intel_pm.c 218.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58 59
static void bxt_init_clock_gating(struct drm_device *dev)
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62 63 64 65
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:bxt */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67 68 69
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

70 71
	/*
	 * FIXME:
72
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
73 74
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
75
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
76 77 78 79 80 81 82 83

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
84 85
}

86 87
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
88
	struct drm_i915_private *dev_priv = dev->dev_private;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
127
	struct drm_i915_private *dev_priv = dev->dev_private;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

153
	dev_priv->ips.r_t = dev_priv->mem_freq;
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
185
		dev_priv->ips.c_m = 0;
186
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
187
		dev_priv->ips.c_m = 1;
188
	} else {
189
		dev_priv->ips.c_m = 2;
190 191 192
	}
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

231
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

293 294 295
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

296
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
297
{
298 299
	struct drm_device *dev = dev_priv->dev;
	u32 val;
300

301
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
302
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
303
		POSTING_READ(FW_BLC_SELF_VLV);
304
		dev_priv->wm.vlv.cxsr = enable;
305 306
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
307
		POSTING_READ(FW_BLC_SELF);
308 309 310 311
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
312
		POSTING_READ(DSPFW3);
313 314 315 316
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
317
		POSTING_READ(FW_BLC_SELF);
318 319 320 321
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
322
		POSTING_READ(INSTPM);
323 324 325
	} else {
		return;
	}
326

327 328
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
329 330
}

331

332 333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
346
static const int pessimal_latency_ns = 5000;
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

403
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

419
static int i830_get_fifo_size(struct drm_device *dev, int plane)
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

436
static int i845_get_fifo_size(struct drm_device *dev, int plane)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
454 455 456 457 458
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 460
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
461 462 463 464 465
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 467
};
static const struct intel_watermark_params pineview_cursor_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
475 476 477 478 479
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params g4x_wm_info = {
482 483 484 485 486
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
489 490 491 492 493
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params i965_cursor_wm_info = {
496 497 498 499 500
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params i945_wm_info = {
503 504 505 506 507
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params i915_wm_info = {
510 511 512 513 514
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
515
};
516
static const struct intel_watermark_params i830_a_wm_info = {
517 518 519 520 521
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
522
};
523 524 525 526 527 528 529
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
530
static const struct intel_watermark_params i845_wm_info = {
531 532 533 534 535
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
536 537 538 539 540 541
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
542
 * @cpp: bytes per pixel
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
558
					int fifo_size, int cpp,
559 560 561 562 563 564 565 566 567 568
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
569
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
570 571 572 573 574 575 576 577 578 579 580 581 582 583
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
584 585 586 587 588 589 590 591 592 593 594

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

595 596 597 598 599 600 601
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

602
	for_each_crtc(dev, crtc) {
603
		if (intel_crtc_active(crtc)) {
604 605 606 607 608 609 610 611 612
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

613
static void pineview_update_wm(struct drm_crtc *unused_crtc)
614
{
615
	struct drm_device *dev = unused_crtc->dev;
616 617 618 619 620 621 622 623 624 625
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626
		intel_set_memory_cxsr(dev_priv, false);
627 628 629 630 631
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
632
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
634
		int clock = adjusted_mode->crtc_clock;
635 636 637 638

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
639
					cpp, latency->display_sr);
640 641
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
642
		reg |= FW_WM(wm, SR);
643 644 645 646 647 648
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
649
					cpp, latency->cursor_sr);
650 651
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
652
		reg |= FW_WM(wm, CURSOR_SR);
653 654 655 656 657
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
658
					cpp, latency->display_hpll_disable);
659 660
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
661
		reg |= FW_WM(wm, HPLL_SR);
662 663 664 665 666
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
667
					cpp, latency->cursor_hpll_disable);
668 669
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
670
		reg |= FW_WM(wm, HPLL_CURSOR);
671 672 673
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

674
		intel_set_memory_cxsr(dev_priv, true);
675
	} else {
676
		intel_set_memory_cxsr(dev_priv, false);
677 678 679 680 681 682 683 684 685 686 687 688 689
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
690
	const struct drm_display_mode *adjusted_mode;
691
	int htotal, hdisplay, clock, cpp;
692 693 694 695
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
696
	if (!intel_crtc_active(crtc)) {
697 698 699 700 701
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

702
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703
	clock = adjusted_mode->crtc_clock;
704
	htotal = adjusted_mode->crtc_htotal;
705
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
707 708

	/* Use the small buffer method to calculate plane watermark */
709
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
710 711 712 713 714 715 716 717 718
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
719
	line_time_us = max(htotal * 1000 / clock, 1);
720
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
776
	const struct drm_display_mode *adjusted_mode;
777
	int hdisplay, htotal, cpp, clock;
778 779 780 781 782 783 784 785 786 787 788
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
789
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790
	clock = adjusted_mode->crtc_clock;
791
	htotal = adjusted_mode->crtc_htotal;
792
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
794

795
	line_time_us = max(htotal * 1000 / clock, 1);
796
	line_count = (latency_ns / line_time_us + 1000) / 1000;
797
	line_size = hdisplay * cpp;
798 799

	/* Use the minimum of the small and large buffer method for primary */
800
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
801 802 803 804 805 806
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
807
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
808 809 810 811 812 813 814 815
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

816 817 818
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

819 820 821 822 823 824 825 826 827 828 829 830
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

831
	I915_WRITE(DSPFW1,
832 833 834 835
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836
	I915_WRITE(DSPFW2,
837 838 839
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840
	I915_WRITE(DSPFW3,
841
		   FW_WM(wm->sr.cursor, CURSOR_SR));
842 843 844

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
845 846
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847
		I915_WRITE(DSPFW8_CHV,
848 849
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850
		I915_WRITE(DSPFW9_CHV,
851 852
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853
		I915_WRITE(DSPHOWM,
854 855 856 857 858 859 860 861 862 863
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864 865
	} else {
		I915_WRITE(DSPFW7,
866 867
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868
		I915_WRITE(DSPHOWM,
869 870 871 872 873 874 875
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876 877
	}

878 879 880 881 882 883
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

884
	POSTING_READ(DSPFW1);
885 886
}

887 888
#undef FW_WM_VLV

889 890 891 892 893 894
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

895 896 897 898
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
899
				   unsigned int cpp,
900 901 902 903 904
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
905
	ret = (ret + 1) * horiz_pixels * cpp;
906 907 908 909 910 911 912 913 914 915 916 917
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

918 919
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

920 921 922
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923 924

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925 926 927 928 929 930 931 932 933
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
934
	int clock, htotal, cpp, width, wm;
935 936 937 938 939 940 941

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

942
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
958
		wm = vlv_wm_method2(clock, htotal, width, cpp,
959 960 961 962 963 964
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1066
static void vlv_compute_wm(struct intel_crtc *crtc)
1067 1068 1069 1070 1071 1072 1073 1074 1075
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1076
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078 1079 1080

	wm_state->num_active_planes = 0;

1081
	vlv_compute_fifo(crtc);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1138
					wm_state->wm[level].cursor;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1157
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158 1159 1160 1161 1162 1163 1164
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1255 1256 1257 1258 1259 1260
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1261
	wm->level = to_i915(dev)->wm.max_level;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1280 1281 1282
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1309
	vlv_compute_wm(intel_crtc);
1310 1311
	vlv_merge_wm(dev, &wm);

1312 1313 1314
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1315
		return;
1316
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1326
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327 1328
		intel_set_memory_cxsr(dev_priv, false);

1329 1330 1331
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1332 1333 1334 1335 1336 1337 1338 1339
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1340
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1352 1353
}

1354 1355
#define single_plane_enabled(mask) is_power_of_2(mask)

1356
static void g4x_update_wm(struct drm_crtc *crtc)
1357
{
1358
	struct drm_device *dev = crtc->dev;
1359 1360 1361 1362 1363
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1364
	bool cxsr_enabled;
1365

1366
	if (g4x_compute_wm0(dev, PIPE_A,
1367 1368
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1369
			    &planea_wm, &cursora_wm))
1370
		enabled |= 1 << PIPE_A;
1371

1372
	if (g4x_compute_wm0(dev, PIPE_B,
1373 1374
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1375
			    &planeb_wm, &cursorb_wm))
1376
		enabled |= 1 << PIPE_B;
1377 1378 1379 1380 1381 1382

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1383
			     &plane_sr, &cursor_sr)) {
1384
		cxsr_enabled = true;
1385
	} else {
1386
		cxsr_enabled = false;
1387
		intel_set_memory_cxsr(dev_priv, false);
1388 1389
		plane_sr = cursor_sr = 0;
	}
1390

1391 1392
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 1394 1395 1396 1397
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1398 1399 1400 1401
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1402
	I915_WRITE(DSPFW2,
1403
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404
		   FW_WM(cursora_wm, CURSORA));
1405 1406
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1407
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408
		   FW_WM(cursor_sr, CURSOR_SR));
1409 1410 1411

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1412 1413
}

1414
static void i965_update_wm(struct drm_crtc *unused_crtc)
1415
{
1416
	struct drm_device *dev = unused_crtc->dev;
1417 1418 1419 1420
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1421
	bool cxsr_enabled;
1422 1423 1424 1425 1426 1427

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1428
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429
		int clock = adjusted_mode->crtc_clock;
1430
		int htotal = adjusted_mode->crtc_htotal;
1431
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1433 1434 1435
		unsigned long line_time_us;
		int entries;

