intel_pm.c 207.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34
/**
35 36
 * DOC: RC6
 *
B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

57 58
static void bxt_init_clock_gating(struct drm_device *dev)
{
59 60
	struct drm_i915_private *dev_priv = dev->dev_private;

61 62 63 64
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

65 66
	/*
	 * FIXME:
67
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
68 69
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
70
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
71 72 73 74 75 76 77 78

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
79 80
}

81 82
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
83
	struct drm_i915_private *dev_priv = dev->dev_private;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
122
	struct drm_i915_private *dev_priv = dev->dev_private;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

148
	dev_priv->ips.r_t = dev_priv->mem_freq;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
180
		dev_priv->ips.c_m = 0;
181
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
182
		dev_priv->ips.c_m = 1;
183
	} else {
184
		dev_priv->ips.c_m = 2;
185 186 187
	}
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

226
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

288 289 290
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

291
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
292
{
293 294
	struct drm_device *dev = dev_priv->dev;
	u32 val;
295

296
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
297
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
298
		POSTING_READ(FW_BLC_SELF_VLV);
299
		dev_priv->wm.vlv.cxsr = enable;
300 301
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
302
		POSTING_READ(FW_BLC_SELF);
303 304 305 306
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
307
		POSTING_READ(DSPFW3);
308 309 310 311
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
312
		POSTING_READ(FW_BLC_SELF);
313 314 315 316
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
317
		POSTING_READ(INSTPM);
318 319 320
	} else {
		return;
	}
321

322 323
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
324 325
}

326

327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
341
static const int pessimal_latency_ns = 5000;
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

398
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

414
static int i830_get_fifo_size(struct drm_device *dev, int plane)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

431
static int i845_get_fifo_size(struct drm_device *dev, int plane)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
449 450 451 452 453
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
454 455
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
456 457 458 459 460
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
461 462
};
static const struct intel_watermark_params pineview_cursor_wm = {
463 464 465 466 467
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468 469
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
470 471 472 473 474
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475 476
};
static const struct intel_watermark_params g4x_wm_info = {
477 478 479 480 481
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
482 483
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
484 485 486 487 488
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params i965_cursor_wm_info = {
491 492 493 494 495
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params i945_wm_info = {
498 499 500 501 502
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params i915_wm_info = {
505 506 507 508 509
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
510
};
511
static const struct intel_watermark_params i830_a_wm_info = {
512 513 514 515 516
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
517
};
518 519 520 521 522 523 524
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
525
static const struct intel_watermark_params i845_wm_info = {
526 527 528 529 530
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
531 532 533 534 535 536
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
537
 * @cpp: bytes per pixel
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
553
					int fifo_size, int cpp,
554 555 556 557 558 559 560 561 562 563
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
564
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
565 566 567 568 569 570 571 572 573 574 575 576 577 578
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
579 580 581 582 583 584 585 586 587 588 589

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

590 591 592 593 594 595 596
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

597
	for_each_crtc(dev, crtc) {
598
		if (intel_crtc_active(crtc)) {
599 600 601 602 603 604 605 606 607
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

608
static void pineview_update_wm(struct drm_crtc *unused_crtc)
609
{
610
	struct drm_device *dev = unused_crtc->dev;
611 612 613 614 615 616 617 618 619 620
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
621
		intel_set_memory_cxsr(dev_priv, false);
622 623 624 625 626
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
627
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
628
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
629
		int clock = adjusted_mode->crtc_clock;
630 631 632 633

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
634
					cpp, latency->display_sr);
635 636
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
637
		reg |= FW_WM(wm, SR);
638 639 640 641 642 643
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
644
					cpp, latency->cursor_sr);
645 646
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
647
		reg |= FW_WM(wm, CURSOR_SR);
648 649 650 651 652
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
653
					cpp, latency->display_hpll_disable);
654 655
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
656
		reg |= FW_WM(wm, HPLL_SR);
657 658 659 660 661
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
662
					cpp, latency->cursor_hpll_disable);
663 664
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
665
		reg |= FW_WM(wm, HPLL_CURSOR);
666 667 668
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

669
		intel_set_memory_cxsr(dev_priv, true);
670
	} else {
671
		intel_set_memory_cxsr(dev_priv, false);
672 673 674 675 676 677 678 679 680 681 682 683 684
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
685
	const struct drm_display_mode *adjusted_mode;
686
	int htotal, hdisplay, clock, cpp;
687 688 689 690
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
691
	if (!intel_crtc_active(crtc)) {
692 693 694 695 696
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

697
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
698
	clock = adjusted_mode->crtc_clock;
699
	htotal = adjusted_mode->crtc_htotal;
700
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
701
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
702 703

	/* Use the small buffer method to calculate plane watermark */
704
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
705 706 707 708 709 710 711 712 713
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
714
	line_time_us = max(htotal * 1000 / clock, 1);
715
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
716
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
771
	const struct drm_display_mode *adjusted_mode;
772
	int hdisplay, htotal, cpp, clock;
773 774 775 776 777 778 779 780 781 782 783
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
784
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
785
	clock = adjusted_mode->crtc_clock;
786
	htotal = adjusted_mode->crtc_htotal;
787
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
788
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
789

790
	line_time_us = max(htotal * 1000 / clock, 1);
791
	line_count = (latency_ns / line_time_us + 1000) / 1000;
792
	line_size = hdisplay * cpp;
793 794

	/* Use the minimum of the small and large buffer method for primary */
795
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
796 797 798 799 800 801
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
802
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
803 804 805 806 807 808 809 810
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

811 812 813
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

814 815 816 817 818 819 820 821 822 823 824 825
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

826
	I915_WRITE(DSPFW1,
827 828 829 830
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
831
	I915_WRITE(DSPFW2,
832 833 834
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
835
	I915_WRITE(DSPFW3,
836
		   FW_WM(wm->sr.cursor, CURSOR_SR));
837 838 839

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
840 841
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
842
		I915_WRITE(DSPFW8_CHV,
843 844
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
845
		I915_WRITE(DSPFW9_CHV,
846 847
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
848
		I915_WRITE(DSPHOWM,
849 850 851 852 853 854 855 856 857 858
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
859 860
	} else {
		I915_WRITE(DSPFW7,
861 862
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
863
		I915_WRITE(DSPHOWM,
864 865 866 867 868 869 870
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
871 872
	}

873 874 875 876 877 878
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

879
	POSTING_READ(DSPFW1);
880 881
}

882 883
#undef FW_WM_VLV

884 885 886 887 888 889
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

890 891 892 893
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
894
				   unsigned int cpp,
895 896 897 898 899
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
900
	ret = (ret + 1) * horiz_pixels * cpp;
901 902 903 904 905 906 907 908 909 910 911 912
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

913 914
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

915 916 917
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
918 919

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
920 921 922 923 924 925 926 927 928
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
929
	int clock, htotal, cpp, width, wm;
930 931 932 933 934 935 936

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

937
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
953
		wm = vlv_wm_method2(clock, htotal, width, cpp,
954 955 956 957 958 959
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1061
static void vlv_compute_wm(struct intel_crtc *crtc)
1062 1063 1064 1065 1066 1067 1068 1069 1070
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1071
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1072
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1073 1074 1075

	wm_state->num_active_planes = 0;

1076
	vlv_compute_fifo(crtc);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1133
					wm_state->wm[level].cursor;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1152
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1153 1154 1155 1156 1157 1158 1159
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1250 1251 1252 1253 1254 1255
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1256
	wm->level = to_i915(dev)->wm.max_level;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1275 1276 1277
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1304
	vlv_compute_wm(intel_crtc);
1305 1306
	vlv_merge_wm(dev, &wm);

1307 1308 1309
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1310
		return;
1311
	}
1312 1313 1314 1315 1316 1317 1318 1319 1320

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1321
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1322 1323
		intel_set_memory_cxsr(dev_priv, false);

1324 1325 1326
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1327 1328 1329 1330 1331 1332 1333 1334
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1335
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1347 1348
}

1349 1350
#define single_plane_enabled(mask) is_power_of_2(mask)

1351
static void g4x_update_wm(struct drm_crtc *crtc)
1352
{
1353
	struct drm_device *dev = crtc->dev;
1354 1355 1356 1357 1358
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1359
	bool cxsr_enabled;
1360

1361
	if (g4x_compute_wm0(dev, PIPE_A,
1362 1363
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1364
			    &planea_wm, &cursora_wm))
1365
		enabled |= 1 << PIPE_A;
1366

1367
	if (g4x_compute_wm0(dev, PIPE_B,
1368 1369
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1370
			    &planeb_wm, &cursorb_wm))
1371
		enabled |= 1 << PIPE_B;
1372 1373 1374 1375 1376 1377

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1378
			     &plane_sr, &cursor_sr)) {
1379
		cxsr_enabled = true;
1380
	} else {
1381
		cxsr_enabled = false;
1382
		intel_set_memory_cxsr(dev_priv, false);
1383 1384
		plane_sr = cursor_sr = 0;
	}
1385

1386 1387
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1388 1389 1390 1391 1392
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1393 1394 1395 1396
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1397
	I915_WRITE(DSPFW2,
1398
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1399
		   FW_WM(cursora_wm, CURSORA));
1400 1401
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1402
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1403
		   FW_WM(cursor_sr, CURSOR_SR));
1404 1405 1406

