intel_pm.c 224.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
		dev_priv->wm.vlv.cxsr = enable;
323
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325
		POSTING_READ(FW_BLC_SELF);
326
	} else if (IS_PINEVIEW(dev_priv)) {
327 328 329
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
330
		POSTING_READ(DSPFW3);
331
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 333 334
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
335
		POSTING_READ(FW_BLC_SELF);
336
	} else if (IS_I915GM(dev_priv)) {
337 338 339 340 341
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
342 343 344
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
345
		POSTING_READ(INSTPM);
346 347 348
	} else {
		return;
	}
349

350 351
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
352 353
}

354

355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
369
static const int pessimal_latency_ns = 5000;
370

371 372 373
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

374
static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
			      enum pipe pipe, int plane)
{
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

425
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
426 427 428 429 430 431 432 433 434 435 436 437 438 439
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

440
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

456
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
473 474 475 476 477
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
478 479
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
480 481 482 483 484
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
485 486
};
static const struct intel_watermark_params pineview_cursor_wm = {
487 488 489 490 491
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
492 493
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
494 495 496 497 498
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
499 500
};
static const struct intel_watermark_params g4x_wm_info = {
501 502 503 504 505
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
506 507
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
508 509 510 511 512
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
513 514
};
static const struct intel_watermark_params i965_cursor_wm_info = {
515 516 517 518 519
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
520 521
};
static const struct intel_watermark_params i945_wm_info = {
522 523 524 525 526
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
527 528
};
static const struct intel_watermark_params i915_wm_info = {
529 530 531 532 533
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
534
};
535
static const struct intel_watermark_params i830_a_wm_info = {
536 537 538 539 540
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
541
};
542 543 544 545 546 547 548
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
549
static const struct intel_watermark_params i845_wm_info = {
550 551 552 553 554
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
555 556 557 558 559 560
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
561
 * @cpp: bytes per pixel
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
577
					int fifo_size, int cpp,
578 579 580 581 582 583 584 585 586 587
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
588
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
589 590 591 592 593 594 595 596 597 598 599 600 601 602
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
603 604 605 606 607 608 609 610 611 612 613

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

614 615 616
	return wm_size;
}

617
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
618
{
619
	struct intel_crtc *crtc, *enabled = NULL;
620

621
	for_each_intel_crtc(&dev_priv->drm, crtc) {
622
		if (intel_crtc_active(crtc)) {
623 624 625 626 627 628 629 630 631
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

632
static void pineview_update_wm(struct intel_crtc *unused_crtc)
633
{
634
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
635
	struct intel_crtc *crtc;
636 637 638 639
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

640 641 642 643
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
644 645
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
646
		intel_set_memory_cxsr(dev_priv, false);
647 648 649
		return;
	}

650
	crtc = single_enabled_crtc(dev_priv);
651
	if (crtc) {
652 653 654 655 656
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
657
		int clock = adjusted_mode->crtc_clock;
658 659 660 661

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
662
					cpp, latency->display_sr);
663 664
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
665
		reg |= FW_WM(wm, SR);
666 667 668 669 670 671
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
672
					cpp, latency->cursor_sr);
673 674
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
675
		reg |= FW_WM(wm, CURSOR_SR);
676 677 678 679 680
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
681
					cpp, latency->display_hpll_disable);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
684
		reg |= FW_WM(wm, HPLL_SR);
685 686 687 688 689
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
690
					cpp, latency->cursor_hpll_disable);
691 692
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
693
		reg |= FW_WM(wm, HPLL_CURSOR);
694 695 696
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

697
		intel_set_memory_cxsr(dev_priv, true);
698
	} else {
699
		intel_set_memory_cxsr(dev_priv, false);
700 701 702
	}
}

703
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
704 705 706 707 708 709 710 711
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
712
	struct intel_crtc *crtc;
713
	const struct drm_display_mode *adjusted_mode;
714
	const struct drm_framebuffer *fb;
715
	int htotal, hdisplay, clock, cpp;
716 717 718
	int line_time_us, line_count;
	int entries, tlb_miss;

719
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
720
	if (!intel_crtc_active(crtc)) {
721 722 723 724 725
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

726 727
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
728
	clock = adjusted_mode->crtc_clock;
729
	htotal = adjusted_mode->crtc_htotal;
730 731
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
732 733

	/* Use the small buffer method to calculate plane watermark */
734
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
735 736 737 738 739 740 741 742 743
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
744
	line_time_us = max(htotal * 1000 / clock, 1);
745
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
765
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
766 767 768 769 770 771 772 773
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
774
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
775 776 777 778 779
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
780
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
781 782 783 784 785 786 787 788 789 790 791 792
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