1436
		line_time_us = max(htotal * 1000 / clock, 1);
1437 1438 1439

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1440
			cpp * hdisplay;
1441 1442 1443 1444 1445 1446 1447 1448 1449
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450
			cpp * crtc->cursor->state->crtc_w;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1462
		cxsr_enabled = true;
1463
	} else {
1464
		cxsr_enabled = false;
1465
		/* Turn off self refresh if both pipes are enabled */
1466
		intel_set_memory_cxsr(dev_priv, false);
1467 1468 1469 1470 1471 1472
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1473 1474 1475 1476 1477 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1479
	/* update cursor SR watermark */
1480
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481 1482 1483

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1484 1485
}

1486 1487
#undef FW_WM

1488
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489
{
1490
	struct drm_device *dev = unused_crtc->dev;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1505
		wm_info = &i830_a_wm_info;
1506 1507 1508

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1509
	if (intel_crtc_active(crtc)) {
1510
		const struct drm_display_mode *adjusted_mode;
1511
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1512 1513 1514
		if (IS_GEN2(dev))
			cpp = 4;

1515
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517
					       wm_info, fifo_size, cpp,
1518
					       pessimal_latency_ns);
1519
		enabled = crtc;
1520
	} else {
1521
		planea_wm = fifo_size - wm_info->guard_size;
1522 1523 1524 1525 1526 1527
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1528 1529 1530

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1531
	if (intel_crtc_active(crtc)) {
1532
		const struct drm_display_mode *adjusted_mode;
1533
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1534 1535 1536
		if (IS_GEN2(dev))
			cpp = 4;

1537
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539
					       wm_info, fifo_size, cpp,
1540
					       pessimal_latency_ns);
1541 1542 1543 1544
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1545
	} else {
1546
		planeb_wm = fifo_size - wm_info->guard_size;
1547 1548 1549
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1550 1551 1552

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1553
	if (IS_I915GM(dev) && enabled) {
1554
		struct drm_i915_gem_object *obj;
1555

1556
		obj = intel_fb_obj(enabled->primary->state->fb);
1557 1558

		/* self-refresh seems busted with untiled */
1559
		if (obj->tiling_mode == I915_TILING_NONE)
1560 1561 1562
			enabled = NULL;
	}

1563 1564 1565 1566 1567 1568
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1569
	intel_set_memory_cxsr(dev_priv, false);
1570 1571 1572 1573 1574

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1575
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576
		int clock = adjusted_mode->crtc_clock;
1577
		int htotal = adjusted_mode->crtc_htotal;
1578
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1580 1581 1582
		unsigned long line_time_us;
		int entries;

1583
		line_time_us = max(htotal * 1000 / clock, 1);
1584 1585 1586

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1587
			cpp * hdisplay;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1614 1615
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1616 1617
}

1618
static void i845_update_wm(struct drm_crtc *unused_crtc)
1619
{
1620
	struct drm_device *dev = unused_crtc->dev;
1621 1622
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1623
	const struct drm_display_mode *adjusted_mode;
1624 1625 1626 1627 1628 1629 1630
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1631
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633
				       &i845_wm_info,
1634
				       dev_priv->display.get_fifo_size(dev, 0),
1635
				       4, pessimal_latency_ns);
1636 1637 1638 1639 1640 1641 1642 1643
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1644
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645
{
1646
	uint32_t pixel_rate;
1647

1648
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649 1650 1651 1652

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1653
	if (pipe_config->pch_pfit.enabled) {
1654
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 1656 1657 1658
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1659 1660 1661 1662 1663 1664 1665 1666

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1667 1668 1669
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1670 1671 1672 1673 1674 1675 1676
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1677
/* latency must be in 0.1us units. */
1678
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1679 1680 1681
{
	uint64_t ret;

1682 1683 1684
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1685
	ret = (uint64_t) pixel_rate * cpp * latency;
1686 1687 1688 1689 1690
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1691
/* latency must be in 0.1us units. */
1692
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1693
			       uint32_t horiz_pixels, uint8_t cpp,
1694 1695 1696 1697
			       uint32_t latency)
{
	uint32_t ret;

1698 1699
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1700 1701
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1702

1703
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1704
	ret = (ret + 1) * horiz_pixels * cpp;
1705 1706 1707 1708
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1709
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1710
			   uint8_t cpp)
1711
{
1712 1713 1714 1715 1716 1717
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1718
	if (WARN_ON(!cpp))
1719 1720 1721 1722
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1723
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1724 1725
}

1726
struct ilk_wm_maximums {
1727 1728 1729 1730 1731 1732
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1733 1734 1735 1736
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1737
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1738
				   const struct intel_plane_state *pstate,
1739 1740
				   uint32_t mem_value,
				   bool is_lp)
1741
{
1742 1743
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1744 1745
	uint32_t method1, method2;

1746
	if (!cstate->base.active || !pstate->visible)
1747 1748
		return 0;

1749
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1750 1751 1752 1753

	if (!is_lp)
		return method1;

1754 1755
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1756
				 drm_rect_width(&pstate->dst),
1757
				 cpp, mem_value);
1758 1759

	return min(method1, method2);
1760 1761
}

1762 1763 1764 1765
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1766
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1767
				   const struct intel_plane_state *pstate,
1768 1769
				   uint32_t mem_value)
{
1770 1771
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1772 1773
	uint32_t method1, method2;

1774
	if (!cstate->base.active || !pstate->visible)
1775 1776
		return 0;

1777
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1778 1779
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1780
				 drm_rect_width(&pstate->dst),
1781
				 cpp, mem_value);
1782 1783 1784
	return min(method1, method2);
}

1785 1786 1787 1788
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1789
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1790
				   const struct intel_plane_state *pstate,
1791 1792
				   uint32_t mem_value)
{
1793 1794 1795 1796 1797 1798 1799
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1800

1801
	if (!cstate->base.active)
1802 1803
		return 0;

1804 1805
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1806
			      width, cpp, mem_value);
1807 1808
}

1809
/* Only for WM_LP. */
1810
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1811
				   const struct intel_plane_state *pstate,
1812
				   uint32_t pri_val)
1813
{
1814 1815
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1816

1817
	if (!cstate->base.active || !pstate->visible)
1818 1819
		return 0;

1820
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1821 1822
}

1823 1824
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1825 1826 1827
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1828 1829 1830 1831 1832
		return 768;
	else
		return 512;
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1867 1868 1869
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1870
				     const struct intel_wm_config *config,
1871 1872 1873 1874 1875 1876
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1877
	if (is_sprite && !config->sprites_enabled)
1878 1879 1880
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1881
	if (level == 0 || config->num_pipes_active > 1) {
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1893
	if (config->sprites_enabled) {
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1905
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1906 1907 1908 1909
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1910 1911
				      int level,
				      const struct intel_wm_config *config)
1912 1913
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1914
	if (level > 0 && config->num_pipes_active > 1)
1915 1916 1917
		return 64;

	/* otherwise just report max that registers can hold */
1918
	return ilk_cursor_wm_reg_max(dev, level);
1919 1920
}

1921
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1922 1923 1924
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1925
				    struct ilk_wm_maximums *max)
1926
{
1927 1928 1929
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1930
	max->fbc = ilk_fbc_wm_reg_max(dev);
1931 1932
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1943
static bool ilk_validate_wm_level(int level,
1944
				  const struct ilk_wm_maximums *max,
1945
				  struct intel_wm_level *result)
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1984
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1985
				 const struct intel_crtc *intel_crtc,
1986
				 int level,
1987
				 struct intel_crtc_state *cstate,
1988 1989 1990
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1991
				 struct intel_wm_level *result)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2016 2017 2018
	result->enable = true;
}

2019
static uint32_t
2020
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2021
{
2022 2023
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2024 2025
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2026
	u32 linetime, ips_linetime;
2027

2028 2029 2030 2031
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2032
	if (WARN_ON(intel_state->cdclk == 0))
2033
		return 0;
2034

2035 2036 2037
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2038 2039 2040
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041
					 intel_state->cdclk);
2042

2043 2044
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2045 2046
}

2047
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2048 2049 2050
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2051 2052
	if (IS_GEN9(dev)) {
		uint32_t val;
2053
		int ret, i;
2054
		int level, max_level = ilk_wm_max_level(dev);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2097
		/*
2098 2099
		 * WaWmMemoryReadLatency:skl
		 *
2100 2101 2102 2103 2104 2105 2106 2107
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2108 2109 2110 2111 2112
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2113 2114 2115 2116 2117
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2118 2119 2120
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2121

2122 2123
				break;
			}
2124
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2125 2126 2127 2128 2129
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2130 2131 2132 2133
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2134 2135 2136 2137 2138 2139 2140
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2141 2142 2143 2144 2145 2146 2147
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2148 2149 2150
	}
}

2151 2152 2153
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2154
	if (IS_GEN5(dev))
2155 2156 2157 2158 2159 2160
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2161
	if (IS_GEN5(dev))
2162 2163 2164 2165 2166 2167 2168
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2169
int ilk_wm_max_level(const struct drm_device *dev)
2170 2171
{
	/* how many WM levels are we expecting */
2172
	if (INTEL_INFO(dev)->gen >= 9)
2173 2174
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2175
		return 4;
2176
	else if (INTEL_INFO(dev)->gen >= 6)
2177
		return 3;
2178
	else
2179 2180
		return 2;
}
2181

2182 2183
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2184
				   const uint16_t wm[8])
2185 2186
{
	int level, max_level = ilk_wm_max_level(dev);
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2197 2198 2199 2200 2201 2202 2203
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2204 2205 2206 2207 2208 2209 2210 2211
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2249
static void ilk_setup_wm_latency(struct drm_device *dev)
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2262 2263 2264 2265

