intel_pm.c 225.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

149
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

176
	dev_priv->ips.r_t = dev_priv->mem_freq;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
208
		dev_priv->ips.c_m = 0;
209
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
210
		dev_priv->ips.c_m = 1;
211
	} else {
212
		dev_priv->ips.c_m = 2;
213 214 215
	}
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

254 255
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

316 317 318
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

319
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
320
{
321
	u32 val;
322

323
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
325
		POSTING_READ(FW_BLC_SELF_VLV);
326
		dev_priv->wm.vlv.cxsr = enable;
327
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
328
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
329
		POSTING_READ(FW_BLC_SELF);
330
	} else if (IS_PINEVIEW(dev_priv)) {
331 332 333
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
334
		POSTING_READ(DSPFW3);
335
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
336 337 338
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
339
		POSTING_READ(FW_BLC_SELF);
340
	} else if (IS_I915GM(dev_priv)) {
341 342 343 344 345
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
346 347 348
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
349
		POSTING_READ(INSTPM);
350 351 352
	} else {
		return;
	}
353

354 355
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
356 357
}

358

359 360 361 362 363 364 365 366 367 368 369 370 371 372
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
373
static const int pessimal_latency_ns = 5000;
374

375 376 377 378 379 380
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
381
	struct drm_i915_private *dev_priv = to_i915(dev);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

430
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
431
{
432
	struct drm_i915_private *dev_priv = to_i915(dev);
433 434 435 436 437 438 439 440 441 442 443 444 445
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

446
static int i830_get_fifo_size(struct drm_device *dev, int plane)
447
{
448
	struct drm_i915_private *dev_priv = to_i915(dev);
449 450 451 452 453 454 455 456 457 458 459 460 461 462
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

463
static int i845_get_fifo_size(struct drm_device *dev, int plane)
464
{
465
	struct drm_i915_private *dev_priv = to_i915(dev);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
481 482 483 484 485
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
488 489 490 491 492
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params pineview_cursor_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
502 503 504 505 506
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params g4x_wm_info = {
509 510 511 512 513
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
516 517 518 519 520
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params i965_cursor_wm_info = {
523 524 525 526 527
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params i945_wm_info = {
530 531 532 533 534
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
535 536
};
static const struct intel_watermark_params i915_wm_info = {
537 538 539 540 541
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
542
};
543
static const struct intel_watermark_params i830_a_wm_info = {
544 545 546 547 548
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
549
};
550 551 552 553 554 555 556
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
557
static const struct intel_watermark_params i845_wm_info = {
558 559 560 561 562
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
563 564 565 566 567 568
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
569
 * @cpp: bytes per pixel
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
585
					int fifo_size, int cpp,
586 587 588 589 590 591 592 593 594 595
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
596
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
597 598 599 600 601 602 603 604 605 606 607 608 609 610
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
611 612 613 614 615 616 617 618 619 620 621

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

622 623 624
	return wm_size;
}

625
static struct intel_crtc *single_enabled_crtc(struct drm_device *dev)
626
{
627
	struct intel_crtc *crtc, *enabled = NULL;
628

629 630
	for_each_intel_crtc(dev, crtc) {
		if (intel_crtc_active(crtc)) {
631 632 633 634 635 636 637 638 639
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

640
static void pineview_update_wm(struct intel_crtc *unused_crtc)
641
{
642
	struct drm_device *dev = unused_crtc->base.dev;
643
	struct drm_i915_private *dev_priv = to_i915(dev);
644
	struct intel_crtc *crtc;
645 646 647 648
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

649 650 651 652
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
653 654
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655
		intel_set_memory_cxsr(dev_priv, false);
656 657 658 659 660
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
661 662 663 664 665
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
666
		int clock = adjusted_mode->crtc_clock;
667 668 669 670

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
671
					cpp, latency->display_sr);
672 673
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
674
		reg |= FW_WM(wm, SR);
675 676 677 678 679 680
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
681
					cpp, latency->cursor_sr);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
684
		reg |= FW_WM(wm, CURSOR_SR);
685 686 687 688 689
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
690
					cpp, latency->display_hpll_disable);
691 692
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
693
		reg |= FW_WM(wm, HPLL_SR);
694 695 696 697 698
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
699
					cpp, latency->cursor_hpll_disable);
700 701
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
702
		reg |= FW_WM(wm, HPLL_CURSOR);
703 704 705
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

706
		intel_set_memory_cxsr(dev_priv, true);
707
	} else {
708
		intel_set_memory_cxsr(dev_priv, false);
709 710 711
	}
}

712
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
713 714 715 716 717 718 719 720
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
721
	struct intel_crtc *crtc;
722
	const struct drm_display_mode *adjusted_mode;
723
	const struct drm_framebuffer *fb;
724
	int htotal, hdisplay, clock, cpp;
725 726 727
	int line_time_us, line_count;
	int entries, tlb_miss;

728
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
729
	if (!intel_crtc_active(crtc)) {
730 731 732 733 734
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

735 736
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
737
	clock = adjusted_mode->crtc_clock;
738
	htotal = adjusted_mode->crtc_htotal;
739 740
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
741 742

	/* Use the small buffer method to calculate plane watermark */
743
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
744 745 746 747 748 749 750 751 752
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
753
	line_time_us = max(htotal * 1000 / clock, 1);
754
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
755
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
774
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
775 776 777 778 779 780 781 782
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
783
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
784 785 786 787 788
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
789
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
790 791 792 793 794 795 796 797 798 799 800 801
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

802
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
803 804 805 806 807 808
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
809
	struct intel_crtc *crtc;
810
	const struct drm_display_mode *adjusted_mode;
811
	const struct drm_framebuffer *fb;
812
	int hdisplay, htotal, cpp, clock;
813 814 815 816 817 818 819 820 821 822
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

823
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
824 825
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
826
	clock = adjusted_mode->crtc_clock;
827
	htotal = adjusted_mode->crtc_htotal;
828 829
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
830

831
	line_time_us = max(htotal * 1000 / clock, 1);
832
	line_count = (latency_ns / line_time_us + 1000) / 1000;
833
	line_size = hdisplay * cpp;
834 835

	/* Use the minimum of the small and large buffer method for primary */
836
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
837 838 839 840 841 842
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
843
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
844 845 846
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

847
	return g4x_check_srwm(dev_priv,
848 849 850 851
			      *display_wm, *cursor_wm,
			      display, cursor);
}

852 853 854
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

855 856 857 858 859 860 861 862 863 864 865 866
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

867
	I915_WRITE(DSPFW1,
868 869 870 871
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
872
	I915_WRITE(DSPFW2,
873 874 875
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
876
	I915_WRITE(DSPFW3,
877
		   FW_WM(wm->sr.cursor, CURSOR_SR));
878 879 880

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
881 882
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
883
		I915_WRITE(DSPFW8_CHV,
884 885
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
886
		I915_WRITE(DSPFW9_CHV,
887 888
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
889
		I915_WRITE(DSPHOWM,
890 891 892 893 894 895 896 897 898 899
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900 901
	} else {
		I915_WRITE(DSPFW7,
902 903
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
904
		I915_WRITE(DSPHOWM,
905 906 907 908 909 910 911
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
912 913
	}

914 915 916 917 918 919
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

920
	POSTING_READ(DSPFW1);
921 922
}

923 924
#undef FW_WM_VLV

925 926 927 928 929 930
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

931 932 933 934
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
935
				   unsigned int cpp,
936 937 938 939 940
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
941
	ret = (ret + 1) * horiz_pixels * cpp;
942 943 944 945 946 947 948
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
949
	struct drm_i915_private *dev_priv = to_i915(dev);
950 951 952 953

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

954 955
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

956 957 958
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
959 960

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
961 962 963 964 965 966 967 968 969
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
970
	int clock, htotal, cpp, width, wm;
971 972 973 974

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

975
	if (!state->base.visible)
976 977
		return 0;

978
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
994
		wm = vlv_wm_method2(clock, htotal, width, cpp,
995 996 997 998 999 1000
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1017
		if (state->base.visible) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1033
		if (!state->base.visible) {
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1102
static void vlv_compute_wm(struct intel_crtc *crtc)
1103 1104 1105 1106 1107 1108 1109 1110 1111
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1112
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1113
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1114 1115 1116

	wm_state->num_active_planes = 0;

1117
	vlv_compute_fifo(crtc);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1133
		if (!state->base.visible)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1174
					wm_state->wm[level].cursor;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1193
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1194 1195 1196 1197 1198 1199 1200
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1291 1292 1293 1294 1295 1296
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1297
	wm->level = to_i915(dev)->wm.max_level;
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1316 1317 1318
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1337
static void vlv_update_wm(struct intel_crtc *crtc)
1338
{
1339
	struct drm_device *dev = crtc->base.dev;
1340
	struct drm_i915_private *dev_priv = to_i915(dev);
1341
	enum pipe pipe = crtc->pipe;
1342 1343
	struct vlv_wm_values wm = {};

1344
	vlv_compute_wm(crtc);
1345 1346
	vlv_merge_wm(dev, &wm);

1347 1348
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1349
		vlv_pipe_set_fifo_size(crtc);
1350
		return;
1351
	}
1352 1353 1354 1355 1356 1357 1358 1359 1360

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1361
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1362 1363
		intel_set_memory_cxsr(dev_priv, false);

1364
	/* FIXME should be part of crtc atomic commit */
1365
	vlv_pipe_set_fifo_size(crtc);
1366

1367
	vlv_write_wm_values(crtc, &wm);
1368 1369 1370 1371 1372 1373 1374

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1375
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1387 1388
}

1389 1390
#define single_plane_enabled(mask) is_power_of_2(mask)

1391
static void g4x_update_wm(struct intel_crtc *crtc)
1392
{
1393
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1394 1395 1396 1397
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1398
	bool cxsr_enabled;
1399

1400
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1401 1402
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1403
			    &planea_wm, &cursora_wm))
1404
		enabled |= 1 << PIPE_A;
1405

1406
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1407 1408
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1409
			    &planeb_wm, &cursorb_wm))
1410
		enabled |= 1 << PIPE_B;
1411 1412

	if (single_plane_enabled(enabled) &&
1413
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1414 1415 1416
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1417
			     &plane_sr, &cursor_sr)) {
1418
		cxsr_enabled = true;
1419
	} else {
1420
		cxsr_enabled = false;
1421
		intel_set_memory_cxsr(dev_priv, false);
1422 1423
		plane_sr = cursor_sr = 0;
	}
1424

1425 1426
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1427 1428 1429 1430 1431
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1432 1433 1434 1435
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1436
	I915_WRITE(DSPFW2,
1437
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1438
		   FW_WM(cursora_wm, CURSORA));
1439 1440
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1441
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1442
		   FW_WM(cursor_sr, CURSOR_SR));
1443 1444 1445

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1446 1447
}

1448
static void i965_update_wm(struct intel_crtc *unused_crtc)
1449
{
1450
	struct drm_device *dev = unused_crtc->base.dev;
1451
	struct drm_i915_private *dev_priv = to_i915(dev);
1452
	struct intel_crtc *crtc;
1453 1454
	int srwm = 1;
	int cursor_sr = 16;
1455
	bool cxsr_enabled;
1456 1457 1458 1459 1460 1461

