intel_pm.c 203.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void bxt_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

63 64
	/*
	 * FIXME:
65
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 67
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 70 71 72 73 74 75 76

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
77 78
}

79 80
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
81
	struct drm_i915_private *dev_priv = dev->dev_private;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
120
	struct drm_i915_private *dev_priv = dev->dev_private;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

146
	dev_priv->ips.r_t = dev_priv->mem_freq;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
178
		dev_priv->ips.c_m = 0;
179
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180
		dev_priv->ips.c_m = 1;
181
	} else {
182
		dev_priv->ips.c_m = 2;
183 184 185
	}
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

224
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

286 287 288
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

289
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290
{
291 292
	struct drm_device *dev = dev_priv->dev;
	u32 val;
293

294
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296
		POSTING_READ(FW_BLC_SELF_VLV);
297
		dev_priv->wm.vlv.cxsr = enable;
298 299
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300
		POSTING_READ(FW_BLC_SELF);
301 302 303 304
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
305
		POSTING_READ(DSPFW3);
306 307 308 309
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
310
		POSTING_READ(FW_BLC_SELF);
311 312 313 314
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
315
		POSTING_READ(INSTPM);
316 317 318
	} else {
		return;
	}
319

320 321
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
322 323
}

324

325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
339
static const int pessimal_latency_ns = 5000;
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

396
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

412
static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

429
static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
447 448 449 450 451
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 453
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 455 456 457 458
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 460
};
static const struct intel_watermark_params pineview_cursor_wm = {
461 462 463 464 465
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 467
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params g4x_wm_info = {
475 476 477 478 479
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
482 483 484 485 486
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params valleyview_wm_info = {
489 490 491 492 493
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 497 498 499 500
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params i965_cursor_wm_info = {
503 504 505 506 507
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params i945_wm_info = {
510 511 512 513 514
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params i915_wm_info = {
517 518 519 520 521
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
522
};
523
static const struct intel_watermark_params i830_a_wm_info = {
524 525 526 527 528
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
529
};
530 531 532 533 534 535 536
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
537
static const struct intel_watermark_params i845_wm_info = {
538 539 540 541 542
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
592 593 594 595 596 597 598 599 600 601 602

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

603 604 605 606 607 608 609
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

610
	for_each_crtc(dev, crtc) {
611
		if (intel_crtc_active(crtc)) {
612 613 614 615 616 617 618 619 620
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

621
static void pineview_update_wm(struct drm_crtc *unused_crtc)
622
{
623
	struct drm_device *dev = unused_crtc->dev;
624 625 626 627 628 629 630 631 632 633
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634
		intel_set_memory_cxsr(dev_priv, false);
635 636 637 638 639
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
640
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642
		int clock = adjusted_mode->crtc_clock;
643 644 645 646 647 648 649

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
650
		reg |= FW_WM(wm, SR);
651 652 653 654 655 656 657 658 659
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
660
		reg |= FW_WM(wm, CURSOR_SR);
661 662 663 664 665 666 667 668
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
669
		reg |= FW_WM(wm, HPLL_SR);
670 671 672 673 674 675 676 677
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
678
		reg |= FW_WM(wm, HPLL_CURSOR);
679 680 681
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

682
		intel_set_memory_cxsr(dev_priv, true);
683
	} else {
684
		intel_set_memory_cxsr(dev_priv, false);
685 686 687 688 689 690 691 692 693 694 695 696 697
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
698
	const struct drm_display_mode *adjusted_mode;
699 700 701 702 703
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
704
	if (!intel_crtc_active(crtc)) {
705 706 707 708 709
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

710
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711
	clock = adjusted_mode->crtc_clock;
712
	htotal = adjusted_mode->crtc_htotal;
713
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715 716 717 718 719 720 721 722 723 724 725 726

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
727
	line_time_us = max(htotal * 1000 / clock, 1);
728
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
784
	const struct drm_display_mode *adjusted_mode;
785 786 787 788 789 790 791 792 793 794 795 796
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
797
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798
	clock = adjusted_mode->crtc_clock;
799
	htotal = adjusted_mode->crtc_htotal;
800
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802

803
	line_time_us = max(htotal * 1000 / clock, 1);
804 805 806 807 808 809 810 811 812 813 814
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
815
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 817 818 819 820 821 822 823
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

824 825 826
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

827 828 829 830 831 832 833 834 835 836 837 838
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

839
	I915_WRITE(DSPFW1,
840 841 842 843
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844
	I915_WRITE(DSPFW2,
845 846 847
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848
	I915_WRITE(DSPFW3,
849
		   FW_WM(wm->sr.cursor, CURSOR_SR));
850 851 852

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
853 854
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855
		I915_WRITE(DSPFW8_CHV,
856 857
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858
		I915_WRITE(DSPFW9_CHV,
859 860
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861
		I915_WRITE(DSPHOWM,
862 863 864 865 866 867 868 869 870 871
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 873
	} else {
		I915_WRITE(DSPFW7,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876
		I915_WRITE(DSPHOWM,
877 878 879 880 881 882 883
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 885
	}

886 887 888 889 890 891
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

892
	POSTING_READ(DSPFW1);
893 894
}

895 896
#undef FW_WM_VLV

897 898 899 900 901 902
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

926 927
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

928 929 930
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931 932

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1074
static void vlv_compute_wm(struct intel_crtc *crtc)
1075 1076 1077 1078 1079 1080 1081 1082 1083
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1084
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086 1087 1088

	wm_state->num_active_planes = 0;

1089
	vlv_compute_fifo(crtc);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1146
					wm_state->wm[level].cursor;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1165
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 1167 1168 1169 1170 1171 1172
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1263 1264 1265 1266 1267 1268
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1269
	wm->level = to_i915(dev)->wm.max_level;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1288 1289 1290
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1317
	vlv_compute_wm(intel_crtc);
1318 1319
	vlv_merge_wm(dev, &wm);

1320 1321 1322
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1323
		return;
1324
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1334
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 1336
		intel_set_memory_cxsr(dev_priv, false);

1337 1338 1339
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1340 1341 1342 1343 1344 1345 1346 1347
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1348
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1360 1361
}

1362 1363
#define single_plane_enabled(mask) is_power_of_2(mask)

1364
static void g4x_update_wm(struct drm_crtc *crtc)
1365
{
1366
	struct drm_device *dev = crtc->dev;
1367 1368 1369 1370 1371
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1372
	bool cxsr_enabled;
1373

1374
	if (g4x_compute_wm0(dev, PIPE_A,
1375 1376
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1377
			    &planea_wm, &cursora_wm))
1378
		enabled |= 1 << PIPE_A;
1379

1380
	if (g4x_compute_wm0(dev, PIPE_B,
1381 1382
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1383
			    &planeb_wm, &cursorb_wm))
1384
		enabled |= 1 << PIPE_B;
1385 1386 1387 1388 1389 1390

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1391
			     &plane_sr, &cursor_sr)) {
1392
		cxsr_enabled = true;
1393
	} else {
1394
		cxsr_enabled = false;
1395
		intel_set_memory_cxsr(dev_priv, false);
1396 1397
		plane_sr = cursor_sr = 0;
	}
1398

1399 1400
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 1402 1403 1404 1405
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1406 1407 1408 1409
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1410
	I915_WRITE(DSPFW2,
1411
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412
		   FW_WM(cursora_wm, CURSORA));
1413 1414
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1415
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416
		   FW_WM(cursor_sr, CURSOR_SR));
1417 1418 1419

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1420 1421
}

1422
static void i965_update_wm(struct drm_crtc *unused_crtc)
1423
{
1424
	struct drm_device *dev = unused_crtc->dev;
1425 1426 1427 1428
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1429
	bool cxsr_enabled;
1430 1431 1432 1433 1434 1435

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1436
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437
		int clock = adjusted_mode->crtc_clock;
1438
		int htotal = adjusted_mode->crtc_htotal;
1439
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 1442 1443
		unsigned long line_time_us;
		int entries;

1444
		line_time_us = max(htotal * 1000 / clock, 1);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458
			pixel_size * crtc->cursor->state->crtc_w;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1470
		cxsr_enabled = true;
1471
	} else {
1472
		cxsr_enabled = false;
1473
		/* Turn off self refresh if both pipes are enabled */
1474
		intel_set_memory_cxsr(dev_priv, false);
1475 1476 1477 1478 1479 1480
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1481 1482 1483 1484 1485 1486
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1487
	/* update cursor SR watermark */
1488
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489 1490 1491

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1492 1493
}

1494 1495
#undef FW_WM

1496
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497
{
1498
	struct drm_device *dev = unused_crtc->dev;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1513
		wm_info = &i830_a_wm_info;
1514 1515 1516

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1517
	if (intel_crtc_active(crtc)) {
1518
		const struct drm_display_mode *adjusted_mode;
1519
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 1521 1522
		if (IS_GEN2(dev))
			cpp = 4;