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2266 2267 2268

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2269 2270
}

2271 2272 2273 2274 2275 2276 2277 2278
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2302
/* Compute new watermarks for the pipe */
2303
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2304
{
2305 2306
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2307
	struct intel_pipe_wm *pipe_wm;
2308
	struct drm_device *dev = state->dev;
2309
	const struct drm_i915_private *dev_priv = dev->dev_private;
2310
	struct intel_plane *intel_plane;
2311
	struct intel_plane_state *pristate = NULL;
2312
	struct intel_plane_state *sprstate = NULL;
2313
	struct intel_plane_state *curstate = NULL;
2314
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2315
	struct ilk_wm_maximums max;
2316

2317
	pipe_wm = &cstate->wm.ilk.optimal;
2318

2319
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2320 2321 2322 2323 2324 2325
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2326 2327

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2328
			pristate = ps;
2329
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2330
			sprstate = ps;
2331
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2332
			curstate = ps;
2333 2334
	}

2335
	pipe_wm->pipe_enabled = cstate->base.active;
2336 2337 2338 2339 2340 2341 2342
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2343 2344
	usable_level = max_level;

2345
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2346
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2347
		usable_level = 1;
2348 2349

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2350
	if (pipe_wm->sprites_scaled)
2351
		usable_level = 0;
2352

2353
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2354 2355 2356 2357
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2358

2359
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2360
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2361

2362
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2363
		return -EINVAL;
2364 2365 2366 2367

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2368
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2369

2370
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2371
				     pristate, sprstate, curstate, wm);
2372 2373 2374 2375 2376 2377

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2378 2379 2380 2381 2382 2383
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2384
			usable_level = level;
2385 2386
	}

2387
	return 0;
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2399
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2400 2401 2402 2403 2404 2405 2406 2407
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2408
	*a = newstate->wm.ilk.optimal;
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2437
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2438 2439 2440 2441 2442
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2452 2453
	ret_wm->enable = true;

2454
	for_each_intel_crtc(dev, intel_crtc) {
2455
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2456 2457 2458 2459
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2460

2461 2462 2463 2464 2465
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2466
		if (!wm->enable)
2467
			ret_wm->enable = false;
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2480
			 const struct intel_wm_config *config,
2481
			 const struct ilk_wm_maximums *max,
2482 2483
			 struct intel_pipe_wm *merged)
{
2484
	struct drm_i915_private *dev_priv = dev->dev_private;
2485
	int level, max_level = ilk_wm_max_level(dev);
2486
	int last_enabled_level = max_level;
2487

2488 2489 2490
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2491
		last_enabled_level = 0;
2492

2493 2494
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2495 2496 2497 2498 2499 2500 2501

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2502 2503 2504 2505 2506
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2507 2508 2509 2510 2511 2512

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2513 2514
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2515 2516 2517
			wm->fbc_val = 0;
		}
	}
2518 2519 2520 2521 2522 2523 2524

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2525
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2526
	    intel_fbc_is_active(dev_priv)) {
2527 2528 2529 2530 2531 2532
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2533 2534
}

2535 2536 2537 2538 2539 2540
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2541 2542 2543 2544 2545
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2546
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2547 2548 2549 2550 2551
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2552
static void ilk_compute_wm_results(struct drm_device *dev,
2553
				   const struct intel_pipe_wm *merged,
2554
				   enum intel_ddb_partitioning partitioning,
2555
				   struct ilk_wm_values *results)
2556
{
2557 2558
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2559

2560
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2561
	results->partitioning = partitioning;
2562

2563
	/* LP1+ register values */
2564
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2565
		const struct intel_wm_level *r;
2566

2567
		level = ilk_wm_lp_to_level(wm_lp, merged);
2568

2569
		r = &merged->wm[level];
2570

2571 2572 2573 2574 2575
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2576
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2577 2578 2579
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2580 2581 2582
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2583 2584 2585 2586 2587 2588 2589
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2590 2591 2592 2593
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2594 2595 2596 2597 2598
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2599
	}
2600

2601
	/* LP0 register values */
2602
	for_each_intel_crtc(dev, intel_crtc) {
2603
		enum pipe pipe = intel_crtc->pipe;
2604 2605
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2606 2607 2608 2609

		if (WARN_ON(!r->enable))
			continue;

2610
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2611

2612 2613 2614 2615
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2616 2617 2618
	}
}

2619 2620
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2621
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2622 2623
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2624
{
2625 2626
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2627

2628 2629 2630 2631 2632
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2633 2634
	}

2635 2636
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2637 2638 2639
			return r2;
		else
			return r1;
2640
	} else if (level1 > level2) {
2641 2642 2643 2644 2645 2646
		return r1;
	} else {
		return r2;
	}
}

2647 2648 2649 2650 2651 2652 2653 2654
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2655
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2656 2657
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2658 2659 2660 2661 2662
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2663
	for_each_pipe(dev_priv, pipe) {
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2707 2708
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2709
{
2710
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2711
	bool changed = false;
2712

2713 2714 2715
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2716
		changed = true;
2717 2718 2719 2720
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2721
		changed = true;
2722 2723 2724 2725
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2726
		changed = true;
2727
	}
2728

2729 2730 2731 2732
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2733

2734 2735 2736 2737 2738 2739 2740
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2741 2742
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2743 2744
{
	struct drm_device *dev = dev_priv->dev;
2745
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2746 2747 2748
	unsigned int dirty;
	uint32_t val;

2749
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2750 2751 2752 2753 2754
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2755
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2756
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2757
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2758
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2759
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2760 2761
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2762
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2763
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2764
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2765
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2766
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2767 2768
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2769
	if (dirty & WM_DIRTY_DDB) {
2770
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2785 2786
	}

2787
	if (dirty & WM_DIRTY_FBC) {
2788 2789 2790 2791 2792 2793 2794 2795
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2796 2797 2798 2799 2800
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2801 2802 2803 2804 2805
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2806

2807
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2808
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2809
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2810
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2811
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2812
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2813 2814

	dev_priv->wm.hw = *results;
2815 2816
}

2817
bool ilk_disable_lp_wm(struct drm_device *dev)
2818 2819 2820 2821 2822 2823
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2824 2825 2826 2827 2828 2829
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2830
#define BXT_DDB_SIZE		512
2831

2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2854 2855
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2856
				   const struct intel_crtc_state *cstate,
2857 2858
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2859
{
2860 2861 2862
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2863
	struct drm_crtc *for_crtc = cstate->base.crtc;
2864 2865
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2866 2867
	int pipe = to_intel_crtc(for_crtc)->pipe;

2868
	if (WARN_ON(!state) || !cstate->base.active) {
2869 2870
		alloc->start = 0;
		alloc->end = 0;
2871
		*num_active = hweight32(dev_priv->active_crtcs);
2872 2873 2874
		return;
	}

2875 2876 2877 2878 2879
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2880 2881 2882 2883
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2884 2885 2886

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2887
	/*
2888 2889 2890 2891 2892 2893
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2894
	 */
2895 2896 2897
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2898
	}
2899 2900 2901 2902 2903 2904

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2905 2906
}

2907
static unsigned int skl_cursor_allocation(int num_active)
2908
{
2909
	if (num_active == 1)
2910 2911 2912 2913 2914
		return 32;

	return 8;
}

2915 2916 2917 2918
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2919 2920
	if (entry->end)
		entry->end += 1;
2921 2922
}

2923 2924
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2925 2926 2927 2928 2929
{
	enum pipe pipe;
	int plane;
	u32 val;

2930 2931
	memset(ddb, 0, sizeof(*ddb));

2932
	for_each_pipe(dev_priv, pipe) {
2933 2934 2935 2936
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2937 2938
			continue;

2939
		for_each_plane(dev_priv, pipe, plane) {
2940 2941 2942 2943 2944 2945
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2946 2947
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2948 2949

		intel_display_power_put(dev_priv, power_domain);
2950 2951 2952
	}
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

2993
static unsigned int
2994 2995 2996
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2997
{
2998
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2999
	struct drm_framebuffer *fb = pstate->fb;
3000
	uint32_t down_scale_amount, data_rate;
3001
	uint32_t width = 0, height = 0;
3002 3003 3004 3005 3006 3007 3008 3009
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3010 3011 3012 3013 3014 3015

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3016 3017

	/* for planar format */
3018
	if (format == DRM_FORMAT_NV12) {
3019
		if (y)  /* y-plane data rate */
3020
			data_rate = width * height *
3021
				drm_format_plane_cpp(format, 0);
3022
		else    /* uv-plane data rate */
3023
			data_rate = (width / 2) * (height / 2) *
3024
				drm_format_plane_cpp(format, 1);
3025 3026 3027
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3028 3029
	}

3030 3031 3032
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3033 3034 3035 3036 3037 3038 3039 3040
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3041
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3042
{
3043 3044 3045 3046 3047
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3048
	const struct drm_plane *plane;
3049
	const struct intel_plane *intel_plane;
3050
	struct drm_plane_state *pstate;
3051
	unsigned int rate, total_data_rate = 0;
3052
	int id;
3053 3054 3055 3056
	int i;

	if (WARN_ON(!state))
		return 0;
3057

3058
	/* Calculate and cache data rate for each plane */
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3075
	}
3076

3077 3078 3079
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3080

3081
		/* packed/uv */
3082 3083
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3084 3085
	}

3086 3087
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3088 3089 3090
	return total_data_rate;
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3154
static int
3155
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3156 3157
		      struct skl_ddb_allocation *ddb /* out */)
{
3158
	struct drm_atomic_state *state = cstate->base.state;
3159
	struct drm_crtc *crtc = cstate->base.crtc;
3160 3161
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3162
	struct intel_plane *intel_plane;
3163 3164
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3165
	enum pipe pipe = intel_crtc->pipe;
3166
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3167
	uint16_t alloc_size, start, cursor_blocks;
3168 3169
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3170
	unsigned int total_data_rate;
3171 3172
	int num_active;
	int id, i;
3173