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1407 1408
}

1409
static void i965_update_wm(struct drm_crtc *unused_crtc)
1410
{
1411
	struct drm_device *dev = unused_crtc->dev;
1412 1413 1414 1415
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1416
	bool cxsr_enabled;
1417 1418 1419 1420 1421 1422

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1423
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1424
		int clock = adjusted_mode->crtc_clock;
1425
		int htotal = adjusted_mode->crtc_htotal;
1426
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1427
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1428 1429 1430
		unsigned long line_time_us;
		int entries;

1431
		line_time_us = max(htotal * 1000 / clock, 1);
1432 1433 1434

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1435
			cpp * hdisplay;
1436 1437 1438 1439 1440 1441 1442 1443 1444
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445
			cpp * crtc->cursor->state->crtc_w;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1457
		cxsr_enabled = true;
1458
	} else {
1459
		cxsr_enabled = false;
1460
		/* Turn off self refresh if both pipes are enabled */
1461
		intel_set_memory_cxsr(dev_priv, false);
1462 1463 1464 1465 1466 1467
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1468 1469 1470 1471 1472 1473
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1474
	/* update cursor SR watermark */
1475
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1476 1477 1478

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1479 1480
}

1481 1482
#undef FW_WM

1483
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1484
{
1485
	struct drm_device *dev = unused_crtc->dev;
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1500
		wm_info = &i830_a_wm_info;
1501 1502 1503

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1504
	if (intel_crtc_active(crtc)) {
1505
		const struct drm_display_mode *adjusted_mode;
1506
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1507 1508 1509
		if (IS_GEN2(dev))
			cpp = 4;

1510
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1511
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1512
					       wm_info, fifo_size, cpp,
1513
					       pessimal_latency_ns);
1514
		enabled = crtc;
1515
	} else {
1516
		planea_wm = fifo_size - wm_info->guard_size;
1517 1518 1519 1520 1521 1522
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1523 1524 1525

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1526
	if (intel_crtc_active(crtc)) {
1527
		const struct drm_display_mode *adjusted_mode;
1528
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1529 1530 1531
		if (IS_GEN2(dev))
			cpp = 4;

1532
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1533
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1534
					       wm_info, fifo_size, cpp,
1535
					       pessimal_latency_ns);
1536 1537 1538 1539
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1540
	} else {
1541
		planeb_wm = fifo_size - wm_info->guard_size;
1542 1543 1544
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1545 1546 1547

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1548
	if (IS_I915GM(dev) && enabled) {
1549
		struct drm_i915_gem_object *obj;
1550

1551
		obj = intel_fb_obj(enabled->primary->state->fb);
1552 1553

		/* self-refresh seems busted with untiled */
1554
		if (obj->tiling_mode == I915_TILING_NONE)
1555 1556 1557
			enabled = NULL;
	}

1558 1559 1560 1561 1562 1563
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1564
	intel_set_memory_cxsr(dev_priv, false);
1565 1566 1567 1568 1569

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1570
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1571
		int clock = adjusted_mode->crtc_clock;
1572
		int htotal = adjusted_mode->crtc_htotal;
1573
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1574
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1575 1576 1577
		unsigned long line_time_us;
		int entries;

1578
		line_time_us = max(htotal * 1000 / clock, 1);
1579 1580 1581

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1582
			cpp * hdisplay;
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1609 1610
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1611 1612
}

1613
static void i845_update_wm(struct drm_crtc *unused_crtc)
1614
{
1615
	struct drm_device *dev = unused_crtc->dev;
1616 1617
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1618
	const struct drm_display_mode *adjusted_mode;
1619 1620 1621 1622 1623 1624 1625
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1626
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1627
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1628
				       &i845_wm_info,
1629
				       dev_priv->display.get_fifo_size(dev, 0),
1630
				       4, pessimal_latency_ns);
1631 1632 1633 1634 1635 1636 1637 1638
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1639
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1640
{
1641
	uint32_t pixel_rate;
1642

1643
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1644 1645 1646 1647

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1648
	if (pipe_config->pch_pfit.enabled) {
1649
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1650 1651 1652 1653
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1654 1655 1656 1657 1658 1659 1660 1661

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1662 1663 1664
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1665 1666 1667 1668 1669 1670 1671
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1672
/* latency must be in 0.1us units. */
1673
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1674 1675 1676
{
	uint64_t ret;

1677 1678 1679
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1680
	ret = (uint64_t) pixel_rate * cpp * latency;
1681 1682 1683 1684 1685
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1686
/* latency must be in 0.1us units. */
1687
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1688
			       uint32_t horiz_pixels, uint8_t cpp,
1689 1690 1691 1692
			       uint32_t latency)
{
	uint32_t ret;

1693 1694
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1695 1696
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1697

1698
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1699
	ret = (ret + 1) * horiz_pixels * cpp;
1700 1701 1702 1703
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1704
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1705
			   uint8_t cpp)
1706
{
1707 1708 1709 1710 1711 1712
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1713
	if (WARN_ON(!cpp))
1714 1715 1716 1717
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1718
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1719 1720
}

1721
struct ilk_wm_maximums {
1722 1723 1724 1725 1726 1727
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1728 1729 1730 1731
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1732
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1733
				   const struct intel_plane_state *pstate,
1734 1735
				   uint32_t mem_value,
				   bool is_lp)
1736
{
1737 1738
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1739 1740
	uint32_t method1, method2;

1741
	if (!cstate->base.active || !pstate->visible)
1742 1743
		return 0;

1744
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1745 1746 1747 1748

	if (!is_lp)
		return method1;

1749 1750
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1751
				 drm_rect_width(&pstate->dst),
1752
				 cpp, mem_value);
1753 1754

	return min(method1, method2);
1755 1756
}

1757 1758 1759 1760
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1761
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1762
				   const struct intel_plane_state *pstate,
1763 1764
				   uint32_t mem_value)
{
1765 1766
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1767 1768
	uint32_t method1, method2;

1769
	if (!cstate->base.active || !pstate->visible)
1770 1771
		return 0;

1772
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1773 1774
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1775
				 drm_rect_width(&pstate->dst),
1776
				 cpp, mem_value);
1777 1778 1779
	return min(method1, method2);
}

1780 1781 1782 1783
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1784
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1785
				   const struct intel_plane_state *pstate,
1786 1787
				   uint32_t mem_value)
{
1788 1789 1790 1791 1792 1793 1794
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1795

1796
	if (!cstate->base.active)
1797 1798
		return 0;

1799 1800
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1801
			      width, cpp, mem_value);
1802 1803
}

1804
/* Only for WM_LP. */
1805
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1806
				   const struct intel_plane_state *pstate,
1807
				   uint32_t pri_val)
1808
{
1809 1810
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1811

1812
	if (!cstate->base.active || !pstate->visible)
1813 1814
		return 0;

1815
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1816 1817
}

1818 1819
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1820 1821 1822
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1823 1824 1825 1826 1827
		return 768;
	else
		return 512;
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1862 1863 1864
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1865
				     const struct intel_wm_config *config,
1866 1867 1868 1869 1870 1871
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1872
	if (is_sprite && !config->sprites_enabled)
1873 1874 1875
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1876
	if (level == 0 || config->num_pipes_active > 1) {
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1888
	if (config->sprites_enabled) {
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1900
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1901 1902 1903 1904
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1905 1906
				      int level,
				      const struct intel_wm_config *config)
1907 1908
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1909
	if (level > 0 && config->num_pipes_active > 1)
1910 1911 1912
		return 64;

	/* otherwise just report max that registers can hold */
1913
	return ilk_cursor_wm_reg_max(dev, level);
1914 1915
}

1916
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1917 1918 1919
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1920
				    struct ilk_wm_maximums *max)
1921
{
1922 1923 1924
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1925
	max->fbc = ilk_fbc_wm_reg_max(dev);
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1938
static bool ilk_validate_wm_level(int level,
1939
				  const struct ilk_wm_maximums *max,
1940
				  struct intel_wm_level *result)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1979
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1980
				 const struct intel_crtc *intel_crtc,
1981
				 int level,
1982
				 struct intel_crtc_state *cstate,
1983 1984 1985
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1986
				 struct intel_wm_level *result)
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1999 2000 2001 2002 2003
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2004 2005 2006
	result->enable = true;
}

2007
static uint32_t
2008 2009
hsw_compute_linetime_wm(struct drm_device *dev,
			struct intel_crtc_state *cstate)
2010 2011
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2012 2013
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2014
	u32 linetime, ips_linetime;
2015

2016 2017 2018 2019 2020
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2021
		return 0;
2022

2023 2024 2025
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2026 2027 2028
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2029
					 dev_priv->cdclk_freq);
2030

2031 2032
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2033 2034
}

2035
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2036 2037 2038
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2039 2040
	if (IS_GEN9(dev)) {
		uint32_t val;
2041
		int ret, i;
2042
		int level, max_level = ilk_wm_max_level(dev);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2085
		/*
2086 2087
		 * WaWmMemoryReadLatency:skl
		 *
2088 2089 2090 2091 2092 2093 2094 2095
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2096 2097 2098 2099 2100
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2101 2102 2103 2104 2105
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2106 2107 2108
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2109

2110 2111
				break;
			}
2112
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2113 2114 2115 2116 2117
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2118 2119 2120 2121
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2122 2123 2124 2125 2126 2127 2128
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2129 2130 2131 2132 2133 2134 2135
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2136 2137 2138
	}
}