1523
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525
					       wm_info, fifo_size, cpp,
1526
					       pessimal_latency_ns);
1527
		enabled = crtc;
1528
	} else {
1529
		planea_wm = fifo_size - wm_info->guard_size;
1530 1531 1532 1533 1534 1535
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1536 1537 1538

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1539
	if (intel_crtc_active(crtc)) {
1540
		const struct drm_display_mode *adjusted_mode;
1541
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 1543 1544
		if (IS_GEN2(dev))
			cpp = 4;

1545
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547
					       wm_info, fifo_size, cpp,
1548
					       pessimal_latency_ns);
1549 1550 1551 1552
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1553
	} else {
1554
		planeb_wm = fifo_size - wm_info->guard_size;
1555 1556 1557
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1558 1559 1560

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1561
	if (IS_I915GM(dev) && enabled) {
1562
		struct drm_i915_gem_object *obj;
1563

1564
		obj = intel_fb_obj(enabled->primary->state->fb);
1565 1566

		/* self-refresh seems busted with untiled */
1567
		if (obj->tiling_mode == I915_TILING_NONE)
1568 1569 1570
			enabled = NULL;
	}

1571 1572 1573 1574 1575 1576
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1577
	intel_set_memory_cxsr(dev_priv, false);
1578 1579 1580 1581 1582

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1583
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584
		int clock = adjusted_mode->crtc_clock;
1585
		int htotal = adjusted_mode->crtc_htotal;
1586
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 1589 1590
		unsigned long line_time_us;
		int entries;

1591
		line_time_us = max(htotal * 1000 / clock, 1);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1622 1623
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1624 1625
}

1626
static void i845_update_wm(struct drm_crtc *unused_crtc)
1627
{
1628
	struct drm_device *dev = unused_crtc->dev;
1629 1630
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1631
	const struct drm_display_mode *adjusted_mode;
1632 1633 1634 1635 1636 1637 1638
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1639
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641
				       &i845_wm_info,
1642
				       dev_priv->display.get_fifo_size(dev, 0),
1643
				       4, pessimal_latency_ns);
1644 1645 1646 1647 1648 1649 1650 1651
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1652
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653
{
1654
	uint32_t pixel_rate;
1655

1656
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657 1658 1659 1660

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1661
	if (pipe_config->pch_pfit.enabled) {
1662
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 1664 1665 1666
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1682
/* latency must be in 0.1us units. */
1683
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684 1685 1686 1687
			       uint32_t latency)
{
	uint64_t ret;

1688 1689 1690
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1691 1692 1693 1694 1695 1696
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1697
/* latency must be in 0.1us units. */
1698
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699 1700 1701 1702 1703
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1704 1705 1706
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1707 1708 1709 1710 1711 1712
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1713
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714 1715 1716 1717 1718
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1719
struct ilk_wm_maximums {
1720 1721 1722 1723 1724 1725
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1726 1727 1728 1729
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1730
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1731
				   const struct intel_plane_state *pstate,
1732 1733
				   uint32_t mem_value,
				   bool is_lp)
1734
{
1735
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1736 1737
	uint32_t method1, method2;

1738
	if (!cstate->base.active || !pstate->visible)
1739 1740
		return 0;

1741
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1742 1743 1744 1745

	if (!is_lp)
		return method1;

1746 1747
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1748 1749
				 drm_rect_width(&pstate->dst),
				 bpp,
1750 1751 1752
				 mem_value);

	return min(method1, method2);
1753 1754
}

1755 1756 1757 1758
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1759
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1760
				   const struct intel_plane_state *pstate,
1761 1762
				   uint32_t mem_value)
{
1763
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1764 1765
	uint32_t method1, method2;

1766
	if (!cstate->base.active || !pstate->visible)
1767 1768
		return 0;

1769 1770 1771
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1772 1773
				 drm_rect_width(&pstate->dst),
				 bpp,
1774 1775 1776 1777
				 mem_value);
	return min(method1, method2);
}

1778 1779 1780 1781
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1782
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1783
				   const struct intel_plane_state *pstate,
1784 1785
				   uint32_t mem_value)
{
1786 1787
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1788
	if (!cstate->base.active || !pstate->visible)
1789 1790
		return 0;

1791 1792
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1793 1794
			      drm_rect_width(&pstate->dst),
			      bpp,
1795 1796 1797
			      mem_value);
}

1798
/* Only for WM_LP. */
1799
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1800
				   const struct intel_plane_state *pstate,
1801
				   uint32_t pri_val)
1802
{
1803 1804
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1805
	if (!cstate->base.active || !pstate->visible)
1806 1807
		return 0;

1808
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1809 1810
}

1811 1812
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1813 1814 1815
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1816 1817 1818 1819 1820
		return 768;
	else
		return 512;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1855 1856 1857
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1858
				     const struct intel_wm_config *config,
1859 1860 1861 1862 1863 1864
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1865
	if (is_sprite && !config->sprites_enabled)
1866 1867 1868
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1869
	if (level == 0 || config->num_pipes_active > 1) {
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1881
	if (config->sprites_enabled) {
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1893
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1894 1895 1896 1897
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1898 1899
				      int level,
				      const struct intel_wm_config *config)
1900 1901
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1902
	if (level > 0 && config->num_pipes_active > 1)
1903 1904 1905
		return 64;

	/* otherwise just report max that registers can hold */
1906
	return ilk_cursor_wm_reg_max(dev, level);
1907 1908
}

1909
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1910 1911 1912
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1913
				    struct ilk_wm_maximums *max)
1914
{
1915 1916 1917
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1918
	max->fbc = ilk_fbc_wm_reg_max(dev);
1919 1920
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1931
static bool ilk_validate_wm_level(int level,
1932
				  const struct ilk_wm_maximums *max,
1933
				  struct intel_wm_level *result)
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1972
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1973
				 const struct intel_crtc *intel_crtc,
1974
				 int level,
1975
				 struct intel_crtc_state *cstate,
1976 1977 1978
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1979
				 struct intel_wm_level *result)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1992 1993 1994 1995 1996
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
1997 1998 1999
	result->enable = true;
}

2000
static uint32_t
2001 2002
hsw_compute_linetime_wm(struct drm_device *dev,
			struct intel_crtc_state *cstate)
2003 2004
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2005 2006
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2007
	u32 linetime, ips_linetime;
2008

2009 2010 2011 2012 2013
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2014
		return 0;
2015

2016 2017 2018
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2019 2020 2021
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2022
					 dev_priv->cdclk_freq);
2023

2024 2025
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2026 2027
}

2028
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2029 2030 2031
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2032 2033
	if (IS_GEN9(dev)) {
		uint32_t val;
2034
		int ret, i;
2035
		int level, max_level = ilk_wm_max_level(dev);
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2078
		/*
2079 2080
		 * WaWmMemoryReadLatency:skl
		 *
2081 2082 2083 2084 2085 2086 2087 2088
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2089 2090 2091 2092 2093
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2094 2095 2096 2097 2098
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2099 2100 2101
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2102

2103 2104
				break;
			}
2105
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2106 2107 2108 2109 2110
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2111 2112 2113 2114
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2115 2116 2117 2118 2119 2120 2121
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2122 2123 2124 2125 2126 2127 2128
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2129 2130 2131
	}
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2150
int ilk_wm_max_level(const struct drm_device *dev)
2151 2152
{
	/* how many WM levels are we expecting */
2153
	if (INTEL_INFO(dev)->gen >= 9)
2154 2155
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2156
		return 4;
2157
	else if (INTEL_INFO(dev)->gen >= 6)
2158
		return 3;
2159
	else
2160 2161
		return 2;
}
2162

2163 2164
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2165
				   const uint16_t wm[8])
2166 2167
{
	int level, max_level = ilk_wm_max_level(dev);
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2178 2179 2180 2181 2182 2183 2184
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2185 2186 2187 2188 2189 2190 2191 2192
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2230
static void ilk_setup_wm_latency(struct drm_device *dev)
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2243 2244 2245 2246

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2247 2248 2249

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2250 2251
}

2252 2253 2254 2255 2256 2257 2258 2259
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2260
/* Compute new watermarks for the pipe */
2261 2262
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2263
{
2264 2265
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2266
	const struct drm_i915_private *dev_priv = dev->dev_private;
2267
	struct intel_crtc_state *cstate = NULL;
2268
	struct intel_plane *intel_plane;
2269 2270
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2271
	struct intel_plane_state *sprstate = NULL;
2272
	struct intel_plane_state *curstate = NULL;
2273 2274 2275 2276 2277
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2278
	struct ilk_wm_maximums max;
2279

2280 2281 2282 2283 2284 2285
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;

2286
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2298 2299 2300 2301 2302 2303 2304
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2305
	pipe_wm->pipe_enabled = cstate->base.active;
2306
	pipe_wm->sprites_enabled = config.sprites_enabled;
2307
	pipe_wm->sprites_scaled = config.sprites_scaled;
2308