3174 3175 3176
	if (WARN_ON(!state))
		return 0;

3177 3178 3179 3180 3181 3182 3183
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3184
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3185
	alloc_size = skl_ddb_entry_size(alloc);
3186 3187
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3188
		return 0;
3189 3190
	}

3191
	cursor_blocks = skl_cursor_allocation(num_active);
3192 3193
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3194 3195 3196

	alloc_size -= cursor_blocks;

3197
	/* 1. Allocate the mininum required blocks for each active plane */
3198 3199 3200
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3201

3202 3203
		if (intel_plane->pipe != pipe)
			continue;
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3214
		}
3215

3216 3217
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3218
	}
3219

3220 3221 3222
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3223 3224
	}

3225
	/*
3226 3227
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3228 3229 3230
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3231
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3232
	if (total_data_rate == 0)
3233
		return 0;
3234

3235
	start = alloc->start;
3236
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3237 3238
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3239
		int id = skl_wm_plane_id(intel_plane);
3240

3241
		data_rate = cstate->wm.skl.plane_data_rate[id];
3242 3243

		/*
3244
		 * allocation for (packed formats) or (uv-plane part of planar format):
3245 3246 3247
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3248
		plane_blocks = minimum[id];
3249 3250
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3251

3252 3253 3254 3255 3256
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3257 3258

		start += plane_blocks;
3259 3260 3261 3262

		/*
		 * allocation for y_plane part of planar format:
		 */
3263 3264 3265 3266 3267
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3268

3269 3270 3271 3272
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3273 3274

		start += y_plane_blocks;
3275 3276
	}

3277
	return 0;
3278 3279
}

3280
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3281 3282
{
	/* TODO: Take into account the scalers once we support them */
3283
	return config->base.adjusted_mode.crtc_clock;
3284 3285 3286 3287
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3288
 * for the read latency) and cpp should always be <= 8, so that
3289 3290 3291
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3292
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3293 3294 3295 3296 3297 3298
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3299
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3300 3301 3302 3303 3304 3305
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3306
			       uint32_t horiz_pixels, uint8_t cpp,
3307
			       uint64_t tiling, uint32_t latency)
3308
{
3309 3310 3311
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3312 3313 3314 3315

	if (latency == 0)
		return UINT_MAX;

3316
	plane_bytes_per_line = horiz_pixels * cpp;
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3327 3328
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3329
				plane_blocks_per_line;
3330 3331 3332 3333

	return ret;
}

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3358 3359 3360 3361 3362 3363 3364 3365
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3366
{
3367 3368
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3369 3370 3371 3372 3373
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3374
	uint8_t cpp;
3375
	uint32_t width = 0, height = 0;
3376
	uint32_t plane_pixel_rate;
3377

3378 3379 3380 3381
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3382

3383 3384 3385
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3386
	if (intel_rotation_90_or_270(pstate->rotation))
3387 3388
		swap(width, height);

3389
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3390 3391 3392 3393
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3394
				 cstate->base.adjusted_mode.crtc_htotal,
3395 3396 3397
				 width,
				 cpp,
				 fb->modifier[0],
3398
				 latency);
3399

3400
	plane_bytes_per_line = width * cpp;
3401
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3402

3403 3404
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3405 3406
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3407
		if (intel_rotation_90_or_270(pstate->rotation)) {
3408
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3409 3410 3411
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3412
			switch (cpp) {
3413 3414 3415 3416 3417 3418 3419 3420
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3421
			}
3422 3423
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3424 3425 3426 3427 3428 3429 3430
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3431

3432 3433
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3434

3435
	if (level >= 1 && level <= 7) {
3436 3437
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3438 3439 3440 3441
			res_lines += 4;
		else
			res_blocks++;
	}
3442

3443 3444
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3461
	}
3462 3463 3464

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3465
	*enabled = true;
3466

3467
	return 0;
3468 3469
}

3470 3471 3472 3473 3474 3475
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3476
{
3477
	struct drm_device *dev = dev_priv->dev;
3478
	struct drm_atomic_state *state = cstate->base.state;
3479
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3480
	struct drm_plane *plane;
3481
	struct intel_plane *intel_plane;
3482
	struct intel_plane_state *intel_pstate;
3483
	uint16_t ddb_blocks;
3484
	enum pipe pipe = intel_crtc->pipe;
3485
	int ret;
3486

3487 3488 3489 3490 3491 3492 3493
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3494
		int i = skl_wm_plane_id(intel_plane);
3495

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3521 3522
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3533
	}
3534 3535

	return 0;
3536 3537
}

3538
static uint32_t
3539
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3540
{
3541
	if (!cstate->base.active)
3542 3543
		return 0;

3544
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3545
		return 0;
3546

3547 3548
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3549 3550
}

3551
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3552
				      struct skl_wm_level *trans_wm /* out */)
3553
{
3554
	struct drm_crtc *crtc = cstate->base.crtc;
3555
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556
	struct intel_plane *intel_plane;
3557

3558
	if (!cstate->base.active)
3559
		return;
3560 3561

	/* Until we know more, just disable transition WMs */
3562 3563 3564
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3565
		trans_wm->plane_en[i] = false;
3566
	}
3567 3568
}

3569 3570 3571
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3572
{
3573
	struct drm_device *dev = cstate->base.crtc->dev;
3574 3575
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3576
	int ret;
3577 3578

	for (level = 0; level <= max_level; level++) {
3579 3580 3581 3582
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3583
	}
3584
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3585

3586
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3587 3588

	return 0;
3589 3590 3591 3592 3593 3594 3595 3596 3597
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3598 3599
	uint32_t temp;
	int i;
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3616 3617
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3618

3619
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3620 3621
			temp |= PLANE_WM_EN;

3622
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3623 3624 3625

	}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3638 3639 3640
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3641 3642
		temp |= PLANE_WM_EN;

3643
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3644

3645 3646 3647
	r->wm_linetime[pipe] = p_wm->linetime;
}

3648 3649
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3650 3651 3652 3653 3654 3655 3656 3657
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3658 3659 3660 3661 3662 3663
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3664
	for_each_intel_crtc(dev, crtc) {
3665 3666 3667
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3668
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3669
			continue;
3670 3671
		if (!crtc->active)
			continue;
3672

3673
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3674

3675 3676 3677 3678 3679
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3680
				   new->plane[pipe][PLANE_CURSOR][level]);
3681
		}
3682 3683 3684
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3685 3686
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3687

3688
		for (i = 0; i < intel_num_planes(crtc); i++) {
3689 3690 3691
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3692 3693 3694 3695
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3696 3697

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3698
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3699 3700 3701
	}
}

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3726 3727
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3728 3729 3730
{
	int plane;

3731 3732
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3733
	for_each_plane(dev_priv, pipe, plane) {
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3760
	bool reallocated[I915_MAX_PIPES] = {};
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3783
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3808
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3809
			intel_wait_for_vblank(dev, pipe);
3810
			reallocated[pipe] = true;
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3833
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3834 3835 3836
	}
}

3837 3838 3839 3840
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3841
{
3842 3843
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3844
	int ret;
3845

3846 3847 3848
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3849

3850
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3851 3852 3853
		*changed = false;
	else
		*changed = true;
3854

3855
	return 0;
3856 3857
}

3858 3859 3860 3861 3862 3863 3864
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3865
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	unsigned realloc_pipes = dev_priv->active_crtcs;
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3891
	if (intel_state->active_pipe_changes) {
3892
		realloc_pipes = ~0;
3893 3894
		intel_state->wm_results.dirty_pipes = ~0;
	}
3895 3896 3897 3898 3899 3900 3901 3902

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3903
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3916 3917 3918
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3919
	bool changed = false;
3920
	int ret, i;
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3935 3936 3937
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3938 3939 3940 3941
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

3974 3975 3976
	return 0;
}

3977 3978 3979 3980 3981 3982
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3983
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3984
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3985

3986
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3987 3988
		return;

3989 3990 3991
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
3992 3993

	skl_write_wm_values(dev_priv, results);
3994
	skl_flush_wm_values(dev_priv, results);
3995 3996 3997

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3998 3999

	mutex_unlock(&dev_priv->wm.wm_mutex);
4000 4001
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4020
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4021
{
4022
	struct drm_device *dev = dev_priv->dev;
4023
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4024
	struct ilk_wm_maximums max;
4025
	struct intel_wm_config config = {};
4026
	struct ilk_wm_values results = {};
4027
	enum intel_ddb_partitioning partitioning;
4028

4029 4030 4031 4032
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4033 4034

	/* 5/6 split only in single pipe config on IVB+ */
4035
	if (INTEL_INFO(dev)->gen >= 7 &&
4036 4037 4038
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4039

4040
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4041
	} else {
4042
		best_lp_wm = &lp_wm_1_2;
4043 4044
	}

4045
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4046
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4047

4048
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4049

4050
	ilk_write_wm_values(dev_priv, &results);
4051 4052
}

4053
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4054
{
4055 4056
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4057

4058
	mutex_lock(&dev_priv->wm.wm_mutex);
4059
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4060 4061 4062
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4063

4064 4065 4066 4067
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4068

4069 4070
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4071
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4072 4073 4074
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4075 4076
}

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4095 4096
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4097
					val & PLANE_WM_BLOCKS_MASK;
4098
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4111 4112
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4113
					val & PLANE_WM_BLOCKS_MASK;
4114
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4128
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4141
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4142 4143 4144 4145
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4146
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4147

4148
	if (!intel_crtc->active)
4149 4150
		return;

4151
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4152 4153 4154 4155 4156 4157 4158 4159 4160

