intel_pm.c 225.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329 330
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337 338 339 340
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342
	} else if (IS_I915GM(dev)) {
343 344 345 346 347
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
348 349 350
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
351
		POSTING_READ(INSTPM);
352 353 354
	} else {
		return;
	}
355

356 357
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
358 359
}

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
375
static const int pessimal_latency_ns = 5000;
376

377 378 379 380 381 382
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
383
	struct drm_i915_private *dev_priv = to_i915(dev);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

432
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433
{
434
	struct drm_i915_private *dev_priv = to_i915(dev);
435 436 437 438 439 440 441 442 443 444 445 446 447
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

448
static int i830_get_fifo_size(struct drm_device *dev, int plane)
449
{
450
	struct drm_i915_private *dev_priv = to_i915(dev);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

465
static int i845_get_fifo_size(struct drm_device *dev, int plane)
466
{
467
	struct drm_i915_private *dev_priv = to_i915(dev);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
483 484 485 486 487
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 489
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 491 492 493 494
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 496
};
static const struct intel_watermark_params pineview_cursor_wm = {
497 498 499 500 501
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 503
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 505 506 507 508
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 510
};
static const struct intel_watermark_params g4x_wm_info = {
511 512 513 514 515
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
518 519 520 521 522
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params i965_cursor_wm_info = {
525 526 527 528 529
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params i945_wm_info = {
532 533 534 535 536
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params i915_wm_info = {
539 540 541 542 543
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
544
};
545
static const struct intel_watermark_params i830_a_wm_info = {
546 547 548 549 550
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
551
};
552 553 554 555 556 557 558
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
559
static const struct intel_watermark_params i845_wm_info = {
560 561 562 563 564
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
565 566 567 568 569 570
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
571
 * @cpp: bytes per pixel
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
587
					int fifo_size, int cpp,
588 589 590 591 592 593 594 595 596 597
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
598
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
613 614 615 616 617 618 619 620 621 622 623

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

624 625 626 627 628 629 630
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

631
	for_each_crtc(dev, crtc) {
632
		if (intel_crtc_active(crtc)) {
633 634 635 636 637 638 639 640 641
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

642
static void pineview_update_wm(struct drm_crtc *unused_crtc)
643
{
644
	struct drm_device *dev = unused_crtc->dev;
645
	struct drm_i915_private *dev_priv = to_i915(dev);
646 647 648 649 650 651 652 653 654
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655
		intel_set_memory_cxsr(dev_priv, false);
656 657 658 659 660
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
661
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663
		int clock = adjusted_mode->crtc_clock;
664 665 666 667

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
668
					cpp, latency->display_sr);
669 670
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
671
		reg |= FW_WM(wm, SR);
672 673 674 675 676 677
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
678
					cpp, latency->cursor_sr);
679 680
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
681
		reg |= FW_WM(wm, CURSOR_SR);
682 683 684 685 686
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
687
					cpp, latency->display_hpll_disable);
688 689
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
690
		reg |= FW_WM(wm, HPLL_SR);
691 692 693 694 695
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
696
					cpp, latency->cursor_hpll_disable);
697 698
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
699
		reg |= FW_WM(wm, HPLL_CURSOR);
700 701 702
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

703
		intel_set_memory_cxsr(dev_priv, true);
704
	} else {
705
		intel_set_memory_cxsr(dev_priv, false);
706 707 708 709 710 711 712 713 714 715 716 717 718
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
719
	const struct drm_display_mode *adjusted_mode;
720
	int htotal, hdisplay, clock, cpp;
721 722 723 724
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
725
	if (!intel_crtc_active(crtc)) {
726 727 728 729 730
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

731
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732
	clock = adjusted_mode->crtc_clock;
733
	htotal = adjusted_mode->crtc_htotal;
734
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736 737

	/* Use the small buffer method to calculate plane watermark */
738
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739 740 741 742 743 744 745 746 747
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
748
	line_time_us = max(htotal * 1000 / clock, 1);
749
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
805
	const struct drm_display_mode *adjusted_mode;
806
	int hdisplay, htotal, cpp, clock;
807 808 809 810 811 812 813 814 815 816 817
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
818
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819
	clock = adjusted_mode->crtc_clock;
820
	htotal = adjusted_mode->crtc_htotal;
821
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823

824
	line_time_us = max(htotal * 1000 / clock, 1);
825
	line_count = (latency_ns / line_time_us + 1000) / 1000;
826
	line_size = hdisplay * cpp;
827 828

	/* Use the minimum of the small and large buffer method for primary */
829
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
830 831 832 833 834 835
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
836
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
837 838 839 840 841 842 843 844
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

845 846 847
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

848 849 850 851 852 853 854 855 856 857 858 859
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

860
	I915_WRITE(DSPFW1,
861 862 863 864
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865
	I915_WRITE(DSPFW2,
866 867 868
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869
	I915_WRITE(DSPFW3,
870
		   FW_WM(wm->sr.cursor, CURSOR_SR));
871 872 873

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876
		I915_WRITE(DSPFW8_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879
		I915_WRITE(DSPFW9_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882
		I915_WRITE(DSPHOWM,
883 884 885 886 887 888 889 890 891 892
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893 894
	} else {
		I915_WRITE(DSPFW7,
895 896
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897
		I915_WRITE(DSPHOWM,
898 899 900 901 902 903 904
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905 906
	}

907 908 909 910 911 912
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

913
	POSTING_READ(DSPFW1);
914 915
}

916 917
#undef FW_WM_VLV

918 919 920 921 922 923
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

924 925 926 927
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
928
				   unsigned int cpp,
929 930 931 932 933
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934
	ret = (ret + 1) * horiz_pixels * cpp;
935 936 937 938 939 940 941
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
942
	struct drm_i915_private *dev_priv = to_i915(dev);
943 944 945 946

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

947 948
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

949 950 951
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952 953

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954 955 956 957 958 959 960 961 962
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963
	int clock, htotal, cpp, width, wm;
964 965 966 967

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

968
	if (!state->base.visible)
969 970
		return 0;

971
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
987
		wm = vlv_wm_method2(clock, htotal, width, cpp,
988 989 990 991 992 993
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1010
		if (state->base.visible) {
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1026
		if (!state->base.visible) {
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1095
static void vlv_compute_wm(struct intel_crtc *crtc)
1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1105
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107 1108 1109

	wm_state->num_active_planes = 0;

1110
	vlv_compute_fifo(crtc);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1126
		if (!state->base.visible)
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1167
					wm_state->wm[level].cursor;
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1186
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187 1188 1189 1190 1191 1192 1193
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1284 1285 1286 1287 1288 1289
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1290
	wm->level = to_i915(dev)->wm.max_level;
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1309 1310 1311
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1333
	struct drm_i915_private *dev_priv = to_i915(dev);
1334 1335 1336 1337
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1338
	vlv_compute_wm(intel_crtc);
1339 1340
	vlv_merge_wm(dev, &wm);

1341 1342 1343
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1344
		return;
1345
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1355
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 1357
		intel_set_memory_cxsr(dev_priv, false);

1358 1359 1360
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1361 1362 1363 1364 1365 1366 1367 1368
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1369
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1381 1382
}

1383 1384
#define single_plane_enabled(mask) is_power_of_2(mask)

1385
static void g4x_update_wm(struct drm_crtc *crtc)
1386
{
1387
	struct drm_device *dev = crtc->dev;
1388
	static const int sr_latency_ns = 12000;
1389
	struct drm_i915_private *dev_priv = to_i915(dev);
1390 1391 1392
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1393
	bool cxsr_enabled;
1394

1395
	if (g4x_compute_wm0(dev, PIPE_A,
1396 1397
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1398
			    &planea_wm, &cursora_wm))
1399
		enabled |= 1 << PIPE_A;
1400

1401
	if (g4x_compute_wm0(dev, PIPE_B,
1402 1403
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1404
			    &planeb_wm, &cursorb_wm))
1405
		enabled |= 1 << PIPE_B;
1406 1407 1408 1409 1410 1411

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1412
			     &plane_sr, &cursor_sr)) {
1413
		cxsr_enabled = true;
1414
	} else {
1415
		cxsr_enabled = false;
1416
		intel_set_memory_cxsr(dev_priv, false);
1417 1418
		plane_sr = cursor_sr = 0;
	}
1419

1420 1421
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422 1423 1424 1425 1426
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1427 1428 1429 1430
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1431
	I915_WRITE(DSPFW2,
1432
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433
		   FW_WM(cursora_wm, CURSORA));
1434 1435
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1436
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437
		   FW_WM(cursor_sr, CURSOR_SR));
1438 1439 1440

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1441 1442
}

1443
static void i965_update_wm(struct drm_crtc *unused_crtc)
1444
{
1445
	struct drm_device *dev = unused_crtc->dev;
1446
	struct drm_i915_private *dev_priv = to_i915(dev);
1447 1448 1449
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1450
	bool cxsr_enabled;
1451 1452 1453 1454 1455 1456

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1457
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458
		int clock = adjusted_mode->crtc_clock;
1459
		int htotal = adjusted_mode->crtc_htotal;
1460
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462 1463 1464
		unsigned long line_time_us;
		int entries;

1465
		line_time_us = max(htotal * 1000 / clock, 1);
1466 1467 1468

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469
			cpp * hdisplay;
1470 1471 1472 1473 1474 1475 1476 1477 1478
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479
			cpp * crtc->cursor->state->crtc_w;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1491
		cxsr_enabled = true;
1492
	} else {
1493
		cxsr_enabled = false;
1494
		/* Turn off self refresh if both pipes are enabled */
1495
		intel_set_memory_cxsr(dev_priv, false);
1496 1497 1498 1499 1500 1501
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1502 1503 1504 1505 1506 1507
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1508
	/* update cursor SR watermark */
1509
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510 1511 1512

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1513 1514
}

1515 1516
#undef FW_WM

1517
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518
{
1519
	struct drm_device *dev = unused_crtc->dev;
1520
	struct drm_i915_private *dev_priv = to_i915(dev);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1534
		wm_info = &i830_a_wm_info;
1535 1536 1537

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1538
	if (intel_crtc_active(crtc)) {
1539
		const struct drm_display_mode *adjusted_mode;
1540
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541 1542 1543
		if (IS_GEN2(dev))
			cpp = 4;

1544
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546
					       wm_info, fifo_size, cpp,
1547
					       pessimal_latency_ns);
1548
		enabled = crtc;
1549
	} else {
1550
		planea_wm = fifo_size - wm_info->guard_size;
1551 1552 1553 1554 1555 1556
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1557 1558 1559