2309
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2310
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2311 2312 2313
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2314
	if (config.sprites_scaled)
2315 2316
		max_level = 0;

2317 2318
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2319

2320
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2321
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2322

2323 2324 2325
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2326
	/* At least LP0 must be valid */
2327
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2328
		return -EINVAL;
2329 2330 2331 2332 2333 2334

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2335 2336
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
				     pristate, sprstate, curstate, &wm);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2349
	return 0;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2361 2362
	ret_wm->enable = true;

2363
	for_each_intel_crtc(dev, intel_crtc) {
2364 2365 2366
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2367 2368 2369 2370
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2371

2372 2373 2374 2375 2376
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2377
		if (!wm->enable)
2378
			ret_wm->enable = false;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2391
			 const struct intel_wm_config *config,
2392
			 const struct ilk_wm_maximums *max,
2393 2394
			 struct intel_pipe_wm *merged)
{
2395
	struct drm_i915_private *dev_priv = dev->dev_private;
2396
	int level, max_level = ilk_wm_max_level(dev);
2397
	int last_enabled_level = max_level;
2398

2399 2400 2401 2402 2403
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2404 2405
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2406 2407 2408 2409 2410 2411 2412

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2413 2414 2415 2416 2417
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2418 2419 2420 2421 2422 2423

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2424 2425
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2426 2427 2428
			wm->fbc_val = 0;
		}
	}
2429 2430 2431 2432 2433 2434 2435

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2436
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2437
	    intel_fbc_is_active(dev_priv)) {
2438 2439 2440 2441 2442 2443
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2444 2445
}

2446 2447 2448 2449 2450 2451
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2452 2453 2454 2455 2456
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2457
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2458 2459 2460 2461 2462
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2463
static void ilk_compute_wm_results(struct drm_device *dev,
2464
				   const struct intel_pipe_wm *merged,
2465
				   enum intel_ddb_partitioning partitioning,
2466
				   struct ilk_wm_values *results)
2467
{
2468 2469
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2470

2471
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2472
	results->partitioning = partitioning;
2473

2474
	/* LP1+ register values */
2475
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2476
		const struct intel_wm_level *r;
2477

2478
		level = ilk_wm_lp_to_level(wm_lp, merged);
2479

2480
		r = &merged->wm[level];
2481

2482 2483 2484 2485 2486
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2487
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2488 2489 2490
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2491 2492 2493
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2494 2495 2496 2497 2498 2499 2500
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2501 2502 2503 2504
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2505 2506 2507 2508 2509
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2510
	}
2511

2512
	/* LP0 register values */
2513
	for_each_intel_crtc(dev, intel_crtc) {
2514 2515
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
2516
		enum pipe pipe = intel_crtc->pipe;
2517
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2518 2519 2520 2521

		if (WARN_ON(!r->enable))
			continue;

2522
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2523

2524 2525 2526 2527
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2528 2529 2530
	}
}

2531 2532
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2533
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2534 2535
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2536
{
2537 2538
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2539

2540 2541 2542 2543 2544
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2545 2546
	}

2547 2548
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2549 2550 2551
			return r2;
		else
			return r1;
2552
	} else if (level1 > level2) {
2553 2554 2555 2556 2557 2558
		return r1;
	} else {
		return r2;
	}
}

2559 2560 2561 2562 2563 2564 2565 2566
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2567
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2568 2569
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2570 2571 2572 2573 2574
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2575
	for_each_pipe(dev_priv, pipe) {
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2619 2620
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2621
{
2622
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2623
	bool changed = false;
2624

2625 2626 2627
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2628
		changed = true;
2629 2630 2631 2632
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2633
		changed = true;
2634 2635 2636 2637
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2638
		changed = true;
2639
	}
2640

2641 2642 2643 2644
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2645

2646 2647 2648 2649 2650 2651 2652
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2653 2654
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2655 2656
{
	struct drm_device *dev = dev_priv->dev;
2657
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2658 2659 2660
	unsigned int dirty;
	uint32_t val;

2661
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2662 2663 2664 2665 2666
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2667
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2668
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2669
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2670
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2671
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2672 2673
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2674
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2675
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2676
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2677
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2678
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2679 2680
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2681
	if (dirty & WM_DIRTY_DDB) {
2682
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2697 2698
	}

2699
	if (dirty & WM_DIRTY_FBC) {
2700 2701 2702 2703 2704 2705 2706 2707
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2708 2709 2710 2711 2712
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2713 2714 2715 2716 2717
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2718

2719
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2720
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2721
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2722
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2723
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2724
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2725 2726

	dev_priv->wm.hw = *results;
2727 2728
}

2729 2730 2731 2732 2733 2734 2735
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2736 2737 2738 2739 2740 2741
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2742
#define BXT_DDB_SIZE		512
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2766 2767
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2768
				   const struct intel_crtc_state *cstate,
2769 2770 2771
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2772
	struct drm_crtc *for_crtc = cstate->base.crtc;
2773 2774 2775 2776
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2777
	if (!cstate->base.active) {
2778 2779 2780 2781 2782
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2783 2784 2785 2786
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2787 2788 2789 2790 2791

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2792
		if (!to_intel_crtc(crtc)->active)
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2803
	alloc->end = alloc->start + pipe_size;
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2814 2815 2816 2817
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2818 2819
	if (entry->end)
		entry->end += 1;
2820 2821
}

2822 2823
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2824 2825 2826 2827 2828
{
	enum pipe pipe;
	int plane;
	u32 val;

2829 2830
	memset(ddb, 0, sizeof(*ddb));

2831
	for_each_pipe(dev_priv, pipe) {
2832 2833 2834
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
			continue;

2835
		for_each_plane(dev_priv, pipe, plane) {
2836 2837 2838 2839 2840 2841
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2842 2843
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2844 2845 2846
	}
}

2847
static unsigned int
2848 2849 2850
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2851
{
2852 2853
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2854 2855

	/* for planar format */
2856
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2857
		if (y)  /* y-plane data rate */
2858 2859 2860
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2861
		else    /* uv-plane data rate */
2862 2863 2864
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2865 2866 2867
	}

	/* for packed formats */
2868 2869 2870
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2871 2872 2873 2874 2875 2876 2877 2878
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2879
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2880
{
2881 2882 2883
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2884 2885
	unsigned int total_data_rate = 0;

2886 2887
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2888

2889
		if (pstate->fb == NULL)
2890 2891
			continue;

2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2905 2906 2907 2908 2909 2910
	}

	return total_data_rate;
}

static void
2911
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2912 2913
		      struct skl_ddb_allocation *ddb /* out */)
{
2914
	struct drm_crtc *crtc = cstate->base.crtc;
2915
	struct drm_device *dev = crtc->dev;
2916 2917
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
2918
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2919
	struct intel_plane *intel_plane;
2920
	enum pipe pipe = intel_crtc->pipe;
2921
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2922
	uint16_t alloc_size, start, cursor_blocks;
2923
	uint16_t minimum[I915_MAX_PLANES];
2924
	uint16_t y_minimum[I915_MAX_PLANES];
2925 2926
	unsigned int total_data_rate;

2927
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2928
	alloc_size = skl_ddb_entry_size(alloc);
2929 2930
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2931 2932
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2933 2934 2935 2936
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2937 2938
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2939 2940

	alloc_size -= cursor_blocks;
2941
	alloc->end -= cursor_blocks;
2942

2943
	/* 1. Allocate the mininum required blocks for each active plane */
2944 2945 2946 2947
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
2948

2949 2950 2951
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2952 2953
			continue;

2954 2955 2956 2957
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
2958 2959
	}

2960
	/*
2961 2962
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2963 2964 2965
	 *
	 * FIXME: we may not allocate every single block here.
	 */
2966
	total_data_rate = skl_get_total_relative_data_rate(cstate);
2967

2968
	start = alloc->start;
2969 2970 2971
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
2972 2973
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
2974
		int id = skl_wm_plane_id(intel_plane);
2975

2976 2977 2978
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2979 2980
			continue;

2981
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2982 2983

		/*
2984
		 * allocation for (packed formats) or (uv-plane part of planar format):
2985 2986 2987
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2988
		plane_blocks = minimum[id];
2989 2990
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2991

2992 2993
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
2994 2995

		start += plane_blocks;
2996 2997 2998 2999

		/*
		 * allocation for y_plane part of planar format:
		 */
3000 3001 3002 3003 3004
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3005 3006 3007
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3008 3009
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3010 3011 3012 3013

			start += y_plane_blocks;
		}

3014 3015 3016 3017
	}

}

3018
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3019 3020
{
	/* TODO: Take into account the scalers once we support them */
3021
	return config->base.adjusted_mode.crtc_clock;
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3038
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3039 3040 3041 3042 3043 3044 3045
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3046
			       uint64_t tiling, uint32_t latency)
3047
{
3048 3049 3050
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3051 3052 3053 3054 3055