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4161
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4162 4163 4164 4165 4166 4167 4168 4169
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4170
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4171
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4172 4173

	intel_crtc->wm.active.skl = *active;
4174 4175 4176 4177
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4178 4179
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4180 4181
	struct drm_crtc *crtc;

4182
	skl_ddb_get_hw_state(dev_priv, ddb);
4183 4184
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4185

4186 4187 4188 4189 4190 4191 4192
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4193 4194
}

4195 4196 4197 4198
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4199
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4200
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4201
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4202
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4203
	enum pipe pipe = intel_crtc->pipe;
4204
	static const i915_reg_t wm0_pipe_reg[] = {
4205 4206 4207 4208 4209 4210
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4211
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4212
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4213

4214 4215
	memset(active, 0, sizeof(*active));

4216
	active->pipe_enabled = intel_crtc->active;
4217 4218

	if (active->pipe_enabled) {
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4243 4244

	intel_crtc->wm.active.ilk = *active;
4245 4246
}

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4364 4365 4366 4367 4368 4369 4370 4371 4372
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4373
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4400 4401 4402
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4403
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4404 4405
	struct drm_crtc *crtc;

4406
	for_each_crtc(dev, crtc)
4407 4408 4409 4410 4411 4412 4413
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4414 4415 4416 4417
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4418

4419
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4420 4421 4422 4423 4424
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4425 4426 4427 4428 4429

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4462
void intel_update_watermarks(struct drm_crtc *crtc)
4463
{
4464
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4465 4466

	if (dev_priv->display.update_wm)
4467
		dev_priv->display.update_wm(crtc);
4468 4469
}

4470
/*
4471 4472 4473 4474 4475 4476 4477 4478
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4479
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4480 4481 4482
{
	u16 rgvswctl;

4483 4484
	assert_spin_locked(&mchdev_lock);

4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4502
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4503
{
4504
	u32 rgvmodectl;
4505 4506
	u8 fmax, fmin, fstart, vstart;

4507 4508
	spin_lock_irq(&mchdev_lock);

4509 4510
	rgvmodectl = I915_READ(MEMMODECTL);

4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4531
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4532 4533
		PXVFREQ_PX_SHIFT;

4534 4535
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4536

4537 4538 4539
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4556
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4557
		DRM_ERROR("stuck trying to change perf mode\n");
4558
	mdelay(1);
4559

4560
	ironlake_set_drps(dev_priv, fstart);
4561

4562 4563
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4564
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4565
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4566
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4567 4568

	spin_unlock_irq(&mchdev_lock);
4569 4570
}

4571
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4572
{
4573 4574 4575 4576 4577
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4578 4579 4580 4581 4582 4583 4584 4585 4586

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4587
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4588
	mdelay(1);
4589 4590
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4591
	mdelay(1);
4592

4593
	spin_unlock_irq(&mchdev_lock);
4594 4595
}

4596 4597 4598 4599 4600
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4601
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4602
{
4603
	u32 limits;
4604

4605 4606 4607 4608 4609 4610
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4611
	if (IS_GEN9(dev_priv)) {
4612 4613 4614 4615 4616 4617 4618 4619
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4620 4621 4622 4623

	return limits;
}

4624 4625 4626
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4627 4628
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4629 4630 4631 4632

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4633
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4634 4635 4636 4637
			new_power = BETWEEN;
		break;

	case BETWEEN:
4638
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4639
			new_power = LOW_POWER;
4640
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4641 4642 4643 4644
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4645
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4646 4647 4648 4649
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4650
	if (val <= dev_priv->rps.min_freq_softlimit)
4651
		new_power = LOW_POWER;
4652
	if (val >= dev_priv->rps.max_freq_softlimit)
4653 4654 4655 4656 4657 4658 4659 4660
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4661 4662
		ei_up = 16000;
		threshold_up = 95;
4663 4664

		/* Downclock if less than 85% busy over 32ms */
4665 4666
		ei_down = 32000;
		threshold_down = 85;
4667 4668 4669 4670
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4671 4672
		ei_up = 13000;
		threshold_up = 90;
4673 4674

		/* Downclock if less than 75% busy over 32ms */
4675 4676
		ei_down = 32000;
		threshold_down = 75;
4677 4678 4679 4680
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4681 4682
		ei_up = 10000;
		threshold_up = 85;
4683 4684

		/* Downclock if less than 60% busy over 32ms */
4685 4686
		ei_down = 32000;
		threshold_down = 60;
4687 4688 4689
		break;
	}

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4708
	dev_priv->rps.power = new_power;
4709 4710
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4711 4712 4713
	dev_priv->rps.last_adj = 0;
}

4714 4715 4716 4717 4718
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4719
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4720
	if (val < dev_priv->rps.max_freq_softlimit)
4721
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4722

4723 4724
	mask &= dev_priv->pm_rps_events;

4725
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4726 4727
}

4728 4729 4730
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4731
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4732
{
4733
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4734
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4735 4736
		return;

4737
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4738 4739
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4740

C
Chris Wilson 已提交
4741 4742 4743 4744 4745
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4746

4747
		if (IS_GEN9(dev_priv))
4748 4749
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4750
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4751 4752 4753 4754 4755 4756 4757
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4758
	}
4759 4760 4761 4762

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4763
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4764
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4765

4766 4767
	POSTING_READ(GEN6_RPNSWREQ);

4768
	dev_priv->rps.cur_freq = val;
4769
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4770 4771
}

4772
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4773 4774
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4775 4776
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4777

4778
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4779 4780 4781
		      "Odd GPU freq value\n"))
		val &= ~1;

4782 4783
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4784
	if (val != dev_priv->rps.cur_freq) {
4785
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4786 4787 4788
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4789 4790 4791 4792 4793

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4794
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4795 4796
 *
 * * If Gfx is Idle, then
4797 4798 4799
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4800 4801 4802
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4803
	u32 val = dev_priv->rps.idle_freq;
4804

4805
	if (dev_priv->rps.cur_freq <= val)
4806 4807
		return;

4808 4809 4810
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4811
	valleyview_set_rps(dev_priv, val);
4812
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4813 4814
}

4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4827 4828 4829
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4830
	if (dev_priv->rps.enabled) {
4831
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4832
			vlv_set_rps_idle(dev_priv);
4833
		else
4834
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4835
		dev_priv->rps.last_adj = 0;
4836
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4837
	}
4838
	mutex_unlock(&dev_priv->rps.hw_lock);
4839

4840
	spin_lock(&dev_priv->rps.client_lock);
4841 4842
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4843
	spin_unlock(&dev_priv->rps.client_lock);
4844 4845
}

4846
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4847 4848
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4849
{
4850 4851 4852 4853 4854 4855 4856
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4857

4858 4859 4860
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4861
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4862 4863
		rps = NULL;

4864 4865 4866 4867 4868 4869 4870 4871
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4872

4873 4874 4875
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4876 4877
		} else
			dev_priv->rps.boosts++;
4878
	}
4879
	spin_unlock(&dev_priv->rps.client_lock);
4880 4881
}

4882
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4883
{
4884 4885
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4886
	else
4887
		gen6_set_rps(dev_priv, val);
4888 4889
}

4890
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4891 4892
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4893
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4894 4895
}

4896
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4897 4898 4899 4900
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4901
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4902 4903
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4904
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4905
	I915_WRITE(GEN6_RP_CONTROL, 0);
4906 4907
}

4908
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4909 4910 4911 4912
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4913
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4914
{
4915 4916
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4917
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4918

4919
	I915_WRITE(GEN6_RC_CONTROL, 0);
4920

4921
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4922 4923
}

4924
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4925
{
4926
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4927 4928 4929 4930 4931
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4932
	if (HAS_RC6p(dev_priv))
4933
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4934 4935 4936
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4937 4938 4939

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4940
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4941 4942
}

4943
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4944
{
4945
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4959 4960 4961
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

4985
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4986
{
4987
	/* No RC6 before Ironlake and code is gone for ilk. */
4988
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
4989 4990
		return 0;

4991 4992 4993
	if (!enable_rc6)
		return 0;

4994
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
4995 4996 4997 4998
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4999
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5000 5001 5002
	if (enable_rc6 >= 0) {
		int mask;

5003
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5004 5005 5006 5007 5008 5009
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5010 5011
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5012 5013 5014

		return enable_rc6 & mask;
	}
5015

5016
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5017
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5018 5019

	return INTEL_RC6_ENABLE;
5020 5021
}

5022
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5023
{
5024 5025 5026 5027
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

5028 5029
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
5030
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5031
	if (IS_BROXTON(dev_priv)) {
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

5043 5044 5045
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

5046
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5047 5048
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5049 5050 5051 5052 5053
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
5054 5055 5056 5057
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5058 5059
	}

5060
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5061 5062 5063 5064 5065 5066 5067 5068 5069
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

5070 5071
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5072 5073 5074 5075
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

5076
	if (dev_priv->rps.min_freq_softlimit == 0) {
5077
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5078
			dev_priv->rps.min_freq_softlimit =
5079 5080
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
5081 5082 5083 5084
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
5085 5086
}

J
Jesse Barnes 已提交
5087
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5088
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5089 5090 5091
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5092
	gen6_init_rps_frequencies(dev_priv);
5093

5094
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5095
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5096 5097 5098 5099 5100 5101 5102 5103 5104
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5105
		gen9_disable_rps(dev_priv);
5106 5107 5108 5109
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5110 5111 5112 5113 5114 5115 5116 5117
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5118 5119
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5120 5121 5122 5123
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5124
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
5125 5126 5127 5128

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5129
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5130
{
5131
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5132 5133 5134 5135 5136 5137 5138
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5139
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5140 5141 5142 5143 5144