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2157
int ilk_wm_max_level(const struct drm_device *dev)
2158 2159
{
	/* how many WM levels are we expecting */
2160
	if (INTEL_INFO(dev)->gen >= 9)
2161 2162
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2163
		return 4;
2164
	else if (INTEL_INFO(dev)->gen >= 6)
2165
		return 3;
2166
	else
2167 2168
		return 2;
}
2169

2170 2171
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2172
				   const uint16_t wm[8])
2173 2174
{
	int level, max_level = ilk_wm_max_level(dev);
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2185 2186 2187 2188 2189 2190 2191
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2192 2193 2194 2195 2196 2197 2198 2199
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2237
static void ilk_setup_wm_latency(struct drm_device *dev)
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2250 2251 2252 2253

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2254 2255 2256

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2257 2258
}

2259 2260 2261 2262 2263 2264 2265 2266
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2290
/* Compute new watermarks for the pipe */
2291 2292
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2293
{
2294 2295
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2296
	const struct drm_i915_private *dev_priv = dev->dev_private;
2297
	struct intel_crtc_state *cstate = NULL;
2298
	struct intel_plane *intel_plane;
2299 2300
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2301
	struct intel_plane_state *sprstate = NULL;
2302
	struct intel_plane_state *curstate = NULL;
2303
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2304
	struct ilk_wm_maximums max;
2305

2306 2307 2308 2309 2310 2311
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;

2312
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2324 2325
	}

2326 2327 2328
	pipe_wm->pipe_enabled = cstate->base.active;
	pipe_wm->sprites_enabled = sprstate->visible;
	pipe_wm->sprites_scaled = sprstate->visible &&
2329 2330 2331
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2332 2333
	usable_level = max_level;

2334
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2335
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2336
		usable_level = 1;
2337 2338

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2339
	if (pipe_wm->sprites_scaled)
2340
		usable_level = 0;
2341

2342 2343
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2344

2345
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2346
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2347

2348
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2349
		return -EINVAL;
2350 2351 2352 2353

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2354
		struct intel_wm_level *wm = &pipe_wm->wm[level];
2355

2356
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2357
				     pristate, sprstate, curstate, wm);
2358 2359 2360 2361 2362 2363

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2364 2365 2366 2367 2368 2369
		if (level > usable_level) {
			wm->enable = false;
		} else if (!ilk_validate_wm_level(level, &max, wm)) {
			wm->enable = false;
			usable_level = level;
		}
2370 2371
	}

2372
	return 0;
2373 2374
}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
	struct intel_pipe_wm *a = &newstate->wm.intermediate;
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
	*a = newstate->wm.optimal.ilk;
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) == 0)
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2428 2429 2430 2431 2432 2433 2434 2435 2436
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2437 2438
	ret_wm->enable = true;

2439
	for_each_intel_crtc(dev, intel_crtc) {
2440
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2441 2442 2443 2444
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2445

2446 2447 2448 2449 2450
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2451
		if (!wm->enable)
2452
			ret_wm->enable = false;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2465
			 const struct intel_wm_config *config,
2466
			 const struct ilk_wm_maximums *max,
2467 2468
			 struct intel_pipe_wm *merged)
{
2469
	struct drm_i915_private *dev_priv = dev->dev_private;
2470
	int level, max_level = ilk_wm_max_level(dev);
2471
	int last_enabled_level = max_level;
2472

2473 2474 2475 2476 2477
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2478 2479
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2480 2481 2482 2483 2484 2485 2486

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2487 2488 2489 2490 2491
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2492 2493 2494 2495 2496 2497

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2498 2499
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2500 2501 2502
			wm->fbc_val = 0;
		}
	}
2503 2504 2505 2506 2507 2508 2509

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2510
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2511
	    intel_fbc_is_active(dev_priv)) {
2512 2513 2514 2515 2516 2517
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2518 2519
}

2520 2521 2522 2523 2524 2525
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2526 2527 2528 2529 2530
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2531
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2532 2533 2534 2535 2536
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2537
static void ilk_compute_wm_results(struct drm_device *dev,
2538
				   const struct intel_pipe_wm *merged,
2539
				   enum intel_ddb_partitioning partitioning,
2540
				   struct ilk_wm_values *results)
2541
{
2542 2543
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2544

2545
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2546
	results->partitioning = partitioning;
2547

2548
	/* LP1+ register values */
2549
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2550
		const struct intel_wm_level *r;
2551

2552
		level = ilk_wm_lp_to_level(wm_lp, merged);
2553

2554
		r = &merged->wm[level];
2555

2556 2557 2558 2559 2560
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2561
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2562 2563 2564
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2565 2566 2567
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2568 2569 2570 2571 2572 2573 2574
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2575 2576 2577 2578
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2579 2580 2581 2582 2583
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2584
	}
2585

2586
	/* LP0 register values */
2587
	for_each_intel_crtc(dev, intel_crtc) {
2588
		enum pipe pipe = intel_crtc->pipe;
2589 2590
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2591 2592 2593 2594

		if (WARN_ON(!r->enable))
			continue;

2595
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2596

2597 2598 2599 2600
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2601 2602 2603
	}
}

2604 2605
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2606
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2607 2608
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2609
{
2610 2611
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2612

2613 2614 2615 2616 2617
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2618 2619
	}

2620 2621
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2622 2623 2624
			return r2;
		else
			return r1;
2625
	} else if (level1 > level2) {
2626 2627 2628 2629 2630 2631
		return r1;
	} else {
		return r2;
	}
}

2632 2633 2634 2635 2636 2637 2638 2639
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2640
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2641 2642
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2643 2644 2645 2646 2647
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2648
	for_each_pipe(dev_priv, pipe) {
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2692 2693
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2694
{
2695
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2696
	bool changed = false;
2697

2698 2699 2700
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2701
		changed = true;
2702 2703 2704 2705
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2706
		changed = true;
2707 2708 2709 2710
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2711
		changed = true;
2712
	}
2713

2714 2715 2716 2717
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2718

2719 2720 2721 2722 2723 2724 2725
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2726 2727
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2728 2729
{
	struct drm_device *dev = dev_priv->dev;
2730
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2731 2732 2733
	unsigned int dirty;
	uint32_t val;

2734
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2735 2736 2737 2738 2739
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2740
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2741
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2742
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2743
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2744
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2745 2746
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2747
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2748
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2749
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2750
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2751
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2752 2753
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2754
	if (dirty & WM_DIRTY_DDB) {
2755
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2770 2771
	}

2772
	if (dirty & WM_DIRTY_FBC) {
2773 2774 2775 2776 2777 2778 2779 2780
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2781 2782 2783 2784 2785
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2786 2787 2788 2789 2790
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2791

2792
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2793
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2794
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2795
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2796
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2797
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2798 2799

	dev_priv->wm.hw = *results;
2800 2801
}

2802
bool ilk_disable_lp_wm(struct drm_device *dev)
2803 2804 2805 2806 2807 2808
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2809 2810 2811 2812 2813 2814
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2815
#define BXT_DDB_SIZE		512
2816

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2839 2840
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2841
				   const struct intel_crtc_state *cstate,
2842 2843 2844
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2845
	struct drm_crtc *for_crtc = cstate->base.crtc;
2846 2847 2848 2849
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2850
	if (!cstate->base.active) {
2851 2852 2853 2854 2855
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2856 2857 2858 2859
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2860 2861 2862 2863 2864

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2865
		if (!to_intel_crtc(crtc)->active)
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2876
	alloc->end = alloc->start + pipe_size;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2887 2888 2889 2890
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2891 2892
	if (entry->end)
		entry->end += 1;
2893 2894
}

2895 2896
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2897 2898 2899 2900 2901
{
	enum pipe pipe;
	int plane;
	u32 val;

2902 2903
	memset(ddb, 0, sizeof(*ddb));

2904
	for_each_pipe(dev_priv, pipe) {
2905 2906 2907 2908
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2909 2910
			continue;

2911
		for_each_plane(dev_priv, pipe, plane) {
2912 2913 2914 2915 2916 2917
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2918 2919
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2920 2921

		intel_display_power_put(dev_priv, power_domain);
2922 2923 2924
	}
}

2925
static unsigned int
2926 2927 2928
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2929
{
2930 2931
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2932 2933

	/* for planar format */
2934
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2935
		if (y)  /* y-plane data rate */
2936 2937 2938
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2939
		else    /* uv-plane data rate */
2940 2941 2942
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2943 2944 2945
	}

	/* for packed formats */
2946 2947 2948
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2949 2950 2951 2952 2953 2954 2955 2956
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2957
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2958
{
2959 2960 2961
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2962 2963
	unsigned int total_data_rate = 0;

2964 2965
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2966

2967
		if (pstate->fb == NULL)
2968 2969
			continue;

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2983 2984 2985 2986 2987 2988
	}

	return total_data_rate;
}

static void
2989
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2990 2991
		      struct skl_ddb_allocation *ddb /* out */)
{
2992
	struct drm_crtc *crtc = cstate->base.crtc;
2993
	struct drm_device *dev = crtc->dev;
2994 2995
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
2996
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2997
	struct intel_plane *intel_plane;
2998
	enum pipe pipe = intel_crtc->pipe;
2999
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3000
	uint16_t alloc_size, start, cursor_blocks;
3001
	uint16_t minimum[I915_MAX_PLANES];
3002
	uint16_t y_minimum[I915_MAX_PLANES];
3003 3004
	unsigned int total_data_rate;