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3066 3067
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3068
				plane_blocks_per_line;
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3080 3081 3082 3083 3084
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3085 3086 3087 3088 3089
		return true;

	return false;
}

3090
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3091 3092
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3093
				 uint16_t ddb_allocation,
3094
				 int level,
3095 3096
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3097
{
3098 3099
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3100 3101 3102 3103 3104
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3105
	uint8_t bytes_per_pixel;
3106

3107
	if (latency == 0 || !cstate->base.active || !fb)
3108 3109
		return false;

3110 3111
	bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3112
				 bytes_per_pixel,
3113
				 latency);
3114 3115 3116
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3117
				 bytes_per_pixel,
3118
				 fb->modifier[0],
3119
				 latency);
3120

3121
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3122
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3123

3124 3125
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3126 3127
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3128 3129 3130 3131 3132 3133
		if (intel_rotation_90_or_270(plane->state->rotation)) {
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

			switch (bpp) {
3134 3135 3136 3137 3138 3139 3140 3141
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3142
			}
3143 3144
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3145 3146 3147 3148 3149 3150 3151
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3152

3153 3154
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3155

3156
	if (level >= 1 && level <= 7) {
3157 3158
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3159 3160 3161 3162
			res_lines += 4;
		else
			res_blocks++;
	}
3163

3164
	if (res_blocks >= ddb_allocation || res_lines > 31)
3165 3166 3167 3168
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3169 3170 3171 3172 3173 3174

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3175
				 struct intel_crtc_state *cstate,
3176 3177 3178
				 int level,
				 struct skl_wm_level *result)
{
3179 3180 3181
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3182
	uint16_t ddb_blocks;
3183 3184 3185 3186
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3187 3188 3189

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3190
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3191 3192
						cstate,
						intel_plane,
3193
						ddb_blocks,
3194
						level,
3195 3196 3197 3198 3199
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3200
static uint32_t
3201
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3202
{
3203
	if (!cstate->base.active)
3204 3205
		return 0;

3206
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3207
		return 0;
3208

3209 3210
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3211 3212
}

3213
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3214
				      struct skl_wm_level *trans_wm /* out */)
3215
{
3216
	struct drm_crtc *crtc = cstate->base.crtc;
3217
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3218
	struct intel_plane *intel_plane;
3219

3220
	if (!cstate->base.active)
3221
		return;
3222 3223

	/* Until we know more, just disable transition WMs */
3224 3225 3226
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3227
		trans_wm->plane_en[i] = false;
3228
	}
3229 3230
}

3231
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3232 3233 3234
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3235
	struct drm_device *dev = cstate->base.crtc->dev;
3236 3237 3238 3239
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3240 3241
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3242
	}
3243
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3244

3245
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3246 3247 3248 3249 3250 3251 3252 3253 3254
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3255 3256
	uint32_t temp;
	int i;
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3273 3274
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3275

3276
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3277 3278
			temp |= PLANE_WM_EN;

3279
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3280 3281 3282

	}

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3295 3296 3297
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3298 3299
		temp |= PLANE_WM_EN;

3300
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3301

3302 3303 3304
	r->wm_linetime[pipe] = p_wm->linetime;
}

3305 3306
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3307 3308 3309 3310 3311 3312 3313 3314
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3315 3316 3317 3318 3319 3320
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3321
	for_each_intel_crtc(dev, crtc) {
3322 3323 3324
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3325 3326
		if (!new->dirty[pipe])
			continue;
3327

3328
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3329

3330 3331 3332 3333 3334
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3335
				   new->plane[pipe][PLANE_CURSOR][level]);
3336
		}
3337 3338 3339
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3340 3341
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3342

3343
		for (i = 0; i < intel_num_planes(crtc); i++) {
3344 3345 3346
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3347 3348 3349 3350
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3351 3352

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3353
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3354 3355 3356
	}
}

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3381 3382
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3383 3384 3385
{
	int plane;

3386 3387
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3388
	for_each_plane(dev_priv, pipe, plane) {
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3415
	bool reallocated[I915_MAX_PIPES] = {};
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3438
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3463
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3464
			intel_wait_for_vblank(dev, pipe);
3465
			reallocated[pipe] = true;
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3488
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3489 3490 3491
	}
}

3492 3493 3494 3495 3496
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3498

3499
	skl_allocate_pipe_ddb(cstate, ddb);
3500
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3501

3502
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3503 3504
		return false;

3505
	intel_crtc->wm.active.skl = *pipe_wm;
3506

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3530
	for_each_intel_crtc(dev, intel_crtc) {
3531 3532 3533 3534 3535 3536 3537 3538 3539
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3540
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3541 3542 3543 3544 3545 3546 3547 3548 3549
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3550
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3551 3552 3553 3554
		r->dirty[intel_crtc->pipe] = true;
	}
}

3555 3556 3557 3558 3559 3560 3561
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3562
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3563 3564 3565 3566 3567 3568 3569

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3570 3571
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3572 3573 3574

}

3575 3576 3577 3578 3579 3580
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3581 3582
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3583

3584 3585 3586 3587 3588

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3589

3590
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3591 3592
		return;

3593
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3594 3595
	results->dirty[intel_crtc->pipe] = true;

3596
	skl_update_other_pipe_wm(dev, crtc, results);
3597
	skl_write_wm_values(dev_priv, results);
3598
	skl_flush_wm_values(dev_priv, results);
3599 3600 3601

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3602 3603
}

3604
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3605
{
3606 3607
	struct drm_device *dev = dev_priv->dev;
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3608
	struct ilk_wm_maximums max;
3609
	struct intel_wm_config *config = &dev_priv->wm.config;
3610
	struct ilk_wm_values results = {};
3611
	enum intel_ddb_partitioning partitioning;
3612

3613 3614
	ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3615 3616

	/* 5/6 split only in single pipe config on IVB+ */
3617
	if (INTEL_INFO(dev)->gen >= 7 &&
3618 3619 3620
	    config->num_pipes_active == 1 && config->sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3621

3622
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3623
	} else {
3624
		best_lp_wm = &lp_wm_1_2;
3625 3626
	}

3627
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3628
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3629

3630
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3631

3632
	ilk_write_wm_values(dev_priv, &results);
3633 3634
}

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
static void ilk_update_wm(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);

	WARN_ON(cstate->base.active != intel_crtc->active);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (cstate->disable_lp_wm) {
		ilk_disable_lp_wm(crtc->dev);
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
	}

3655
	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3656 3657 3658 3659

	ilk_program_watermarks(dev_priv);
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3678 3679
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3680
					val & PLANE_WM_BLOCKS_MASK;
3681
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3694 3695
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3696
					val & PLANE_WM_BLOCKS_MASK;
3697
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3710 3711
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3724
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3725 3726 3727 3728
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3729
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3730

3731
	if (!intel_crtc->active)
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3744
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3745 3746 3747 3748 3749 3750 3751 3752
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3753
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3754
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3755 3756

	intel_crtc->wm.active.skl = *active;
3757 3758 3759 3760
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3761 3762
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3763 3764
	struct drm_crtc *crtc;

3765
	skl_ddb_get_hw_state(dev_priv, ddb);
3766 3767 3768 3769
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3770 3771 3772 3773
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3774
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3775
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3776 3777
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3778
	enum pipe pipe = intel_crtc->pipe;
3779
	static const i915_reg_t wm0_pipe_reg[] = {
3780 3781 3782 3783 3784 3785
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3786
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3787
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3788

3789
	active->pipe_enabled = intel_crtc->active;
3790 3791

	if (active->pipe_enabled) {
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3816 3817

	intel_crtc->wm.active.ilk = *active;
3818 3819
}

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

3937 3938 3939 3940 3941 3942 3943 3944 3945
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
3946
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

3973 3974 3975
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3976
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3977 3978
	struct drm_crtc *crtc;

3979
	for_each_crtc(dev, crtc)
3980 3981 3982 3983 3984 3985 3986
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3987 3988 3989 3990
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3991

3992
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3993 3994 3995 3996 3997
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3998 3999 4000 4001 4002

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4035
void intel_update_watermarks(struct drm_crtc *crtc)
4036
{
4037
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4038 4039

	if (dev_priv->display.update_wm)
4040
		dev_priv->display.update_wm(crtc);
4041 4042
}

4043 4044 4045 4046 4047 4048 4049 4050 4051
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4052 4053 4054 4055 4056
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4057 4058
	assert_spin_locked(&mchdev_lock);

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4076
static void ironlake_enable_drps(struct drm_device *dev)
4077 4078 4079 4080 4081
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4082 4083
	spin_lock_irq(&mchdev_lock);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4104
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4105 4106
		PXVFREQ_PX_SHIFT;