793
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
794 795 796 797 798 799
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
800
	struct intel_crtc *crtc;
801
	const struct drm_display_mode *adjusted_mode;
802
	const struct drm_framebuffer *fb;
803
	int hdisplay, htotal, cpp, clock;
804 805 806 807 808 809 810 811 812 813
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

814
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
815 816
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
817
	clock = adjusted_mode->crtc_clock;
818
	htotal = adjusted_mode->crtc_htotal;
819 820
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
821

822
	line_time_us = max(htotal * 1000 / clock, 1);
823
	line_count = (latency_ns / line_time_us + 1000) / 1000;
824
	line_size = hdisplay * cpp;
825 826

	/* Use the minimum of the small and large buffer method for primary */
827
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
828 829 830 831 832 833
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
834
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
835 836 837
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

838
	return g4x_check_srwm(dev_priv,
839 840 841 842
			      *display_wm, *cursor_wm,
			      display, cursor);
}

843 844 845
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

846 847 848 849 850 851 852 853 854 855 856 857
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

858
	I915_WRITE(DSPFW1,
859 860 861 862
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
863
	I915_WRITE(DSPFW2,
864 865 866
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
867
	I915_WRITE(DSPFW3,
868
		   FW_WM(wm->sr.cursor, CURSOR_SR));
869 870 871

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
872 873
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
874
		I915_WRITE(DSPFW8_CHV,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
877
		I915_WRITE(DSPFW9_CHV,
878 879
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
880
		I915_WRITE(DSPHOWM,
881 882 883 884 885 886 887 888 889 890
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
891 892
	} else {
		I915_WRITE(DSPFW7,
893 894
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
895
		I915_WRITE(DSPHOWM,
896 897 898 899 900 901 902
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
903 904
	}

905 906 907 908 909 910
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

911
	POSTING_READ(DSPFW1);
912 913
}

914 915
#undef FW_WM_VLV

916 917 918 919 920 921
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

922 923 924 925
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
926
				   unsigned int cpp,
927 928 929 930 931
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
932
	ret = (ret + 1) * horiz_pixels * cpp;
933 934 935 936 937
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

938
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
939 940 941 942
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

943 944
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

945 946 947
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
948 949

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
950 951 952 953 954 955 956 957 958
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
959
	int clock, htotal, cpp, width, wm;
960 961 962 963

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

964
	if (!state->base.visible)
965 966
		return 0;

967
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
983
		wm = vlv_wm_method2(clock, htotal, width, cpp,
984 985 986 987 988 989
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1006
		if (state->base.visible) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1022
		if (!state->base.visible) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1057 1058 1059 1060 1061 1062 1063
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
1064 1065
		const int sr_fifo_size =
			INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1092
static void vlv_compute_wm(struct intel_crtc *crtc)
1093 1094
{
	struct drm_device *dev = crtc->base.dev;
1095
	struct drm_i915_private *dev_priv = to_i915(dev);
1096 1097
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
1098
	int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1099 1100 1101 1102
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1103
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1104
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1105 1106 1107

	wm_state->num_active_planes = 0;

1108
	vlv_compute_fifo(crtc);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1124
		if (!state->base.visible)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1165
					wm_state->wm[level].cursor;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1184
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1185 1186 1187 1188 1189 1190 1191
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1282 1283 1284 1285 1286 1287
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1288
	wm->level = to_i915(dev)->wm.max_level;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1307 1308 1309
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1328
static void vlv_update_wm(struct intel_crtc *crtc)
1329
{
1330
	struct drm_device *dev = crtc->base.dev;
1331
	struct drm_i915_private *dev_priv = to_i915(dev);
1332
	enum pipe pipe = crtc->pipe;
1333 1334
	struct vlv_wm_values wm = {};

1335
	vlv_compute_wm(crtc);
1336 1337
	vlv_merge_wm(dev, &wm);

1338 1339
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1340
		vlv_pipe_set_fifo_size(crtc);
1341
		return;
1342
	}
1343 1344 1345 1346 1347 1348 1349 1350 1351

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1352
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1353 1354
		intel_set_memory_cxsr(dev_priv, false);

1355
	/* FIXME should be part of crtc atomic commit */
1356
	vlv_pipe_set_fifo_size(crtc);
1357

1358
	vlv_write_wm_values(crtc, &wm);
1359 1360 1361 1362 1363 1364 1365

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1366
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1378 1379
}