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1560
	if (intel_crtc_active(crtc)) {
1561
		const struct drm_display_mode *adjusted_mode;
1562
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563 1564 1565
		if (IS_GEN2(dev))
			cpp = 4;

1566
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568
					       wm_info, fifo_size, cpp,
1569
					       pessimal_latency_ns);
1570 1571 1572 1573
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1574
	} else {
1575
		planeb_wm = fifo_size - wm_info->guard_size;
1576 1577 1578
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1579 1580 1581

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1582
	if (IS_I915GM(dev) && enabled) {
1583
		struct drm_i915_gem_object *obj;
1584

1585
		obj = intel_fb_obj(enabled->primary->state->fb);
1586 1587

		/* self-refresh seems busted with untiled */
1588
		if (!i915_gem_object_is_tiled(obj))
1589 1590 1591
			enabled = NULL;
	}

1592 1593 1594 1595 1596 1597
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1598
	intel_set_memory_cxsr(dev_priv, false);
1599 1600 1601 1602 1603

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1604
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605
		int clock = adjusted_mode->crtc_clock;
1606
		int htotal = adjusted_mode->crtc_htotal;
1607
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609 1610 1611
		unsigned long line_time_us;
		int entries;

1612 1613 1614
		if (IS_I915GM(dev) || IS_I945GM(dev))
			cpp = 4;

1615
		line_time_us = max(htotal * 1000 / clock, 1);
1616 1617 1618

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619
			cpp * hdisplay;
1620 1621 1622 1623 1624 1625 1626 1627 1628
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629
		else
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1646 1647
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1648 1649
}

1650
static void i845_update_wm(struct drm_crtc *unused_crtc)
1651
{
1652
	struct drm_device *dev = unused_crtc->dev;
1653
	struct drm_i915_private *dev_priv = to_i915(dev);
1654
	struct drm_crtc *crtc;
1655
	const struct drm_display_mode *adjusted_mode;
1656 1657 1658 1659 1660 1661 1662
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1663
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665
				       &i845_wm_info,
1666
				       dev_priv->display.get_fifo_size(dev, 0),
1667
				       4, pessimal_latency_ns);
1668 1669 1670 1671 1672 1673 1674 1675
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1676
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677
{
1678
	uint32_t pixel_rate;
1679

1680
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681 1682 1683 1684

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1685
	if (pipe_config->pch_pfit.enabled) {
1686
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687 1688 1689 1690
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1691 1692 1693 1694 1695 1696 1697 1698

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1699 1700 1701
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1702 1703 1704 1705 1706 1707 1708
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1709
/* latency must be in 0.1us units. */
1710
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 1712 1713
{
	uint64_t ret;

1714 1715 1716
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1717
	ret = (uint64_t) pixel_rate * cpp * latency;
1718 1719 1720 1721 1722
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1723
/* latency must be in 0.1us units. */
1724
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725
			       uint32_t horiz_pixels, uint8_t cpp,
1726 1727 1728 1729
			       uint32_t latency)
{
	uint32_t ret;

1730 1731
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1732 1733
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1734

1735
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736
	ret = (ret + 1) * horiz_pixels * cpp;
1737 1738 1739 1740
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1741
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742
			   uint8_t cpp)
1743
{
1744 1745 1746 1747 1748 1749
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1750
	if (WARN_ON(!cpp))
1751 1752 1753 1754
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1755
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 1757
}

1758
struct ilk_wm_maximums {
1759 1760 1761 1762 1763 1764
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1765 1766 1767 1768
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1769
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770
				   const struct intel_plane_state *pstate,
1771 1772
				   uint32_t mem_value,
				   bool is_lp)
1773
{
1774 1775
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776 1777
	uint32_t method1, method2;

1778
	if (!cstate->base.active || !pstate->base.visible)
1779 1780
		return 0;

1781
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782 1783 1784 1785

	if (!is_lp)
		return method1;

1786 1787
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1788
				 drm_rect_width(&pstate->base.dst),
1789
				 cpp, mem_value);
1790 1791

	return min(method1, method2);
1792 1793
}

1794 1795 1796 1797
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1798
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799
				   const struct intel_plane_state *pstate,
1800 1801
				   uint32_t mem_value)
{
1802 1803
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 1805
	uint32_t method1, method2;

1806
	if (!cstate->base.active || !pstate->base.visible)
1807 1808
		return 0;

1809
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 1811
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1812
				 drm_rect_width(&pstate->base.dst),
1813
				 cpp, mem_value);
1814 1815 1816
	return min(method1, method2);
}

1817 1818 1819 1820
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1821
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822
				   const struct intel_plane_state *pstate,
1823 1824
				   uint32_t mem_value)
{
1825 1826 1827 1828 1829 1830
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1831
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1832

1833
	if (!cstate->base.active)
1834 1835
		return 0;

1836 1837
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1838
			      width, cpp, mem_value);
1839 1840
}

1841
/* Only for WM_LP. */
1842
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843
				   const struct intel_plane_state *pstate,
1844
				   uint32_t pri_val)
1845
{
1846 1847
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848

1849
	if (!cstate->base.active || !pstate->base.visible)
1850 1851
		return 0;

1852
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1853 1854
}

1855 1856
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1857 1858 1859
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1860 1861 1862 1863 1864
		return 768;
	else
		return 512;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1899 1900 1901
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1902
				     const struct intel_wm_config *config,
1903 1904 1905 1906 1907 1908
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1909
	if (is_sprite && !config->sprites_enabled)
1910 1911 1912
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1913
	if (level == 0 || config->num_pipes_active > 1) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1925
	if (config->sprites_enabled) {
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1937
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 1939 1940 1941
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942 1943
				      int level,
				      const struct intel_wm_config *config)
1944 1945
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1946
	if (level > 0 && config->num_pipes_active > 1)
1947 1948 1949
		return 64;

	/* otherwise just report max that registers can hold */
1950
	return ilk_cursor_wm_reg_max(dev, level);
1951 1952
}

1953
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954 1955 1956
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1957
				    struct ilk_wm_maximums *max)
1958
{
1959 1960 1961
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1962
	max->fbc = ilk_fbc_wm_reg_max(dev);
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1975
static bool ilk_validate_wm_level(int level,
1976
				  const struct ilk_wm_maximums *max,
1977
				  struct intel_wm_level *result)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2016
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017
				 const struct intel_crtc *intel_crtc,
2018
				 int level,
2019
				 struct intel_crtc_state *cstate,
2020 2021 2022
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2023
				 struct intel_wm_level *result)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2048 2049 2050
	result->enable = true;
}

2051
static uint32_t
2052
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053
{
2054 2055
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2056 2057
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2058
	u32 linetime, ips_linetime;
2059

2060 2061 2062 2063
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2064
	if (WARN_ON(intel_state->cdclk == 0))
2065
		return 0;
2066

2067 2068 2069
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2070 2071 2072
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073
					 intel_state->cdclk);
2074

2075 2076
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2077 2078
}

2079
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080
{
2081
	struct drm_i915_private *dev_priv = to_i915(dev);
2082

2083 2084
	if (IS_GEN9(dev)) {
		uint32_t val;
2085
		int ret, i;
2086
		int level, max_level = ilk_wm_max_level(dev);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2142
		/*
2143 2144
		 * WaWmMemoryReadLatency:skl
		 *
2145
		 * punit doesn't take into account the read latency so we need
2146 2147
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2148
		 */
2149 2150 2151 2152 2153
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2154
				wm[level] += 2;
2155
			}
2156 2157
		}

2158
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2159 2160 2161 2162 2163
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2164 2165 2166 2167
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2168 2169 2170 2171 2172 2173 2174
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2175 2176 2177 2178 2179 2180 2181
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2182 2183 2184
	}
}

2185 2186 2187
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2188
	if (IS_GEN5(dev))
2189 2190 2191 2192 2193 2194
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2195
	if (IS_GEN5(dev))
2196 2197 2198 2199 2200 2201 2202
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2203
int ilk_wm_max_level(const struct drm_device *dev)
2204 2205
{
	/* how many WM levels are we expecting */
2206
	if (INTEL_INFO(dev)->gen >= 9)
2207 2208
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2209
		return 4;
2210
	else if (INTEL_INFO(dev)->gen >= 6)
2211
		return 3;
2212
	else
2213 2214
		return 2;
}
2215

2216 2217
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2218
				   const uint16_t wm[8])
2219 2220
{
	int level, max_level = ilk_wm_max_level(dev);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2231 2232 2233 2234 2235 2236 2237
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2238 2239 2240 2241 2242 2243 2244 2245
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2246 2247 2248
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2249
	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2263
	struct drm_i915_private *dev_priv = to_i915(dev);
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2283
static void ilk_setup_wm_latency(struct drm_device *dev)
2284
{
2285
	struct drm_i915_private *dev_priv = to_i915(dev);
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2296 2297 2298 2299

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2300 2301 2302

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2303 2304
}

2305 2306
static void skl_setup_wm_latency(struct drm_device *dev)
{
2307
	struct drm_i915_private *dev_priv = to_i915(dev);
2308 2309 2310 2311 2312

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2336
/* Compute new watermarks for the pipe */
2337
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2338
{
2339 2340
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2341
	struct intel_pipe_wm *pipe_wm;
2342
	struct drm_device *dev = state->dev;
2343
	const struct drm_i915_private *dev_priv = to_i915(dev);
2344
	struct intel_plane *intel_plane;
2345
	struct intel_plane_state *pristate = NULL;
2346
	struct intel_plane_state *sprstate = NULL;
2347
	struct intel_plane_state *curstate = NULL;
2348
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2349
	struct ilk_wm_maximums max;
2350

2351
	pipe_wm = &cstate->wm.ilk.optimal;
2352

2353
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2354 2355 2356 2357 2358 2359
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2360 2361

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2362
			pristate = ps;
2363
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2364
			sprstate = ps;
2365
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2366
			curstate = ps;
2367 2368
	}

2369
	pipe_wm->pipe_enabled = cstate->base.active;
2370
	if (sprstate) {
2371 2372 2373 2374
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2375 2376
	}

2377 2378
	usable_level = max_level;

2379
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2380
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2381
		usable_level = 1;
2382 2383

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2384
	if (pipe_wm->sprites_scaled)
2385
		usable_level = 0;
2386

2387
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2388 2389 2390 2391
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2392

2393
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2394
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2395

2396
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2397
		return -EINVAL;
2398 2399 2400 2401

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2402
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2403