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1462 1463 1464 1465
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1466
		int clock = adjusted_mode->crtc_clock;
1467
		int htotal = adjusted_mode->crtc_htotal;
1468 1469
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1470 1471 1472
		unsigned long line_time_us;
		int entries;

1473
		line_time_us = max(htotal * 1000 / clock, 1);
1474 1475 1476

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1477
			cpp * hdisplay;
1478 1479 1480 1481 1482 1483 1484 1485 1486
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1487
			cpp * crtc->base.cursor->state->crtc_w;
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1499
		cxsr_enabled = true;
1500
	} else {
1501
		cxsr_enabled = false;
1502
		/* Turn off self refresh if both pipes are enabled */
1503
		intel_set_memory_cxsr(dev_priv, false);
1504 1505 1506 1507 1508 1509
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1510 1511 1512 1513 1514 1515
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1516
	/* update cursor SR watermark */
1517
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1518 1519 1520

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1521 1522
}

1523 1524
#undef FW_WM

1525
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1526
{
1527
	struct drm_device *dev = unused_crtc->base.dev;
1528
	struct drm_i915_private *dev_priv = to_i915(dev);
1529 1530 1531 1532 1533 1534
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1535
	struct intel_crtc *crtc, *enabled = NULL;
1536 1537 1538

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1539
	else if (!IS_GEN2(dev_priv))
1540 1541
		wm_info = &i915_wm_info;
	else
1542
		wm_info = &i830_a_wm_info;
1543 1544

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1545
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1546 1547 1548 1549 1550 1551 1552
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1553
		if (IS_GEN2(dev_priv))
1554
			cpp = 4;
1555 1556
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1557

1558
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1559
					       wm_info, fifo_size, cpp,
1560
					       pessimal_latency_ns);
1561
		enabled = crtc;
1562
	} else {
1563
		planea_wm = fifo_size - wm_info->guard_size;
1564 1565 1566 1567
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1568
	if (IS_GEN2(dev_priv))
1569
		wm_info = &i830_bc_wm_info;
1570 1571

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1572
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1573 1574 1575 1576 1577 1578 1579
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1580
		if (IS_GEN2(dev_priv))
1581
			cpp = 4;
1582 1583
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1584

1585
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1586
					       wm_info, fifo_size, cpp,
1587
					       pessimal_latency_ns);
1588 1589 1590 1591
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1592
	} else {
1593
		planeb_wm = fifo_size - wm_info->guard_size;
1594 1595 1596
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1597 1598 1599

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1600
	if (IS_I915GM(dev_priv) && enabled) {
1601
		struct drm_i915_gem_object *obj;
1602

1603
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1604 1605

		/* self-refresh seems busted with untiled */
1606
		if (!i915_gem_object_is_tiled(obj))
1607 1608 1609
			enabled = NULL;
	}

1610 1611 1612 1613 1614 1615
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1616
	intel_set_memory_cxsr(dev_priv, false);
1617 1618 1619 1620 1621

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1622 1623 1624 1625
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1626
		int clock = adjusted_mode->crtc_clock;
1627
		int htotal = adjusted_mode->crtc_htotal;
1628 1629
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1630 1631 1632
		unsigned long line_time_us;
		int entries;

1633
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1634
			cpp = 4;
1635 1636
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1637

1638
		line_time_us = max(htotal * 1000 / clock, 1);
1639 1640 1641

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1642
			cpp * hdisplay;
1643 1644 1645 1646 1647 1648
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1649
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1650 1651
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1652
		else
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1669 1670
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1671 1672
}

1673
static void i845_update_wm(struct intel_crtc *unused_crtc)
1674
{
1675
	struct drm_device *dev = unused_crtc->base.dev;
1676
	struct drm_i915_private *dev_priv = to_i915(dev);
1677
	struct intel_crtc *crtc;
1678
	const struct drm_display_mode *adjusted_mode;
1679 1680 1681 1682 1683 1684 1685
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1686
	adjusted_mode = &crtc->config->base.adjusted_mode;
1687
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1688
				       &i845_wm_info,
1689
				       dev_priv->display.get_fifo_size(dev, 0),
1690
				       4, pessimal_latency_ns);
1691 1692 1693 1694 1695 1696 1697 1698
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1699
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1700
{
1701
	uint32_t pixel_rate;
1702

1703
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1704 1705 1706 1707

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1708
	if (pipe_config->pch_pfit.enabled) {
1709
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1710 1711 1712 1713
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1714 1715 1716 1717 1718 1719 1720 1721

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1722 1723 1724
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1725 1726 1727 1728 1729 1730 1731
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1732
/* latency must be in 0.1us units. */
1733
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1734 1735 1736
{
	uint64_t ret;

1737 1738 1739
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1740
	ret = (uint64_t) pixel_rate * cpp * latency;
1741 1742 1743 1744 1745
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1746
/* latency must be in 0.1us units. */
1747
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1748
			       uint32_t horiz_pixels, uint8_t cpp,
1749 1750 1751 1752
			       uint32_t latency)
{
	uint32_t ret;

1753 1754
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1755 1756
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1757

1758
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1759
	ret = (ret + 1) * horiz_pixels * cpp;
1760 1761 1762 1763
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1764
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1765
			   uint8_t cpp)
1766
{
1767 1768 1769 1770 1771 1772
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1773
	if (WARN_ON(!cpp))
1774 1775 1776 1777
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1778
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1779 1780
}

1781
struct ilk_wm_maximums {
1782 1783 1784 1785 1786 1787
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1788 1789 1790 1791
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1792
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1793
				   const struct intel_plane_state *pstate,
1794 1795
				   uint32_t mem_value,
				   bool is_lp)
1796
{
1797 1798
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1799 1800
	uint32_t method1, method2;

1801
	if (!cstate->base.active || !pstate->base.visible)
1802 1803
		return 0;

1804
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1805 1806 1807 1808

	if (!is_lp)
		return method1;

1809 1810
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1811
				 drm_rect_width(&pstate->base.dst),
1812
				 cpp, mem_value);
1813 1814

	return min(method1, method2);
1815 1816
}

1817 1818 1819 1820
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1821
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1822
				   const struct intel_plane_state *pstate,
1823 1824
				   uint32_t mem_value)
{
1825 1826
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1827 1828
	uint32_t method1, method2;

1829
	if (!cstate->base.active || !pstate->base.visible)
1830 1831
		return 0;

1832
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1833 1834
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1835
				 drm_rect_width(&pstate->base.dst),
1836
				 cpp, mem_value);
1837 1838 1839
	return min(method1, method2);
}

1840 1841 1842 1843
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1844
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1845
				   const struct intel_plane_state *pstate,
1846 1847
				   uint32_t mem_value)
{
1848 1849 1850 1851 1852 1853
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1854
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1855

1856
	if (!cstate->base.active)
1857 1858
		return 0;

1859 1860
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1861
			      width, cpp, mem_value);
1862 1863
}

1864
/* Only for WM_LP. */
1865
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1866
				   const struct intel_plane_state *pstate,
1867
				   uint32_t pri_val)
1868
{
1869 1870
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1871

1872
	if (!cstate->base.active || !pstate->base.visible)
1873 1874
		return 0;

1875
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1876 1877
}

1878 1879
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1880 1881 1882
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1883 1884 1885 1886 1887
		return 768;
	else
		return 512;
}

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1922 1923 1924
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1925
				     const struct intel_wm_config *config,
1926 1927 1928 1929 1930 1931
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1932
	if (is_sprite && !config->sprites_enabled)
1933 1934 1935
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1936
	if (level == 0 || config->num_pipes_active > 1) {
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1948
	if (config->sprites_enabled) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1960
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1961 1962 1963 1964
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1965 1966
				      int level,
				      const struct intel_wm_config *config)
1967 1968
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1969
	if (level > 0 && config->num_pipes_active > 1)
1970 1971 1972
		return 64;

	/* otherwise just report max that registers can hold */
1973
	return ilk_cursor_wm_reg_max(dev, level);
1974 1975
}

1976
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1977 1978 1979
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1980
				    struct ilk_wm_maximums *max)
1981
{
1982 1983 1984
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1985
	max->fbc = ilk_fbc_wm_reg_max(dev);
1986 1987
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1998
static bool ilk_validate_wm_level(int level,
1999
				  const struct ilk_wm_maximums *max,
2000
				  struct intel_wm_level *result)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2039
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2040
				 const struct intel_crtc *intel_crtc,
2041
				 int level,
2042
				 struct intel_crtc_state *cstate,
2043 2044 2045
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2046
				 struct intel_wm_level *result)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2071 2072 2073
	result->enable = true;
}

2074
static uint32_t
2075
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2076
{
2077 2078
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2079 2080
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2081
	u32 linetime, ips_linetime;
2082

2083 2084 2085 2086
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2087
	if (WARN_ON(intel_state->cdclk == 0))
2088
		return 0;
2089

2090 2091 2092
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2093 2094 2095
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2096
					 intel_state->cdclk);
2097

2098 2099
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2100 2101
}

2102
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2103
{
2104
	struct drm_i915_private *dev_priv = to_i915(dev);
2105

2106
	if (IS_GEN9(dev_priv)) {
2107
		uint32_t val;
2108
		int ret, i;
2109
		int level, max_level = ilk_wm_max_level(dev_priv);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2165
		/*
2166 2167
		 * WaWmMemoryReadLatency:skl
		 *
2168
		 * punit doesn't take into account the read latency so we need
2169 2170
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2171
		 */
2172 2173 2174 2175 2176
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2177
				wm[level] += 2;
2178
			}
2179 2180
		}

2181
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2182 2183 2184 2185 2186
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2187 2188 2189 2190
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2191 2192 2193 2194 2195 2196 2197
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2198 2199 2200 2201 2202 2203 2204
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2205 2206 2207
	}
}

2208 2209
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2210 2211
{
	/* ILK sprite LP0 latency is 1300 ns */
2212
	if (IS_GEN5(dev_priv))
2213 2214 2215
		wm[0] = 13;
}

2216 2217
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2218 2219
{
	/* ILK cursor LP0 latency is 1300 ns */
2220
	if (IS_GEN5(dev_priv))
2221 2222 2223
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2224
	if (IS_IVYBRIDGE(dev_priv))
2225 2226 2227
		wm[3] *= 2;
}

2228
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2229 2230
{
	/* how many WM levels are we expecting */
2231
	if (INTEL_GEN(dev_priv) >= 9)
2232
		return 7;
2233
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2234
		return 4;
2235
	else if (INTEL_GEN(dev_priv) >= 6)
2236
		return 3;
2237
	else
2238 2239
		return 2;
}
2240

2241
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2242
				   const char *name,
2243
				   const uint16_t wm[8])
2244
{
2245
	int level, max_level = ilk_wm_max_level(dev_priv);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2256 2257 2258 2259
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2260
		if (IS_GEN9(dev_priv))
2261 2262
			latency *= 10;
		else if (level > 0)
2263 2264 2265 2266 2267 2268 2269 2270
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2271 2272 2273
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2274
	int level, max_level = ilk_wm_max_level(dev_priv);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2288
	struct drm_i915_private *dev_priv = to_i915(dev);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2303 2304 2305
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2306 2307
}