4107 4108
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4109

4110 4111 4112
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4129
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4130
		DRM_ERROR("stuck trying to change perf mode\n");
4131
	mdelay(1);
4132 4133 4134

	ironlake_set_drps(dev, fstart);

4135 4136
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4137
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4138
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4139
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4140 4141

	spin_unlock_irq(&mchdev_lock);
4142 4143
}

4144
static void ironlake_disable_drps(struct drm_device *dev)
4145 4146
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4147 4148 4149 4150 4151
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4152 4153 4154 4155 4156 4157 4158 4159 4160

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4161
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4162
	mdelay(1);
4163 4164
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4165
	mdelay(1);
4166

4167
	spin_unlock_irq(&mchdev_lock);
4168 4169
}

4170 4171 4172 4173 4174
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4175
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4176
{
4177
	u32 limits;
4178

4179 4180 4181 4182 4183 4184
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4185 4186 4187 4188 4189 4190 4191 4192 4193
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4194 4195 4196 4197

	return limits;
}

4198 4199 4200
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4201 4202
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4203 4204 4205 4206

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4207
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4208 4209 4210 4211
			new_power = BETWEEN;
		break;

	case BETWEEN:
4212
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4213
			new_power = LOW_POWER;
4214
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4215 4216 4217 4218
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4219
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4220 4221 4222 4223
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4224
	if (val <= dev_priv->rps.min_freq_softlimit)
4225
		new_power = LOW_POWER;
4226
	if (val >= dev_priv->rps.max_freq_softlimit)
4227 4228 4229 4230 4231 4232 4233 4234
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4235 4236
		ei_up = 16000;
		threshold_up = 95;
4237 4238

		/* Downclock if less than 85% busy over 32ms */
4239 4240
		ei_down = 32000;
		threshold_down = 85;
4241 4242 4243 4244
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4245 4246
		ei_up = 13000;
		threshold_up = 90;
4247 4248

		/* Downclock if less than 75% busy over 32ms */
4249 4250
		ei_down = 32000;
		threshold_down = 75;
4251 4252 4253 4254
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4255 4256
		ei_up = 10000;
		threshold_up = 85;
4257 4258

		/* Downclock if less than 60% busy over 32ms */
4259 4260
		ei_down = 32000;
		threshold_down = 60;
4261 4262 4263
		break;
	}

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4282
	dev_priv->rps.power = new_power;
4283 4284
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4285 4286 4287
	dev_priv->rps.last_adj = 0;
}

4288 4289 4290 4291 4292
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4293
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4294
	if (val < dev_priv->rps.max_freq_softlimit)
4295
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4296

4297 4298
	mask &= dev_priv->pm_rps_events;

4299
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4300 4301
}

4302 4303 4304
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4305
static void gen6_set_rps(struct drm_device *dev, u8 val)
4306 4307
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4308

4309
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4310
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4311 4312
		return;

4313
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4314 4315
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4316

C
Chris Wilson 已提交
4317 4318 4319 4320 4321
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4322

4323 4324 4325 4326
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4327 4328 4329 4330 4331 4332 4333
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4334
	}
4335 4336 4337 4338

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4339
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4340
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4341

4342 4343
	POSTING_READ(GEN6_RPNSWREQ);

4344
	dev_priv->rps.cur_freq = val;
4345
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4346 4347
}

4348 4349 4350 4351 4352
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4353 4354
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4355 4356 4357 4358 4359

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4360 4361
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4362
	if (val != dev_priv->rps.cur_freq) {
4363
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4364 4365 4366
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4367 4368 4369 4370 4371

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4372
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4373 4374
 *
 * * If Gfx is Idle, then
4375 4376 4377
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4378 4379 4380
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4381
	u32 val = dev_priv->rps.idle_freq;
4382

4383
	if (dev_priv->rps.cur_freq <= val)
4384 4385
		return;

4386 4387 4388 4389 4390
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4391 4392
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4405 4406
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4407 4408
	struct drm_device *dev = dev_priv->dev;

4409
	mutex_lock(&dev_priv->rps.hw_lock);
4410
	if (dev_priv->rps.enabled) {
4411
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4412
			vlv_set_rps_idle(dev_priv);
4413
		else
4414
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4415
		dev_priv->rps.last_adj = 0;
4416
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4417
	}
4418
	mutex_unlock(&dev_priv->rps.hw_lock);
4419

4420
	spin_lock(&dev_priv->rps.client_lock);
4421 4422
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4423
	spin_unlock(&dev_priv->rps.client_lock);
4424 4425
}

4426
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4427 4428
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4429
{
4430 4431 4432 4433 4434 4435 4436
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4437

4438 4439 4440
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4441
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4442 4443
		rps = NULL;

4444 4445 4446 4447 4448 4449 4450 4451
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4452

4453 4454 4455
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4456 4457
		} else
			dev_priv->rps.boosts++;
4458
	}
4459
	spin_unlock(&dev_priv->rps.client_lock);
4460 4461
}

4462
void intel_set_rps(struct drm_device *dev, u8 val)
4463
{
4464
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4465 4466 4467
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4468 4469
}

Z
Zhe Wang 已提交
4470 4471 4472 4473 4474
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4475
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4476 4477
}

4478
static void gen6_disable_rps(struct drm_device *dev)
4479 4480 4481 4482
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4483 4484 4485
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4486 4487 4488 4489 4490 4491 4492
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4493 4494 4495 4496
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4497 4498
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4499
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4500

4501
	I915_WRITE(GEN6_RC_CONTROL, 0);
4502

4503
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4504 4505
}

B
Ben Widawsky 已提交
4506 4507
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4508
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4509 4510 4511 4512 4513
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4514 4515 4516 4517 4518 4519 4520 4521 4522
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4523 4524
}

I
Imre Deak 已提交
4525
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4526
{
4527 4528
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4529 4530
		return 0;

4531
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4532 4533 4534
	if (enable_rc6 >= 0) {
		int mask;

4535
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4536 4537 4538 4539 4540 4541
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4542 4543
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4544 4545 4546

		return enable_rc6 & mask;
	}
4547

4548
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4549
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4550 4551

	return INTEL_RC6_ENABLE;
4552 4553
}

I
Imre Deak 已提交
4554 4555 4556 4557 4558
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4559
static void gen6_init_rps_frequencies(struct drm_device *dev)
4560
{
4561 4562 4563 4564 4565
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4566 4567
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4568
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4581 4582 4583
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4584
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4585 4586
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4587 4588 4589 4590 4591
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4592 4593 4594 4595
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4596 4597
	}

4598
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4599 4600 4601 4602 4603 4604 4605 4606 4607
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4608 4609
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4610 4611 4612 4613
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4614 4615 4616
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4617 4618
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4619 4620 4621 4622
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4623 4624
}

J
Jesse Barnes 已提交
4625
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4626
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4627 4628 4629 4630 4631
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4632 4633
	gen6_init_rps_frequencies(dev);

4634
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4635
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4636 4637 4638 4639
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4640 4641 4642 4643 4644 4645 4646 4647
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4648 4649
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4650 4651 4652 4653 4654
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4655 4656 4657 4658 4659

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4671
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4672 4673 4674 4675 4676

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4677 4678

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4679
	if (IS_SKYLAKE(dev))
4680 4681 4682
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4683 4684 4685 4686
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4687 4688 4689 4690

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4691 4692
	I915_WRITE(GEN6_RC_SLEEP, 0);

4693 4694 4695 4696
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4697 4698 4699 4700 4701
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
4702
	/* WaRsUseTimeoutMode */
4703
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4704
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4705
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4706 4707 4708
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4709 4710
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4711 4712 4713
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4714
	}
Z
Zhe Wang 已提交
4715

4716 4717
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4718
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4719
	 */
4720
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4721 4722 4723 4724
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4725

4726
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4727 4728 4729

}

4730 4731 4732
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4733
	struct intel_engine_cs *ring;
4734
	uint32_t rc6_mask = 0;
4735 4736 4737 4738 4739 4740 4741
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4742
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4743 4744 4745 4746

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4747 4748
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4749 4750 4751 4752 4753 4754 4755 4756

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4757 4758 4759 4760
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4761 4762 4763 4764

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4765
	intel_print_rc6_info(dev, rc6_mask);
4766 4767 4768 4769 4770 4771 4772 4773
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4774 4775

	/* 4 Program defaults and thresholds for RPS*/
4776 4777 4778 4779
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4794 4795

	/* 5: Enable RPS */
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4806
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4807
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4808

4809
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4810 4811
}

4812
static void gen6_enable_rps(struct drm_device *dev)
4813
{
4814
	struct drm_i915_private *dev_priv = dev->dev_private;
4815
	struct intel_engine_cs *ring;
4816
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4817 4818
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4819
	int i, ret;
4820

4821
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4822

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4837
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4838