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5145 5146

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5147
	if (IS_SKYLAKE(dev_priv))
5148 5149 5150
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5151 5152
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5153
	for_each_engine(engine, dev_priv)
5154
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5155

5156
	if (HAS_GUC(dev_priv))
5157 5158
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5159 5160
	I915_WRITE(GEN6_RC_SLEEP, 0);

5161 5162 5163 5164
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5165
	/* 3a: Enable RC6 */
5166
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5167
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5168
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5169
	/* WaRsUseTimeoutMode */
5170 5171
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5172
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5173 5174 5175
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5176 5177
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5178 5179 5180
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5181
	}
Z
Zhe Wang 已提交
5182

5183 5184
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5185
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5186
	 */
5187
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5188 5189 5190 5191
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5192

5193
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5194 5195
}

5196
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5197
{
5198
	struct intel_engine_cs *engine;
5199
	uint32_t rc6_mask = 0;
5200 5201 5202 5203 5204 5205

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5206
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5207 5208 5209 5210

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5211
	/* Initialize rps frequencies */
5212
	gen6_init_rps_frequencies(dev_priv);
5213 5214 5215 5216 5217

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5218
	for_each_engine(engine, dev_priv)
5219
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5220
	I915_WRITE(GEN6_RC_SLEEP, 0);
5221
	if (IS_BROADWELL(dev_priv))
5222 5223 5224
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5225 5226

	/* 3: Enable RC6 */
5227
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5228
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5229 5230
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5231 5232 5233 5234 5235 5236 5237
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5238 5239

	/* 4 Program defaults and thresholds for RPS*/
5240 5241 5242 5243
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5258 5259

	/* 5: Enable RPS */
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5270
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5271
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5272

5273
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5274 5275
}

5276
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5277
{
5278
	struct intel_engine_cs *engine;
5279
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5280 5281
	u32 gtfifodbg;
	int rc6_mode;
5282
	int ret;
5283

5284
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5285

5286 5287 5288 5289 5290 5291 5292 5293 5294
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5295 5296
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5297 5298 5299 5300
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5301
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5302

5303
	/* Initialize rps frequencies */
5304
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5305

5306 5307 5308 5309 5310 5311 5312 5313 5314
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5315
	for_each_engine(engine, dev_priv)
5316
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5317 5318 5319

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5320
	if (IS_IVYBRIDGE(dev_priv))
5321 5322 5323
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5324
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5325 5326
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5327
	/* Check if we are enabling RC6 */
5328
	rc6_mode = intel_enable_rc6();
5329 5330 5331
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5332
	/* We don't use those on Haswell */
5333
	if (!IS_HASWELL(dev_priv)) {
5334 5335
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5336

5337 5338 5339
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5340

5341
	intel_print_rc6_info(dev_priv, rc6_mask);
5342 5343 5344 5345 5346 5347

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5348 5349
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5350 5351
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5352
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5353
	if (ret)
B
Ben Widawsky 已提交
5354
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5355 5356 5357 5358

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5359
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5360
				 (pcu_mbox & 0xff) * 50);
5361
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5362 5363
	}

5364
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5365
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5366

5367 5368
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5369
	if (IS_GEN6(dev_priv) && ret) {
5370
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5371
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5372 5373 5374 5375 5376 5377 5378 5379 5380
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5381
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5382 5383
}

5384
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5385 5386
{
	int min_freq = 15;
5387 5388
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5389
	unsigned int max_gpu_freq, min_gpu_freq;
5390
	int scaling_factor = 180;
5391
	struct cpufreq_policy *policy;
5392

5393
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5394

5395 5396 5397 5398 5399 5400 5401 5402 5403
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5404
		max_ia_freq = tsc_khz;
5405
	}
5406 5407 5408 5409

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5410
	min_ring_freq = I915_READ(DCLK) & 0xf;
5411 5412
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5413

5414
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5415 5416 5417 5418 5419 5420 5421 5422
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5423 5424 5425 5426 5427
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5428 5429
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5430 5431
		unsigned int ia_freq = 0, ring_freq = 0;

5432
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5433 5434 5435 5436 5437
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5438
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5439 5440
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5441
		} else if (IS_HASWELL(dev_priv)) {
5442
			ring_freq = mult_frac(gpu_freq, 5, 4);
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5459

B
Ben Widawsky 已提交
5460 5461
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5462 5463 5464
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5465 5466 5467
	}
}

5468
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5469
{
5470
	if (!HAS_CORE_RING_FREQ(dev_priv))
5471 5472 5473
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5474
	__gen6_update_ring_freq(dev_priv);
5475 5476 5477
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5478
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5479 5480 5481
{
	u32 val, rp0;

5482
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5483

5484
	switch (INTEL_INFO(dev_priv)->eu_total) {
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5499
	}
5500 5501 5502

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5516 5517 5518 5519
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5520 5521 5522
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5523 5524 5525
	return rp1;
}

5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5537
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5538 5539 5540
{
	u32 val, rp0;

5541
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5554
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5555
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5556
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5557 5558 5559 5560 5561
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5562
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5563
{
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5575 5576
}

5577 5578 5579 5580 5581 5582 5583 5584 5585
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5586 5587 5588 5589 5590 5591 5592 5593 5594

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5595
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5596
{
5597
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5598
	unsigned long pctx_paddr, paddr;
5599 5600 5601 5602 5603
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5604
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5605
		paddr = (dev_priv->mm.stolen_base +
5606
			 (ggtt->stolen_size - pctx_size));
5607 5608 5609 5610

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5611 5612

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5613 5614
}

5615
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5616 5617 5618 5619 5620 5621
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5622
	mutex_lock(&dev_priv->dev->struct_mutex);
5623

5624 5625 5626 5627 5628 5629 5630 5631
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5632
								      I915_GTT_OFFSET_NONE,
5633 5634 5635 5636
								      pctx_size);
		goto out;
	}

5637 5638
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5639 5640 5641 5642 5643 5644 5645 5646
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5647
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5648 5649
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5650
		goto out;
5651 5652 5653 5654 5655 5656
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5657
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5658
	dev_priv->vlv_pctx = pctx;
5659
	mutex_unlock(&dev_priv->dev->struct_mutex);
5660 5661
}

5662
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5663 5664 5665 5666
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5667
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5668 5669 5670
	dev_priv->vlv_pctx = NULL;
}

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5682
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5683
{
5684
	u32 val;
5685

5686
	valleyview_setup_pctx(dev_priv);
5687

5688 5689
	vlv_init_gpll_ref_freq(dev_priv);

5690 5691
	mutex_lock(&dev_priv->rps.hw_lock);

5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5705
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5706

5707 5708 5709
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5710
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5711 5712 5713 5714
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5715
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5716 5717
			 dev_priv->rps.efficient_freq);

5718 5719
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5720
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5721 5722
			 dev_priv->rps.rp1_freq);

5723 5724
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5725
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5726 5727
			 dev_priv->rps.min_freq);

5728 5729
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5740
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5741
{
5742
	u32 val;
5743

5744
	cherryview_setup_pctx(dev_priv);
5745

5746 5747
	vlv_init_gpll_ref_freq(dev_priv);

5748 5749
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5750
	mutex_lock(&dev_priv->sb_lock);
5751
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5752
	mutex_unlock(&dev_priv->sb_lock);
5753

5754 5755 5756 5757
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5758
	default:
5759 5760 5761
		dev_priv->mem_freq = 1600;
		break;
	}
5762
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5763

5764 5765 5766
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5767
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5768 5769 5770 5771
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5772
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5773 5774
			 dev_priv->rps.efficient_freq);

5775 5776
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5777
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5778 5779
			 dev_priv->rps.rp1_freq);

5780 5781
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5782
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5783
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5784 5785
			 dev_priv->rps.min_freq);

5786 5787 5788 5789 5790 5791
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5792 5793
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5794 5795 5796 5797 5798 5799 5800 5801
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5802 5803
}

5804
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5805
{
5806
	valleyview_cleanup_pctx(dev_priv);
5807 5808
}

5809
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5810
{
5811
	struct intel_engine_cs *engine;
5812
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5813 5814 5815

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5816 5817
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5828
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5829

5830 5831 5832
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5833 5834 5835 5836 5837
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5838
	for_each_engine(engine, dev_priv)
5839
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5840 5841
	I915_WRITE(GEN6_RC_SLEEP, 0);

5842 5843
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5855 5856
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5857
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5858 5859 5860

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5861
	/* 4 Program defaults and thresholds for RPS*/
5862
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5873
		   GEN6_RP_MEDIA_IS_GFX |
5874 5875 5876 5877
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5878 5879 5880 5881 5882 5883
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5884 5885
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5886 5887 5888
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5889
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5890 5891 5892 5893
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5894
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5895 5896 5897
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5898 5899
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5900

5901
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5902

5903
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5904 5905
}

5906
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5907
{
5908
	struct intel_engine_cs *engine;
5909
	u32 gtfifodbg, val, rc6_mode = 0;
5910 5911 5912

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5913 5914
	valleyview_check_pctx(dev_priv);

5915 5916
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5917 5918
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5919 5920 5921
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5922
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5923
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5924

5925 5926 5927
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5928
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5948
	for_each_engine(engine, dev_priv)
5949
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5950

5951
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5952 5953

	/* allows RC6 residency counter to work */
5954
	I915_WRITE(VLV_COUNTER_CONTROL,
5955 5956
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5957 5958
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5959

5960
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5961
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5962

5963
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5964

5965
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5966

D
Deepak S 已提交
5967 5968 5969 5970 5971 5972
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5973
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5974

5975 5976 5977
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5978
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5979 5980
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5981
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5982
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5983
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5984
			 dev_priv->rps.cur_freq);
5985