2404
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2405
				     pristate, sprstate, curstate, wm);
2406 2407 2408 2409 2410 2411

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2412 2413 2414 2415 2416 2417
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2418
			usable_level = level;
2419 2420
	}

2421
	return 0;
2422 2423
}

2424 2425 2426 2427 2428 2429 2430 2431 2432
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2433
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2434 2435 2436 2437 2438 2439 2440 2441
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2442
	*a = newstate->wm.ilk.optimal;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2471
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2472 2473 2474 2475 2476
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2477 2478 2479 2480 2481 2482 2483 2484 2485
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2486 2487
	ret_wm->enable = true;

2488
	for_each_intel_crtc(dev, intel_crtc) {
2489
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2490 2491 2492 2493
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2494

2495 2496 2497 2498 2499
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2500
		if (!wm->enable)
2501
			ret_wm->enable = false;
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2514
			 const struct intel_wm_config *config,
2515
			 const struct ilk_wm_maximums *max,
2516 2517
			 struct intel_pipe_wm *merged)
{
2518
	struct drm_i915_private *dev_priv = to_i915(dev);
2519
	int level, max_level = ilk_wm_max_level(dev);
2520
	int last_enabled_level = max_level;
2521

2522 2523 2524
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2525
		last_enabled_level = 0;
2526

2527 2528
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2529 2530 2531 2532 2533 2534 2535

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2536 2537 2538 2539 2540
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2541 2542 2543 2544 2545 2546

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2547 2548
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2549 2550 2551
			wm->fbc_val = 0;
		}
	}
2552 2553 2554 2555 2556 2557 2558

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2559
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2560
	    intel_fbc_is_active(dev_priv)) {
2561 2562 2563 2564 2565 2566
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2567 2568
}

2569 2570 2571 2572 2573 2574
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2575 2576 2577
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2578
	struct drm_i915_private *dev_priv = to_i915(dev);
2579

2580
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2581 2582 2583 2584 2585
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2586
static void ilk_compute_wm_results(struct drm_device *dev,
2587
				   const struct intel_pipe_wm *merged,
2588
				   enum intel_ddb_partitioning partitioning,
2589
				   struct ilk_wm_values *results)
2590
{
2591 2592
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2593

2594
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2595
	results->partitioning = partitioning;
2596

2597
	/* LP1+ register values */
2598
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2599
		const struct intel_wm_level *r;
2600

2601
		level = ilk_wm_lp_to_level(wm_lp, merged);
2602

2603
		r = &merged->wm[level];
2604

2605 2606 2607 2608 2609
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2610
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2611 2612 2613
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2614 2615 2616
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2617 2618 2619 2620 2621 2622 2623
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2624 2625 2626 2627
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2628 2629 2630 2631 2632
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2633
	}
2634

2635
	/* LP0 register values */
2636
	for_each_intel_crtc(dev, intel_crtc) {
2637
		enum pipe pipe = intel_crtc->pipe;
2638 2639
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2640 2641 2642 2643

		if (WARN_ON(!r->enable))
			continue;

2644
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2645

2646 2647 2648 2649
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2650 2651 2652
	}
}

2653 2654
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2655
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2656 2657
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2658
{
2659 2660
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2661

2662 2663 2664 2665 2666
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2667 2668
	}

2669 2670
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2671 2672 2673
			return r2;
		else
			return r1;
2674
	} else if (level1 > level2) {
2675 2676 2677 2678 2679 2680
		return r1;
	} else {
		return r2;
	}
}

2681 2682 2683 2684 2685 2686 2687 2688
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2689
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2690 2691
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2692 2693 2694 2695 2696
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2697
	for_each_pipe(dev_priv, pipe) {
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2741 2742
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2743
{
2744
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745
	bool changed = false;
2746

2747 2748 2749
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2750
		changed = true;
2751 2752 2753 2754
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2760
		changed = true;
2761
	}
2762

2763 2764 2765 2766
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2767

2768 2769 2770 2771 2772 2773 2774
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2775 2776
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2777
{
2778
	struct drm_device *dev = &dev_priv->drm;
2779
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2780 2781 2782
	unsigned int dirty;
	uint32_t val;

2783
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2784 2785 2786 2787 2788
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2789
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2790
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2791
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2792
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2793
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2794 2795
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2796
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2797
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2798
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2799
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2800
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2801 2802
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2803
	if (dirty & WM_DIRTY_DDB) {
2804
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2819 2820
	}

2821
	if (dirty & WM_DIRTY_FBC) {
2822 2823 2824 2825 2826 2827 2828 2829
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2830 2831 2832 2833 2834
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2835 2836 2837 2838 2839
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2840

2841
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2842
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2843
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2844
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2845
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2846
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2847 2848

	dev_priv->wm.hw = *results;
2849 2850
}

2851
bool ilk_disable_lp_wm(struct drm_device *dev)
2852
{
2853
	struct drm_i915_private *dev_priv = to_i915(dev);
2854 2855 2856 2857

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2858
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2882 2883 2884
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2885 2886 2887 2888 2889 2890 2891 2892
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2893 2894
}

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2907
intel_enable_sagv(struct drm_i915_private *dev_priv)
2908 2909 2910
{
	int ret;

2911 2912 2913 2914
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2930
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2931
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2932
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2933 2934 2935 2936 2937 2938
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2939
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2940 2941 2942 2943
	return 0;
}

static int
2944
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2958
intel_disable_sagv(struct drm_i915_private *dev_priv)
2959 2960 2961
{
	int ret, result;

2962 2963 2964 2965
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2966 2967 2968 2969 2970 2971
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2972
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2984
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2985
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2986
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2987 2988 2989 2990 2991 2992
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2993
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2994 2995 2996
	return 0;
}

2997
bool intel_can_enable_sagv(struct drm_atomic_state *state)
2998 2999 3000 3001 3002 3003 3004 3005
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_crtc *crtc;
	enum pipe pipe;
	int level, plane;

3006 3007 3008
	if (!intel_has_sagv(dev_priv))
		return false;

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
	crtc = dev_priv->pipe_to_crtc_mapping[pipe];

	if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	for_each_plane(dev_priv, pipe, plane) {
		/* Skip this plane if it's not enabled */
		if (intel_state->wm_results.plane[pipe][plane][0] == 0)
			continue;

		/* Find the highest enabled wm level for this plane */
		for (level = ilk_wm_max_level(dev);
		     intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
		     { }

		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
		if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
			return false;
	}

	return true;
}

3049 3050
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3051
				   const struct intel_crtc_state *cstate,
3052 3053
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3054
{
3055 3056 3057
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3058
	struct drm_crtc *for_crtc = cstate->base.crtc;
3059 3060
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3061 3062
	int pipe = to_intel_crtc(for_crtc)->pipe;

3063
	if (WARN_ON(!state) || !cstate->base.active) {
3064 3065
		alloc->start = 0;
		alloc->end = 0;
3066
		*num_active = hweight32(dev_priv->active_crtcs);
3067 3068 3069
		return;
	}

3070 3071 3072 3073 3074
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3075 3076
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3077 3078 3079

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3080
	/*
3081 3082 3083 3084 3085 3086
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3087
	 */
3088 3089 3090
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
3091
	}
3092 3093 3094 3095 3096 3097

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3098 3099
}

3100
static unsigned int skl_cursor_allocation(int num_active)
3101
{
3102
	if (num_active == 1)
3103 3104 3105 3106 3107
		return 32;

	return 8;
}

3108 3109 3110 3111
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3112 3113
	if (entry->end)
		entry->end += 1;
3114 3115
}

3116 3117
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3118 3119 3120 3121 3122
{
	enum pipe pipe;
	int plane;
	u32 val;

3123 3124
	memset(ddb, 0, sizeof(*ddb));

3125
	for_each_pipe(dev_priv, pipe) {
3126 3127 3128 3129
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3130 3131
			continue;

3132
		for_each_plane(dev_priv, pipe, plane) {
3133 3134 3135 3136 3137 3138
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3139 3140
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3141 3142

		intel_display_power_put(dev_priv, power_domain);
3143 3144 3145
	}
}

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3168
	if (WARN_ON(!pstate->base.visible))
3169 3170 3171
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3172 3173 3174 3175
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3186
static unsigned int
3187 3188 3189
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3190
{
3191
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3192
	struct drm_framebuffer *fb = pstate->fb;
3193
	uint32_t down_scale_amount, data_rate;
3194
	uint32_t width = 0, height = 0;
3195 3196
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3197
	if (!intel_pstate->base.visible)
3198 3199 3200 3201 3202
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3203

3204 3205
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3206 3207 3208

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3209 3210

	/* for planar format */
3211
	if (format == DRM_FORMAT_NV12) {
3212
		if (y)  /* y-plane data rate */
3213
			data_rate = width * height *
3214
				drm_format_plane_cpp(format, 0);
3215
		else    /* uv-plane data rate */
3216
			data_rate = (width / 2) * (height / 2) *
3217
				drm_format_plane_cpp(format, 1);
3218 3219 3220
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3221 3222
	}

3223 3224 3225
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3226 3227 3228 3229 3230 3231 3232 3233
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3234
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3235
{
3236 3237 3238 3239 3240
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241
	const struct drm_plane *plane;
3242
	const struct intel_plane *intel_plane;
3243
	struct drm_plane_state *pstate;
3244
	unsigned int rate, total_data_rate = 0;
3245
	int id;
3246 3247 3248 3249
	int i;

	if (WARN_ON(!state))
		return 0;
3250

3251
	/* Calculate and cache data rate for each plane */
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3268
	}
3269

3270 3271 3272
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3273

3274
		/* packed/uv */
3275 3276
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3277 3278 3279 3280 3281
	}

	return total_data_rate;
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3304 3305
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3345
static int
3346
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3347 3348
		      struct skl_ddb_allocation *ddb /* out */)
{
3349
	struct drm_atomic_state *state = cstate->base.state;
3350
	struct drm_crtc *crtc = cstate->base.crtc;
3351 3352
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353
	struct intel_plane *intel_plane;
3354 3355
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3356
	enum pipe pipe = intel_crtc->pipe;
3357
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3358
	uint16_t alloc_size, start, cursor_blocks;
3359 3360
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3361
	unsigned int total_data_rate;
3362 3363
	int num_active;
	int id, i;
3364

3365 3366 3367
	if (WARN_ON(!state))
		return 0;

3368 3369 3370 3371 3372 3373 3374
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3375
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3376
	alloc_size = skl_ddb_entry_size(alloc);
3377 3378
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3379
		return 0;
3380 3381
	}