4839 4840
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4841

4842 4843 4844 4845 4846 4847 4848 4849 4850
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4851 4852
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4853 4854 4855

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4856
	if (IS_IVYBRIDGE(dev))
4857 4858 4859
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4860
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4861 4862
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4863
	/* Check if we are enabling RC6 */
4864 4865 4866 4867
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4868 4869 4870 4871
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4872

4873 4874 4875
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4876

B
Ben Widawsky 已提交
4877
	intel_print_rc6_info(dev, rc6_mask);
4878 4879 4880 4881 4882 4883

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4884 4885
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4886 4887
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4888
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4889
	if (ret)
B
Ben Widawsky 已提交
4890
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4891 4892 4893 4894

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4895
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4896
				 (pcu_mbox & 0xff) * 50);
4897
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4898 4899
	}

4900
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4901
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4902

4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4917
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4918 4919
}

4920
static void __gen6_update_ring_freq(struct drm_device *dev)
4921
{
4922
	struct drm_i915_private *dev_priv = dev->dev_private;
4923
	int min_freq = 15;
4924 4925
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4926
	unsigned int max_gpu_freq, min_gpu_freq;
4927
	int scaling_factor = 180;
4928
	struct cpufreq_policy *policy;
4929

4930
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4931

4932 4933 4934 4935 4936 4937 4938 4939 4940
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4941
		max_ia_freq = tsc_khz;
4942
	}
4943 4944 4945 4946

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4947
	min_ring_freq = I915_READ(DCLK) & 0xf;
4948 4949
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4950

4951
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4952 4953 4954 4955 4956 4957 4958 4959
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

4960 4961 4962 4963 4964
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4965 4966
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
4967 4968
		unsigned int ia_freq = 0, ring_freq = 0;

4969
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4970 4971 4972 4973 4974 4975
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
4976 4977 4978
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4979
			ring_freq = mult_frac(gpu_freq, 5, 4);
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4996

B
Ben Widawsky 已提交
4997 4998
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4999 5000 5001
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5002 5003 5004
	}
}

5005 5006 5007 5008
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5009
	if (!HAS_CORE_RING_FREQ(dev))
5010 5011 5012 5013 5014 5015 5016
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5017
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5018
{
5019
	struct drm_device *dev = dev_priv->dev;
5020 5021
	u32 val, rp0;

5022
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5023

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5039
	}
5040 5041 5042

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5056 5057 5058 5059
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5060 5061 5062
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5063 5064 5065
	return rp1;
}

5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5077
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5078 5079 5080
{
	u32 val, rp0;

5081
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5094
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5095
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5096
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5097 5098 5099 5100 5101
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5102
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5103
{
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5115 5116
}

5117 5118 5119 5120 5121 5122 5123 5124 5125
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5147
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5148 5149 5150 5151 5152 5153
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5154 5155

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5156 5157
}

5158 5159 5160 5161 5162 5163 5164 5165
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5166 5167
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5168 5169 5170 5171 5172 5173 5174 5175
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5176
								      I915_GTT_OFFSET_NONE,
5177 5178 5179 5180
								      pctx_size);
		goto out;
	}

5181 5182
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5201
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5202 5203 5204
	dev_priv->vlv_pctx = pctx;
}

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5216 5217 5218
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5219
	u32 val;
5220 5221 5222 5223 5224

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5238
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5239

5240 5241 5242
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5243
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5244 5245 5246 5247
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5248
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5249 5250
			 dev_priv->rps.efficient_freq);

5251 5252
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5253
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5254 5255
			 dev_priv->rps.rp1_freq);

5256 5257
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5258
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5259 5260
			 dev_priv->rps.min_freq);

5261 5262
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5273 5274
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5275
	struct drm_i915_private *dev_priv = dev->dev_private;
5276
	u32 val;
5277

5278
	cherryview_setup_pctx(dev);
5279 5280 5281

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5282
	mutex_lock(&dev_priv->sb_lock);
5283
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5284
	mutex_unlock(&dev_priv->sb_lock);
5285

5286 5287 5288 5289
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5290
	default:
5291 5292 5293
		dev_priv->mem_freq = 1600;
		break;
	}
5294
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5295

5296 5297 5298
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5299
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5300 5301 5302 5303
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5304
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5305 5306
			 dev_priv->rps.efficient_freq);

5307 5308
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5309
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5310 5311
			 dev_priv->rps.rp1_freq);

5312 5313
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5314
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5315
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5316 5317
			 dev_priv->rps.min_freq);

5318 5319 5320 5321 5322 5323
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5324 5325
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5326 5327 5328 5329 5330 5331 5332 5333
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5334 5335
}

5336 5337 5338 5339 5340
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5341 5342 5343 5344
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5345
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5361
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5362

5363 5364 5365
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5366 5367 5368 5369 5370 5371 5372 5373 5374
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5375 5376
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5390
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5391 5392 5393

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5394
	/* 4 Program defaults and thresholds for RPS*/
5395
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5406
		   GEN6_RP_MEDIA_IS_GFX |
5407 5408 5409 5410
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5411 5412 5413 5414 5415 5416
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5417 5418
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5419 5420 5421
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5422
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5423 5424 5425 5426
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5427
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5428 5429 5430
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5431
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5432 5433 5434 5435
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5436
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5437 5438
}

5439 5440 5441
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5442
	struct intel_engine_cs *ring;
5443
	u32 gtfifodbg, val, rc6_mode = 0;
5444 5445 5446 5447
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5448 5449
	valleyview_check_pctx(dev_priv);

5450
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5451 5452
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5453 5454 5455
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5456
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5457
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5458

5459 5460 5461
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5462
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5485
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5486 5487

	/* allows RC6 residency counter to work */
5488
	I915_WRITE(VLV_COUNTER_CONTROL,
5489 5490
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5491 5492
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5493

5494
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5495
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5496 5497 5498

	intel_print_rc6_info(dev, rc6_mode);

5499
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5500

D
Deepak S 已提交
5501 5502 5503 5504 5505 5506
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5507
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5508

5509 5510 5511
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5512
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5513 5514
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5515
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5516
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5517
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5518
			 dev_priv->rps.cur_freq);
5519

5520
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5521
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5522
			 dev_priv->rps.efficient_freq);
5523

5524
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5525

5526
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5527 5528
}

5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5558
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5559 5560 5561 5562 5563 5564
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5565 5566
	assert_spin_locked(&mchdev_lock);

5567
	diff1 = now - dev_priv->ips.last_time1;
5568 5569 5570 5571 5572 5573 5574

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5575
		return dev_priv->ips.chipset_power;
5576 5577 5578 5579 5580 5581 5582 5583

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5584 5585
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5586 5587
		diff += total_count;
	} else {
5588
		diff = total_count - dev_priv->ips.last_count1;
5589 5590 5591
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5592 5593
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5604 5605
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5606

5607
	dev_priv->ips.chipset_power = ret;
5608 5609 5610 5611

	return ret;
}

5612 5613
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5614
	struct drm_device *dev = dev_priv->dev;
5615 5616
	unsigned long val;

5617
	if (INTEL_INFO(dev)->gen != 5)
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5656
{
5657
	struct drm_device *dev = dev_priv->dev;
5658 5659 5660
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5661
	if (INTEL_INFO(dev)->is_mobile)
5662 5663 5664
		return vm > 0 ? vm : 0;

	return vd;
5665 5666
}

5667
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5668
{
5669
	u64 now, diff, diffms;
5670 5671
	u32 count;

5672
	assert_spin_locked(&mchdev_lock);
5673

5674 5675 5676
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5677 5678 5679 5680 5681 5682 5683

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5684 5685
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5686 5687
		diff += count;
	} else {
5688
		diff = count - dev_priv->ips.last_count2;
5689 5690
	}

5691 5692
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5693 5694 5695 5696

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5697
	dev_priv->ips.gfx_power = diff;
5698 5699
}

5700 5701
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5702 5703 5704
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5705 5706
		return;

5707
	spin_lock_irq(&mchdev_lock);
5708 5709 5710

	__i915_update_gfx_val(dev_priv);

5711
	spin_unlock_irq(&mchdev_lock);
5712 5713
}

5714
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5715 5716 5717 5718
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5719 5720
	assert_spin_locked(&mchdev_lock);

5721
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5741
	corr2 = (corr * dev_priv->ips.corr);
5742 5743 5744 5745

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5746
	__i915_update_gfx_val(dev_priv);
5747

5748
	return dev_priv->ips.gfx_power + state2;
5749 5750
}

5751 5752
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5753
	struct drm_device *dev = dev_priv->dev;
5754 5755
	unsigned long val;