3005
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3006
	alloc_size = skl_ddb_entry_size(alloc);
3007 3008
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3009 3010
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3011 3012 3013 3014
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
3015 3016
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3017 3018

	alloc_size -= cursor_blocks;
3019
	alloc->end -= cursor_blocks;
3020

3021
	/* 1. Allocate the mininum required blocks for each active plane */
3022 3023 3024 3025
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
3026

3027 3028 3029
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3030 3031
			continue;

3032 3033 3034 3035
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
3036 3037
	}

3038
	/*
3039 3040
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3041 3042 3043
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3044
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3045

3046
	start = alloc->start;
3047 3048 3049
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
3050 3051
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3052
		int id = skl_wm_plane_id(intel_plane);
3053

3054 3055 3056
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3057 3058
			continue;

3059
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3060 3061

		/*
3062
		 * allocation for (packed formats) or (uv-plane part of planar format):
3063 3064 3065
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3066
		plane_blocks = minimum[id];
3067 3068
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3069

3070 3071
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3072 3073

		start += plane_blocks;
3074 3075 3076 3077

		/*
		 * allocation for y_plane part of planar format:
		 */
3078 3079 3080 3081 3082
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3083 3084 3085
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3086 3087
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3088 3089 3090 3091

			start += y_plane_blocks;
		}

3092 3093 3094 3095
	}

}

3096
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3097 3098
{
	/* TODO: Take into account the scalers once we support them */
3099
	return config->base.adjusted_mode.crtc_clock;
3100 3101 3102 3103
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3104
 * for the read latency) and cpp should always be <= 8, so that
3105 3106 3107
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3108
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3109 3110 3111 3112 3113 3114
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3115
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3116 3117 3118 3119 3120 3121
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3122
			       uint32_t horiz_pixels, uint8_t cpp,
3123
			       uint64_t tiling, uint32_t latency)
3124
{
3125 3126 3127
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3128 3129 3130 3131

	if (latency == 0)
		return UINT_MAX;

3132
	plane_bytes_per_line = horiz_pixels * cpp;
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3143 3144
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3145
				plane_blocks_per_line;
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3157 3158 3159 3160 3161
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3162 3163 3164 3165 3166
		return true;

	return false;
}

3167
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3168 3169
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3170
				 uint16_t ddb_allocation,
3171
				 int level,
3172 3173
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3174
{
3175 3176
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3177 3178 3179 3180 3181
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3182
	uint8_t cpp;
3183

3184
	if (latency == 0 || !cstate->base.active || !fb)
3185 3186
		return false;

3187
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3188
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3189
				 cpp, latency);
3190 3191 3192
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3193
				 cpp, fb->modifier[0],
3194
				 latency);
3195

3196
	plane_bytes_per_line = cstate->pipe_src_w * cpp;
3197
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3198

3199 3200
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3201 3202
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3203
		if (intel_rotation_90_or_270(plane->state->rotation)) {
3204
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3205 3206 3207
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3208
			switch (cpp) {
3209 3210 3211 3212 3213 3214 3215 3216
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3217
			}
3218 3219
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3220 3221 3222 3223 3224 3225 3226
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3227

3228 3229
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3230

3231
	if (level >= 1 && level <= 7) {
3232 3233
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3234 3235 3236 3237
			res_lines += 4;
		else
			res_blocks++;
	}
3238

3239
	if (res_blocks >= ddb_allocation || res_lines > 31)
3240 3241 3242 3243
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3244 3245 3246 3247 3248 3249

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3250
				 struct intel_crtc_state *cstate,
3251 3252 3253
				 int level,
				 struct skl_wm_level *result)
{
3254 3255 3256
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3257
	uint16_t ddb_blocks;
3258 3259 3260 3261
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3262 3263 3264

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3265
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3266 3267
						cstate,
						intel_plane,
3268
						ddb_blocks,
3269
						level,
3270 3271 3272 3273 3274
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3275
static uint32_t
3276
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3277
{
3278
	if (!cstate->base.active)
3279 3280
		return 0;

3281
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3282
		return 0;
3283

3284 3285
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3286 3287
}

3288
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3289
				      struct skl_wm_level *trans_wm /* out */)
3290
{
3291
	struct drm_crtc *crtc = cstate->base.crtc;
3292
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3293
	struct intel_plane *intel_plane;
3294

3295
	if (!cstate->base.active)
3296
		return;
3297 3298

	/* Until we know more, just disable transition WMs */
3299 3300 3301
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3302
		trans_wm->plane_en[i] = false;
3303
	}
3304 3305
}

3306
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3307 3308 3309
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3310
	struct drm_device *dev = cstate->base.crtc->dev;
3311 3312 3313 3314
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3315 3316
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3317
	}
3318
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3319

3320
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3321 3322 3323 3324 3325 3326 3327 3328 3329
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3330 3331
	uint32_t temp;
	int i;
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3348 3349
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3350

3351
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3352 3353
			temp |= PLANE_WM_EN;

3354
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3355 3356 3357

	}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3370 3371 3372
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3373 3374
		temp |= PLANE_WM_EN;

3375
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3376

3377 3378 3379
	r->wm_linetime[pipe] = p_wm->linetime;
}

3380 3381
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3382 3383 3384 3385 3386 3387 3388 3389
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3390 3391 3392 3393 3394 3395
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3396
	for_each_intel_crtc(dev, crtc) {
3397 3398 3399
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3400 3401
		if (!new->dirty[pipe])
			continue;
3402

3403
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3404

3405 3406 3407 3408 3409
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3410
				   new->plane[pipe][PLANE_CURSOR][level]);
3411
		}
3412 3413 3414
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3415 3416
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3417

3418
		for (i = 0; i < intel_num_planes(crtc); i++) {
3419 3420 3421
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3422 3423 3424 3425
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3426 3427

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3428
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3429 3430 3431
	}
}

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3456 3457
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3458 3459 3460
{
	int plane;

3461 3462
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3463
	for_each_plane(dev_priv, pipe, plane) {
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3490
	bool reallocated[I915_MAX_PIPES] = {};
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3513
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3538
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3539
			intel_wait_for_vblank(dev, pipe);
3540
			reallocated[pipe] = true;
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3563
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3564 3565 3566
	}
}

3567 3568 3569 3570 3571
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3572
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3573

3574
	skl_allocate_pipe_ddb(cstate, ddb);
3575
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3576

3577
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3578 3579
		return false;

3580
	intel_crtc->wm.active.skl = *pipe_wm;
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3605
	for_each_intel_crtc(dev, intel_crtc) {
3606 3607 3608 3609 3610 3611 3612 3613 3614
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3615
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3616 3617 3618 3619 3620 3621 3622 3623 3624
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3625
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3626 3627 3628 3629
		r->dirty[intel_crtc->pipe] = true;
	}
}

3630 3631 3632 3633 3634 3635 3636
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3637
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3638 3639 3640 3641 3642 3643 3644

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3645 3646
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3647 3648 3649

}

3650 3651 3652 3653 3654 3655
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3656 3657
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3658

3659 3660 3661 3662 3663

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3664

3665
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3666 3667
		return;

3668
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3669 3670
	results->dirty[intel_crtc->pipe] = true;

3671
	skl_update_other_pipe_wm(dev, crtc, results);
3672
	skl_write_wm_values(dev_priv, results);
3673
	skl_flush_wm_values(dev_priv, results);
3674 3675 3676

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3677 3678
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3697
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3698
{
3699
	struct drm_device *dev = dev_priv->dev;
3700
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3701
	struct ilk_wm_maximums max;
3702
	struct intel_wm_config config = {};
3703
	struct ilk_wm_values results = {};
3704
	enum intel_ddb_partitioning partitioning;
3705

3706 3707 3708 3709
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3710 3711

	/* 5/6 split only in single pipe config on IVB+ */
3712
	if (INTEL_INFO(dev)->gen >= 7 &&
3713 3714 3715
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3716

3717
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3718
	} else {
3719
		best_lp_wm = &lp_wm_1_2;
3720 3721
	}

3722
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3723
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3724

3725
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3726

3727
	ilk_write_wm_values(dev_priv, &results);
3728 3729
}

3730
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3731
{
3732 3733
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3734

3735 3736 3737 3738 3739
	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.ilk = cstate->wm.intermediate;
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
3740

3741 3742 3743 3744
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3745

3746 3747 3748 3749 3750 3751
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
		intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
3752 3753
}

3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3772 3773
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3774
					val & PLANE_WM_BLOCKS_MASK;
3775
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3788 3789
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3790
					val & PLANE_WM_BLOCKS_MASK;
3791
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3804 3805
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3818
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3819 3820 3821 3822
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3823
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3824

3825
	if (!intel_crtc->active)
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3838
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3839 3840 3841 3842 3843 3844 3845 3846
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3847
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3848
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3849 3850

	intel_crtc->wm.active.skl = *active;
3851 3852 3853 3854
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3855 3856
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3857 3858
	struct drm_crtc *crtc;

3859
	skl_ddb_get_hw_state(dev_priv, ddb);
3860 3861 3862 3863
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3864 3865 3866 3867
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3868
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3869
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3870 3871
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3872
	enum pipe pipe = intel_crtc->pipe;
3873
	static const i915_reg_t wm0_pipe_reg[] = {
3874 3875 3876 3877 3878 3879
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3880
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3881
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3882