3382
	cursor_blocks = skl_cursor_allocation(num_active);
3383 3384
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3385 3386 3387

	alloc_size -= cursor_blocks;

3388
	/* 1. Allocate the mininum required blocks for each active plane */
3389 3390 3391
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3392

3393 3394
		if (intel_plane->pipe != pipe)
			continue;
3395

3396
		if (!to_intel_plane_state(pstate)->base.visible) {
3397 3398 3399 3400 3401 3402 3403 3404
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3405
		}
3406

3407 3408
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3409
	}
3410

3411 3412 3413
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3414 3415
	}

3416
	/*
3417 3418
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3419 3420 3421
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3422
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3423
	if (total_data_rate == 0)
3424
		return 0;
3425

3426
	start = alloc->start;
3427
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3428 3429
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3430
		int id = skl_wm_plane_id(intel_plane);
3431

3432
		data_rate = cstate->wm.skl.plane_data_rate[id];
3433 3434

		/*
3435
		 * allocation for (packed formats) or (uv-plane part of planar format):
3436 3437 3438
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3439
		plane_blocks = minimum[id];
3440 3441
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3442

3443 3444 3445 3446 3447
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3448 3449

		start += plane_blocks;
3450 3451 3452 3453

		/*
		 * allocation for y_plane part of planar format:
		 */
3454 3455 3456 3457 3458
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3459

3460 3461 3462 3463
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3464 3465

		start += y_plane_blocks;
3466 3467
	}

3468
	return 0;
3469 3470
}

3471
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3472 3473
{
	/* TODO: Take into account the scalers once we support them */
3474
	return config->base.adjusted_mode.crtc_clock;
3475 3476 3477 3478
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3479
 * for the read latency) and cpp should always be <= 8, so that
3480 3481 3482
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3483
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3484 3485 3486 3487 3488 3489
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3490
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3491 3492 3493 3494 3495 3496
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3497
			       uint32_t latency, uint32_t plane_blocks_per_line)
3498
{
3499 3500
	uint32_t ret;
	uint32_t wm_intermediate_val;
3501 3502 3503 3504 3505 3506

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3507
				plane_blocks_per_line;
3508 3509 3510 3511

	return ret;
}

3512 3513 3514 3515 3516 3517 3518 3519
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3520
	if (WARN_ON(!pstate->base.visible))
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3536 3537 3538 3539 3540 3541 3542 3543
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3544
{
3545 3546
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3547 3548 3549 3550 3551
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3552
	uint8_t cpp;
3553
	uint32_t width = 0, height = 0;
3554
	uint32_t plane_pixel_rate;
3555
	uint32_t y_tile_minimum, y_min_scanlines;
3556

3557
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3558 3559 3560
		*enabled = false;
		return 0;
	}
3561

3562 3563
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3564

3565
	if (intel_rotation_90_or_270(pstate->rotation))
3566 3567
		swap(width, height);

3568
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3569 3570
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	if (intel_rotation_90_or_270(pstate->rotation)) {
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3586 3587 3588
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3589 3590 3591 3592 3593
		}
	} else {
		y_min_scanlines = 4;
	}

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3607 3608
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3609
				 cstate->base.adjusted_mode.crtc_htotal,
3610
				 latency,
3611
				 plane_blocks_per_line);
3612

3613 3614
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3615 3616
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3617 3618
		selected_result = max(method2, y_tile_minimum);
	} else {
3619 3620 3621 3622
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3623 3624 3625 3626
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3627

3628 3629
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3630

3631
	if (level >= 1 && level <= 7) {
3632
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3633 3634
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3635
			res_lines += y_min_scanlines;
3636
		} else {
3637
			res_blocks++;
3638
		}
3639
	}
3640

3641 3642
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3659
	}
3660 3661 3662

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3663
	*enabled = true;
3664

3665
	return 0;
3666 3667
}

3668 3669 3670 3671 3672 3673
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3674
{
3675
	struct drm_atomic_state *state = cstate->base.state;
3676
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3677
	struct drm_plane *plane;
3678
	struct intel_plane *intel_plane;
3679
	struct intel_plane_state *intel_pstate;
3680
	uint16_t ddb_blocks;
3681
	enum pipe pipe = intel_crtc->pipe;
3682
	int ret;
3683

3684 3685 3686 3687 3688 3689
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

3690 3691 3692
	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3693
		int i = skl_wm_plane_id(intel_plane);
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3720 3721
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3732
	}
3733 3734

	return 0;
3735 3736
}

3737
static uint32_t
3738
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3739
{
3740
	if (!cstate->base.active)
3741 3742
		return 0;

3743
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3744
		return 0;
3745

3746 3747
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3748 3749
}

3750
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3751
				      struct skl_wm_level *trans_wm /* out */)
3752
{
3753
	struct drm_crtc *crtc = cstate->base.crtc;
3754
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3755
	struct intel_plane *intel_plane;
3756

3757
	if (!cstate->base.active)
3758
		return;
3759 3760

	/* Until we know more, just disable transition WMs */
3761 3762 3763
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3764
		trans_wm->plane_en[i] = false;
3765
	}
3766 3767
}

3768 3769 3770
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3771
{
3772
	struct drm_device *dev = cstate->base.crtc->dev;
3773
	const struct drm_i915_private *dev_priv = to_i915(dev);
3774
	int level, max_level = ilk_wm_max_level(dev);
3775
	int ret;
3776 3777

	for (level = 0; level <= max_level; level++) {
3778 3779 3780 3781
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3782
	}
3783
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3784

3785
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3786 3787

	return 0;
3788 3789 3790 3791 3792 3793 3794 3795 3796
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3797 3798
	uint32_t temp;
	int i;
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3815 3816
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3817

3818
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3819 3820
			temp |= PLANE_WM_EN;

3821
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3822 3823 3824

	}

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3837 3838 3839
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3840 3841
		temp |= PLANE_WM_EN;

3842
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3843

3844 3845 3846
	r->wm_linetime[pipe] = p_wm->linetime;
}

3847 3848
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3849 3850 3851 3852 3853 3854 3855 3856
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			const struct skl_wm_values *wm,
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(PLANE_WM(pipe, plane, level),
			   wm->plane[pipe][plane][level]);
	}
	I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3872 3873 3874 3875 3876

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
			    &wm->ddb.plane[pipe][plane]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
			    &wm->ddb.y_plane[pipe][plane]);
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
			 const struct skl_wm_values *wm)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(CUR_WM(pipe, level),
			   wm->plane[pipe][PLANE_CURSOR][level]);
	}
	I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3893

3894 3895
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
			    &wm->ddb.plane[pipe][PLANE_CURSOR]);
3896 3897
}

3898 3899 3900
bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
			       const struct skl_ddb_allocation *new,
			       enum pipe pipe)
3901
{
3902 3903
	return new->pipe[pipe].start == old->pipe[pipe].start &&
	       new->pipe[pipe].end == old->pipe[pipe].end;
3904 3905
}

3906 3907
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3908
{
3909
	return a->start < b->end && b->start < a->end;
3910 3911
}

3912 3913 3914 3915
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
				 const struct skl_ddb_allocation *old,
				 const struct skl_ddb_allocation *new,
				 enum pipe pipe)
3916
{
3917 3918 3919
	struct drm_device *dev = state->dev;
	struct intel_crtc *intel_crtc;
	enum pipe otherp;
3920

3921 3922
	for_each_intel_crtc(dev, intel_crtc) {
		otherp = intel_crtc->pipe;
3923

3924
		if (otherp == pipe)
3925 3926
			continue;

3927 3928 3929
		if (skl_ddb_entries_overlap(&new->pipe[pipe],
					    &old->pipe[otherp]))
			return true;
3930 3931
	}

3932
	return false;
3933 3934
}

3935 3936 3937 3938
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3939
{
3940 3941
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3942
	int ret;
3943

3944 3945 3946
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3947

3948
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3949 3950 3951
		*changed = false;
	else
		*changed = true;
3952

3953
	return 0;
3954 3955
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
int
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4004 4005 4006 4007 4008 4009 4010
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4011
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4012
	uint32_t realloc_pipes = pipes_modified(state);
4013 4014 4015 4016 4017 4018 4019 4020
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4021 4022 4023 4024 4025 4026
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4027 4028
		intel_state->active_pipe_changes = ~0;

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4052
	if (intel_state->active_pipe_changes) {
4053
		realloc_pipes = ~0;
4054 4055
		intel_state->wm_results.dirty_pipes = ~0;
	}
4056 4057 4058 4059 4060 4061 4062 4063

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4064
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4065 4066
		if (ret)
			return ret;
4067

4068
		ret = skl_ddb_add_affected_planes(cstate);
4069 4070
		if (ret)
			return ret;
4071 4072 4073 4074 4075
	}

	return 0;
}

4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	dst->wm_linetime[pipe] = src->wm_linetime[pipe];
	memcpy(dst->plane[pipe], src->plane[pipe],
	       sizeof(dst->plane[pipe]));
	memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
	       sizeof(dst->plane_trans[pipe]));

	dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4094 4095 4096 4097 4098
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4099 4100 4101
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4102
	bool changed = false;
4103
	int ret, i;
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4118 4119 4120
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4121 4122 4123 4124
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4157 4158 4159
	return 0;
}

4160 4161 4162 4163
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4164
	struct drm_i915_private *dev_priv = to_i915(dev);
4165
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4166
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4167
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4168
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4169
	enum pipe pipe = intel_crtc->pipe;
4170

4171
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4172 4173
		return;

4174 4175 4176
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4177

4178
	/*
4179 4180 4181 4182
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4183
	 */
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	if (crtc->state->active_changed) {
		int plane;

		for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
			skl_write_plane_wm(intel_crtc, results, plane);

		skl_write_cursor_wm(intel_crtc, results);
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4194 4195

	mutex_unlock(&dev_priv->wm.wm_mutex);
4196 4197
}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4216
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4217
{
4218
	struct drm_device *dev = &dev_priv->drm;
4219
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4220
	struct ilk_wm_maximums max;
4221
	struct intel_wm_config config = {};
4222
	struct ilk_wm_values results = {};
4223
	enum intel_ddb_partitioning partitioning;
4224

4225 4226 4227 4228
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4229 4230

	/* 5/6 split only in single pipe config on IVB+ */
4231
	if (INTEL_INFO(dev)->gen >= 7 &&
4232 4233 4234
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4235

4236
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4237
	} else {
4238
		best_lp_wm = &lp_wm_1_2;
4239 4240
	}

4241
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4242
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4243