1380 1381
#define single_plane_enabled(mask) is_power_of_2(mask)

1382
static void g4x_update_wm(struct intel_crtc *crtc)
1383
{
1384
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1385 1386 1387 1388
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1389
	bool cxsr_enabled;
1390

1391
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1392 1393
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1394
			    &planea_wm, &cursora_wm))
1395
		enabled |= 1 << PIPE_A;
1396

1397
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1398 1399
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1400
			    &planeb_wm, &cursorb_wm))
1401
		enabled |= 1 << PIPE_B;
1402 1403

	if (single_plane_enabled(enabled) &&
1404
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1405 1406 1407
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1408
			     &plane_sr, &cursor_sr)) {
1409
		cxsr_enabled = true;
1410
	} else {
1411
		cxsr_enabled = false;
1412
		intel_set_memory_cxsr(dev_priv, false);
1413 1414
		plane_sr = cursor_sr = 0;
	}
1415

1416 1417
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1418 1419 1420 1421 1422
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1423 1424 1425 1426
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1427
	I915_WRITE(DSPFW2,
1428
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1429
		   FW_WM(cursora_wm, CURSORA));
1430 1431
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1432
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1433
		   FW_WM(cursor_sr, CURSOR_SR));
1434 1435 1436

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1437 1438
}

1439
static void i965_update_wm(struct intel_crtc *unused_crtc)
1440
{
1441
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1442
	struct intel_crtc *crtc;
1443 1444
	int srwm = 1;
	int cursor_sr = 16;
1445
	bool cxsr_enabled;
1446 1447

	/* Calc sr entries for one plane configs */
1448
	crtc = single_enabled_crtc(dev_priv);
1449 1450 1451
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1452 1453 1454 1455
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1456
		int clock = adjusted_mode->crtc_clock;
1457
		int htotal = adjusted_mode->crtc_htotal;
1458 1459
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1460 1461 1462
		unsigned long line_time_us;
		int entries;

1463
		line_time_us = max(htotal * 1000 / clock, 1);
1464 1465 1466

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1467
			cpp * hdisplay;
1468 1469 1470 1471 1472 1473 1474 1475 1476
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1477
			cpp * crtc->base.cursor->state->crtc_w;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1489
		cxsr_enabled = true;
1490
	} else {
1491
		cxsr_enabled = false;
1492
		/* Turn off self refresh if both pipes are enabled */
1493
		intel_set_memory_cxsr(dev_priv, false);
1494 1495 1496 1497 1498 1499
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1500 1501 1502 1503 1504 1505
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1506
	/* update cursor SR watermark */
1507
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1508 1509 1510

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1511 1512
}

1513 1514
#undef FW_WM

1515
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1516
{
1517
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1518 1519 1520 1521 1522 1523
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1524
	struct intel_crtc *crtc, *enabled = NULL;
1525

1526
	if (IS_I945GM(dev_priv))
1527
		wm_info = &i945_wm_info;
1528
	else if (!IS_GEN2(dev_priv))
1529 1530
		wm_info = &i915_wm_info;
	else
1531
		wm_info = &i830_a_wm_info;
1532

1533
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1534
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1535 1536 1537 1538 1539 1540 1541
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1542
		if (IS_GEN2(dev_priv))
1543
			cpp = 4;
1544 1545
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1546

1547
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548
					       wm_info, fifo_size, cpp,
1549
					       pessimal_latency_ns);
1550
		enabled = crtc;
1551
	} else {
1552
		planea_wm = fifo_size - wm_info->guard_size;
1553 1554 1555 1556
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1557
	if (IS_GEN2(dev_priv))
1558
		wm_info = &i830_bc_wm_info;
1559

1560
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1561
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1562 1563 1564 1565 1566 1567 1568
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1569
		if (IS_GEN2(dev_priv))
1570
			cpp = 4;
1571 1572
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1573

1574
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1575
					       wm_info, fifo_size, cpp,
1576
					       pessimal_latency_ns);
1577 1578 1579 1580
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1581
	} else {
1582
		planeb_wm = fifo_size - wm_info->guard_size;
1583 1584 1585
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1586 1587 1588

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1589
	if (IS_I915GM(dev_priv) && enabled) {
1590
		struct drm_i915_gem_object *obj;
1591

1592
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1593 1594

		/* self-refresh seems busted with untiled */
1595
		if (!i915_gem_object_is_tiled(obj))
1596 1597 1598
			enabled = NULL;
	}

1599 1600 1601 1602 1603 1604
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1605
	intel_set_memory_cxsr(dev_priv, false);
1606 1607