5986
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5987 5988
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5989

5990
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5991

5992
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5993 5994
}

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6024
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6025 6026 6027 6028 6029 6030
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6031 6032
	assert_spin_locked(&mchdev_lock);

6033
	diff1 = now - dev_priv->ips.last_time1;
6034 6035 6036 6037 6038 6039 6040

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6041
		return dev_priv->ips.chipset_power;
6042 6043 6044 6045 6046 6047 6048 6049

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6050 6051
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6052 6053
		diff += total_count;
	} else {
6054
		diff = total_count - dev_priv->ips.last_count1;
6055 6056 6057
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6058 6059
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6070 6071
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6072

6073
	dev_priv->ips.chipset_power = ret;
6074 6075 6076 6077

	return ret;
}

6078 6079 6080 6081
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6082
	if (INTEL_INFO(dev_priv)->gen != 5)
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6121
{
6122 6123 6124
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6125
	if (INTEL_INFO(dev_priv)->is_mobile)
6126 6127 6128
		return vm > 0 ? vm : 0;

	return vd;
6129 6130
}

6131
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6132
{
6133
	u64 now, diff, diffms;
6134 6135
	u32 count;

6136
	assert_spin_locked(&mchdev_lock);
6137

6138 6139 6140
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6141 6142 6143 6144 6145 6146 6147

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6148 6149
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6150 6151
		diff += count;
	} else {
6152
		diff = count - dev_priv->ips.last_count2;
6153 6154
	}

6155 6156
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6157 6158 6159 6160

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6161
	dev_priv->ips.gfx_power = diff;
6162 6163
}

6164 6165
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6166
	if (INTEL_INFO(dev_priv)->gen != 5)
6167 6168
		return;

6169
	spin_lock_irq(&mchdev_lock);
6170 6171 6172

	__i915_update_gfx_val(dev_priv);

6173
	spin_unlock_irq(&mchdev_lock);
6174 6175
}

6176
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6177 6178 6179 6180
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6181 6182
	assert_spin_locked(&mchdev_lock);

6183
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6203
	corr2 = (corr * dev_priv->ips.corr);
6204 6205 6206 6207

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6208
	__i915_update_gfx_val(dev_priv);
6209

6210
	return dev_priv->ips.gfx_power + state2;
6211 6212
}

6213 6214 6215 6216
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6217
	if (INTEL_INFO(dev_priv)->gen != 5)
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6240
	spin_lock_irq(&mchdev_lock);
6241 6242 6243 6244
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6245 6246
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6247 6248 6249 6250

	ret = chipset_val + graphics_val;

out_unlock:
6251
	spin_unlock_irq(&mchdev_lock);
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6267
	spin_lock_irq(&mchdev_lock);
6268 6269 6270 6271 6272 6273
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6274 6275
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6276 6277

out_unlock:
6278
	spin_unlock_irq(&mchdev_lock);
6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6295
	spin_lock_irq(&mchdev_lock);
6296 6297 6298 6299 6300 6301
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6302 6303
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6304 6305

out_unlock:
6306
	spin_unlock_irq(&mchdev_lock);
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6320
	struct intel_engine_cs *engine;
6321 6322
	bool ret = false;

6323
	spin_lock_irq(&mchdev_lock);
6324 6325 6326 6327
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6328
	for_each_engine(engine, dev_priv)
6329
		ret |= !list_empty(&engine->request_list);
6330 6331

out_unlock:
6332
	spin_unlock_irq(&mchdev_lock);
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6349
	spin_lock_irq(&mchdev_lock);
6350 6351 6352 6353 6354 6355
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6356
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6357

6358
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6359 6360 6361
		ret = false;

out_unlock:
6362
	spin_unlock_irq(&mchdev_lock);
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6390 6391
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6392
	spin_lock_irq(&mchdev_lock);
6393
	i915_mch_dev = dev_priv;
6394
	spin_unlock_irq(&mchdev_lock);
6395 6396 6397 6398 6399 6400

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6401
	spin_lock_irq(&mchdev_lock);
6402
	i915_mch_dev = NULL;
6403
	spin_unlock_irq(&mchdev_lock);
6404
}
6405

6406
static void intel_init_emon(struct drm_i915_private *dev_priv)
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6423
		I915_WRITE(PEW(i), 0);
6424
	for (i = 0; i < 3; i++)
6425
		I915_WRITE(DEW(i), 0);
6426 6427 6428

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6429
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6450
		I915_WRITE(PXW(i), val);
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6466
		I915_WRITE(PXWL(i), 0);
6467 6468 6469 6470 6471 6472

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6473
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6474 6475
}

6476
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6477
{
6478 6479 6480 6481 6482 6483 6484 6485
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6486

6487 6488 6489 6490
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6491 6492
}

6493
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6494
{
6495
	if (IS_CHERRYVIEW(dev_priv))
6496
		return;
6497 6498
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6499 6500 6501

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6502 6503
}

6504
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6505 6506 6507
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6508
	gen6_disable_rps_interrupts(dev_priv);
6509 6510
}

6511 6512
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6513
 * @dev_priv: i915 device
6514 6515 6516 6517 6518
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6519
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6520
{
6521
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6522 6523
		return;

6524
	gen6_suspend_rps(dev_priv);
6525 6526 6527

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6528 6529
}

6530
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6531
{
6532
	if (IS_IRONLAKE_M(dev_priv)) {
6533
		ironlake_disable_drps(dev_priv);
6534 6535
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6536

6537
		mutex_lock(&dev_priv->rps.hw_lock);
6538 6539 6540 6541 6542 6543 6544
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6545
		else
6546
			gen6_disable_rps(dev_priv);
6547

6548
		dev_priv->rps.enabled = false;
6549
		mutex_unlock(&dev_priv->rps.hw_lock);
6550
	}
6551 6552
}

6553 6554 6555 6556 6557 6558
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6559
	mutex_lock(&dev_priv->rps.hw_lock);
6560

6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6575
	} else {
6576 6577
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6578
	}
6579 6580 6581 6582 6583 6584 6585

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6586
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6587

6588
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6589

6590
	mutex_unlock(&dev_priv->rps.hw_lock);
6591 6592

	intel_runtime_pm_put(dev_priv);
6593 6594
}

6595
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6596
{
6597
	/* Powersaving is controlled by the host when inside a VM */
6598
	if (intel_vgpu_active(dev_priv))
6599 6600
		return;

6601
	if (IS_IRONLAKE_M(dev_priv)) {
6602
		ironlake_enable_drps(dev_priv);
6603 6604 6605 6606
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6607 6608 6609 6610
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6611 6612 6613 6614 6615 6616 6617
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6618
		 */
6619 6620 6621
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6622 6623 6624
	}
}

6625
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6626
{
6627
	if (INTEL_INFO(dev_priv)->gen < 6)
6628 6629
		return;

6630
	gen6_suspend_rps(dev_priv);
6631 6632 6633
	dev_priv->rps.enabled = false;
}

6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6646 6647 6648
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6649
	enum pipe pipe;
6650

6651
	for_each_pipe(dev_priv, pipe) {
6652 6653 6654
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6655 6656 6657

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6658 6659 6660
	}
}

6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6675
static void ironlake_init_clock_gating(struct drm_device *dev)
6676 6677
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6678
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6679

6680 6681 6682 6683
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6684 6685 6686
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6704
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6705 6706 6707
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6708 6709

	ilk_init_lp_watermarks(dev);
6710 6711 6712 6713 6714 6715 6716 6717 6718

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6719
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6720 6721 6722 6723 6724 6725 6726 6727
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6728 6729
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6730 6731 6732 6733 6734 6735
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6736

6737
	/* WaDisableRenderCachePipelinedFlush:ilk */
6738 6739
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6740

6741 6742 6743
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6744
	g4x_disable_trickle_feed(dev);
6745

6746 6747 6748 6749 6750 6751 6752
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6753
	uint32_t val;
6754 6755 6756 6757 6758 6759

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6760 6761 6762
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6763 6764
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6765 6766 6767
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6768
	for_each_pipe(dev_priv, pipe) {
6769 6770 6771
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6772
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6773
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6774 6775 6776
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6777 6778
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6779
	/* WADP0ClockGatingDisable */
6780
	for_each_pipe(dev_priv, pipe) {
6781 6782 6783
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6784 6785
}

6786 6787 6788 6789 6790 6791
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6792 6793 6794
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6795 6796
}

6797
static void gen6_init_clock_gating(struct drm_device *dev)
6798 6799
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6800
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6801

6802
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6803 6804 6805 6806 6807

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6808
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6809 6810 6811
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6812 6813 6814
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6815 6816 6817
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6818 6819 6820 6821
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6822 6823
	 */
	I915_WRITE(GEN6_GT_MODE,
6824
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6825

6826
	ilk_init_lp_watermarks(dev);
6827 6828

	I915_WRITE(CACHE_MODE_0,
6829
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6845
	 *
6846 6847
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6848 6849 6850 6851 6852
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6853
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6854 6855
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6856

6857 6858 6859 6860 6861 6862 6863 6864
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6865 6866 6867 6868 6869 6870 6871 6872
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6873 6874
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6875 6876 6877 6878 6879 6880 6881
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6882 6883 6884 6885
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6886

6887
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6888

6889
	cpt_init_clock_gating(dev);
6890 6891

	gen6_check_mch_setup(dev);
6892 6893 6894 6895 6896 6897
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6898
	/*
6899
	 * WaVSThreadDispatchOverride:ivb,vlv
6900 6901 6902 6903
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6904 6905 6906 6907 6908 6909 6910 6911
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6912 6913 6914 6915 6916 6917 6918 6919
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6920
	if (HAS_PCH_LPT_LP(dev))
6921 6922 6923
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6924 6925