3883
	active->pipe_enabled = intel_crtc->active;
3884 3885

	if (active->pipe_enabled) {
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3910 3911

	intel_crtc->wm.active.ilk = *active;
3912 3913
}

3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4031 4032 4033 4034 4035 4036 4037 4038 4039
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4040
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4067 4068 4069
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4070
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4071 4072
	struct drm_crtc *crtc;

4073
	for_each_crtc(dev, crtc)
4074 4075 4076 4077 4078 4079 4080
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4081 4082 4083 4084
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4085

4086
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4087 4088 4089 4090 4091
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4092 4093 4094 4095 4096

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4129
void intel_update_watermarks(struct drm_crtc *crtc)
4130
{
4131
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4132 4133

	if (dev_priv->display.update_wm)
4134
		dev_priv->display.update_wm(crtc);
4135 4136
}

4137
/*
4138 4139 4140 4141 4142 4143 4144 4145
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4146 4147 4148 4149 4150
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4151 4152
	assert_spin_locked(&mchdev_lock);

4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4170
static void ironlake_enable_drps(struct drm_device *dev)
4171 4172
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4173
	u32 rgvmodectl;
4174 4175
	u8 fmax, fmin, fstart, vstart;

4176 4177
	spin_lock_irq(&mchdev_lock);

4178 4179
	rgvmodectl = I915_READ(MEMMODECTL);

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4200
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4201 4202
		PXVFREQ_PX_SHIFT;

4203 4204
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4205

4206 4207 4208
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4225
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4226
		DRM_ERROR("stuck trying to change perf mode\n");
4227
	mdelay(1);
4228 4229 4230

	ironlake_set_drps(dev, fstart);

4231 4232
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4233
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4234
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4235
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4236 4237

	spin_unlock_irq(&mchdev_lock);
4238 4239
}

4240
static void ironlake_disable_drps(struct drm_device *dev)
4241 4242
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4243 4244 4245 4246 4247
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4248 4249 4250 4251 4252 4253 4254 4255 4256

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4257
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4258
	mdelay(1);
4259 4260
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4261
	mdelay(1);
4262

4263
	spin_unlock_irq(&mchdev_lock);
4264 4265
}

4266 4267 4268 4269 4270
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4271
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4272
{
4273
	u32 limits;
4274

4275 4276 4277 4278 4279 4280
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4281 4282 4283 4284 4285 4286 4287 4288 4289
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4290 4291 4292 4293

	return limits;
}

4294 4295 4296
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4297 4298
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4299 4300 4301 4302

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4303
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4304 4305 4306 4307
			new_power = BETWEEN;
		break;

	case BETWEEN:
4308
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4309
			new_power = LOW_POWER;
4310
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4311 4312 4313 4314
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4315
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4316 4317 4318 4319
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4320
	if (val <= dev_priv->rps.min_freq_softlimit)
4321
		new_power = LOW_POWER;
4322
	if (val >= dev_priv->rps.max_freq_softlimit)
4323 4324 4325 4326 4327 4328 4329 4330
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4331 4332
		ei_up = 16000;
		threshold_up = 95;
4333 4334

		/* Downclock if less than 85% busy over 32ms */
4335 4336
		ei_down = 32000;
		threshold_down = 85;
4337 4338 4339 4340
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4341 4342
		ei_up = 13000;
		threshold_up = 90;
4343 4344

		/* Downclock if less than 75% busy over 32ms */
4345 4346
		ei_down = 32000;
		threshold_down = 75;
4347 4348 4349 4350
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4351 4352
		ei_up = 10000;
		threshold_up = 85;
4353 4354

		/* Downclock if less than 60% busy over 32ms */
4355 4356
		ei_down = 32000;
		threshold_down = 60;
4357 4358 4359
		break;
	}

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4378
	dev_priv->rps.power = new_power;
4379 4380
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4381 4382 4383
	dev_priv->rps.last_adj = 0;
}

4384 4385 4386 4387 4388
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4389
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4390
	if (val < dev_priv->rps.max_freq_softlimit)
4391
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4392

4393 4394
	mask &= dev_priv->pm_rps_events;

4395
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4396 4397
}

4398 4399 4400
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4401
static void gen6_set_rps(struct drm_device *dev, u8 val)
4402 4403
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4404

4405
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4406
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4407 4408
		return;

4409
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4410 4411
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4412

C
Chris Wilson 已提交
4413 4414 4415 4416 4417
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4418

4419 4420 4421 4422
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4423 4424 4425 4426 4427 4428 4429
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4430
	}
4431 4432 4433 4434

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4435
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4436
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4437

4438 4439
	POSTING_READ(GEN6_RPNSWREQ);

4440
	dev_priv->rps.cur_freq = val;
4441
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4442 4443
}

4444 4445 4446 4447 4448
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4449 4450
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4451 4452 4453 4454 4455

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4456 4457
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4458
	if (val != dev_priv->rps.cur_freq) {
4459
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4460 4461 4462
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4463 4464 4465 4466 4467

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4468
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4469 4470
 *
 * * If Gfx is Idle, then
4471 4472 4473
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4474 4475 4476
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4477
	u32 val = dev_priv->rps.idle_freq;
4478

4479
	if (dev_priv->rps.cur_freq <= val)
4480 4481
		return;

4482 4483 4484 4485 4486
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4487 4488
}

4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4501 4502
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4503 4504
	struct drm_device *dev = dev_priv->dev;

4505
	mutex_lock(&dev_priv->rps.hw_lock);
4506
	if (dev_priv->rps.enabled) {
4507
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4508
			vlv_set_rps_idle(dev_priv);
4509
		else
4510
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4511
		dev_priv->rps.last_adj = 0;
4512
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4513
	}
4514
	mutex_unlock(&dev_priv->rps.hw_lock);
4515

4516
	spin_lock(&dev_priv->rps.client_lock);
4517 4518
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4519
	spin_unlock(&dev_priv->rps.client_lock);
4520 4521
}

4522
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4523 4524
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4525
{
4526 4527 4528 4529 4530 4531 4532
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4533

4534 4535 4536
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4537
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4538 4539
		rps = NULL;

4540 4541 4542 4543 4544 4545 4546 4547
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4548

4549 4550 4551
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4552 4553
		} else
			dev_priv->rps.boosts++;
4554
	}
4555
	spin_unlock(&dev_priv->rps.client_lock);
4556 4557
}

4558
void intel_set_rps(struct drm_device *dev, u8 val)
4559
{
4560
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4561 4562 4563
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4564 4565
}

Z
Zhe Wang 已提交
4566 4567 4568 4569 4570
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4571
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4572 4573
}

4574
static void gen6_disable_rps(struct drm_device *dev)
4575 4576 4577 4578
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4579 4580 4581
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4582 4583 4584 4585 4586 4587 4588
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4589 4590 4591 4592
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4593 4594
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4595
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4596

4597
	I915_WRITE(GEN6_RC_CONTROL, 0);
4598

4599
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4600 4601
}

B
Ben Widawsky 已提交
4602 4603
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4604
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4605 4606 4607 4608 4609
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4610 4611
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4612 4613 4614
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4615 4616 4617

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4618
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4619 4620
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
					dev_priv->gtt.stolen_reserved_size))) {
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4664
{
4665 4666
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4667 4668
		return 0;

4669 4670 4671 4672 4673 4674 4675 4676
	if (!enable_rc6)
		return 0;

	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4677
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4678 4679 4680
	if (enable_rc6 >= 0) {
		int mask;

4681
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4682 4683 4684 4685 4686 4687
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4688 4689
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4690 4691 4692

		return enable_rc6 & mask;
	}
4693

4694
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4695
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4696 4697

	return INTEL_RC6_ENABLE;
4698 4699
}

I
Imre Deak 已提交
4700 4701 4702 4703 4704
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4705
static void gen6_init_rps_frequencies(struct drm_device *dev)
4706
{
4707 4708 4709 4710 4711
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4712 4713
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4714
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4727 4728 4729
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4730
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4731 4732
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4733 4734 4735 4736 4737
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4738 4739 4740 4741
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4742 4743
	}

4744
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4745 4746 4747 4748 4749 4750 4751 4752 4753
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4754 4755
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4756 4757 4758 4759
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4760 4761 4762
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4763 4764
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4765 4766 4767 4768
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4769 4770
}

J
Jesse Barnes 已提交
4771
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4772
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4773 4774 4775 4776 4777
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4778 4779
	gen6_init_rps_frequencies(dev);

4780
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4781
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4782 4783 4784 4785
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4786 4787 4788 4789 4790 4791 4792 4793
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4794 4795
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4796 4797 4798 4799 4800
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4801 4802 4803 4804 4805

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4817
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4818 4819 4820 4821 4822

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4823 4824

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4825
	if (IS_SKYLAKE(dev))
4826 4827 4828
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4829 4830 4831 4832
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4833 4834 4835 4836

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4837 4838
	I915_WRITE(GEN6_RC_SLEEP, 0);

4839 4840 4841 4842
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4843 4844 4845
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4846
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4847
	/* WaRsUseTimeoutMode */
4848
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4849
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4850
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4851 4852 4853
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4854 4855
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4856 4857 4858
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4859
	}
Z
Zhe Wang 已提交
4860