2308
static void ilk_setup_wm_latency(struct drm_device *dev)
2309
{
2310
	struct drm_i915_private *dev_priv = to_i915(dev);
2311 2312 2313 2314 2315 2316 2317 2318

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2319
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2320
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2321

2322 2323 2324
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2325

2326
	if (IS_GEN6(dev_priv))
2327
		snb_wm_latency_quirk(dev);
2328 2329
}

2330 2331
static void skl_setup_wm_latency(struct drm_device *dev)
{
2332
	struct drm_i915_private *dev_priv = to_i915(dev);
2333 2334

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2335
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2336 2337
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2361
/* Compute new watermarks for the pipe */
2362
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2363
{
2364 2365
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2366
	struct intel_pipe_wm *pipe_wm;
2367
	struct drm_device *dev = state->dev;
2368
	const struct drm_i915_private *dev_priv = to_i915(dev);
2369
	struct intel_plane *intel_plane;
2370
	struct intel_plane_state *pristate = NULL;
2371
	struct intel_plane_state *sprstate = NULL;
2372
	struct intel_plane_state *curstate = NULL;
2373
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2374
	struct ilk_wm_maximums max;
2375

2376
	pipe_wm = &cstate->wm.ilk.optimal;
2377

2378
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2379 2380 2381 2382 2383 2384
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2385 2386

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2387
			pristate = ps;
2388
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2389
			sprstate = ps;
2390
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2391
			curstate = ps;
2392 2393
	}

2394
	pipe_wm->pipe_enabled = cstate->base.active;
2395
	if (sprstate) {
2396 2397 2398 2399
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2400 2401
	}

2402 2403
	usable_level = max_level;

2404
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2405
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2406
		usable_level = 1;
2407 2408

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2409
	if (pipe_wm->sprites_scaled)
2410
		usable_level = 0;
2411

2412
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2413 2414 2415 2416
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2417

2418
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2419
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2420

2421
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2422
		return -EINVAL;
2423 2424 2425 2426

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2427
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2428

2429
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2430
				     pristate, sprstate, curstate, wm);
2431 2432 2433 2434 2435 2436

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2437 2438 2439 2440 2441 2442
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2443
			usable_level = level;
2444 2445
	}

2446
	return 0;
2447 2448
}

2449 2450 2451 2452 2453 2454 2455 2456 2457
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2458
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2459
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2460
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2461 2462 2463 2464 2465 2466

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2467
	*a = newstate->wm.ilk.optimal;
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2496
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2497 2498 2499 2500 2501
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2511 2512
	ret_wm->enable = true;

2513
	for_each_intel_crtc(dev, intel_crtc) {
2514
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2515 2516 2517 2518
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2519

2520 2521 2522 2523 2524
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2525
		if (!wm->enable)
2526
			ret_wm->enable = false;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2539
			 const struct intel_wm_config *config,
2540
			 const struct ilk_wm_maximums *max,
2541 2542
			 struct intel_pipe_wm *merged)
{
2543
	struct drm_i915_private *dev_priv = to_i915(dev);
2544
	int level, max_level = ilk_wm_max_level(dev_priv);
2545
	int last_enabled_level = max_level;
2546

2547
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2548
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2549
	    config->num_pipes_active > 1)
2550
		last_enabled_level = 0;
2551

2552 2553
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2554 2555 2556 2557 2558 2559 2560

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2561 2562 2563 2564 2565
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2566 2567 2568 2569 2570 2571

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2572 2573
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2574 2575 2576
			wm->fbc_val = 0;
		}
	}
2577 2578 2579 2580 2581 2582 2583

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2584
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2585
	    intel_fbc_is_active(dev_priv)) {
2586 2587 2588 2589 2590 2591
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2592 2593
}

2594 2595 2596 2597 2598 2599
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2600 2601 2602
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2603
	struct drm_i915_private *dev_priv = to_i915(dev);
2604

2605
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2606 2607 2608 2609 2610
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2611
static void ilk_compute_wm_results(struct drm_device *dev,
2612
				   const struct intel_pipe_wm *merged,
2613
				   enum intel_ddb_partitioning partitioning,
2614
				   struct ilk_wm_values *results)
2615
{
2616 2617
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2618

2619
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2620
	results->partitioning = partitioning;
2621

2622
	/* LP1+ register values */
2623
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2624
		const struct intel_wm_level *r;
2625

2626
		level = ilk_wm_lp_to_level(wm_lp, merged);
2627

2628
		r = &merged->wm[level];
2629

2630 2631 2632 2633 2634
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2635
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2636 2637 2638
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2639 2640 2641
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2642 2643 2644 2645 2646 2647 2648
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2649 2650 2651 2652
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2653 2654 2655 2656 2657
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2658
	}
2659

2660
	/* LP0 register values */
2661
	for_each_intel_crtc(dev, intel_crtc) {
2662
		enum pipe pipe = intel_crtc->pipe;
2663 2664
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2665 2666 2667 2668

		if (WARN_ON(!r->enable))
			continue;

2669
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2670

2671 2672 2673 2674
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2675 2676 2677
	}
}

2678 2679
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2680
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2681 2682
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2683
{
2684
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2685
	int level1 = 0, level2 = 0;
2686

2687 2688 2689 2690 2691
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2692 2693
	}

2694 2695
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2696 2697 2698
			return r2;
		else
			return r1;
2699
	} else if (level1 > level2) {
2700 2701 2702 2703 2704 2705
		return r1;
	} else {
		return r2;
	}
}

2706 2707 2708 2709 2710 2711 2712 2713
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2714
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2715 2716
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2717 2718 2719 2720 2721
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2722
	for_each_pipe(dev_priv, pipe) {
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2766 2767
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2768
{
2769
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770
	bool changed = false;
2771

2772 2773 2774
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2775
		changed = true;
2776 2777 2778 2779
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2780
		changed = true;
2781 2782 2783 2784
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2785
		changed = true;
2786
	}
2787

2788 2789 2790 2791
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2792

2793 2794 2795 2796 2797 2798 2799
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2800 2801
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2802
{
2803
	struct drm_device *dev = &dev_priv->drm;
2804
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2805 2806 2807
	unsigned int dirty;
	uint32_t val;

2808
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2809 2810 2811 2812 2813
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2814
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2815
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2816
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2817
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2818
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2819 2820
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2821
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2822
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2823
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2824
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2825
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2826 2827
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2828
	if (dirty & WM_DIRTY_DDB) {
2829
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2844 2845
	}

2846
	if (dirty & WM_DIRTY_FBC) {
2847 2848 2849 2850 2851 2852 2853 2854
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2855 2856 2857 2858 2859
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2860 2861 2862 2863 2864
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2865

2866
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2867
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2868
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2869
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2870
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2871
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2872 2873

	dev_priv->wm.hw = *results;
2874 2875
}

2876
bool ilk_disable_lp_wm(struct drm_device *dev)
2877
{
2878
	struct drm_i915_private *dev_priv = to_i915(dev);
2879 2880 2881 2882

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2883
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2884

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2922 2923 2924
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2925 2926 2927 2928 2929 2930 2931 2932
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2933 2934
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2947
intel_enable_sagv(struct drm_i915_private *dev_priv)
2948 2949 2950
{
	int ret;

2951 2952 2953 2954
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2970
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2971
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2972
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2973 2974 2975 2976 2977 2978
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2979
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2980 2981 2982 2983
	return 0;
}

static int
2984
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2998
intel_disable_sagv(struct drm_i915_private *dev_priv)
2999 3000 3001
{
	int ret, result;

3002 3003 3004 3005
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3006 3007 3008 3009 3010 3011
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3012
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3024
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3025
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3026
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3027 3028 3029 3030 3031 3032
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3033
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3034 3035 3036
	return 0;
}

3037
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3038 3039 3040 3041
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3042 3043
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3044 3045
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3046
	enum pipe pipe;
3047
	int level, latency;
3048

3049 3050 3051
	if (!intel_has_sagv(dev_priv))
		return false;

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3065
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3066
	cstate = to_intel_crtc_state(crtc->base.state);
3067

3068
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3069 3070
		return false;

3071
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3072
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3073

3074
		/* Skip this plane if it's not enabled */
3075
		if (!wm->wm[0].plane_en)
3076 3077 3078
			continue;

		/* Find the highest enabled wm level for this plane */
3079
		for (level = ilk_wm_max_level(dev_priv);
3080
		     !wm->wm[level].plane_en; --level)
3081 3082
		     { }

3083 3084 3085 3086 3087 3088 3089
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3090 3091 3092 3093 3094
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3095
		if (latency < SKL_SAGV_BLOCK_TIME)
3096 3097 3098 3099 3100 3101
			return false;
	}

	return true;
}

3102 3103
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3104
				   const struct intel_crtc_state *cstate,
3105 3106
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3107
{
3108 3109 3110
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3111
	struct drm_crtc *for_crtc = cstate->base.crtc;
3112 3113
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3114

3115
	if (WARN_ON(!state) || !cstate->base.active) {
3116 3117
		alloc->start = 0;
		alloc->end = 0;
3118
		*num_active = hweight32(dev_priv->active_crtcs);
3119 3120 3121
		return;
	}

3122 3123 3124 3125 3126
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3127 3128
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3129 3130 3131

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3132
	/*
3133 3134 3135 3136 3137 3138
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3139
	 */
3140
	if (!intel_state->active_pipe_changes) {
3141
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3142
		return;
3143
	}
3144 3145 3146 3147 3148 3149

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3150 3151
}

3152
static unsigned int skl_cursor_allocation(int num_active)
3153
{
3154
	if (num_active == 1)
3155 3156 3157 3158 3159
		return 32;

	return 8;
}

3160 3161 3162 3163
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3164 3165
	if (entry->end)
		entry->end += 1;
3166 3167
}

3168 3169
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3170 3171 3172 3173 3174
{
	enum pipe pipe;
	int plane;
	u32 val;

3175 3176
	memset(ddb, 0, sizeof(*ddb));

3177
	for_each_pipe(dev_priv, pipe) {
3178 3179 3180 3181
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3182 3183
			continue;

3184
		for_each_universal_plane(dev_priv, pipe, plane) {
3185 3186 3187 3188 3189 3190
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3191 3192
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3193 3194

		intel_display_power_put(dev_priv, power_domain);
3195 3196 3197
	}
}

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3220
	if (WARN_ON(!pstate->base.visible))
3221 3222 3223
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3224 3225 3226 3227
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3228
	if (drm_rotation_90_or_270(pstate->base.rotation))
3229 3230 3231 3232 3233 3234 3235 3236 3237
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3238
static unsigned int
3239 3240 3241
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3242
{
3243
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3244
	struct drm_framebuffer *fb = pstate->fb;
3245
	uint32_t down_scale_amount, data_rate;
3246
	uint32_t width = 0, height = 0;
3247 3248
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3249
	if (!intel_pstate->base.visible)
3250 3251 3252 3253 3254
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3255

3256 3257
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3258

3259
	if (drm_rotation_90_or_270(pstate->rotation))
3260
		swap(width, height);
3261 3262