4244
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4245

4246
	ilk_write_wm_values(dev_priv, &results);
4247 4248
}

4249
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4250
{
4251 4252
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4253

4254
	mutex_lock(&dev_priv->wm.wm_mutex);
4255
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4256 4257 4258
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4259

4260 4261 4262 4263
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4264

4265 4266
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4267
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4268 4269 4270
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4271 4272
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4291 4292
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4293
					val & PLANE_WM_BLOCKS_MASK;
4294
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4307 4308
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4309
					val & PLANE_WM_BLOCKS_MASK;
4310
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4311 4312 4313 4314 4315 4316 4317 4318 4319
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4320
	struct drm_i915_private *dev_priv = to_i915(dev);
4321 4322
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4323
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4324
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4337
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4338 4339 4340 4341
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4342
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4343

4344
	if (!intel_crtc->active)
4345 4346
		return;

4347
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4348 4349 4350 4351 4352 4353 4354 4355 4356

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4357
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4358 4359 4360 4361 4362 4363 4364 4365
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4366
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4367
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4368 4369

	intel_crtc->wm.active.skl = *active;
4370 4371 4372 4373
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4374
	struct drm_i915_private *dev_priv = to_i915(dev);
4375
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4376 4377
	struct drm_crtc *crtc;

4378
	skl_ddb_get_hw_state(dev_priv, ddb);
4379 4380
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4381

4382 4383 4384 4385 4386 4387 4388
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4389 4390
}

4391 4392 4393
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4394
	struct drm_i915_private *dev_priv = to_i915(dev);
4395
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4396
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4397
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4398
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4399
	enum pipe pipe = intel_crtc->pipe;
4400
	static const i915_reg_t wm0_pipe_reg[] = {
4401 4402 4403 4404 4405 4406
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4407
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4408
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4409

4410 4411
	memset(active, 0, sizeof(*active));

4412
	active->pipe_enabled = intel_crtc->active;
4413 4414

	if (active->pipe_enabled) {
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4439 4440

	intel_crtc->wm.active.ilk = *active;
4441 4442
}

4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4560 4561 4562 4563 4564 4565 4566 4567 4568
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4569
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4596 4597
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4598
	struct drm_i915_private *dev_priv = to_i915(dev);
4599
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4600 4601
	struct drm_crtc *crtc;

4602
	for_each_crtc(dev, crtc)
4603 4604 4605 4606 4607 4608 4609
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4610 4611 4612 4613
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4614

4615
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4616 4617 4618 4619 4620
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4621 4622 4623 4624 4625

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4658
void intel_update_watermarks(struct drm_crtc *crtc)
4659
{
4660
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4661 4662

	if (dev_priv->display.update_wm)
4663
		dev_priv->display.update_wm(crtc);
4664 4665
}

4666
/*
4667 4668 4669 4670 4671 4672 4673 4674
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4675
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4676 4677 4678
{
	u16 rgvswctl;

4679 4680
	assert_spin_locked(&mchdev_lock);

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4698
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4699
{
4700
	u32 rgvmodectl;
4701 4702
	u8 fmax, fmin, fstart, vstart;

4703 4704
	spin_lock_irq(&mchdev_lock);

4705 4706
	rgvmodectl = I915_READ(MEMMODECTL);

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4727
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4728 4729
		PXVFREQ_PX_SHIFT;

4730 4731
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4732

4733 4734 4735
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4752
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4753
		DRM_ERROR("stuck trying to change perf mode\n");
4754
	mdelay(1);
4755

4756
	ironlake_set_drps(dev_priv, fstart);
4757

4758 4759
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4760
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4761
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4762
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4763 4764

	spin_unlock_irq(&mchdev_lock);
4765 4766
}

4767
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4768
{
4769 4770 4771 4772 4773
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4774 4775 4776 4777 4778 4779 4780 4781 4782

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4783
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4784
	mdelay(1);
4785 4786
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4787
	mdelay(1);
4788

4789
	spin_unlock_irq(&mchdev_lock);
4790 4791
}

4792 4793 4794 4795 4796
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4797
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4798
{
4799
	u32 limits;
4800

4801 4802 4803 4804 4805 4806
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4807
	if (IS_GEN9(dev_priv)) {
4808 4809 4810 4811 4812 4813 4814 4815
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4816 4817 4818 4819

	return limits;
}

4820 4821 4822
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4823 4824
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4825 4826 4827 4828

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4829 4830
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4831 4832 4833 4834
			new_power = BETWEEN;
		break;

	case BETWEEN:
4835 4836
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4837
			new_power = LOW_POWER;
4838 4839
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4840 4841 4842 4843
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4844 4845
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4846 4847 4848 4849
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4850
	if (val <= dev_priv->rps.min_freq_softlimit)
4851
		new_power = LOW_POWER;
4852
	if (val >= dev_priv->rps.max_freq_softlimit)
4853 4854 4855 4856 4857 4858 4859 4860
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4861 4862
		ei_up = 16000;
		threshold_up = 95;
4863 4864

		/* Downclock if less than 85% busy over 32ms */
4865 4866
		ei_down = 32000;
		threshold_down = 85;
4867 4868 4869 4870
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4871 4872
		ei_up = 13000;
		threshold_up = 90;
4873 4874

		/* Downclock if less than 75% busy over 32ms */
4875 4876
		ei_down = 32000;
		threshold_down = 75;
4877 4878 4879 4880
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4881 4882
		ei_up = 10000;
		threshold_up = 85;
4883 4884

		/* Downclock if less than 60% busy over 32ms */
4885 4886
		ei_down = 32000;
		threshold_down = 60;
4887 4888 4889
		break;
	}

4890
	I915_WRITE(GEN6_RP_UP_EI,
4891
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4892
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4893 4894
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4895 4896

	I915_WRITE(GEN6_RP_DOWN_EI,
4897
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4898
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4909

4910
	dev_priv->rps.power = new_power;
4911 4912
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4913 4914 4915
	dev_priv->rps.last_adj = 0;
}

4916 4917 4918 4919 4920
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4921
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4922
	if (val < dev_priv->rps.max_freq_softlimit)
4923
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4924

4925 4926
	mask &= dev_priv->pm_rps_events;

4927
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4928 4929
}

4930 4931 4932
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4933
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4934
{
4935
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4936
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4937 4938
		return;

4939
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4940 4941
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4942

C
Chris Wilson 已提交
4943 4944 4945 4946 4947
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4948

4949
		if (IS_GEN9(dev_priv))
4950 4951
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4952
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4953 4954 4955 4956 4957 4958 4959
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4960
	}
4961 4962 4963 4964

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4965
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4966
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4967

4968 4969
	POSTING_READ(GEN6_RPNSWREQ);

4970
	dev_priv->rps.cur_freq = val;
4971
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4972 4973
}

4974
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4975 4976
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4977 4978
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4979

4980
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4981 4982 4983
		      "Odd GPU freq value\n"))
		val &= ~1;

4984 4985
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4986
	if (val != dev_priv->rps.cur_freq) {
4987
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4988 4989 4990
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4991 4992 4993 4994 4995

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4996
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4997 4998
 *
 * * If Gfx is Idle, then
4999 5000 5001
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5002 5003 5004
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5005
	u32 val = dev_priv->rps.idle_freq;
5006

5007
	if (dev_priv->rps.cur_freq <= val)
5008 5009
		return;

5010 5011 5012
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5013
	valleyview_set_rps(dev_priv, val);
5014
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5015 5016
}

5017 5018 5019 5020 5021 5022 5023 5024
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5025

5026 5027
		gen6_enable_rps_interrupts(dev_priv);

5028 5029 5030 5031 5032
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5033 5034 5035 5036
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5037 5038
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5039 5040 5041 5042 5043 5044 5045
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5046
	mutex_lock(&dev_priv->rps.hw_lock);
5047
	if (dev_priv->rps.enabled) {
5048
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5049
			vlv_set_rps_idle(dev_priv);
5050
		else
5051
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5052
		dev_priv->rps.last_adj = 0;
5053 5054
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5055
	}
5056
	mutex_unlock(&dev_priv->rps.hw_lock);
5057

5058
	spin_lock(&dev_priv->rps.client_lock);
5059 5060
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5061
	spin_unlock(&dev_priv->rps.client_lock);
5062 5063
}

5064
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5065 5066
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5067
{
5068 5069 5070
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5071
	if (!(dev_priv->gt.awake &&
5072
	      dev_priv->rps.enabled &&
5073
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5074
		return;
5075

5076 5077 5078
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5079
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5080 5081
		rps = NULL;

5082 5083 5084 5085 5086
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5087
			schedule_work(&dev_priv->rps.work);
5088 5089
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5090

5091 5092 5093
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5094 5095
		} else
			dev_priv->rps.boosts++;
5096
	}
5097
	spin_unlock(&dev_priv->rps.client_lock);
5098 5099
}

5100
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5101
{
5102 5103
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5104
	else
5105
		gen6_set_rps(dev_priv, val);
5106 5107
}

5108
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5109 5110
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5111
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5112 5113
}

5114
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5115 5116 5117 5118
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5119
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5120 5121
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5122
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5123
	I915_WRITE(GEN6_RP_CONTROL, 0);
5124 5125
}

5126
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5127 5128 5129 5130
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5131
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5132
{
5133 5134
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5135
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5136

5137
	I915_WRITE(GEN6_RC_CONTROL, 0);
5138

5139
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5140 5141
}

5142
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5143
{
5144
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5145 5146 5147 5148 5149
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5150
	if (HAS_RC6p(dev_priv))
5151 5152 5153 5154 5155
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5156 5157

	else
5158 5159
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5160 5161
}

5162
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5163
{
5164
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5165 5166
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5178 5179

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5180
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5181 5182 5183 5184 5185 5186 5187 5188
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5189 5190 5191
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5192
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5193 5194 5195 5196 5197 5198 5199
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5200
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5201 5202 5203
		enable_rc6 = false;
	}

5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5218 5219 5220 5221 5222 5223
		enable_rc6 = false;
	}

	return enable_rc6;
}

5224
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5225
{
5226
	/* No RC6 before Ironlake and code is gone for ilk. */
5227
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5228 5229
		return 0;

5230 5231 5232
	if (!enable_rc6)
		return 0;

5233
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5234 5235 5236 5237
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5238
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5239 5240 5241
	if (enable_rc6 >= 0) {
		int mask;