4861 4862
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4863
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4864
	 */
4865
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4866 4867 4868 4869
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4870

4871
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4872 4873 4874

}

4875 4876 4877
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4878
	struct intel_engine_cs *ring;
4879
	uint32_t rc6_mask = 0;
4880 4881 4882 4883 4884 4885 4886
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4887
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4888 4889 4890 4891

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4892 4893
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4894 4895 4896 4897 4898 4899 4900 4901

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4902 4903 4904 4905
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4906 4907 4908 4909

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4910
	intel_print_rc6_info(dev, rc6_mask);
4911 4912 4913 4914 4915 4916 4917 4918
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4919 4920

	/* 4 Program defaults and thresholds for RPS*/
4921 4922 4923 4924
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4939 4940

	/* 5: Enable RPS */
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4951
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4952
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4953

4954
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4955 4956
}

4957
static void gen6_enable_rps(struct drm_device *dev)
4958
{
4959
	struct drm_i915_private *dev_priv = dev->dev_private;
4960
	struct intel_engine_cs *ring;
4961
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4962 4963
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4964
	int i, ret;
4965

4966
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4967

4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4982
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4983

4984 4985
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4996 4997
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4998 4999 5000

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5001
	if (IS_IVYBRIDGE(dev))
5002 5003 5004
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5005
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5006 5007
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5008
	/* Check if we are enabling RC6 */
5009 5010 5011 5012
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5013 5014 5015 5016
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5017

5018 5019 5020
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5021

B
Ben Widawsky 已提交
5022
	intel_print_rc6_info(dev, rc6_mask);
5023 5024 5025 5026 5027 5028

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5029 5030
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5031 5032
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5033
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5034
	if (ret)
B
Ben Widawsky 已提交
5035
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5036 5037 5038 5039

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5040
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5041
				 (pcu_mbox & 0xff) * 50);
5042
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5043 5044
	}

5045
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5046
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5047

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5062
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5063 5064
}

5065
static void __gen6_update_ring_freq(struct drm_device *dev)
5066
{
5067
	struct drm_i915_private *dev_priv = dev->dev_private;
5068
	int min_freq = 15;
5069 5070
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5071
	unsigned int max_gpu_freq, min_gpu_freq;
5072
	int scaling_factor = 180;
5073
	struct cpufreq_policy *policy;
5074

5075
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5076

5077 5078 5079 5080 5081 5082 5083 5084 5085
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5086
		max_ia_freq = tsc_khz;
5087
	}
5088 5089 5090 5091

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5092
	min_ring_freq = I915_READ(DCLK) & 0xf;
5093 5094
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5095

5096
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5097 5098 5099 5100 5101 5102 5103 5104
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5105 5106 5107 5108 5109
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5110 5111
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5112 5113
		unsigned int ia_freq = 0, ring_freq = 0;

5114
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5115 5116 5117 5118 5119 5120
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5121 5122 5123
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5124
			ring_freq = mult_frac(gpu_freq, 5, 4);
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5141

B
Ben Widawsky 已提交
5142 5143
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5144 5145 5146
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5147 5148 5149
	}
}

5150 5151 5152 5153
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5154
	if (!HAS_CORE_RING_FREQ(dev))
5155 5156 5157 5158 5159 5160 5161
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5162
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5163
{
5164
	struct drm_device *dev = dev_priv->dev;
5165 5166
	u32 val, rp0;

5167
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5168

5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5184
	}
5185 5186 5187

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5201 5202 5203 5204
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5205 5206 5207
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5208 5209 5210
	return rp1;
}

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5222
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5223 5224 5225
{
	u32 val, rp0;

5226
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5239
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5240
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5241
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5242 5243 5244 5245 5246
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5247
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5248
{
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5260 5261
}

5262 5263 5264 5265 5266 5267 5268 5269 5270
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5290
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5291 5292 5293 5294 5295 5296
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5297 5298

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5299 5300
}

5301 5302 5303 5304 5305 5306 5307 5308
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5309
	mutex_lock(&dev->struct_mutex);
5310

5311 5312 5313 5314 5315 5316 5317 5318
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5319
								      I915_GTT_OFFSET_NONE,
5320 5321 5322 5323
								      pctx_size);
		goto out;
	}

5324 5325
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5337
		goto out;
5338 5339 5340 5341 5342 5343
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5344
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5345
	dev_priv->vlv_pctx = pctx;
5346
	mutex_unlock(&dev->struct_mutex);
5347 5348
}

5349 5350 5351 5352 5353 5354 5355
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5356
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5357 5358 5359
	dev_priv->vlv_pctx = NULL;
}

5360 5361 5362
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5363
	u32 val;
5364 5365 5366 5367 5368

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5382
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5383

5384 5385 5386
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5387
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5388 5389 5390 5391
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5392
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5393 5394
			 dev_priv->rps.efficient_freq);

5395 5396
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5397
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5398 5399
			 dev_priv->rps.rp1_freq);

5400 5401
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5402
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5403 5404
			 dev_priv->rps.min_freq);

5405 5406
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5417 5418
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5419
	struct drm_i915_private *dev_priv = dev->dev_private;
5420
	u32 val;
5421

5422
	cherryview_setup_pctx(dev);
5423 5424 5425

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5426
	mutex_lock(&dev_priv->sb_lock);
5427
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5428
	mutex_unlock(&dev_priv->sb_lock);
5429

5430 5431 5432 5433
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5434
	default:
5435 5436 5437
		dev_priv->mem_freq = 1600;
		break;
	}
5438
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5439

5440 5441 5442
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5443
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5444 5445 5446 5447
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5448
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5449 5450
			 dev_priv->rps.efficient_freq);

5451 5452
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5453
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5454 5455
			 dev_priv->rps.rp1_freq);

5456 5457
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5458
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5459
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5460 5461
			 dev_priv->rps.min_freq);

5462 5463 5464 5465 5466 5467
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5468 5469
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5470 5471 5472 5473 5474 5475 5476 5477
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5478 5479
}

5480 5481 5482 5483 5484
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5485 5486 5487 5488
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5489
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5505
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5506

5507 5508 5509
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5510 5511 5512 5513 5514 5515 5516 5517 5518
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5519 5520
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5534
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5535 5536 5537

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5538
	/* 4 Program defaults and thresholds for RPS*/
5539
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5550
		   GEN6_RP_MEDIA_IS_GFX |
5551 5552 5553 5554
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5555 5556 5557 5558 5559 5560
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5561 5562
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5563 5564 5565
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5566
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5567 5568 5569 5570
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5571
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5572 5573 5574
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5575
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5576 5577 5578 5579
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5580
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5581 5582
}

5583 5584 5585
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5586
	struct intel_engine_cs *ring;
5587
	u32 gtfifodbg, val, rc6_mode = 0;
5588 5589 5590 5591
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5592 5593
	valleyview_check_pctx(dev_priv);

5594
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5595 5596
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5597 5598 5599
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5600
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5601
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5602

5603 5604 5605
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5606
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5629
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5630 5631

	/* allows RC6 residency counter to work */
5632
	I915_WRITE(VLV_COUNTER_CONTROL,
5633 5634
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5635 5636
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5637

5638
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5639
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5640 5641 5642

	intel_print_rc6_info(dev, rc6_mode);

5643
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5644

D
Deepak S 已提交
5645 5646 5647 5648 5649 5650
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5651
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5652

5653 5654 5655
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5656
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5657 5658
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5659
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5660
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5661
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5662
			 dev_priv->rps.cur_freq);
5663

5664
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5665
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5666
			 dev_priv->rps.efficient_freq);
5667

5668
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5669

5670
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5671 5672
}

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5702
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5703 5704 5705 5706 5707 5708
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5709 5710
	assert_spin_locked(&mchdev_lock);

5711
	diff1 = now - dev_priv->ips.last_time1;
5712 5713 5714 5715 5716 5717 5718

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5719
		return dev_priv->ips.chipset_power;
5720 5721 5722 5723 5724 5725 5726 5727

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5728 5729
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5730 5731
		diff += total_count;
	} else {
5732
		diff = total_count - dev_priv->ips.last_count1;
5733 5734 5735
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5736 5737
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5748 5749
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5750

5751
	dev_priv->ips.chipset_power = ret;
5752 5753 5754 5755

	return ret;
}

5756 5757
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5758
	struct drm_device *dev = dev_priv->dev;
5759 5760
	unsigned long val;

5761
	if (INTEL_INFO(dev)->gen != 5)
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5800
{
5801
	struct drm_device *dev = dev_priv->dev;
5802 5803 5804
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5805
	if (INTEL_INFO(dev)->is_mobile)
5806 5807 5808
		return vm > 0 ? vm : 0;

	return vd;
5809 5810
}

5811
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5812
{
5813
	u64 now, diff, diffms;
5814 5815
	u32 count;

5816
	assert_spin_locked(&mchdev_lock);
5817

5818 5819 5820
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5821 5822 5823 5824 5825 5826 5827

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5828 5829
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5830 5831
		diff += count;
	} else {
5832
		diff = count - dev_priv->ips.last_count2;
5833 5834
	}

5835 5836
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5837 5838 5839 5840

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5841
	dev_priv->ips.gfx_power = diff;
5842 5843
}

5844 5845
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5846 5847 5848
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5849 5850
		return;