5756
	if (INTEL_INFO(dev)->gen != 5)
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5779
	spin_lock_irq(&mchdev_lock);
5780 5781 5782 5783
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5784 5785
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5786 5787 5788 5789

	ret = chipset_val + graphics_val;

out_unlock:
5790
	spin_unlock_irq(&mchdev_lock);
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5806
	spin_lock_irq(&mchdev_lock);
5807 5808 5809 5810 5811 5812
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5813 5814
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5815 5816

out_unlock:
5817
	spin_unlock_irq(&mchdev_lock);
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5834
	spin_lock_irq(&mchdev_lock);
5835 5836 5837 5838 5839 5840
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5841 5842
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5843 5844

out_unlock:
5845
	spin_unlock_irq(&mchdev_lock);
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5859
	struct intel_engine_cs *ring;
5860
	bool ret = false;
5861
	int i;
5862

5863
	spin_lock_irq(&mchdev_lock);
5864 5865 5866 5867
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5868 5869
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5870 5871

out_unlock:
5872
	spin_unlock_irq(&mchdev_lock);
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5889
	spin_lock_irq(&mchdev_lock);
5890 5891 5892 5893 5894 5895
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5896
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5897

5898
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5899 5900 5901
		ret = false;

out_unlock:
5902
	spin_unlock_irq(&mchdev_lock);
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5930 5931
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5932
	spin_lock_irq(&mchdev_lock);
5933
	i915_mch_dev = dev_priv;
5934
	spin_unlock_irq(&mchdev_lock);
5935 5936 5937 5938 5939 5940

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5941
	spin_lock_irq(&mchdev_lock);
5942
	i915_mch_dev = NULL;
5943
	spin_unlock_irq(&mchdev_lock);
5944
}
5945

5946
static void intel_init_emon(struct drm_device *dev)
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
5964
		I915_WRITE(PEW(i), 0);
5965
	for (i = 0; i < 3; i++)
5966
		I915_WRITE(DEW(i), 0);
5967 5968 5969

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
5970
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5991
		I915_WRITE(PXW(i), val);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6007
		I915_WRITE(PXWL(i), 0);
6008 6009 6010 6011 6012 6013

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6014
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6015 6016
}

6017 6018
void intel_init_gt_powersave(struct drm_device *dev)
{
6019 6020
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6021
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6022 6023 6024 6025 6026 6027 6028 6029
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6030

6031 6032 6033
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6034
		valleyview_init_gt_powersave(dev);
6035 6036 6037 6038
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6039 6040
	struct drm_i915_private *dev_priv = dev->dev_private;

6041 6042 6043
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6044
		valleyview_cleanup_gt_powersave(dev);
6045 6046 6047

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6048 6049
}

6050 6051 6052 6053 6054 6055
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6056
	gen6_disable_rps_interrupts(dev);
6057 6058
}

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6071 6072 6073
	if (INTEL_INFO(dev)->gen < 6)
		return;

6074
	gen6_suspend_rps(dev);
6075 6076 6077

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6078 6079
}

6080 6081
void intel_disable_gt_powersave(struct drm_device *dev)
{
6082 6083
	struct drm_i915_private *dev_priv = dev->dev_private;

6084
	if (IS_IRONLAKE_M(dev)) {
6085
		ironlake_disable_drps(dev);
6086
	} else if (INTEL_INFO(dev)->gen >= 6) {
6087
		intel_suspend_gt_powersave(dev);
6088

6089
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6090 6091 6092
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6093 6094
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6095 6096 6097
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6098

6099
		dev_priv->rps.enabled = false;
6100
		mutex_unlock(&dev_priv->rps.hw_lock);
6101
	}
6102 6103
}

6104 6105 6106 6107 6108 6109 6110
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6111
	mutex_lock(&dev_priv->rps.hw_lock);
6112

6113
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6114

6115 6116 6117
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6118
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6119
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6120
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6121
		gen9_enable_rps(dev);
6122
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6123
			__gen6_update_ring_freq(dev);
6124 6125
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6126
		__gen6_update_ring_freq(dev);
6127 6128
	} else {
		gen6_enable_rps(dev);
6129
		__gen6_update_ring_freq(dev);
6130
	}
6131 6132 6133 6134 6135 6136 6137

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6138
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6139

6140
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6141

6142
	mutex_unlock(&dev_priv->rps.hw_lock);
6143 6144

	intel_runtime_pm_put(dev_priv);
6145 6146
}

6147 6148
void intel_enable_gt_powersave(struct drm_device *dev)
{
6149 6150
	struct drm_i915_private *dev_priv = dev->dev_private;

6151 6152 6153 6154
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6155
	if (IS_IRONLAKE_M(dev)) {
6156
		mutex_lock(&dev->struct_mutex);
6157 6158
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6159
		mutex_unlock(&dev->struct_mutex);
6160
	} else if (INTEL_INFO(dev)->gen >= 6) {
6161 6162 6163 6164
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6165 6166 6167 6168 6169 6170 6171
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6172
		 */
6173 6174 6175
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6176 6177 6178
	}
}

6179 6180 6181 6182
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6183 6184 6185 6186
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6187 6188 6189
	dev_priv->rps.enabled = false;
}

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6202 6203 6204
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6205
	enum pipe pipe;
6206

6207
	for_each_pipe(dev_priv, pipe) {
6208 6209 6210
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6211 6212 6213

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6214 6215 6216
	}
}

6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6231
static void ironlake_init_clock_gating(struct drm_device *dev)
6232 6233
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6234
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6235

6236 6237 6238 6239
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6240 6241 6242
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6260
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6261 6262 6263
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6264 6265

	ilk_init_lp_watermarks(dev);
6266 6267 6268 6269 6270 6271 6272 6273 6274

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6275
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6276 6277 6278 6279 6280 6281 6282 6283
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6284 6285
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6286 6287 6288 6289 6290 6291
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6292

6293
	/* WaDisableRenderCachePipelinedFlush:ilk */
6294 6295
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6296

6297 6298 6299
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6300
	g4x_disable_trickle_feed(dev);
6301

6302 6303 6304 6305 6306 6307 6308
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6309
	uint32_t val;
6310 6311 6312 6313 6314 6315

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6316 6317 6318
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6319 6320
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6321 6322 6323
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6324
	for_each_pipe(dev_priv, pipe) {
6325 6326 6327
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6328
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6329
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6330 6331 6332
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6333 6334
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6335
	/* WADP0ClockGatingDisable */
6336
	for_each_pipe(dev_priv, pipe) {
6337 6338 6339
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6340 6341
}

6342 6343 6344 6345 6346 6347
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6348 6349 6350
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6351 6352
}

6353
static void gen6_init_clock_gating(struct drm_device *dev)
6354 6355
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6356
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6357

6358
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6359 6360 6361 6362 6363

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6364
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6365 6366 6367
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6368 6369 6370
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6371 6372 6373
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6374 6375 6376 6377
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6378 6379
	 */
	I915_WRITE(GEN6_GT_MODE,
6380
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6381

6382
	ilk_init_lp_watermarks(dev);
6383 6384

	I915_WRITE(CACHE_MODE_0,
6385
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6401
	 *
6402 6403
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6404 6405 6406 6407 6408
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6409
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6410 6411
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6412

6413 6414 6415 6416 6417 6418 6419 6420
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6421 6422 6423 6424 6425 6426 6427 6428
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6429 6430
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6431 6432 6433 6434 6435 6436 6437
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6438 6439 6440 6441
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6442

6443
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6444

6445
	cpt_init_clock_gating(dev);
6446 6447

	gen6_check_mch_setup(dev);
6448 6449 6450 6451 6452 6453
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6454
	/*
6455
	 * WaVSThreadDispatchOverride:ivb,vlv
6456 6457 6458 6459
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6460 6461 6462 6463 6464 6465 6466 6467
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6468 6469 6470 6471 6472 6473 6474 6475
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6476
	if (HAS_PCH_LPT_LP(dev))
6477 6478 6479
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6480 6481

	/* WADPOClockGatingDisable:hsw */
6482 6483
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6484
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6485 6486
}

6487 6488 6489 6490
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6491
	if (HAS_PCH_LPT_LP(dev)) {
6492 6493 6494 6495 6496 6497 6498
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6499
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6500 6501
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6502
	enum pipe pipe;
6503
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6504

6505
	ilk_init_lp_watermarks(dev);
6506

6507
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6508
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6509

6510
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6511 6512 6513
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6514
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6515
	for_each_pipe(dev_priv, pipe) {
6516
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6517
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6518
			   BDW_DPRS_MASK_VBLANK_SRD);
6519
	}
6520

6521 6522 6523 6524 6525
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6526

6527 6528
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6529 6530 6531 6532

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6533

6534 6535 6536 6537 6538 6539 6540 6541 6542
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6543 6544 6545 6546 6547 6548 6549
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6550
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6551 6552
}

6553 6554 6555 6556
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6557
	ilk_init_lp_watermarks(dev);
6558

6559 6560 6561 6562 6563
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6564
	/* This is required by WaCatErrorRejectionIssue:hsw */
6565 6566 6567 6568
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6569 6570 6571
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6572