	/* for planar format */
3263
	if (format == DRM_FORMAT_NV12) {
3264
		if (y)  /* y-plane data rate */
3265
			data_rate = width * height *
3266
				drm_format_plane_cpp(format, 0);
3267
		else    /* uv-plane data rate */
3268
			data_rate = (width / 2) * (height / 2) *
3269
				drm_format_plane_cpp(format, 1);
3270 3271 3272
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3273 3274
	}

3275 3276 3277
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3278 3279 3280 3281 3282 3283 3284 3285
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3286 3287 3288
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3289
{
3290 3291
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3292
	struct drm_plane *plane;
3293
	const struct intel_plane *intel_plane;
3294
	const struct drm_plane_state *pstate;
3295
	unsigned int rate, total_data_rate = 0;
3296
	int id;
3297 3298 3299

	if (WARN_ON(!state))
		return 0;
3300

3301
	/* Calculate and cache data rate for each plane */
3302
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3303 3304 3305 3306 3307 3308
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3309 3310 3311
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3312 3313 3314 3315

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3316
		plane_y_data_rate[id] = rate;
3317

3318
		total_data_rate += rate;
3319 3320 3321 3322 3323
	}

	return total_data_rate;
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3346 3347
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3348

3349
	if (drm_rotation_90_or_270(pstate->rotation))
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3363
	if (drm_rotation_90_or_270(pstate->rotation)) {
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3411
static int
3412
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3413 3414
		      struct skl_ddb_allocation *ddb /* out */)
{
3415
	struct drm_atomic_state *state = cstate->base.state;
3416
	struct drm_crtc *crtc = cstate->base.crtc;
3417 3418 3419
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3420
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3421
	uint16_t alloc_size, start;
3422 3423
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3424
	unsigned int total_data_rate;
3425 3426
	int num_active;
	int id, i;
3427 3428
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3429

3430 3431 3432 3433
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3434 3435 3436
	if (WARN_ON(!state))
		return 0;

3437
	if (!cstate->base.active) {
3438
		alloc->start = alloc->end = 0;
3439 3440 3441
		return 0;
	}

3442
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3443
	alloc_size = skl_ddb_entry_size(alloc);
3444 3445
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3446
		return 0;
3447 3448
	}

3449
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3450

3451 3452 3453 3454 3455
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3456

3457
	for (i = 0; i < I915_MAX_PLANES; i++) {
3458 3459
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3460 3461
	}

3462 3463 3464
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3465
	/*
3466 3467
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3468 3469 3470
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3471 3472 3473
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3474
	if (total_data_rate == 0)
3475
		return 0;
3476

3477
	start = alloc->start;
3478
	for (id = 0; id < I915_MAX_PLANES; id++) {
3479 3480
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3481

3482 3483 3484
		if (id == PLANE_CURSOR)
			continue;

3485
		data_rate = plane_data_rate[id];
3486 3487

		/*
3488
		 * allocation for (packed formats) or (uv-plane part of planar format):
3489 3490 3491
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3492
		plane_blocks = minimum[id];
3493 3494
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3495

3496 3497 3498 3499 3500
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3501 3502

		start += plane_blocks;
3503 3504 3505 3506

		/*
		 * allocation for y_plane part of planar format:
		 */
3507
		y_data_rate = plane_y_data_rate[id];
3508 3509 3510 3511

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3512

3513 3514 3515 3516
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3517 3518

		start += y_plane_blocks;
3519 3520
	}

3521
	return 0;
3522 3523
}

3524 3525
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3526
 * for the read latency) and cpp should always be <= 8, so that
3527 3528 3529
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3530
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3531 3532 3533 3534 3535 3536
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3537
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3538 3539 3540 3541 3542 3543
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3544
			       uint32_t latency, uint32_t plane_blocks_per_line)
3545
{
3546 3547
	uint32_t ret;
	uint32_t wm_intermediate_val;
3548 3549 3550 3551 3552 3553

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3554
				plane_blocks_per_line;
3555 3556 3557 3558

	return ret;
}

3559 3560 3561 3562 3563 3564 3565 3566
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3567
	if (WARN_ON(!pstate->base.visible))
3568 3569 3570 3571 3572 3573
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3574
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3575 3576 3577 3578 3579 3580 3581 3582
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3583 3584 3585 3586 3587 3588 3589 3590
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3591
{
3592 3593
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3594 3595 3596 3597 3598
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3599
	uint8_t cpp;
3600
	uint32_t width = 0, height = 0;
3601
	uint32_t plane_pixel_rate;
3602
	uint32_t y_tile_minimum, y_min_scanlines;
3603 3604 3605
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3606

3607
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3608 3609 3610
		*enabled = false;
		return 0;
	}
3611

3612 3613 3614
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3615 3616
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3617

3618
	if (drm_rotation_90_or_270(pstate->rotation))
3619 3620
		swap(width, height);

3621
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3622 3623
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3624
	if (drm_rotation_90_or_270(pstate->rotation)) {
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3639 3640 3641
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3642 3643 3644 3645 3646
		}
	} else {
		y_min_scanlines = 4;
	}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3660 3661
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3662
				 cstate->base.adjusted_mode.crtc_htotal,
3663
				 latency,
3664
				 plane_blocks_per_line);
3665

3666
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3667 3668
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3669

3670 3671
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3672 3673
		selected_result = max(method2, y_tile_minimum);
	} else {
3674 3675 3676 3677
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3678 3679 3680 3681
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3682

3683 3684
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3685

3686
	if (level >= 1 && level <= 7) {
3687
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3688 3689
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3690
			res_lines += y_min_scanlines;
3691
		} else {
3692
			res_blocks++;
3693
		}
3694
	}
3695

3696 3697
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3714
	}
3715 3716 3717

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3718
	*enabled = true;
3719

3720
	return 0;
3721 3722
}

3723 3724 3725 3726
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3727
		     struct intel_plane *intel_plane,
3728 3729
		     int level,
		     struct skl_wm_level *result)
3730
{
3731
	struct drm_atomic_state *state = cstate->base.state;
3732
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3733 3734
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3735
	uint16_t ddb_blocks;
3736
	enum pipe pipe = intel_crtc->pipe;
3737
	int ret;
L
Lyude 已提交
3738 3739 3740 3741 3742 3743
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3744

3745
	/*
L
Lyude 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3755
	 */
L
Lyude 已提交
3756 3757
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3758

L
Lyude 已提交
3759
	WARN_ON(!intel_pstate->base.fb);
3760

L
Lyude 已提交
3761
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3762

L
Lyude 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3773 3774

	return 0;
3775 3776
}

3777
static uint32_t
3778
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3779
{
3780 3781
	uint32_t pixel_rate;

3782
	if (!cstate->base.active)
3783 3784
		return 0;

3785 3786 3787
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3788
		return 0;
3789

3790
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3791
			    pixel_rate);
3792 3793
}

3794
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3795
				      struct skl_wm_level *trans_wm /* out */)
3796
{
3797
	if (!cstate->base.active)
3798
		return;
3799 3800

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3801
	trans_wm->plane_en = false;
3802 3803
}

3804 3805 3806
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3807
{
3808
	struct drm_device *dev = cstate->base.crtc->dev;
3809
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3810 3811
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3812
	int level, max_level = ilk_wm_max_level(dev_priv);
3813
	int ret;
3814

L
Lyude 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3834
	}
3835
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3836

3837
	return 0;
3838 3839
}

3840 3841
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3842 3843 3844 3845 3846 3847 3848 3849
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3865
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3866 3867
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3868 3869 3870 3871 3872
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3873
	int level, max_level = ilk_wm_max_level(dev_priv);
3874 3875 3876
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3877 3878
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3879
	}
3880 3881
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3882 3883

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3884
			    &ddb->plane[pipe][plane]);
3885
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3886
			    &ddb->y_plane[pipe][plane]);
3887 3888 3889
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3890 3891
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3892 3893 3894 3895
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3896
	int level, max_level = ilk_wm_max_level(dev_priv);
3897 3898 3899
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3900 3901
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3902
	}
3903
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3904

3905
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3906
			    &ddb->plane[pipe][PLANE_CURSOR]);
3907 3908
}

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3923 3924
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3925
{
3926
	return a->start < b->end && b->start < a->end;
3927 3928
}

3929
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3930
				 struct intel_crtc *intel_crtc)
3931
{
3932 3933 3934 3935 3936 3937
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3938

3939 3940
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3941

3942
		if (other_intel_crtc == intel_crtc)
3943 3944
			continue;

3945
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3946
			return true;
3947 3948
	}

3949
	return false;
3950 3951
}

3952
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3953
			      const struct skl_pipe_wm *old_pipe_wm,
3954
			      struct skl_pipe_wm *pipe_wm, /* out */
3955
			      struct skl_ddb_allocation *ddb, /* out */
3956
			      bool *changed /* out */)
3957
{
3958
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3959
	int ret;
3960

3961 3962 3963
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3964

3965
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3966 3967 3968
		*changed = false;
	else
		*changed = true;
3969

3970
	return 0;
3971 3972
}

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3986
static int
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4004
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4021 4022 4023 4024 4025 4026 4027
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4028
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4029
	uint32_t realloc_pipes = pipes_modified(state);
4030 4031 4032 4033 4034 4035 4036 4037
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4038 4039 4040 4041 4042 4043
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4044 4045
		intel_state->active_pipe_changes = ~0;

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4069
	if (intel_state->active_pipe_changes) {
4070
		realloc_pipes = ~0;
4071 4072
		intel_state->wm_results.dirty_pipes = ~0;
	}
4073

4074 4075 4076 4077 4078 4079
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4080 4081 4082 4083 4084 4085 4086
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4087
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4088 4089
		if (ret)
			return ret;
4090

4091
		ret = skl_ddb_add_affected_planes(cstate);
4092 4093
		if (ret)
			return ret;
4094 4095 4096 4097 4098
	}

	return 0;
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4123
	int i;
4124 4125

	for_each_crtc_in_state(state, crtc, cstate, i) {
4126 4127
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4128

4129
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4130 4131 4132 4133 4134 4135 4136 4137 4138
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4139 4140 4141 4142 4143
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4144 4145 4146 4147
		}
	}
}

4148 4149 4150 4151 4152
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4153 4154 4155
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4156
	bool changed = false;
4157
	int ret, i;
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4172 4173 4174
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4175 4176 4177 4178
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4192 4193
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4194 4195

		pipe_wm = &intel_cstate->wm.skl.optimal;
4196 4197
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4211 4212
	skl_print_wm_changes(state);

4213 4214 4215
	return 0;
}

4216
static void skl_update_wm(struct intel_crtc *intel_crtc)
4217
{
4218
	struct drm_device *dev = intel_crtc->base.dev;
4219
	struct drm_i915_private *dev_priv = to_i915(dev);
4220
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4221
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4222
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4223
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4224
	enum pipe pipe = intel_crtc->pipe;
4225

4226
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4227 4228
		return;

4229
	mutex_lock(&dev_priv->wm.wm_mutex);
4230

4231
	/*
4232 4233 4234 4235
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4236
	 */
4237
	if (intel_crtc->base.state->active_changed) {
4238 4239
		int plane;

4240
		for_each_universal_plane(dev_priv, pipe, plane)
4241 4242
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4243