5851
	spin_lock_irq(&mchdev_lock);
5852 5853 5854

	__i915_update_gfx_val(dev_priv);

5855
	spin_unlock_irq(&mchdev_lock);
5856 5857
}

5858
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5859 5860 5861 5862
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5863 5864
	assert_spin_locked(&mchdev_lock);

5865
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5885
	corr2 = (corr * dev_priv->ips.corr);
5886 5887 5888 5889

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5890
	__i915_update_gfx_val(dev_priv);
5891

5892
	return dev_priv->ips.gfx_power + state2;
5893 5894
}

5895 5896
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5897
	struct drm_device *dev = dev_priv->dev;
5898 5899
	unsigned long val;

5900
	if (INTEL_INFO(dev)->gen != 5)
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5923
	spin_lock_irq(&mchdev_lock);
5924 5925 5926 5927
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5928 5929
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5930 5931 5932 5933

	ret = chipset_val + graphics_val;

out_unlock:
5934
	spin_unlock_irq(&mchdev_lock);
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5950
	spin_lock_irq(&mchdev_lock);
5951 5952 5953 5954 5955 5956
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5957 5958
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5959 5960

out_unlock:
5961
	spin_unlock_irq(&mchdev_lock);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5978
	spin_lock_irq(&mchdev_lock);
5979 5980 5981 5982 5983 5984
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5985 5986
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5987 5988

out_unlock:
5989
	spin_unlock_irq(&mchdev_lock);
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6003
	struct intel_engine_cs *ring;
6004
	bool ret = false;
6005
	int i;
6006

6007
	spin_lock_irq(&mchdev_lock);
6008 6009 6010 6011
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6012 6013
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
6014 6015

out_unlock:
6016
	spin_unlock_irq(&mchdev_lock);
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6033
	spin_lock_irq(&mchdev_lock);
6034 6035 6036 6037 6038 6039
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6040
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6041

6042
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6043 6044 6045
		ret = false;

out_unlock:
6046
	spin_unlock_irq(&mchdev_lock);
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6074 6075
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6076
	spin_lock_irq(&mchdev_lock);
6077
	i915_mch_dev = dev_priv;
6078
	spin_unlock_irq(&mchdev_lock);
6079 6080 6081 6082 6083 6084

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6085
	spin_lock_irq(&mchdev_lock);
6086
	i915_mch_dev = NULL;
6087
	spin_unlock_irq(&mchdev_lock);
6088
}
6089

6090
static void intel_init_emon(struct drm_device *dev)
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6108
		I915_WRITE(PEW(i), 0);
6109
	for (i = 0; i < 3; i++)
6110
		I915_WRITE(DEW(i), 0);
6111 6112 6113

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6114
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6135
		I915_WRITE(PXW(i), val);
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6151
		I915_WRITE(PXWL(i), 0);
6152 6153 6154 6155 6156 6157

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6158
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6159 6160
}

6161 6162
void intel_init_gt_powersave(struct drm_device *dev)
{
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6173

6174 6175 6176
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6177
		valleyview_init_gt_powersave(dev);
6178 6179 6180 6181
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6182 6183
	struct drm_i915_private *dev_priv = dev->dev_private;

6184 6185 6186
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6187
		valleyview_cleanup_gt_powersave(dev);
6188 6189 6190

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6191 6192
}

6193 6194 6195 6196 6197 6198
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6199
	gen6_disable_rps_interrupts(dev);
6200 6201
}

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6214 6215 6216
	if (INTEL_INFO(dev)->gen < 6)
		return;

6217
	gen6_suspend_rps(dev);
6218 6219 6220

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6221 6222
}

6223 6224
void intel_disable_gt_powersave(struct drm_device *dev)
{
6225 6226
	struct drm_i915_private *dev_priv = dev->dev_private;

6227
	if (IS_IRONLAKE_M(dev)) {
6228
		ironlake_disable_drps(dev);
6229
	} else if (INTEL_INFO(dev)->gen >= 6) {
6230
		intel_suspend_gt_powersave(dev);
6231

6232
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6233 6234 6235
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6236 6237
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6238 6239 6240
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6241

6242
		dev_priv->rps.enabled = false;
6243
		mutex_unlock(&dev_priv->rps.hw_lock);
6244
	}
6245 6246
}

6247 6248 6249 6250 6251 6252 6253
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6254
	mutex_lock(&dev_priv->rps.hw_lock);
6255

6256
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6257

6258 6259 6260
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6261
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6262
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6263
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6264
		gen9_enable_rps(dev);
6265
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6266
			__gen6_update_ring_freq(dev);
6267 6268
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6269
		__gen6_update_ring_freq(dev);
6270 6271
	} else {
		gen6_enable_rps(dev);
6272
		__gen6_update_ring_freq(dev);
6273
	}
6274 6275 6276 6277 6278 6279 6280

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6281
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6282

6283
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6284

6285
	mutex_unlock(&dev_priv->rps.hw_lock);
6286 6287

	intel_runtime_pm_put(dev_priv);
6288 6289
}

6290 6291
void intel_enable_gt_powersave(struct drm_device *dev)
{
6292 6293
	struct drm_i915_private *dev_priv = dev->dev_private;

6294 6295 6296 6297
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6298 6299
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
6300
		mutex_lock(&dev->struct_mutex);
6301
		intel_init_emon(dev);
6302
		mutex_unlock(&dev->struct_mutex);
6303
	} else if (INTEL_INFO(dev)->gen >= 6) {
6304 6305 6306 6307
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6308 6309 6310 6311 6312 6313 6314
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6315
		 */
6316 6317 6318
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6319 6320 6321
	}
}

6322 6323 6324 6325
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6326 6327 6328 6329
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6330 6331 6332
	dev_priv->rps.enabled = false;
}

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6345 6346 6347
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6348
	enum pipe pipe;
6349

6350
	for_each_pipe(dev_priv, pipe) {
6351 6352 6353
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6354 6355 6356

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6357 6358 6359
	}
}

6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6374
static void ironlake_init_clock_gating(struct drm_device *dev)
6375 6376
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6377
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6378

6379 6380 6381 6382
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6383 6384 6385
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6403
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6404 6405 6406
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6407 6408

	ilk_init_lp_watermarks(dev);
6409 6410 6411 6412 6413 6414 6415 6416 6417

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6418
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6419 6420 6421 6422 6423 6424 6425 6426
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6427 6428
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6429 6430 6431 6432 6433 6434
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6435

6436
	/* WaDisableRenderCachePipelinedFlush:ilk */
6437 6438
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6439

6440 6441 6442
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6443
	g4x_disable_trickle_feed(dev);
6444

6445 6446 6447 6448 6449 6450 6451
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6452
	uint32_t val;
6453 6454 6455 6456 6457 6458

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6459 6460 6461
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6462 6463
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6464 6465 6466
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6467
	for_each_pipe(dev_priv, pipe) {
6468 6469 6470
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6471
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6472
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6473 6474 6475
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6476 6477
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6478
	/* WADP0ClockGatingDisable */
6479
	for_each_pipe(dev_priv, pipe) {
6480 6481 6482
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6483 6484
}

6485 6486 6487 6488 6489 6490
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6491 6492 6493
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6494 6495
}

6496
static void gen6_init_clock_gating(struct drm_device *dev)
6497 6498
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6499
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6500

6501
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6502 6503 6504 6505 6506

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6507
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6508 6509 6510
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6511 6512 6513
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6514 6515 6516
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6517 6518 6519 6520
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6521 6522
	 */
	I915_WRITE(GEN6_GT_MODE,
6523
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6524

6525
	ilk_init_lp_watermarks(dev);
6526 6527

	I915_WRITE(CACHE_MODE_0,
6528
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6544
	 *
6545 6546
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6547 6548 6549 6550 6551
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6552
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6553 6554
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6555

6556 6557 6558 6559 6560 6561 6562 6563
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6564 6565 6566 6567 6568 6569 6570 6571
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6572 6573
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6574 6575 6576 6577 6578 6579 6580
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6581 6582 6583 6584
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6585

6586
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6587

6588
	cpt_init_clock_gating(dev);
6589 6590

	gen6_check_mch_setup(dev);
6591 6592 6593 6594 6595 6596
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6597
	/*
6598
	 * WaVSThreadDispatchOverride:ivb,vlv
6599 6600 6601 6602
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6603 6604 6605 6606 6607 6608 6609 6610
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6611 6612 6613 6614 6615 6616 6617 6618
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6619
	if (HAS_PCH_LPT_LP(dev))
6620 6621 6622
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6623 6624

	/* WADPOClockGatingDisable:hsw */
6625 6626
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6627
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6628 6629
}

6630 6631 6632 6633
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6634
	if (HAS_PCH_LPT_LP(dev)) {
6635 6636 6637 6638 6639 6640 6641
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6642
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6643 6644
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6645
	enum pipe pipe;
6646
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6647

6648
	ilk_init_lp_watermarks(dev);
6649

6650
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6651
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6652

6653
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6654 6655 6656
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6657
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6658
	for_each_pipe(dev_priv, pipe) {
6659
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6660
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6661
			   BDW_DPRS_MASK_VBLANK_SRD);
6662
	}
6663

6664 6665 6666 6667 6668
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6669

6670 6671
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6672 6673 6674 6675

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6676

6677 6678 6679 6680 6681 6682 6683 6684 6685
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6686 6687 6688 6689 6690 6691 6692
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6693
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6694 6695
}

6696 6697 6698 6699
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6700
	ilk_init_lp_watermarks(dev);
6701