5242
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5243 5244 5245 5246 5247 5248
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5249 5250 5251
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5252 5253 5254

		return enable_rc6 & mask;
	}
5255

5256
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5257
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5258 5259

	return INTEL_RC6_ENABLE;
5260 5261
}

5262
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5263 5264
{
	/* All of these values are in units of 50MHz */
5265

5266
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5267
	if (IS_BROXTON(dev_priv)) {
5268
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5269 5270 5271 5272
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5273
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5274 5275 5276 5277
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5278
	/* hw_max = RP0 until we check for overclocking */
5279
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5280

5281
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5282 5283
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5284 5285 5286 5287 5288
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5289
			dev_priv->rps.efficient_freq =
5290 5291 5292 5293
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5294 5295
	}

5296
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5297
		/* Store the frequency values in 16.66 MHZ units, which is
5298 5299
		 * the natural hardware unit for SKL
		 */
5300 5301 5302 5303 5304 5305
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5306 5307
}

5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5320
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5321
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5322 5323 5324
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5325
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5326
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5327 5328 5329 5330 5331 5332 5333 5334 5335
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5336
		gen9_disable_rps(dev_priv);
5337 5338 5339 5340
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5341 5342 5343 5344 5345 5346 5347 5348
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5349 5350
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5351 5352 5353
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5354
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5355 5356 5357 5358

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5359
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5360
{
5361
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5362 5363 5364 5365 5366 5367 5368
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5369
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5370 5371 5372 5373 5374

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5375 5376

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5377
	if (IS_SKYLAKE(dev_priv))
5378 5379 5380
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5381 5382
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5383
	for_each_engine(engine, dev_priv)
5384
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5385

5386
	if (HAS_GUC(dev_priv))
5387 5388
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5389 5390
	I915_WRITE(GEN6_RC_SLEEP, 0);

5391 5392 5393 5394
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5395
	/* 3a: Enable RC6 */
5396
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5397
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5398
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5399
	/* WaRsUseTimeoutMode:bxt */
5400
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5401
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5402 5403 5404
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5405 5406
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5407 5408 5409
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5410
	}
Z
Zhe Wang 已提交
5411

5412 5413
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5414
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5415
	 */
5416
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5417 5418 5419 5420
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5421

5422
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5423 5424
}

5425
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5426
{
5427
	struct intel_engine_cs *engine;
5428
	uint32_t rc6_mask = 0;
5429 5430 5431 5432 5433 5434

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5435
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5436 5437 5438 5439 5440 5441 5442 5443

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5444
	for_each_engine(engine, dev_priv)
5445
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5446
	I915_WRITE(GEN6_RC_SLEEP, 0);
5447
	if (IS_BROADWELL(dev_priv))
5448 5449 5450
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5451 5452

	/* 3: Enable RC6 */
5453
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5454
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5455 5456
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5457 5458 5459 5460 5461 5462 5463
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5464 5465

	/* 4 Program defaults and thresholds for RPS*/
5466 5467 5468 5469
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5484 5485

	/* 5: Enable RPS */
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5496
	reset_rps(dev_priv, gen6_set_rps);
5497

5498
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5499 5500
}

5501
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5502
{
5503
	struct intel_engine_cs *engine;
5504
	u32 rc6vids, rc6_mask = 0;
5505 5506
	u32 gtfifodbg;
	int rc6_mode;
5507
	int ret;
5508

5509
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5510

5511 5512 5513 5514 5515 5516 5517 5518 5519
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5520 5521
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5522 5523 5524 5525
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5526
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5537
	for_each_engine(engine, dev_priv)
5538
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5539 5540 5541

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5542
	if (IS_IVYBRIDGE(dev_priv))
5543 5544 5545
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5546
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5547 5548
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5549
	/* Check if we are enabling RC6 */
5550
	rc6_mode = intel_enable_rc6();
5551 5552 5553
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5554
	/* We don't use those on Haswell */
5555
	if (!IS_HASWELL(dev_priv)) {
5556 5557
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5558

5559 5560 5561
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5562

5563
	intel_print_rc6_info(dev_priv, rc6_mask);
5564 5565 5566 5567 5568 5569

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5570 5571
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5572 5573
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5574
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5575
	if (ret)
B
Ben Widawsky 已提交
5576
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5577

5578
	reset_rps(dev_priv, gen6_set_rps);
5579

5580 5581
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5582
	if (IS_GEN6(dev_priv) && ret) {
5583
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5584
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5585 5586 5587 5588 5589 5590 5591 5592 5593
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5595 5596
}

5597
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5598 5599
{
	int min_freq = 15;
5600 5601
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5602
	unsigned int max_gpu_freq, min_gpu_freq;
5603
	int scaling_factor = 180;
5604
	struct cpufreq_policy *policy;
5605

5606
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5607

5608 5609 5610 5611 5612 5613 5614 5615 5616
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5617
		max_ia_freq = tsc_khz;
5618
	}
5619 5620 5621 5622

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5623
	min_ring_freq = I915_READ(DCLK) & 0xf;
5624 5625
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5626

5627
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5628 5629 5630 5631 5632 5633 5634 5635
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5636 5637 5638 5639 5640
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5641 5642
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5643 5644
		unsigned int ia_freq = 0, ring_freq = 0;

5645
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5646 5647 5648 5649 5650
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5651
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5652 5653
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5654
		} else if (IS_HASWELL(dev_priv)) {
5655
			ring_freq = mult_frac(gpu_freq, 5, 4);
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5672

B
Ben Widawsky 已提交
5673 5674
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5675 5676 5677
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5678 5679 5680
	}
}

5681
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5682 5683 5684
{
	u32 val, rp0;

5685
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5686

5687
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5702
	}
5703 5704 5705

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5719 5720 5721 5722
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5723 5724 5725
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5726 5727 5728
	return rp1;
}

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5740
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5741 5742 5743
{
	u32 val, rp0;

5744
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5757
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5758
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5759
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5760 5761 5762 5763 5764
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5765
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5766
{
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5778 5779
}

5780 5781 5782 5783 5784 5785 5786 5787 5788
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5789 5790 5791 5792 5793 5794 5795 5796 5797

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5798
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5799
{
5800
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5801
	unsigned long pctx_paddr, paddr;
5802 5803 5804 5805 5806
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5807
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5808
		paddr = (dev_priv->mm.stolen_base +
5809
			 (ggtt->stolen_size - pctx_size));
5810 5811 5812 5813

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5814 5815

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5816 5817
}

5818
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5831
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5832
								      pcbr_offset,
5833
								      I915_GTT_OFFSET_NONE,
5834 5835 5836 5837
								      pctx_size);
		goto out;
	}

5838 5839
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5840 5841 5842 5843 5844 5845 5846 5847
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5848
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5849 5850
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5851
		goto out;
5852 5853 5854 5855 5856 5857
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5858
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5859 5860 5861
	dev_priv->vlv_pctx = pctx;
}

5862
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5863 5864 5865 5866
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5867
	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5868 5869 5870
	dev_priv->vlv_pctx = NULL;
}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5882
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5883
{
5884
	u32 val;
5885

5886
	valleyview_setup_pctx(dev_priv);
5887

5888 5889
	vlv_init_gpll_ref_freq(dev_priv);

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5903
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5904

5905 5906 5907
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5908
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5909 5910 5911 5912
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5913
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5914 5915
			 dev_priv->rps.efficient_freq);

5916 5917
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5918
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5919 5920
			 dev_priv->rps.rp1_freq);

5921 5922
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5923
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5924 5925 5926
			 dev_priv->rps.min_freq);
}

5927
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5928
{
5929
	u32 val;
5930

5931
	cherryview_setup_pctx(dev_priv);
5932

5933 5934
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5935
	mutex_lock(&dev_priv->sb_lock);
5936
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5937
	mutex_unlock(&dev_priv->sb_lock);
5938

5939 5940 5941 5942
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5943
	default:
5944 5945 5946
		dev_priv->mem_freq = 1600;
		break;
	}
5947
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5948

5949 5950 5951
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5952
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5953 5954 5955 5956
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5957
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5958 5959
			 dev_priv->rps.efficient_freq);

5960 5961
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5962
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5963 5964
			 dev_priv->rps.rp1_freq);

5965 5966
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5967
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5968
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5969 5970
			 dev_priv->rps.min_freq);

5971 5972 5973 5974 5975
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5976 5977
}

5978
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5979
{
5980
	valleyview_cleanup_pctx(dev_priv);
5981 5982
}

5983
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5984
{
5985
	struct intel_engine_cs *engine;
5986
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5987 5988 5989

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5990 5991
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6002
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6003

6004 6005 6006
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6007 6008 6009 6010 6011
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6012
	for_each_engine(engine, dev_priv)
6013
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6014 6015
	I915_WRITE(GEN6_RC_SLEEP, 0);

6016 6017
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6029 6030
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6031
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6032 6033 6034

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6035
	/* 4 Program defaults and thresholds for RPS*/
6036
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6047
		   GEN6_RP_MEDIA_IS_GFX |
6048 6049 6050 6051
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6052 6053 6054 6055 6056 6057
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6058 6059
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6060 6061 6062
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6063
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6064 6065
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6066
	reset_rps(dev_priv, valleyview_set_rps);
6067

6068
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6069 6070
}

6071
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6072
{
6073
	struct intel_engine_cs *engine;
6074
	u32 gtfifodbg, val, rc6_mode = 0;
6075 6076 6077

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6078 6079
	valleyview_check_pctx(dev_priv);

6080 6081
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6082 6083
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6084 6085 6086
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6087
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6088
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6089

6090 6091 6092
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6093
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6113
	for_each_engine(engine, dev_priv)
6114
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6115

6116
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6117 6118

	/* allows RC6 residency counter to work */
6119
	I915_WRITE(VLV_COUNTER_CONTROL,
6120 6121
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6122 6123
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6124

6125
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6126
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6127

6128
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6129

6130
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6131

D
Deepak S 已提交
6132 6133 6134 6135 6136 6137
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6138
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6139

6140 6141 6142
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6143
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6144 6145
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6146
	reset_rps(dev_priv, valleyview_set_rps);
6147

6148
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6149 6150
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6180
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6181 6182 6183 6184 6185 6186
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6187 6188
	assert_spin_locked(&mchdev_lock);

6189
	diff1 = now - dev_priv->ips.last_time1;
6190 6191 6192 6193 6194 6195 6196

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6197
		return dev_priv->ips.chipset_power;
6198 6199 6200 6201 6202 6203 6204 6205

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6206 6207
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6208 6209
		diff += total_count;
	} else {
6210
		diff = total_count - dev_priv->ips.last_count1;
6211 6212 6213
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6214 6215
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6226 6227
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6228