4244 4245
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4246 4247 4248
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4249

4250 4251
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4252
	mutex_unlock(&dev_priv->wm.wm_mutex);
4253 4254
}

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4273
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4274
{
4275
	struct drm_device *dev = &dev_priv->drm;
4276
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4277
	struct ilk_wm_maximums max;
4278
	struct intel_wm_config config = {};
4279
	struct ilk_wm_values results = {};
4280
	enum intel_ddb_partitioning partitioning;
4281

4282 4283 4284 4285
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4286 4287

	/* 5/6 split only in single pipe config on IVB+ */
4288
	if (INTEL_INFO(dev)->gen >= 7 &&
4289 4290 4291
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4292

4293
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4294
	} else {
4295
		best_lp_wm = &lp_wm_1_2;
4296 4297
	}

4298
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4299
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4300

4301
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4302

4303
	ilk_write_wm_values(dev_priv, &results);
4304 4305
}

4306
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4307
{
4308 4309
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4310

4311
	mutex_lock(&dev_priv->wm.wm_mutex);
4312
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4313 4314 4315
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4316

4317 4318 4319 4320
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4321

4322 4323
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4324
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4325 4326 4327
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4328 4329
}

4330 4331
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4332
{
4333 4334 4335 4336
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4337 4338
}

4339 4340
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4341 4342
{
	struct drm_device *dev = crtc->dev;
4343
	struct drm_i915_private *dev_priv = to_i915(dev);
4344
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4345 4346
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4347
	enum pipe pipe = intel_crtc->pipe;
4348 4349
	int level, id, max_level;
	uint32_t val;
4350

4351
	max_level = ilk_wm_max_level(dev_priv);
4352

4353 4354
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4355
		wm = &out->planes[id];
4356

4357 4358 4359 4360 4361
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4362

4363
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4364 4365
		}

4366 4367 4368 4369 4370 4371
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4372 4373
	}

4374 4375
	if (!intel_crtc->active)
		return;
4376

4377
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4378 4379 4380 4381
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4382
	struct drm_i915_private *dev_priv = to_i915(dev);
4383
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4384
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4385
	struct drm_crtc *crtc;
4386 4387
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4388

4389
	skl_ddb_get_hw_state(dev_priv, ddb);
4390 4391 4392 4393 4394 4395
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4396
		if (intel_crtc->active)
4397 4398
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4399

4400 4401 4402 4403 4404 4405 4406
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4407 4408
}

4409 4410 4411
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4412
	struct drm_i915_private *dev_priv = to_i915(dev);
4413
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4414
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4415
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4416
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4417
	enum pipe pipe = intel_crtc->pipe;
4418
	static const i915_reg_t wm0_pipe_reg[] = {
4419 4420 4421 4422 4423 4424
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4425
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4426
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4427

4428 4429
	memset(active, 0, sizeof(*active));

4430
	active->pipe_enabled = intel_crtc->active;
4431 4432

	if (active->pipe_enabled) {
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4447
		int level, max_level = ilk_wm_max_level(dev_priv);
4448 4449 4450 4451 4452 4453 4454 4455 4456

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4457 4458

	intel_crtc->wm.active.ilk = *active;
4459 4460
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4578 4579 4580 4581 4582 4583 4584 4585 4586
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4587
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4614 4615
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4616
	struct drm_i915_private *dev_priv = to_i915(dev);
4617
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4618 4619
	struct drm_crtc *crtc;

4620
	for_each_crtc(dev, crtc)
4621 4622 4623 4624 4625 4626 4627
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4628 4629 4630 4631
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4632

4633
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4634 4635
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4636
	else if (IS_IVYBRIDGE(dev_priv))
4637 4638
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4639 4640 4641 4642 4643

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4676
void intel_update_watermarks(struct intel_crtc *crtc)
4677
{
4678
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4679 4680

	if (dev_priv->display.update_wm)
4681
		dev_priv->display.update_wm(crtc);
4682 4683
}

4684
/*
4685 4686 4687 4688 4689 4690 4691 4692
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4693
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4694 4695 4696
{
	u16 rgvswctl;

4697 4698
	assert_spin_locked(&mchdev_lock);

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4716
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4717
{
4718
	u32 rgvmodectl;
4719 4720
	u8 fmax, fmin, fstart, vstart;

4721 4722
	spin_lock_irq(&mchdev_lock);

4723 4724
	rgvmodectl = I915_READ(MEMMODECTL);

4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4745
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4746 4747
		PXVFREQ_PX_SHIFT;

4748 4749
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4750

4751 4752 4753
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4770
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4771
		DRM_ERROR("stuck trying to change perf mode\n");
4772
	mdelay(1);
4773

4774
	ironlake_set_drps(dev_priv, fstart);
4775

4776 4777
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4778
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4779
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4780
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4781 4782

	spin_unlock_irq(&mchdev_lock);
4783 4784
}

4785
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4786
{
4787 4788 4789 4790 4791
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4792 4793 4794 4795 4796 4797 4798 4799 4800

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4801
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4802
	mdelay(1);
4803 4804
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4805
	mdelay(1);
4806

4807
	spin_unlock_irq(&mchdev_lock);
4808 4809
}

4810 4811 4812 4813 4814
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4815
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4816
{
4817
	u32 limits;
4818

4819 4820 4821 4822 4823 4824
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4825
	if (IS_GEN9(dev_priv)) {
4826 4827 4828 4829 4830 4831 4832 4833
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4834 4835 4836 4837

	return limits;
}

4838 4839 4840
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4841 4842
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4843 4844 4845 4846

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4847 4848
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4849 4850 4851 4852
			new_power = BETWEEN;
		break;

	case BETWEEN:
4853 4854
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4855
			new_power = LOW_POWER;
4856 4857
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4858 4859 4860 4861
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4862 4863
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4864 4865 4866 4867
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4868
	if (val <= dev_priv->rps.min_freq_softlimit)
4869
		new_power = LOW_POWER;
4870
	if (val >= dev_priv->rps.max_freq_softlimit)
4871 4872 4873 4874 4875 4876 4877 4878
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4879 4880
		ei_up = 16000;
		threshold_up = 95;
4881 4882

		/* Downclock if less than 85% busy over 32ms */
4883 4884
		ei_down = 32000;
		threshold_down = 85;
4885 4886 4887 4888
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4889 4890
		ei_up = 13000;
		threshold_up = 90;
4891 4892

		/* Downclock if less than 75% busy over 32ms */
4893 4894
		ei_down = 32000;
		threshold_down = 75;
4895 4896 4897 4898
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4899 4900
		ei_up = 10000;
		threshold_up = 85;
4901 4902

		/* Downclock if less than 60% busy over 32ms */
4903 4904
		ei_down = 32000;
		threshold_down = 60;
4905 4906 4907
		break;
	}

4908
	I915_WRITE(GEN6_RP_UP_EI,
4909
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4910
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4911 4912
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4913 4914

	I915_WRITE(GEN6_RP_DOWN_EI,
4915
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4916
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4927

4928
	dev_priv->rps.power = new_power;
4929 4930
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4931 4932 4933
	dev_priv->rps.last_adj = 0;
}

4934 4935 4936 4937 4938
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4939
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4940
	if (val < dev_priv->rps.max_freq_softlimit)
4941
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4942

4943 4944
	mask &= dev_priv->pm_rps_events;

4945
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4946 4947
}

4948 4949 4950
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4951
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4952
{
4953
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4954
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4955 4956
		return;

4957
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4958 4959
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4960

C
Chris Wilson 已提交
4961 4962 4963 4964 4965
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4966

4967
		if (IS_GEN9(dev_priv))
4968 4969
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4970
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4971 4972 4973 4974 4975 4976 4977
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4978
	}
4979 4980 4981 4982

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4983
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4984
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4985

4986 4987
	POSTING_READ(GEN6_RPNSWREQ);

4988
	dev_priv->rps.cur_freq = val;
4989
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4990 4991
}

4992
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4993 4994
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4995 4996
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4997

4998
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4999 5000 5001
		      "Odd GPU freq value\n"))
		val &= ~1;

5002 5003
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5004
	if (val != dev_priv->rps.cur_freq) {
5005
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5006 5007 5008
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5009 5010 5011 5012 5013

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5014
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5015 5016
 *
 * * If Gfx is Idle, then
5017 5018 5019
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5020 5021 5022
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5023
	u32 val = dev_priv->rps.idle_freq;
5024

5025
	if (dev_priv->rps.cur_freq <= val)
5026 5027
		return;

5028 5029 5030
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5031
	valleyview_set_rps(dev_priv, val);
5032
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5033 5034
}

5035 5036 5037 5038 5039 5040 5041 5042
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5043

5044 5045
		gen6_enable_rps_interrupts(dev_priv);

5046 5047 5048 5049 5050
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5051 5052 5053 5054
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5055 5056
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5057 5058 5059 5060 5061 5062 5063
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5064
	mutex_lock(&dev_priv->rps.hw_lock);
5065
	if (dev_priv->rps.enabled) {
5066
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5067
			vlv_set_rps_idle(dev_priv);
5068
		else
5069
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5070
		dev_priv->rps.last_adj = 0;
5071 5072
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5073
	}
5074
	mutex_unlock(&dev_priv->rps.hw_lock);
5075

5076
	spin_lock(&dev_priv->rps.client_lock);
5077 5078
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5079
	spin_unlock(&dev_priv->rps.client_lock);
5080 5081
}

5082
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5083 5084
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5085
{
5086 5087 5088
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5089
	if (!(dev_priv->gt.awake &&
5090
	      dev_priv->rps.enabled &&
5091
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5092
		return;
5093

5094 5095 5096
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5097
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5098 5099
		rps = NULL;

5100 5101 5102 5103 5104
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5105
			schedule_work(&dev_priv->rps.work);
5106 5107
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5108

5109 5110 5111
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5112 5113
		} else
			dev_priv->rps.boosts++;
5114
	}
5115
	spin_unlock(&dev_priv->rps.client_lock);
5116 5117
}

5118
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5119
{
5120 5121
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5122
	else
5123
		gen6_set_rps(dev_priv, val);
5124 5125
}

5126
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5127 5128
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5129
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5130 5131
}

5132
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5133 5134 5135 5136
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5137
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5138 5139
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5140
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5141
	I915_WRITE(GEN6_RP_CONTROL, 0);
5142 5143
}

5144
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5145 5146 5147 5148
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5149
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5150
{
5151 5152
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5153
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5154

5155
	I915_WRITE(GEN6_RC_CONTROL, 0);
5156

5157
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5158 5159
}

5160
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5161
{
5162
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5163 5164 5165 5166 5167
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5168
	if (HAS_RC6p(dev_priv))
5169 5170 5171 5172 5173
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5174 5175

	else
5176 5177
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5178 5179
}

5180
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5181
{
5182
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5183 5184
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5196 5197

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5198
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5199 5200 5201 5202 5203 5204 5205 5206
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5207 5208 5209
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5210
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5211 5212 5213 5214 5215 5216 5217
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5218
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5219 5220 5221
		enable_rc6 = false;
	}