6702 6703 6704 6705 6706
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6707
	/* This is required by WaCatErrorRejectionIssue:hsw */
6708 6709 6710 6711
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6712 6713 6714
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6715

6716 6717 6718
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6719 6720 6721 6722
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6723
	/* WaDisable4x2SubspanOptimization:hsw */
6724 6725
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6726

6727 6728 6729
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6730 6731 6732 6733
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6734 6735
	 */
	I915_WRITE(GEN7_GT_MODE,
6736
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6737

6738 6739 6740 6741
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6742
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6743 6744
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6745 6746 6747
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6748

6749
	lpt_init_clock_gating(dev);
6750 6751
}

6752
static void ivybridge_init_clock_gating(struct drm_device *dev)
6753 6754
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6755
	uint32_t snpcr;
6756

6757
	ilk_init_lp_watermarks(dev);
6758

6759
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6760

6761
	/* WaDisableEarlyCull:ivb */
6762 6763 6764
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6765
	/* WaDisableBackToBackFlipFix:ivb */
6766 6767 6768 6769
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6770
	/* WaDisablePSDDualDispatchEnable:ivb */
6771 6772 6773 6774
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6775 6776 6777
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6778
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6779 6780 6781
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6782
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6783 6784 6785
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6786 6787 6788 6789
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6790 6791 6792 6793
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6794 6795
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6796
	}
6797

6798
	/* WaForceL3Serialization:ivb */
6799 6800 6801
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6802
	/*
6803
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6804
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6805 6806
	 */
	I915_WRITE(GEN6_UCGCTL2,
6807
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6808

6809
	/* This is required by WaCatErrorRejectionIssue:ivb */
6810 6811 6812 6813
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6814
	g4x_disable_trickle_feed(dev);
6815 6816

	gen7_setup_fixed_func_scheduler(dev_priv);
6817

6818 6819 6820 6821 6822
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6823

6824
	/* WaDisable4x2SubspanOptimization:ivb */
6825 6826
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6827

6828 6829 6830
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6831 6832 6833 6834
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6835 6836
	 */
	I915_WRITE(GEN7_GT_MODE,
6837
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6838

6839 6840 6841 6842
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6843

6844 6845
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6846 6847

	gen6_check_mch_setup(dev);
6848 6849
}

6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6861
static void valleyview_init_clock_gating(struct drm_device *dev)
6862 6863 6864
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6865
	vlv_init_display_clock_gating(dev_priv);
6866

6867
	/* WaDisableEarlyCull:vlv */
6868 6869 6870
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6871
	/* WaDisableBackToBackFlipFix:vlv */
6872 6873 6874 6875
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6876
	/* WaPsdDispatchEnable:vlv */
6877
	/* WaDisablePSDDualDispatchEnable:vlv */
6878
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6879 6880
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6881

6882 6883 6884
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6885
	/* WaForceL3Serialization:vlv */
6886 6887 6888
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6889
	/* WaDisableDopClockGating:vlv */
6890 6891 6892
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6893
	/* This is required by WaCatErrorRejectionIssue:vlv */
6894 6895 6896 6897
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6898 6899
	gen7_setup_fixed_func_scheduler(dev_priv);

6900
	/*
6901
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6902
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6903 6904
	 */
	I915_WRITE(GEN6_UCGCTL2,
6905
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6906

6907 6908 6909 6910 6911
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6912

6913 6914 6915 6916
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6917 6918
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6919

6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6931 6932 6933 6934 6935 6936
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6937
	/*
6938
	 * WaDisableVLVClockGating_VBIIssue:vlv
6939 6940 6941
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6942
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6943 6944
}

6945 6946 6947 6948
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6949
	vlv_init_display_clock_gating(dev_priv);
6950

6951 6952 6953 6954 6955
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6956 6957 6958 6959

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6960 6961 6962 6963

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6964 6965 6966 6967

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6968 6969 6970 6971 6972 6973

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6974 6975
}

6976
static void g4x_init_clock_gating(struct drm_device *dev)
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6992 6993 6994 6995

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6996

6997 6998 6999
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7000
	g4x_disable_trickle_feed(dev);
7001 7002
}

7003
static void crestline_init_clock_gating(struct drm_device *dev)
7004 7005 7006 7007 7008 7009 7010 7011
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7012 7013
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7014 7015 7016

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7017 7018
}

7019
static void broadwater_init_clock_gating(struct drm_device *dev)
7020 7021 7022 7023 7024 7025 7026 7027 7028
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7029 7030
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7031 7032 7033

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7034 7035
}

7036
static void gen3_init_clock_gating(struct drm_device *dev)
7037 7038 7039 7040 7041 7042 7043
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7044 7045 7046

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7047 7048 7049

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7050 7051

	/* interrupts should cause a wake up from C3 */
7052
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7053 7054 7055

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7056 7057 7058

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7059 7060
}

7061
static void i85x_init_clock_gating(struct drm_device *dev)
7062 7063 7064 7065
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7066 7067 7068 7069

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7070 7071 7072

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7073 7074
}

7075
static void i830_init_clock_gating(struct drm_device *dev)
7076 7077 7078 7079
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7080 7081 7082 7083

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7084 7085 7086 7087 7088 7089
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7090 7091
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7092 7093
}

7094 7095 7096 7097 7098 7099
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7100 7101 7102 7103 7104
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7105
	intel_fbc_init(dev_priv);
7106

7107 7108 7109 7110 7111 7112
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7113
	/* For FIFO watermark updates */
7114
	if (INTEL_INFO(dev)->gen >= 9) {
7115 7116
		skl_setup_wm_latency(dev);

7117 7118 7119
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
7120
		dev_priv->display.update_wm = skl_update_wm;
7121
	} else if (HAS_PCH_SPLIT(dev)) {
7122
		ilk_setup_wm_latency(dev);
7123

7124 7125 7126 7127
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7128
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7129 7130 7131 7132 7133 7134
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7135 7136 7137 7138 7139 7140
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7141
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7142
		else if (IS_GEN6(dev))
7143
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7144
		else if (IS_IVYBRIDGE(dev))
7145
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7146
		else if (IS_HASWELL(dev))
7147
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7148
		else if (INTEL_INFO(dev)->gen == 8)
7149
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7150
	} else if (IS_CHERRYVIEW(dev)) {
7151 7152 7153
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7154 7155
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7156
	} else if (IS_VALLEYVIEW(dev)) {
7157 7158 7159
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7173
			intel_set_memory_cxsr(dev_priv, false);
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7191 7192 7193
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7194
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7195 7196
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7197
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7198 7199 7200 7201 7202 7203 7204 7205
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7206 7207 7208
	}
}

7209
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7210
{
7211
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7212 7213 7214 7215 7216 7217 7218

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7219
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7234
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7235
{
7236
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7256

7257
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7258
{
7259 7260 7261 7262 7263 7264 7265 7266
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7267 7268
	case 400:
		return 20;
7269 7270 7271
	default:
		return -1;
	}
7272
}
7273

7274 7275
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7276
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7277 7278 7279 7280 7281 7282

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7283 7284
}

7285
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7286
{
7287
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7288

7289 7290 7291
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7292

7293
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7294 7295
}

7296
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7297
{
7298
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7299

7300
	div = vlv_gpu_freq_div(czclk_freq);
7301 7302
	if (div < 0)
		return div;
7303
	div /= 2;
7304

7305
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7306 7307
}

7308
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7309
{
7310
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7311

7312
	mul = vlv_gpu_freq_div(czclk_freq);
7313 7314
	if (mul < 0)
		return mul;
7315
	mul /= 2;
7316

7317
	/* CHV needs even values */
7318
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7319 7320
}

7321
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7322
{
7323
	if (IS_GEN9(dev_priv->dev))
7324 7325
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7326
	else if (IS_CHERRYVIEW(dev_priv->dev))
7327
		return chv_gpu_freq(dev_priv, val);
7328
	else if (IS_VALLEYVIEW(dev_priv->dev))
7329 7330 7331
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7332 7333
}

7334 7335
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7336
	if (IS_GEN9(dev_priv->dev))
7337 7338
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7339
	else if (IS_CHERRYVIEW(dev_priv->dev))
7340
		return chv_freq_opcode(dev_priv, val);
7341
	else if (IS_VALLEYVIEW(dev_priv->dev))
7342 7343
		return byt_freq_opcode(dev_priv, val);
	else
7344
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7345
}
7346

7347 7348
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7349
	struct drm_i915_gem_request *req;
7350 7351 7352 7353 7354
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7355
	struct drm_i915_gem_request *req = boost->req;
7356

7357 7358 7359
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7360

7361
	i915_gem_request_unreference__unlocked(req);
7362 7363 7364 7365
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7366
				       struct drm_i915_gem_request *req)
7367 7368 7369
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7370
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7371 7372
		return;

7373 7374 7375
	if (i915_gem_request_completed(req, true))
		return;

7376 7377 7378 7379
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7380 7381
	i915_gem_request_reference(req);
	boost->req = req;
7382 7383 7384 7385 7386

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7387
void intel_pm_setup(struct drm_device *dev)
7388 7389 7390
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7391
	mutex_init(&dev_priv->rps.hw_lock);
7392
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7393

7394 7395
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7396
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7397 7398
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7399

7400
	dev_priv->pm.suspended = false;
7401
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7402
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7403
}