6229
	dev_priv->ips.chipset_power = ret;
6230 6231 6232 6233

	return ret;
}

6234 6235 6236 6237
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6238
	if (INTEL_INFO(dev_priv)->gen != 5)
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6277
{
6278 6279 6280
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6281
	if (INTEL_INFO(dev_priv)->is_mobile)
6282 6283 6284
		return vm > 0 ? vm : 0;

	return vd;
6285 6286
}

6287
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6288
{
6289
	u64 now, diff, diffms;
6290 6291
	u32 count;

6292
	assert_spin_locked(&mchdev_lock);
6293

6294 6295 6296
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6297 6298 6299 6300 6301 6302 6303

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6304 6305
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6306 6307
		diff += count;
	} else {
6308
		diff = count - dev_priv->ips.last_count2;
6309 6310
	}

6311 6312
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6313 6314 6315 6316

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6317
	dev_priv->ips.gfx_power = diff;
6318 6319
}

6320 6321
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6322
	if (INTEL_INFO(dev_priv)->gen != 5)
6323 6324
		return;

6325
	spin_lock_irq(&mchdev_lock);
6326 6327 6328

	__i915_update_gfx_val(dev_priv);

6329
	spin_unlock_irq(&mchdev_lock);
6330 6331
}

6332
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6333 6334 6335 6336
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6337 6338
	assert_spin_locked(&mchdev_lock);

6339
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6359
	corr2 = (corr * dev_priv->ips.corr);
6360 6361 6362 6363

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6364
	__i915_update_gfx_val(dev_priv);
6365

6366
	return dev_priv->ips.gfx_power + state2;
6367 6368
}

6369 6370 6371 6372
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6373
	if (INTEL_INFO(dev_priv)->gen != 5)
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6396
	spin_lock_irq(&mchdev_lock);
6397 6398 6399 6400
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6401 6402
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6403 6404 6405 6406

	ret = chipset_val + graphics_val;

out_unlock:
6407
	spin_unlock_irq(&mchdev_lock);
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6423
	spin_lock_irq(&mchdev_lock);
6424 6425 6426 6427 6428 6429
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6430 6431
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6432 6433

out_unlock:
6434
	spin_unlock_irq(&mchdev_lock);
6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6451
	spin_lock_irq(&mchdev_lock);
6452 6453 6454 6455 6456 6457
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6458 6459
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6460 6461

out_unlock:
6462
	spin_unlock_irq(&mchdev_lock);
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6477
	spin_lock_irq(&mchdev_lock);
6478 6479
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6480
	spin_unlock_irq(&mchdev_lock);
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6497
	spin_lock_irq(&mchdev_lock);
6498 6499 6500 6501 6502 6503
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6504
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6505

6506
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6507 6508 6509
		ret = false;

out_unlock:
6510
	spin_unlock_irq(&mchdev_lock);
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6538 6539
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6540
	spin_lock_irq(&mchdev_lock);
6541
	i915_mch_dev = dev_priv;
6542
	spin_unlock_irq(&mchdev_lock);
6543 6544 6545 6546 6547 6548

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6549
	spin_lock_irq(&mchdev_lock);
6550
	i915_mch_dev = NULL;
6551
	spin_unlock_irq(&mchdev_lock);
6552
}
6553

6554
static void intel_init_emon(struct drm_i915_private *dev_priv)
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6571
		I915_WRITE(PEW(i), 0);
6572
	for (i = 0; i < 3; i++)
6573
		I915_WRITE(DEW(i), 0);
6574 6575 6576

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6577
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6598
		I915_WRITE(PXW(i), val);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6614
		I915_WRITE(PXWL(i), 0);
6615 6616 6617 6618 6619 6620

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6621
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6622 6623
}

6624
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6625
{
6626 6627 6628 6629 6630 6631 6632 6633
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6634

6635
	mutex_lock(&dev_priv->drm.struct_mutex);
6636 6637 6638
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6639 6640 6641 6642
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6643
	else if (INTEL_GEN(dev_priv) >= 6)
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6673 6674 6675
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6676
	mutex_unlock(&dev_priv->rps.hw_lock);
6677
	mutex_unlock(&dev_priv->drm.struct_mutex);
6678 6679

	intel_autoenable_gt_powersave(dev_priv);
6680 6681
}

6682
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6683
{
6684
	if (IS_VALLEYVIEW(dev_priv))
6685
		valleyview_cleanup_gt_powersave(dev_priv);
6686 6687 6688

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6689 6690
}

6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6710 6711 6712 6713
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6714 6715

	gen6_reset_rps_interrupts(dev_priv);
6716 6717
}

6718
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6719
{
6720 6721
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6722

6723
	mutex_lock(&dev_priv->rps.hw_lock);
6724

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6736
	}
6737 6738 6739

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6740 6741
}

6742
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6743
{
6744 6745 6746
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6747 6748
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6749

6750 6751 6752
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6753

6754
	mutex_lock(&dev_priv->rps.hw_lock);
6755 6756 6757 6758 6759

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6760
	} else if (INTEL_GEN(dev_priv) >= 9) {
6761 6762 6763
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6764
			gen6_update_ring_freq(dev_priv);
6765 6766
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6767
		gen6_update_ring_freq(dev_priv);
6768
	} else if (INTEL_GEN(dev_priv) >= 6) {
6769
		gen6_enable_rps(dev_priv);
6770
		gen6_update_ring_freq(dev_priv);
6771 6772 6773
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6774
	}
6775 6776 6777 6778 6779 6780 6781

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6782
	dev_priv->rps.enabled = true;
6783 6784
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6785

6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

	rcs = &dev_priv->engine[RCS];
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6849 6850
static void ibx_init_clock_gating(struct drm_device *dev)
{
6851
	struct drm_i915_private *dev_priv = to_i915(dev);
6852 6853 6854 6855 6856 6857 6858 6859 6860

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6861 6862
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6863
	struct drm_i915_private *dev_priv = to_i915(dev);
6864
	enum pipe pipe;
6865

6866
	for_each_pipe(dev_priv, pipe) {
6867 6868 6869
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6870 6871 6872

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6873 6874 6875
	}
}

6876 6877
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6878
	struct drm_i915_private *dev_priv = to_i915(dev);
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6890
static void ironlake_init_clock_gating(struct drm_device *dev)
6891
{
6892
	struct drm_i915_private *dev_priv = to_i915(dev);
6893
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6894

6895 6896 6897 6898
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6899 6900 6901
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6919
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6920 6921 6922
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6923 6924

	ilk_init_lp_watermarks(dev);
6925 6926 6927 6928 6929 6930 6931 6932 6933

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6934
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6935 6936 6937 6938 6939 6940 6941 6942
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6943 6944
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6945 6946 6947 6948 6949 6950
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6951

6952
	/* WaDisableRenderCachePipelinedFlush:ilk */
6953 6954
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6955

6956 6957 6958
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6959
	g4x_disable_trickle_feed(dev);
6960

6961 6962 6963 6964 6965
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6966
	struct drm_i915_private *dev_priv = to_i915(dev);
6967
	int pipe;
6968
	uint32_t val;
6969 6970 6971 6972 6973 6974

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6975 6976 6977
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6978 6979
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6980 6981 6982
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6983
	for_each_pipe(dev_priv, pipe) {
6984 6985 6986
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6987
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6988
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6989 6990 6991
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6992 6993
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6994
	/* WADP0ClockGatingDisable */
6995
	for_each_pipe(dev_priv, pipe) {
6996 6997 6998
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6999 7000
}

7001 7002
static void gen6_check_mch_setup(struct drm_device *dev)
{
7003
	struct drm_i915_private *dev_priv = to_i915(dev);
7004 7005 7006
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7007 7008 7009
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7010 7011
}

7012
static void gen6_init_clock_gating(struct drm_device *dev)
7013
{
7014
	struct drm_i915_private *dev_priv = to_i915(dev);
7015
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7016

7017
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7018 7019 7020 7021 7022

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7023
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7024 7025 7026
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7027 7028 7029
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7030 7031 7032
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7033 7034 7035 7036
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7037 7038
	 */
	I915_WRITE(GEN6_GT_MODE,
7039
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7040

7041
	ilk_init_lp_watermarks(dev);
7042 7043

	I915_WRITE(CACHE_MODE_0,
7044
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7060
	 *
7061 7062
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7063 7064 7065 7066 7067
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7068
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7069 7070
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7071

7072 7073 7074 7075 7076 7077 7078 7079
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7080 7081 7082 7083 7084 7085 7086 7087
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7088 7089
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7090 7091 7092 7093 7094 7095 7096
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7097 7098 7099 7100
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7101

7102
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7103

7104
	cpt_init_clock_gating(dev);
7105 7106

	gen6_check_mch_setup(dev);
7107 7108 7109 7110 7111 7112
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7113
	/*
7114
	 * WaVSThreadDispatchOverride:ivb,vlv
7115 7116 7117 7118
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7119 7120 7121 7122 7123 7124 7125 7126
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7127 7128
static void lpt_init_clock_gating(struct drm_device *dev)
{
7129
	struct drm_i915_private *dev_priv = to_i915(dev);
7130 7131 7132 7133 7134

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7135
	if (HAS_PCH_LPT_LP(dev))
7136 7137 7138
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7139 7140

	/* WADPOClockGatingDisable:hsw */
7141 7142
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7143
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7144 7145
}

7146 7147
static void lpt_suspend_hw(struct drm_device *dev)
{
7148
	struct drm_i915_private *dev_priv = to_i915(dev);
7149

7150
	if (HAS_PCH_LPT_LP(dev)) {
7151 7152 7153 7154 7155 7156 7157
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7181 7182
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7183
	struct drm_i915_private *dev_priv = dev->dev_private;
7184

7185
	gen9_init_clock_gating(dev);
7186 7187 7188 7189 7190

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7191 7192 7193 7194 7195

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7196 7197 7198 7199

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7200 7201
}

7202 7203
static void skylake_init_clock_gating(struct drm_device *dev)
{
7204
	struct drm_i915_private *dev_priv = dev->dev_private;
7205

7206
	gen9_init_clock_gating(dev);
7207 7208 7209 7210

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7211 7212 7213 7214

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7215 7216
}

7217
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7218
{
7219
	struct drm_i915_private *dev_priv = to_i915(dev);
7220
	enum pipe pipe;
B
Ben Widawsky 已提交
7221

7222
	ilk_init_lp_watermarks(dev);
7223

7224
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7225
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7226