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5236 5237 5238 5239 5240 5241
		enable_rc6 = false;
	}

	return enable_rc6;
}

5242
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5243
{
5244
	/* No RC6 before Ironlake and code is gone for ilk. */
5245
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5246 5247
		return 0;

5248 5249 5250
	if (!enable_rc6)
		return 0;

5251
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5252 5253 5254 5255
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5256
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5257 5258 5259
	if (enable_rc6 >= 0) {
		int mask;

5260
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5261 5262 5263 5264 5265 5266
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5267 5268 5269
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5270 5271 5272

		return enable_rc6 & mask;
	}
5273

5274
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5275
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5276 5277

	return INTEL_RC6_ENABLE;
5278 5279
}

5280
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5281 5282
{
	/* All of these values are in units of 50MHz */
5283

5284
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5285
	if (IS_BROXTON(dev_priv)) {
5286
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5287 5288 5289 5290
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5291
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5292 5293 5294 5295
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5296
	/* hw_max = RP0 until we check for overclocking */
5297
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5298

5299
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5300 5301
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5302 5303 5304 5305 5306
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5307
			dev_priv->rps.efficient_freq =
5308 5309 5310 5311
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5312 5313
	}

5314
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5315
		/* Store the frequency values in 16.66 MHZ units, which is
5316 5317
		 * the natural hardware unit for SKL
		 */
5318 5319 5320 5321 5322 5323
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5324 5325
}

5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5338
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5339
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5340 5341 5342
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5343
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5344
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5345 5346 5347 5348 5349 5350 5351 5352 5353
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5354
		gen9_disable_rps(dev_priv);
5355 5356 5357 5358
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5359 5360 5361 5362 5363 5364 5365 5366
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5367 5368
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5369 5370 5371
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5372
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5373 5374 5375 5376

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5377
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5378
{
5379
	struct intel_engine_cs *engine;
5380
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5381 5382 5383 5384 5385 5386 5387
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5388
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5389 5390 5391 5392 5393

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5394 5395

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5396
	if (IS_SKYLAKE(dev_priv))
5397 5398 5399
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5400 5401
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5402
	for_each_engine(engine, dev_priv, id)
5403
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5404

5405
	if (HAS_GUC(dev_priv))
5406 5407
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5408 5409
	I915_WRITE(GEN6_RC_SLEEP, 0);

5410 5411 5412 5413
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5414
	/* 3a: Enable RC6 */
5415
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5416
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5417
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5418
	/* WaRsUseTimeoutMode:bxt */
5419
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5420
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5421 5422 5423
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5424 5425
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5426 5427 5428
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5429
	}
Z
Zhe Wang 已提交
5430

5431 5432
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5433
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5434
	 */
5435
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5436 5437 5438 5439
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5440

5441
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5442 5443
}

5444
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5445
{
5446
	struct intel_engine_cs *engine;
5447
	enum intel_engine_id id;
5448
	uint32_t rc6_mask = 0;
5449 5450 5451 5452 5453 5454

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5455
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5456 5457 5458 5459 5460 5461 5462 5463

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5464
	for_each_engine(engine, dev_priv, id)
5465
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5466
	I915_WRITE(GEN6_RC_SLEEP, 0);
5467
	if (IS_BROADWELL(dev_priv))
5468 5469 5470
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5471 5472

	/* 3: Enable RC6 */
5473
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5474
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5475 5476
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5477 5478 5479 5480 5481 5482 5483
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5484 5485

	/* 4 Program defaults and thresholds for RPS*/
5486 5487 5488 5489
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5504 5505

	/* 5: Enable RPS */
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5516
	reset_rps(dev_priv, gen6_set_rps);
5517

5518
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5519 5520
}

5521
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5522
{
5523
	struct intel_engine_cs *engine;
5524
	enum intel_engine_id id;
5525
	u32 rc6vids, rc6_mask = 0;
5526 5527
	u32 gtfifodbg;
	int rc6_mode;
5528
	int ret;
5529

5530
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5531

5532 5533 5534 5535 5536 5537 5538 5539 5540
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5541 5542
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5543 5544 5545 5546
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5547
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5558
	for_each_engine(engine, dev_priv, id)
5559
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5560 5561 5562

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5563
	if (IS_IVYBRIDGE(dev_priv))
5564 5565 5566
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5567
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5568 5569
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5570
	/* Check if we are enabling RC6 */
5571
	rc6_mode = intel_enable_rc6();
5572 5573 5574
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5575
	/* We don't use those on Haswell */
5576
	if (!IS_HASWELL(dev_priv)) {
5577 5578
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5579

5580 5581 5582
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5583

5584
	intel_print_rc6_info(dev_priv, rc6_mask);
5585 5586 5587 5588 5589 5590

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5591 5592
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5593 5594
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5595
	reset_rps(dev_priv, gen6_set_rps);
5596

5597 5598
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5599
	if (IS_GEN6(dev_priv) && ret) {
5600
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5601
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5602 5603 5604 5605 5606 5607 5608 5609 5610
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5612 5613
}

5614
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5615 5616
{
	int min_freq = 15;
5617 5618
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5619
	unsigned int max_gpu_freq, min_gpu_freq;
5620
	int scaling_factor = 180;
5621
	struct cpufreq_policy *policy;
5622

5623
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5624

5625 5626 5627 5628 5629 5630 5631 5632 5633
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5634
		max_ia_freq = tsc_khz;
5635
	}
5636 5637 5638 5639

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5640
	min_ring_freq = I915_READ(DCLK) & 0xf;
5641 5642
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5643

5644
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5645 5646 5647 5648 5649 5650 5651 5652
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5653 5654 5655 5656 5657
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5658 5659
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5660 5661
		unsigned int ia_freq = 0, ring_freq = 0;

5662
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5663 5664 5665 5666 5667
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5668
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5669 5670
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5671
		} else if (IS_HASWELL(dev_priv)) {
5672
			ring_freq = mult_frac(gpu_freq, 5, 4);
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5689

B
Ben Widawsky 已提交
5690 5691
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5692 5693 5694
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5695 5696 5697
	}
}

5698
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5699 5700 5701
{
	u32 val, rp0;

5702
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5703

5704
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5719
	}
5720 5721 5722

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5736 5737 5738 5739
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5740 5741 5742
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5743 5744 5745
	return rp1;
}

5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5757
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5758 5759 5760
{
	u32 val, rp0;

5761
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5774
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5775
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5776
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5777 5778 5779 5780 5781
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5782
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5783
{
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5795 5796
}

5797 5798 5799 5800 5801 5802 5803 5804 5805
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5806 5807 5808 5809 5810 5811 5812 5813 5814

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5815
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5816
{
5817
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5818
	unsigned long pctx_paddr, paddr;
5819 5820 5821 5822 5823
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5824
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5825
		paddr = (dev_priv->mm.stolen_base +
5826
			 (ggtt->stolen_size - pctx_size));
5827 5828 5829 5830

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5831 5832

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5833 5834
}

5835
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5848
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5849
								      pcbr_offset,
5850
								      I915_GTT_OFFSET_NONE,
5851 5852 5853 5854
								      pctx_size);
		goto out;
	}

5855 5856
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5857 5858 5859 5860 5861 5862 5863 5864
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5865
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5866 5867
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5868
		goto out;
5869 5870 5871 5872 5873 5874
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5875
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5876 5877 5878
	dev_priv->vlv_pctx = pctx;
}

5879
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5880 5881 5882 5883
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5884
	i915_gem_object_put(dev_priv->vlv_pctx);
5885 5886 5887
	dev_priv->vlv_pctx = NULL;
}

5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5899
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5900
{
5901
	u32 val;
5902

5903
	valleyview_setup_pctx(dev_priv);
5904

5905 5906
	vlv_init_gpll_ref_freq(dev_priv);

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5920
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5921

5922 5923 5924
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5925
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5926 5927 5928 5929
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5930
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5931 5932
			 dev_priv->rps.efficient_freq);

5933 5934
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5935
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5936 5937
			 dev_priv->rps.rp1_freq);

5938 5939
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5940
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5941 5942 5943
			 dev_priv->rps.min_freq);
}

5944
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5945
{
5946
	u32 val;
5947

5948
	cherryview_setup_pctx(dev_priv);
5949

5950 5951
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5952
	mutex_lock(&dev_priv->sb_lock);
5953
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5954
	mutex_unlock(&dev_priv->sb_lock);
5955

5956 5957 5958 5959
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5960
	default:
5961 5962 5963
		dev_priv->mem_freq = 1600;
		break;
	}
5964
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5965

5966 5967 5968
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5969
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5970 5971 5972 5973
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5974
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5975 5976
			 dev_priv->rps.efficient_freq);

5977 5978
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5979
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5980 5981
			 dev_priv->rps.rp1_freq);

5982 5983
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5984
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5985
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5986 5987
			 dev_priv->rps.min_freq);

5988 5989 5990 5991 5992
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5993 5994
}

5995
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5996
{
5997
	valleyview_cleanup_pctx(dev_priv);
5998 5999
}

6000
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6001
{
6002
	struct intel_engine_cs *engine;
6003
	enum intel_engine_id id;
6004
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6005 6006 6007

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6008 6009
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6020
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6021

6022 6023 6024
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6025 6026 6027 6028 6029
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6030
	for_each_engine(engine, dev_priv, id)
6031
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6032 6033
	I915_WRITE(GEN6_RC_SLEEP, 0);

6034 6035
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6047 6048
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6049
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6050 6051 6052

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6053
	/* 4 Program defaults and thresholds for RPS*/
6054
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6065
		   GEN6_RP_MEDIA_IS_GFX |
6066 6067 6068 6069
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6070 6071 6072 6073 6074 6075
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6076 6077
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6078 6079 6080
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6081
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6082 6083
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6084
	reset_rps(dev_priv, valleyview_set_rps);
6085

6086
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6087 6088
}

6089
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6090
{
6091
	struct intel_engine_cs *engine;
6092
	enum intel_engine_id id;
6093
	u32 gtfifodbg, val, rc6_mode = 0;
6094 6095 6096

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6097 6098
	valleyview_check_pctx(dev_priv);

6099 6100
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6101 6102
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6103 6104 6105
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6106
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6107
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6108

6109 6110 6111
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6112
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6132
	for_each_engine(engine, dev_priv, id)
6133
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6134

6135
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6136 6137

	/* allows RC6 residency counter to work */
6138
	I915_WRITE(VLV_COUNTER_CONTROL,
6139 6140
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6141 6142
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6143

6144
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6145
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6146

6147
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6148

6149
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6150

D
Deepak S 已提交
6151 6152 6153 6154 6155 6156
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6157
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6158

6159 6160 6161
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6162
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6163 6164
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6165
	reset_rps(dev_priv, valleyview_set_rps);
6166

6167
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6168 6169
}

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6199
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6200 6201 6202 6203 6204 6205
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6206 6207
	assert_spin_locked(&mchdev_lock);

6208
	diff1 = now - dev_priv->ips.last_time1;
6209 6210 6211 6212 6213 6214 6215

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6216
		return dev_priv->ips.chipset_power;
6217 6218 6219 6220 6221 6222 6223 6224

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6225 6226
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6227 6228
		diff += total_count;
	} else {
6229
		diff = total_count - dev_priv->ips.last_count1;
6230 6231 6232
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6233 6234
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6245 6246
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6247

