;		/* 833.33ns */

9085 9086 9087 9088 9089 9090 9091
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
9092 9093

	intel_runtime_pm_put(dev_priv);
9094
	return DIV_ROUND_UP_ULL(time_hw * units, div);
9095
}