7227
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7228 7229 7230
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7231
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7232
	for_each_pipe(dev_priv, pipe) {
7233
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7234
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7235
			   BDW_DPRS_MASK_VBLANK_SRD);
7236
	}
7237

7238 7239 7240 7241 7242
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7243

7244 7245
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7246 7247 7248 7249

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7250

7251 7252
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7253

7254 7255 7256 7257 7258 7259 7260
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7261 7262 7263 7264
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7265
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7266 7267
}

7268 7269
static void haswell_init_clock_gating(struct drm_device *dev)
{
7270
	struct drm_i915_private *dev_priv = to_i915(dev);
7271

7272
	ilk_init_lp_watermarks(dev);
7273

7274 7275 7276 7277 7278
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7279
	/* This is required by WaCatErrorRejectionIssue:hsw */
7280 7281 7282 7283
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7284 7285 7286
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7287

7288 7289 7290
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7291 7292 7293 7294
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7295
	/* WaDisable4x2SubspanOptimization:hsw */
7296 7297
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7298

7299 7300 7301
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7302 7303 7304 7305
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7306 7307
	 */
	I915_WRITE(GEN7_GT_MODE,
7308
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7309

7310 7311 7312 7313
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7314
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7315 7316
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7317 7318 7319
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7320

7321
	lpt_init_clock_gating(dev);
7322 7323
}

7324
static void ivybridge_init_clock_gating(struct drm_device *dev)
7325
{
7326
	struct drm_i915_private *dev_priv = to_i915(dev);
7327
	uint32_t snpcr;
7328

7329
	ilk_init_lp_watermarks(dev);
7330

7331
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7332

7333
	/* WaDisableEarlyCull:ivb */
7334 7335 7336
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7337
	/* WaDisableBackToBackFlipFix:ivb */
7338 7339 7340 7341
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7342
	/* WaDisablePSDDualDispatchEnable:ivb */
7343 7344 7345 7346
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7347 7348 7349
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7350
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7351 7352 7353
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7354
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7355 7356 7357
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7358 7359 7360 7361
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7362 7363 7364 7365
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7366 7367
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7368
	}
7369

7370
	/* WaForceL3Serialization:ivb */
7371 7372 7373
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7374
	/*
7375
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7376
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7377 7378
	 */
	I915_WRITE(GEN6_UCGCTL2,
7379
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7380

7381
	/* This is required by WaCatErrorRejectionIssue:ivb */
7382 7383 7384 7385
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7386
	g4x_disable_trickle_feed(dev);
7387 7388

	gen7_setup_fixed_func_scheduler(dev_priv);
7389

7390 7391 7392 7393 7394
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7395

7396
	/* WaDisable4x2SubspanOptimization:ivb */
7397 7398
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7399

7400 7401 7402
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7403 7404 7405 7406
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7407 7408
	 */
	I915_WRITE(GEN7_GT_MODE,
7409
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7410

7411 7412 7413 7414
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7415

7416 7417
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7418 7419

	gen6_check_mch_setup(dev);
7420 7421
}

7422
static void valleyview_init_clock_gating(struct drm_device *dev)
7423
{
7424
	struct drm_i915_private *dev_priv = to_i915(dev);
7425

7426
	/* WaDisableEarlyCull:vlv */
7427 7428 7429
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7430
	/* WaDisableBackToBackFlipFix:vlv */
7431 7432 7433 7434
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7435
	/* WaPsdDispatchEnable:vlv */
7436
	/* WaDisablePSDDualDispatchEnable:vlv */
7437
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7438 7439
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7440

7441 7442 7443
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7444
	/* WaForceL3Serialization:vlv */
7445 7446 7447
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7448
	/* WaDisableDopClockGating:vlv */
7449 7450 7451
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7452
	/* This is required by WaCatErrorRejectionIssue:vlv */
7453 7454 7455 7456
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7457 7458
	gen7_setup_fixed_func_scheduler(dev_priv);

7459
	/*
7460
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7461
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7462 7463
	 */
	I915_WRITE(GEN6_UCGCTL2,
7464
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7465

7466 7467 7468 7469 7470
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7471

7472 7473 7474 7475
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7476 7477
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7478

7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7490 7491 7492 7493 7494 7495
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7496
	/*
7497
	 * WaDisableVLVClockGating_VBIIssue:vlv
7498 7499 7500
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7501
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7502 7503
}

7504 7505
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7506
	struct drm_i915_private *dev_priv = to_i915(dev);
7507

7508 7509 7510 7511 7512
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7513 7514 7515 7516

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7517 7518 7519 7520

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7521 7522 7523 7524

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7525

7526 7527 7528 7529 7530 7531 7532
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7533 7534 7535 7536 7537
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7538 7539
}

7540
static void g4x_init_clock_gating(struct drm_device *dev)
7541
{
7542
	struct drm_i915_private *dev_priv = to_i915(dev);
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7556 7557 7558 7559

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7560

7561 7562 7563
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7564
	g4x_disable_trickle_feed(dev);
7565 7566
}

7567
static void crestline_init_clock_gating(struct drm_device *dev)
7568
{
7569
	struct drm_i915_private *dev_priv = to_i915(dev);
7570 7571 7572 7573 7574 7575

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7576 7577
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7578 7579 7580

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7581 7582
}

7583
static void broadwater_init_clock_gating(struct drm_device *dev)
7584
{
7585
	struct drm_i915_private *dev_priv = to_i915(dev);
7586 7587 7588 7589 7590 7591 7592

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7593 7594
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7595 7596 7597

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7598 7599
}

7600
static void gen3_init_clock_gating(struct drm_device *dev)
7601
{
7602
	struct drm_i915_private *dev_priv = to_i915(dev);
7603 7604 7605 7606 7607
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7608 7609 7610

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7611 7612 7613

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7614 7615

	/* interrupts should cause a wake up from C3 */
7616
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7617 7618 7619

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7620 7621 7622

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7623 7624
}

7625
static void i85x_init_clock_gating(struct drm_device *dev)
7626
{
7627
	struct drm_i915_private *dev_priv = to_i915(dev);
7628 7629

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7630 7631 7632 7633

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7634 7635 7636

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7637 7638
}

7639
static void i830_init_clock_gating(struct drm_device *dev)
7640
{
7641
	struct drm_i915_private *dev_priv = to_i915(dev);
7642 7643

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7644 7645 7646 7647

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7648 7649 7650 7651
}

void intel_init_clock_gating(struct drm_device *dev)
{
7652
	struct drm_i915_private *dev_priv = to_i915(dev);
7653

7654
	dev_priv->display.init_clock_gating(dev);
7655 7656
}

7657 7658 7659 7660 7661 7662
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7680
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7681
	else if (IS_KABYLAKE(dev_priv))
7682
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7717 7718 7719
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7720
	struct drm_i915_private *dev_priv = to_i915(dev);
7721

7722
	intel_fbc_init(dev_priv);
7723

7724 7725 7726 7727 7728 7729
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7730
	/* For FIFO watermark updates */
7731
	if (INTEL_INFO(dev)->gen >= 9) {
7732
		skl_setup_wm_latency(dev);
7733
		dev_priv->display.update_wm = skl_update_wm;
7734
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7735
	} else if (HAS_PCH_SPLIT(dev)) {
7736
		ilk_setup_wm_latency(dev);
7737

7738 7739 7740 7741
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7742
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7743 7744 7745 7746 7747 7748
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7749 7750 7751 7752
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7753
	} else if (IS_CHERRYVIEW(dev)) {
7754 7755
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7756
	} else if (IS_VALLEYVIEW(dev)) {
7757 7758
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7770
			intel_set_memory_cxsr(dev_priv, false);
7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7781 7782 7783
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7784
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7785 7786
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7787
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7788 7789 7790
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7791 7792 7793
	}
}

7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7806
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7838
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7839
{
7840 7841
	int status;

7842
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7843

7844 7845 7846 7847 7848 7849
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7850 7851 7852 7853
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7854 7855 7856
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7857

7858 7859 7860
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7861 7862 7863 7864
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7865 7866
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7867

7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7879 7880 7881
	return 0;
}

7882
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7883
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7884
{
7885 7886
	int status;

7887
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7888

7889 7890 7891 7892 7893 7894
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7895 7896 7897 7898
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7899 7900
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7901

7902 7903 7904
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7905 7906 7907 7908
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7909
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7910

7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7922 7923
	return 0;
}
7924

7925 7926
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7927 7928 7929 7930 7931
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7932 7933
}

7934
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7935
{
7936
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7937 7938
}

7939
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7940
{
7941 7942 7943 7944 7945
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7946 7947
}

7948
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7949
{
7950
	/* CHV needs even values */
7951
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7952 7953
}

7954
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7955
{
7956
	if (IS_GEN9(dev_priv))
7957 7958
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7959
	else if (IS_CHERRYVIEW(dev_priv))
7960
		return chv_gpu_freq(dev_priv, val);
7961
	else if (IS_VALLEYVIEW(dev_priv))
7962 7963 7964
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7965 7966
}

7967 7968
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7969
	if (IS_GEN9(dev_priv))
7970 7971
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7972
	else if (IS_CHERRYVIEW(dev_priv))
7973
		return chv_freq_opcode(dev_priv, val);
7974
	else if (IS_VALLEYVIEW(dev_priv))
7975 7976
		return byt_freq_opcode(dev_priv, val);
	else
7977
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7978
}
7979

7980 7981
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7982
	struct drm_i915_gem_request *req;
7983 7984 7985 7986 7987
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7988
	struct drm_i915_gem_request *req = boost->req;
7989

7990
	if (!i915_gem_request_completed(req))
7991
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7992

7993
	i915_gem_request_put(req);
7994 7995 7996
	kfree(boost);
}

7997
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7998 7999 8000
{
	struct request_boost *boost;

8001
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8002 8003
		return;

8004
	if (i915_gem_request_completed(req))
8005 8006
		return;

8007 8008 8009 8010
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8011
	boost->req = i915_gem_request_get(req);
8012 8013

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8014
	queue_work(req->i915->wq, &boost->work);
8015 8016
}

D
Daniel Vetter 已提交
8017
void intel_pm_setup(struct drm_device *dev)
8018
{
8019
	struct drm_i915_private *dev_priv = to_i915(dev);
8020

D
Daniel Vetter 已提交
8021
	mutex_init(&dev_priv->rps.hw_lock);
8022
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8023

8024 8025
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8026
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8027

8028
	dev_priv->pm.suspended = false;
8029
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8030
	atomic_set(&dev_priv->pm.atomic_seq, 0);
8031
}