6248
	dev_priv->ips.chipset_power = ret;
6249 6250 6251 6252

	return ret;
}

6253 6254 6255 6256
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6257
	if (INTEL_INFO(dev_priv)->gen != 5)
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6296
{
6297 6298 6299
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6300
	if (INTEL_INFO(dev_priv)->is_mobile)
6301 6302 6303
		return vm > 0 ? vm : 0;

	return vd;
6304 6305
}

6306
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6307
{
6308
	u64 now, diff, diffms;
6309 6310
	u32 count;

6311
	assert_spin_locked(&mchdev_lock);
6312

6313 6314 6315
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6316 6317 6318 6319 6320 6321 6322

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6323 6324
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6325 6326
		diff += count;
	} else {
6327
		diff = count - dev_priv->ips.last_count2;
6328 6329
	}

6330 6331
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6332 6333 6334 6335

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6336
	dev_priv->ips.gfx_power = diff;
6337 6338
}

6339 6340
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6341
	if (INTEL_INFO(dev_priv)->gen != 5)
6342 6343
		return;

6344
	spin_lock_irq(&mchdev_lock);
6345 6346 6347

	__i915_update_gfx_val(dev_priv);

6348
	spin_unlock_irq(&mchdev_lock);
6349 6350
}

6351
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6352 6353 6354 6355
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6356 6357
	assert_spin_locked(&mchdev_lock);

6358
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6378
	corr2 = (corr * dev_priv->ips.corr);
6379 6380 6381 6382

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6383
	__i915_update_gfx_val(dev_priv);
6384

6385
	return dev_priv->ips.gfx_power + state2;
6386 6387
}

6388 6389 6390 6391
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6392
	if (INTEL_INFO(dev_priv)->gen != 5)
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6415
	spin_lock_irq(&mchdev_lock);
6416 6417 6418 6419
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6420 6421
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6422 6423 6424 6425

	ret = chipset_val + graphics_val;

out_unlock:
6426
	spin_unlock_irq(&mchdev_lock);
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6442
	spin_lock_irq(&mchdev_lock);
6443 6444 6445 6446 6447 6448
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6449 6450
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6451 6452

out_unlock:
6453
	spin_unlock_irq(&mchdev_lock);
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6470
	spin_lock_irq(&mchdev_lock);
6471 6472 6473 6474 6475 6476
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6477 6478
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6479 6480

out_unlock:
6481
	spin_unlock_irq(&mchdev_lock);
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6496
	spin_lock_irq(&mchdev_lock);
6497 6498
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6499
	spin_unlock_irq(&mchdev_lock);
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6516
	spin_lock_irq(&mchdev_lock);
6517 6518 6519 6520 6521 6522
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6523
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6524

6525
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6526 6527 6528
		ret = false;

out_unlock:
6529
	spin_unlock_irq(&mchdev_lock);
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6557 6558
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6559
	spin_lock_irq(&mchdev_lock);
6560
	i915_mch_dev = dev_priv;
6561
	spin_unlock_irq(&mchdev_lock);
6562 6563 6564 6565 6566 6567

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6568
	spin_lock_irq(&mchdev_lock);
6569
	i915_mch_dev = NULL;
6570
	spin_unlock_irq(&mchdev_lock);
6571
}
6572

6573
static void intel_init_emon(struct drm_i915_private *dev_priv)
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6590
		I915_WRITE(PEW(i), 0);
6591
	for (i = 0; i < 3; i++)
6592
		I915_WRITE(DEW(i), 0);
6593 6594 6595

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6596
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6617
		I915_WRITE(PXW(i), val);
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6633
		I915_WRITE(PXWL(i), 0);
6634 6635 6636 6637 6638 6639

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6640
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6641 6642
}

6643
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6644
{
6645 6646 6647 6648 6649 6650 6651 6652
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6653

6654
	mutex_lock(&dev_priv->drm.struct_mutex);
6655 6656 6657
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6658 6659 6660 6661
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6662
	else if (INTEL_GEN(dev_priv) >= 6)
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6692 6693 6694
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6695
	mutex_unlock(&dev_priv->rps.hw_lock);
6696
	mutex_unlock(&dev_priv->drm.struct_mutex);
6697 6698

	intel_autoenable_gt_powersave(dev_priv);
6699 6700
}

6701
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6702
{
6703
	if (IS_VALLEYVIEW(dev_priv))
6704
		valleyview_cleanup_gt_powersave(dev_priv);
6705 6706 6707

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6708 6709
}

6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6729 6730 6731 6732
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6733 6734

	gen6_reset_rps_interrupts(dev_priv);
6735 6736
}

6737
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6738
{
6739 6740
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6741

6742
	mutex_lock(&dev_priv->rps.hw_lock);
6743

6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6755
	}
6756 6757 6758

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6759 6760
}

6761
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6762
{
6763 6764 6765
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6766 6767
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6768

6769 6770 6771
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6772

6773
	mutex_lock(&dev_priv->rps.hw_lock);
6774 6775 6776 6777 6778

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6779
	} else if (INTEL_GEN(dev_priv) >= 9) {
6780 6781 6782
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6783
			gen6_update_ring_freq(dev_priv);
6784 6785
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6786
		gen6_update_ring_freq(dev_priv);
6787
	} else if (INTEL_GEN(dev_priv) >= 6) {
6788
		gen6_enable_rps(dev_priv);
6789
		gen6_update_ring_freq(dev_priv);
6790 6791 6792
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6793
	}
6794 6795 6796 6797 6798 6799 6800

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6801
	dev_priv->rps.enabled = true;
6802 6803
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6804

6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6815
	rcs = dev_priv->engine[RCS];
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6868 6869
static void ibx_init_clock_gating(struct drm_device *dev)
{
6870
	struct drm_i915_private *dev_priv = to_i915(dev);
6871 6872 6873 6874 6875 6876 6877 6878 6879

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6880 6881
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6882
	struct drm_i915_private *dev_priv = to_i915(dev);
6883
	enum pipe pipe;
6884

6885
	for_each_pipe(dev_priv, pipe) {
6886 6887 6888
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6889 6890 6891

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6892 6893 6894
	}
}

6895 6896
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6897
	struct drm_i915_private *dev_priv = to_i915(dev);
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6909
static void ironlake_init_clock_gating(struct drm_device *dev)
6910
{
6911
	struct drm_i915_private *dev_priv = to_i915(dev);
6912
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6913

6914 6915 6916 6917
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6918 6919 6920
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6938
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6939 6940 6941
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6942 6943

	ilk_init_lp_watermarks(dev);
6944 6945 6946 6947 6948 6949 6950 6951

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6952
	if (IS_IRONLAKE_M(dev_priv)) {
6953
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6954 6955 6956 6957 6958 6959 6960 6961
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6962 6963
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6964 6965 6966 6967 6968 6969
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6970

6971
	/* WaDisableRenderCachePipelinedFlush:ilk */
6972 6973
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6974

6975 6976 6977
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6978
	g4x_disable_trickle_feed(dev);
6979

6980 6981 6982 6983 6984
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6985
	struct drm_i915_private *dev_priv = to_i915(dev);
6986
	int pipe;
6987
	uint32_t val;
6988 6989 6990 6991 6992 6993

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6994 6995 6996
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6997 6998
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6999 7000 7001
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7002
	for_each_pipe(dev_priv, pipe) {
7003 7004 7005
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7006
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7007
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7008 7009 7010
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7011 7012
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7013
	/* WADP0ClockGatingDisable */
7014
	for_each_pipe(dev_priv, pipe) {
7015 7016 7017
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7018 7019
}

7020 7021
static void gen6_check_mch_setup(struct drm_device *dev)
{
7022
	struct drm_i915_private *dev_priv = to_i915(dev);
7023 7024 7025
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7026 7027 7028
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7029 7030
}

7031
static void gen6_init_clock_gating(struct drm_device *dev)
7032
{
7033
	struct drm_i915_private *dev_priv = to_i915(dev);
7034
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7035

7036
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7037 7038 7039 7040 7041

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7042
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7043 7044 7045
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7046 7047 7048
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7049 7050 7051
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7052 7053 7054 7055
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7056 7057
	 */
	I915_WRITE(GEN6_GT_MODE,
7058
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7059

7060
	ilk_init_lp_watermarks(dev);
7061 7062

	I915_WRITE(CACHE_MODE_0,
7063
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7079
	 *
7080 7081
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7082 7083 7084 7085 7086
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7087
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7088 7089
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7090

7091 7092 7093 7094 7095 7096 7097 7098
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7099 7100 7101 7102 7103 7104 7105 7106
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7107 7108
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7109 7110 7111 7112 7113 7114 7115
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7116 7117 7118 7119
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7120

7121
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7122

7123
	cpt_init_clock_gating(dev);
7124 7125

	gen6_check_mch_setup(dev);
7126 7127 7128 7129 7130 7131
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7132
	/*
7133
	 * WaVSThreadDispatchOverride:ivb,vlv
7134 7135 7136 7137
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7138 7139 7140 7141 7142 7143 7144 7145
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7146 7147
static void lpt_init_clock_gating(struct drm_device *dev)
{
7148
	struct drm_i915_private *dev_priv = to_i915(dev);
7149 7150 7151 7152 7153

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7154
	if (HAS_PCH_LPT_LP(dev_priv))
7155 7156 7157
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7158 7159

	/* WADPOClockGatingDisable:hsw */
7160 7161
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7162
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7163 7164
}

7165 7166
static void lpt_suspend_hw(struct drm_device *dev)
{
7167
	struct drm_i915_private *dev_priv = to_i915(dev);
7168

7169
	if (HAS_PCH_LPT_LP(dev_priv)) {
7170 7171 7172 7173 7174 7175 7176
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7200 7201
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7202
	struct drm_i915_private *dev_priv = dev->dev_private;
7203

7204
	gen9_init_clock_gating(dev);
7205 7206 7207 7208 7209

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7210 7211 7212 7213 7214

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7215 7216 7217 7218

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7219 7220
}

7221 7222
static void skylake_init_clock_gating(struct drm_device *dev)
{
7223
	struct drm_i915_private *dev_priv = dev->dev_private;
7224

7225
	gen9_init_clock_gating(dev);
7226 7227 7228 7229

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7230 7231 7232 7233

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7234 7235
}

7236
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7237
{
7238
	struct drm_i915_private *dev_priv = to_i915(dev);
7239
	enum pipe pipe;
B
Ben Widawsky 已提交
7240

7241
	ilk_init_lp_watermarks(dev);
7242

7243
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7244
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7245

7246
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7247 7248 7249
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7250
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7251
	for_each_pipe(dev_priv, pipe) {
7252
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7253
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7254
			   BDW_DPRS_MASK_VBLANK_SRD);
7255
	}
7256

7257 7258 7259 7260 7261
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7262

7263 7264
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7265 7266 7267 7268

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7269

7270 7271
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7272

7273 7274 7275 7276 7277 7278 7279
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7280 7281 7282 7283
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7284
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7285 7286
}

7287 7288
static void haswell_init_clock_gating(struct drm_device *dev)
{
7289
	struct drm_i915_private *dev_priv = to_i915(dev);
7290