6573 6574 6575
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6576 6577 6578 6579
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6580
	/* WaDisable4x2SubspanOptimization:hsw */
6581 6582
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6583

6584 6585 6586
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6587 6588 6589 6590
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6591 6592
	 */
	I915_WRITE(GEN7_GT_MODE,
6593
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6594

6595 6596 6597 6598
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6599
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6600 6601
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6602 6603 6604
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6605

6606
	lpt_init_clock_gating(dev);
6607 6608
}

6609
static void ivybridge_init_clock_gating(struct drm_device *dev)
6610 6611
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6612
	uint32_t snpcr;
6613

6614
	ilk_init_lp_watermarks(dev);
6615

6616
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6617

6618
	/* WaDisableEarlyCull:ivb */
6619 6620 6621
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6622
	/* WaDisableBackToBackFlipFix:ivb */
6623 6624 6625 6626
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6627
	/* WaDisablePSDDualDispatchEnable:ivb */
6628 6629 6630 6631
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6632 6633 6634
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6635
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6636 6637 6638
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6639
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6640 6641 6642
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6643 6644 6645 6646
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6647 6648 6649 6650
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6651 6652
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6653
	}
6654

6655
	/* WaForceL3Serialization:ivb */
6656 6657 6658
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6659
	/*
6660
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6661
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6662 6663
	 */
	I915_WRITE(GEN6_UCGCTL2,
6664
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6665

6666
	/* This is required by WaCatErrorRejectionIssue:ivb */
6667 6668 6669 6670
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6671
	g4x_disable_trickle_feed(dev);
6672 6673

	gen7_setup_fixed_func_scheduler(dev_priv);
6674

6675 6676 6677 6678 6679
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6680

6681
	/* WaDisable4x2SubspanOptimization:ivb */
6682 6683
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6684

6685 6686 6687
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6688 6689 6690 6691
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6692 6693
	 */
	I915_WRITE(GEN7_GT_MODE,
6694
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6695

6696 6697 6698 6699
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6700

6701 6702
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6703 6704

	gen6_check_mch_setup(dev);
6705 6706
}

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6718
static void valleyview_init_clock_gating(struct drm_device *dev)
6719 6720 6721
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6722
	vlv_init_display_clock_gating(dev_priv);
6723

6724
	/* WaDisableEarlyCull:vlv */
6725 6726 6727
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6728
	/* WaDisableBackToBackFlipFix:vlv */
6729 6730 6731 6732
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6733
	/* WaPsdDispatchEnable:vlv */
6734
	/* WaDisablePSDDualDispatchEnable:vlv */
6735
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6736 6737
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6738

6739 6740 6741
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6742
	/* WaForceL3Serialization:vlv */
6743 6744 6745
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6746
	/* WaDisableDopClockGating:vlv */
6747 6748 6749
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6750
	/* This is required by WaCatErrorRejectionIssue:vlv */
6751 6752 6753 6754
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6755 6756
	gen7_setup_fixed_func_scheduler(dev_priv);

6757
	/*
6758
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6759
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6760 6761
	 */
	I915_WRITE(GEN6_UCGCTL2,
6762
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6763

6764 6765 6766 6767 6768
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6769

6770 6771 6772 6773
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6774 6775
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6776

6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6788 6789 6790 6791 6792 6793
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6794
	/*
6795
	 * WaDisableVLVClockGating_VBIIssue:vlv
6796 6797 6798
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6799
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6800 6801
}

6802 6803 6804 6805
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6806
	vlv_init_display_clock_gating(dev_priv);
6807

6808 6809 6810 6811 6812
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6813 6814 6815 6816

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6817 6818 6819 6820

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6821 6822 6823 6824

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6825 6826 6827 6828 6829 6830

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6831 6832
}

6833
static void g4x_init_clock_gating(struct drm_device *dev)
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6849 6850 6851 6852

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6853

6854 6855 6856
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6857
	g4x_disable_trickle_feed(dev);
6858 6859
}

6860
static void crestline_init_clock_gating(struct drm_device *dev)
6861 6862 6863 6864 6865 6866 6867 6868
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6869 6870
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6871 6872 6873

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6874 6875
}

6876
static void broadwater_init_clock_gating(struct drm_device *dev)
6877 6878 6879 6880 6881 6882 6883 6884 6885
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6886 6887
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6888 6889 6890

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6891 6892
}

6893
static void gen3_init_clock_gating(struct drm_device *dev)
6894 6895 6896 6897 6898 6899 6900
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6901 6902 6903

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6904 6905 6906

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6907 6908

	/* interrupts should cause a wake up from C3 */
6909
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6910 6911 6912

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6913 6914 6915

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6916 6917
}

6918
static void i85x_init_clock_gating(struct drm_device *dev)
6919 6920 6921 6922
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6923 6924 6925 6926

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6927 6928 6929

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6930 6931
}

6932
static void i830_init_clock_gating(struct drm_device *dev)
6933 6934 6935 6936
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6937 6938 6939 6940

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6941 6942 6943 6944 6945 6946
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6947 6948
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6949 6950
}

6951 6952 6953 6954 6955 6956
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6957 6958 6959 6960 6961
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6962
	intel_fbc_init(dev_priv);
6963

6964 6965 6966 6967 6968 6969
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6970
	/* For FIFO watermark updates */
6971
	if (INTEL_INFO(dev)->gen >= 9) {
6972 6973
		skl_setup_wm_latency(dev);

6974 6975 6976
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
6977
		dev_priv->display.update_wm = skl_update_wm;
6978
	} else if (HAS_PCH_SPLIT(dev)) {
6979
		ilk_setup_wm_latency(dev);
6980

6981 6982 6983 6984 6985
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
6986
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6987 6988 6989 6990 6991 6992
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6993
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6994
		else if (IS_GEN6(dev))
6995
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6996
		else if (IS_IVYBRIDGE(dev))
6997
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6998
		else if (IS_HASWELL(dev))
6999
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7000
		else if (INTEL_INFO(dev)->gen == 8)
7001
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7002
	} else if (IS_CHERRYVIEW(dev)) {
7003 7004 7005
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7006 7007
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7008
	} else if (IS_VALLEYVIEW(dev)) {
7009 7010 7011
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7025
			intel_set_memory_cxsr(dev_priv, false);
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7043 7044 7045
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7046
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7047 7048
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7049
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7050 7051 7052 7053 7054 7055 7056 7057
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7058 7059 7060
	}
}

7061
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7062
{
7063
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7064 7065 7066 7067 7068 7069 7070

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7071
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7086
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7087
{
7088
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7108

7109
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7110
{
7111 7112 7113 7114 7115 7116 7117 7118
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7119 7120
	case 400:
		return 20;
7121 7122 7123
	default:
		return -1;
	}
7124
}
7125

7126 7127
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7128
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7129 7130 7131 7132 7133 7134

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7135 7136
}

7137
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7138
{
7139
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7140

7141 7142 7143
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7144

7145
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7146 7147
}

7148
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7149
{
7150
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7151

7152 7153 7154
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7155

7156
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7157 7158
}

7159
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7160
{
7161
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7162

7163 7164 7165
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7166

7167
	/* CHV needs even values */
7168
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7169 7170
}

7171
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7172
{
7173
	if (IS_GEN9(dev_priv->dev))
7174 7175
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7176
	else if (IS_CHERRYVIEW(dev_priv->dev))
7177
		return chv_gpu_freq(dev_priv, val);
7178
	else if (IS_VALLEYVIEW(dev_priv->dev))
7179 7180 7181
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7182 7183
}

7184 7185
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7186
	if (IS_GEN9(dev_priv->dev))
7187 7188
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7189
	else if (IS_CHERRYVIEW(dev_priv->dev))
7190
		return chv_freq_opcode(dev_priv, val);
7191
	else if (IS_VALLEYVIEW(dev_priv->dev))
7192 7193
		return byt_freq_opcode(dev_priv, val);
	else
7194
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7195
}
7196

7197 7198
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7199
	struct drm_i915_gem_request *req;
7200 7201 7202 7203 7204
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7205
	struct drm_i915_gem_request *req = boost->req;
7206

7207 7208 7209
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7210

7211
	i915_gem_request_unreference__unlocked(req);
7212 7213 7214 7215
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7216
				       struct drm_i915_gem_request *req)
7217 7218 7219
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7220
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7221 7222
		return;

7223 7224 7225
	if (i915_gem_request_completed(req, true))
		return;

7226 7227 7228 7229
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7230 7231
	i915_gem_request_reference(req);
	boost->req = req;
7232 7233 7234 7235 7236

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7237
void intel_pm_setup(struct drm_device *dev)
7238 7239 7240
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7241
	mutex_init(&dev_priv->rps.hw_lock);
7242
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7243

7244 7245
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7246
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7247 7248
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7249

7250
	dev_priv->pm.suspended = false;
7251
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7252
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7253
}