	/* WADPOClockGatingDisable:hsw */
6926 6927
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6928
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6929 6930
}

6931 6932 6933 6934
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6935
	if (HAS_PCH_LPT_LP(dev)) {
6936 6937 6938 6939 6940 6941 6942
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* See Bspec note for PSR2_CTL bit 31, Wa#828:kbl */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
}

6980 6981 6982 6983
static void skylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6984
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl */
6985 6986 6987 6988
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
}

6989
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6990 6991
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6992
	enum pipe pipe;
B
Ben Widawsky 已提交
6993

6994
	ilk_init_lp_watermarks(dev);
6995

6996
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6997
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6998

6999
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7000 7001 7002
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7003
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7004
	for_each_pipe(dev_priv, pipe) {
7005
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7006
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7007
			   BDW_DPRS_MASK_VBLANK_SRD);
7008
	}
7009

7010 7011 7012 7013 7014
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7015

7016 7017
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7018 7019 7020 7021

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7022

7023 7024
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7025

7026 7027 7028 7029 7030 7031 7032
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7033
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7034 7035
}

7036 7037 7038 7039
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7040
	ilk_init_lp_watermarks(dev);
7041

7042 7043 7044 7045 7046
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7047
	/* This is required by WaCatErrorRejectionIssue:hsw */
7048 7049 7050 7051
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7052 7053 7054
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7055

7056 7057 7058
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7059 7060 7061 7062
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7063
	/* WaDisable4x2SubspanOptimization:hsw */
7064 7065
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7066

7067 7068 7069
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7070 7071 7072 7073
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7074 7075
	 */
	I915_WRITE(GEN7_GT_MODE,
7076
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7077

7078 7079 7080 7081
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7082
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7083 7084
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7085 7086 7087
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7088

7089
	lpt_init_clock_gating(dev);
7090 7091
}

7092
static void ivybridge_init_clock_gating(struct drm_device *dev)
7093 7094
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7095
	uint32_t snpcr;
7096

7097
	ilk_init_lp_watermarks(dev);
7098

7099
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7100

7101
	/* WaDisableEarlyCull:ivb */
7102 7103 7104
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7105
	/* WaDisableBackToBackFlipFix:ivb */
7106 7107 7108 7109
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7110
	/* WaDisablePSDDualDispatchEnable:ivb */
7111 7112 7113 7114
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7115 7116 7117
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7118
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7119 7120 7121
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7122
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7123 7124 7125
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7126 7127 7128 7129
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7130 7131 7132 7133
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7134 7135
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7136
	}
7137

7138
	/* WaForceL3Serialization:ivb */
7139 7140 7141
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7142
	/*
7143
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7144
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7145 7146
	 */
	I915_WRITE(GEN6_UCGCTL2,
7147
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7148

7149
	/* This is required by WaCatErrorRejectionIssue:ivb */
7150 7151 7152 7153
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7154
	g4x_disable_trickle_feed(dev);
7155 7156

	gen7_setup_fixed_func_scheduler(dev_priv);
7157

7158 7159 7160 7161 7162
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7163

7164
	/* WaDisable4x2SubspanOptimization:ivb */
7165 7166
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7167

7168 7169 7170
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7171 7172 7173 7174
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7175 7176
	 */
	I915_WRITE(GEN7_GT_MODE,
7177
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7178

7179 7180 7181 7182
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7183

7184 7185
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7186 7187

	gen6_check_mch_setup(dev);
7188 7189
}

7190
static void valleyview_init_clock_gating(struct drm_device *dev)
7191 7192 7193
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7194
	/* WaDisableEarlyCull:vlv */
7195 7196 7197
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7198
	/* WaDisableBackToBackFlipFix:vlv */
7199 7200 7201 7202
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7203
	/* WaPsdDispatchEnable:vlv */
7204
	/* WaDisablePSDDualDispatchEnable:vlv */
7205
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7206 7207
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7208

7209 7210 7211
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7212
	/* WaForceL3Serialization:vlv */
7213 7214 7215
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7216
	/* WaDisableDopClockGating:vlv */
7217 7218 7219
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7220
	/* This is required by WaCatErrorRejectionIssue:vlv */
7221 7222 7223 7224
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7225 7226
	gen7_setup_fixed_func_scheduler(dev_priv);

7227
	/*
7228
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7229
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7230 7231
	 */
	I915_WRITE(GEN6_UCGCTL2,
7232
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7233

7234 7235 7236 7237 7238
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7239

7240 7241 7242 7243
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7244 7245
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7246

7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7258 7259 7260 7261 7262 7263
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7264
	/*
7265
	 * WaDisableVLVClockGating_VBIIssue:vlv
7266 7267 7268
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7269
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7270 7271
}

7272 7273 7274 7275
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7276 7277 7278 7279 7280
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7281 7282 7283 7284

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7285 7286 7287 7288

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7289 7290 7291 7292

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7293

7294 7295 7296 7297 7298 7299 7300
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7301 7302 7303 7304 7305
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7306 7307
}

7308
static void g4x_init_clock_gating(struct drm_device *dev)
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7324 7325 7326 7327

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7328

7329 7330 7331
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7332
	g4x_disable_trickle_feed(dev);
7333 7334
}

7335
static void crestline_init_clock_gating(struct drm_device *dev)
7336 7337 7338 7339 7340 7341 7342 7343
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7344 7345
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7346 7347 7348

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7349 7350
}

7351
static void broadwater_init_clock_gating(struct drm_device *dev)
7352 7353 7354 7355 7356 7357 7358 7359 7360
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7361 7362
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7363 7364 7365

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7366 7367
}

7368
static void gen3_init_clock_gating(struct drm_device *dev)
7369 7370 7371 7372 7373 7374 7375
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7376 7377 7378

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7379 7380 7381

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7382 7383

	/* interrupts should cause a wake up from C3 */
7384
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7385 7386 7387

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7388 7389 7390

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7391 7392
}

7393
static void i85x_init_clock_gating(struct drm_device *dev)
7394 7395 7396 7397
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7398 7399 7400 7401

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7402 7403 7404

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7405 7406
}

7407
static void i830_init_clock_gating(struct drm_device *dev)
7408 7409 7410 7411
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7412 7413 7414 7415

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7416 7417 7418 7419 7420 7421
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7422
	dev_priv->display.init_clock_gating(dev);
7423 7424
}

7425 7426 7427 7428 7429 7430
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7448
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7449
	else if (IS_KABYLAKE(dev_priv))
7450
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7485 7486 7487 7488 7489
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7490
	intel_fbc_init(dev_priv);
7491

7492 7493 7494 7495 7496 7497
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7498
	/* For FIFO watermark updates */
7499
	if (INTEL_INFO(dev)->gen >= 9) {
7500
		skl_setup_wm_latency(dev);
7501
		dev_priv->display.update_wm = skl_update_wm;
7502
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7503
	} else if (HAS_PCH_SPLIT(dev)) {
7504
		ilk_setup_wm_latency(dev);
7505

7506 7507 7508 7509
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7510
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7511 7512 7513 7514 7515 7516
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7517 7518 7519 7520
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7521
	} else if (IS_CHERRYVIEW(dev)) {
7522 7523
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7524
	} else if (IS_VALLEYVIEW(dev)) {
7525 7526
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7538
			intel_set_memory_cxsr(dev_priv, false);
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7549 7550 7551
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7552
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7553 7554
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7555
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7556 7557 7558
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7559 7560 7561
	}
}

7562
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7563
{
7564
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7565 7566 7567 7568 7569 7570 7571

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7572
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7587
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7588
{
7589
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7609

7610 7611
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7612 7613 7614 7615 7616
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7617 7618
}

7619
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7620
{
7621
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7622 7623
}

7624
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7625
{
7626 7627 7628 7629 7630
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7631 7632
}

7633
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7634
{
7635
	/* CHV needs even values */
7636
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7637 7638
}

7639
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7640
{
7641
	if (IS_GEN9(dev_priv))
7642 7643
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7644
	else if (IS_CHERRYVIEW(dev_priv))
7645
		return chv_gpu_freq(dev_priv, val);
7646
	else if (IS_VALLEYVIEW(dev_priv))
7647 7648 7649
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7650 7651
}

7652 7653
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7654
	if (IS_GEN9(dev_priv))
7655 7656
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7657
	else if (IS_CHERRYVIEW(dev_priv))
7658
		return chv_freq_opcode(dev_priv, val);
7659
	else if (IS_VALLEYVIEW(dev_priv))
7660 7661
		return byt_freq_opcode(dev_priv, val);
	else
7662
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7663
}
7664

7665 7666
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7667
	struct drm_i915_gem_request *req;
7668 7669 7670 7671 7672
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7673
	struct drm_i915_gem_request *req = boost->req;
7674

7675
	if (!i915_gem_request_completed(req, true))
7676
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7677

7678
	i915_gem_request_unreference(req);
7679 7680 7681
	kfree(boost);
}

7682
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7683 7684 7685
{
	struct request_boost *boost;

7686
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7687 7688
		return;

7689 7690 7691
	if (i915_gem_request_completed(req, true))
		return;

7692 7693 7694 7695
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7696 7697
	i915_gem_request_reference(req);
	boost->req = req;
7698 7699

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7700
	queue_work(req->i915->wq, &boost->work);
7701 7702
}

D
Daniel Vetter 已提交
7703
void intel_pm_setup(struct drm_device *dev)
7704 7705 7706
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7707
	mutex_init(&dev_priv->rps.hw_lock);
7708
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7709

7710 7711
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7712
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7713 7714
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7715

7716
	dev_priv->pm.suspended = false;
7717
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7718
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7719
}