7291
	ilk_init_lp_watermarks(dev);
7292

7293 7294 7295 7296 7297
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7298
	/* This is required by WaCatErrorRejectionIssue:hsw */
7299 7300 7301 7302
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7303 7304 7305
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7306

7307 7308 7309
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7310 7311 7312 7313
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7314
	/* WaDisable4x2SubspanOptimization:hsw */
7315 7316
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7317

7318 7319 7320
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7321 7322 7323 7324
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7325 7326
	 */
	I915_WRITE(GEN7_GT_MODE,
7327
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7328

7329 7330 7331 7332
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7333
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7334 7335
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7336 7337 7338
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7339

7340
	lpt_init_clock_gating(dev);
7341 7342
}

7343
static void ivybridge_init_clock_gating(struct drm_device *dev)
7344
{
7345
	struct drm_i915_private *dev_priv = to_i915(dev);
7346
	uint32_t snpcr;
7347

7348
	ilk_init_lp_watermarks(dev);
7349

7350
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7351

7352
	/* WaDisableEarlyCull:ivb */
7353 7354 7355
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7356
	/* WaDisableBackToBackFlipFix:ivb */
7357 7358 7359 7360
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7361
	/* WaDisablePSDDualDispatchEnable:ivb */
7362
	if (IS_IVB_GT1(dev_priv))
7363 7364 7365
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7366 7367 7368
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7369
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7370 7371 7372
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7373
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7374 7375 7376
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7377
		   GEN7_WA_L3_CHICKEN_MODE);
7378
	if (IS_IVB_GT1(dev_priv))
7379 7380
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7381 7382 7383 7384
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7385 7386
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7387
	}
7388

7389
	/* WaForceL3Serialization:ivb */
7390 7391 7392
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7393
	/*
7394
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7395
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7396 7397
	 */
	I915_WRITE(GEN6_UCGCTL2,
7398
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7399

7400
	/* This is required by WaCatErrorRejectionIssue:ivb */
7401 7402 7403 7404
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7405
	g4x_disable_trickle_feed(dev);
7406 7407

	gen7_setup_fixed_func_scheduler(dev_priv);
7408

7409 7410 7411 7412 7413
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7414

7415
	/* WaDisable4x2SubspanOptimization:ivb */
7416 7417
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7418

7419 7420 7421
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7422 7423 7424 7425
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7426 7427
	 */
	I915_WRITE(GEN7_GT_MODE,
7428
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7429

7430 7431 7432 7433
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7434

7435
	if (!HAS_PCH_NOP(dev_priv))
7436
		cpt_init_clock_gating(dev);
7437 7438

	gen6_check_mch_setup(dev);
7439 7440
}

7441
static void valleyview_init_clock_gating(struct drm_device *dev)
7442
{
7443
	struct drm_i915_private *dev_priv = to_i915(dev);
7444

7445
	/* WaDisableEarlyCull:vlv */
7446 7447 7448
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7449
	/* WaDisableBackToBackFlipFix:vlv */
7450 7451 7452 7453
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7454
	/* WaPsdDispatchEnable:vlv */
7455
	/* WaDisablePSDDualDispatchEnable:vlv */
7456
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7457 7458
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7459

7460 7461 7462
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7463
	/* WaForceL3Serialization:vlv */
7464 7465 7466
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7467
	/* WaDisableDopClockGating:vlv */
7468 7469 7470
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7471
	/* This is required by WaCatErrorRejectionIssue:vlv */
7472 7473 7474 7475
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7476 7477
	gen7_setup_fixed_func_scheduler(dev_priv);

7478
	/*
7479
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7480
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7481 7482
	 */
	I915_WRITE(GEN6_UCGCTL2,
7483
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7484

7485 7486 7487 7488 7489
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7490

7491 7492 7493 7494
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7495 7496
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7497

7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7509 7510 7511 7512 7513 7514
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7515
	/*
7516
	 * WaDisableVLVClockGating_VBIIssue:vlv
7517 7518 7519
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7520
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7521 7522
}

7523 7524
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7525
	struct drm_i915_private *dev_priv = to_i915(dev);
7526

7527 7528 7529 7530 7531
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7532 7533 7534 7535

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7536 7537 7538 7539

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7540 7541 7542 7543

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7544

7545 7546 7547 7548 7549 7550 7551
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7552 7553 7554 7555 7556
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7557 7558
}

7559
static void g4x_init_clock_gating(struct drm_device *dev)
7560
{
7561
	struct drm_i915_private *dev_priv = to_i915(dev);
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7572
	if (IS_GM45(dev_priv))
7573 7574
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7575 7576 7577 7578

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7579

7580 7581 7582
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7583
	g4x_disable_trickle_feed(dev);
7584 7585
}

7586
static void crestline_init_clock_gating(struct drm_device *dev)
7587
{
7588
	struct drm_i915_private *dev_priv = to_i915(dev);
7589 7590 7591 7592 7593 7594

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7595 7596
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7597 7598 7599

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7600 7601
}

7602
static void broadwater_init_clock_gating(struct drm_device *dev)
7603
{
7604
	struct drm_i915_private *dev_priv = to_i915(dev);
7605 7606 7607 7608 7609 7610 7611

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7612 7613
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7614 7615 7616

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7617 7618
}

7619
static void gen3_init_clock_gating(struct drm_device *dev)
7620
{
7621
	struct drm_i915_private *dev_priv = to_i915(dev);
7622 7623 7624 7625 7626
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7627

7628
	if (IS_PINEVIEW(dev_priv))
7629
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7630 7631 7632

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7633 7634

	/* interrupts should cause a wake up from C3 */
7635
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7636 7637 7638

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7639 7640 7641

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7642 7643
}

7644
static void i85x_init_clock_gating(struct drm_device *dev)
7645
{
7646
	struct drm_i915_private *dev_priv = to_i915(dev);
7647 7648

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7649 7650 7651 7652

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7653 7654 7655

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7656 7657
}

7658
static void i830_init_clock_gating(struct drm_device *dev)
7659
{
7660
	struct drm_i915_private *dev_priv = to_i915(dev);
7661 7662

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7663 7664 7665 7666

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7667 7668 7669 7670
}

void intel_init_clock_gating(struct drm_device *dev)
{
7671
	struct drm_i915_private *dev_priv = to_i915(dev);
7672

7673
	dev_priv->display.init_clock_gating(dev);
7674 7675
}

7676 7677
void intel_suspend_hw(struct drm_device *dev)
{
7678
	if (HAS_PCH_LPT(to_i915(dev)))
7679 7680 7681
		lpt_suspend_hw(dev);
}

7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7699
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7700
	else if (IS_KABYLAKE(dev_priv))
7701
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7736 7737 7738
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7739
	struct drm_i915_private *dev_priv = to_i915(dev);
7740

7741
	intel_fbc_init(dev_priv);
7742

7743
	/* For cxsr */
7744
	if (IS_PINEVIEW(dev_priv))
7745
		i915_pineview_get_mem_freq(dev_priv);
7746
	else if (IS_GEN5(dev_priv))
7747
		i915_ironlake_get_mem_freq(dev_priv);
7748

7749
	/* For FIFO watermark updates */
7750
	if (INTEL_INFO(dev)->gen >= 9) {
7751
		skl_setup_wm_latency(dev);
7752
		dev_priv->display.update_wm = skl_update_wm;
7753
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7754
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7755
		ilk_setup_wm_latency(dev);
7756

7757
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7758
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7759
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7760
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7761
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7762 7763 7764 7765 7766 7767
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7768 7769 7770 7771
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7772
	} else if (IS_CHERRYVIEW(dev_priv)) {
7773 7774
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7775
	} else if (IS_VALLEYVIEW(dev_priv)) {
7776 7777
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7778
	} else if (IS_PINEVIEW(dev_priv)) {
7779
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7780 7781 7782 7783 7784 7785 7786 7787 7788
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7789
			intel_set_memory_cxsr(dev_priv, false);
7790 7791 7792
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7793
	} else if (IS_G4X(dev_priv)) {
7794
		dev_priv->display.update_wm = g4x_update_wm;
7795
	} else if (IS_GEN4(dev_priv)) {
7796
		dev_priv->display.update_wm = i965_update_wm;
7797
	} else if (IS_GEN3(dev_priv)) {
7798 7799
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7800
	} else if (IS_GEN2(dev_priv)) {
7801 7802
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7803
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7804 7805
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7806
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7807 7808 7809
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7810 7811 7812
	}
}

7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7825
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7857
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7858
{
7859 7860
	int status;

7861
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7862

7863 7864 7865 7866 7867 7868
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7869 7870 7871 7872
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7873 7874 7875
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7876

7877 7878 7879
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7880 7881 7882 7883
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7884 7885
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7886

7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7898 7899 7900
	return 0;
}

7901
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7902
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7903
{
7904 7905
	int status;

7906
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7907

7908 7909 7910 7911 7912 7913
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7914 7915 7916 7917
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7918 7919
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7920

7921 7922 7923
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7924 7925 7926 7927
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7928
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7929

7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7941 7942
	return 0;
}
7943

7944 7945
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7946 7947 7948 7949 7950
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7951 7952
}

7953
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7954
{
7955
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7956 7957
}

7958
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7959
{
7960 7961 7962 7963 7964
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7965 7966
}

7967
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7968
{
7969
	/* CHV needs even values */
7970
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7971 7972
}

7973
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7974
{
7975
	if (IS_GEN9(dev_priv))
7976 7977
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7978
	else if (IS_CHERRYVIEW(dev_priv))
7979
		return chv_gpu_freq(dev_priv, val);
7980
	else if (IS_VALLEYVIEW(dev_priv))
7981 7982 7983
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7984 7985
}

7986 7987
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7988
	if (IS_GEN9(dev_priv))
7989 7990
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7991
	else if (IS_CHERRYVIEW(dev_priv))
7992
		return chv_freq_opcode(dev_priv, val);
7993
	else if (IS_VALLEYVIEW(dev_priv))
7994 7995
		return byt_freq_opcode(dev_priv, val);
	else
7996
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7997
}
7998

7999 8000
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8001
	struct drm_i915_gem_request *req;
8002 8003 8004 8005 8006
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8007
	struct drm_i915_gem_request *req = boost->req;
8008

8009
	if (!i915_gem_request_completed(req))
8010
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8011

8012
	i915_gem_request_put(req);
8013 8014 8015
	kfree(boost);
}

8016
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8017 8018 8019
{
	struct request_boost *boost;

8020
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8021 8022
		return;

8023
	if (i915_gem_request_completed(req))
8024 8025
		return;

8026 8027 8028 8029
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8030
	boost->req = i915_gem_request_get(req);
8031 8032

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8033
	queue_work(req->i915->wq, &boost->work);
8034 8035
}

D
Daniel Vetter 已提交
8036
void intel_pm_setup(struct drm_device *dev)
8037
{
8038
	struct drm_i915_private *dev_priv = to_i915(dev);
8039

D
Daniel Vetter 已提交
8040
	mutex_init(&dev_priv->rps.hw_lock);
8041
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8042

8043 8044
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8045
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8046

8047
	dev_priv->pm.suspended = false;
8048
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8049
}