	/* Calc sr entries for one plane configs */
1608
	if (HAS_FW_BLC(dev_priv) && enabled) {
1609 1610
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1611 1612 1613 1614
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1615
		int clock = adjusted_mode->crtc_clock;
1616
		int htotal = adjusted_mode->crtc_htotal;
1617 1618
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1619 1620 1621
		unsigned long line_time_us;
		int entries;

1622
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1623
			cpp = 4;
1624 1625
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1626

1627
		line_time_us = max(htotal * 1000 / clock, 1);
1628 1629 1630

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1631
			cpp * hdisplay;
1632 1633 1634 1635 1636 1637
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1638
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1639 1640
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1641
		else
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1658 1659
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1660 1661
}

1662
static void i845_update_wm(struct intel_crtc *unused_crtc)
1663
{
1664
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1665
	struct intel_crtc *crtc;
1666
	const struct drm_display_mode *adjusted_mode;
1667 1668 1669
	uint32_t fwater_lo;
	int planea_wm;

1670
	crtc = single_enabled_crtc(dev_priv);
1671 1672 1673
	if (crtc == NULL)
		return;

1674
	adjusted_mode = &crtc->config->base.adjusted_mode;
1675
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1676
				       &i845_wm_info,
1677
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1678
				       4, pessimal_latency_ns);
1679 1680 1681 1682 1683 1684 1685 1686
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1687
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1688
{
1689
	uint32_t pixel_rate;
1690

1691
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1692 1693 1694 1695

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1696
	if (pipe_config->pch_pfit.enabled) {
1697
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1698 1699 1700 1701
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1702 1703 1704 1705 1706 1707 1708 1709

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1710 1711 1712
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1713 1714 1715 1716 1717 1718 1719
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1720
/* latency must be in 0.1us units. */
1721
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1722 1723 1724
{
	uint64_t ret;

1725 1726 1727
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1728
	ret = (uint64_t) pixel_rate * cpp * latency;
1729 1730 1731 1732 1733
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1734
/* latency must be in 0.1us units. */
1735
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1736
			       uint32_t horiz_pixels, uint8_t cpp,
1737 1738 1739 1740
			       uint32_t latency)
{
	uint32_t ret;

1741 1742
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1743 1744
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1745

1746
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1747
	ret = (ret + 1) * horiz_pixels * cpp;
1748 1749 1750 1751
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1752
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1753
			   uint8_t cpp)
1754
{
1755 1756 1757 1758 1759 1760
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1761
	if (WARN_ON(!cpp))
1762 1763 1764 1765
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1766
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1767 1768
}

1769
struct ilk_wm_maximums {
1770 1771 1772 1773 1774 1775
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1776 1777 1778 1779
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1780
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1781
				   const struct intel_plane_state *pstate,
1782 1783
				   uint32_t mem_value,
				   bool is_lp)
1784
{
1785 1786
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1787 1788
	uint32_t method1, method2;

1789
	if (!cstate->base.active || !pstate->base.visible)
1790 1791
		return 0;

1792
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1793 1794 1795 1796

	if (!is_lp)
		return method1;

1797 1798
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1799
				 drm_rect_width(&pstate->base.dst),
1800
				 cpp, mem_value);
1801 1802

	return min(method1, method2);
1803 1804
}

1805 1806 1807 1808
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1809
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1810
				   const struct intel_plane_state *pstate,
1811 1812
				   uint32_t mem_value)
{
1813 1814
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1815 1816
	uint32_t method1, method2;

1817
	if (!cstate->base.active || !pstate->base.visible)
1818 1819
		return 0;

1820
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1821 1822
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1823
				 drm_rect_width(&pstate->base.dst),
1824
				 cpp, mem_value);
1825 1826 1827
	return min(method1, method2);
}

1828 1829 1830 1831
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1832
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1833
				   const struct intel_plane_state *pstate,
1834 1835
				   uint32_t mem_value)
{
1836 1837 1838 1839 1840 1841
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1842
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1843

1844
	if (!cstate->base.active)
1845 1846
		return 0;

1847 1848
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1849
			      width, cpp, mem_value);
1850 1851
}

1852
/* Only for WM_LP. */
1853
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1854
				   const struct intel_plane_state *pstate,
1855
				   uint32_t pri_val)
1856
{
1857 1858
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1859

1860
	if (!cstate->base.active || !pstate->base.visible)
1861 1862
		return 0;

1863
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1864 1865
}

1866 1867
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1868 1869 1870
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1871 1872 1873 1874 1875
		return 768;
	else
		return 512;
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1910 1911 1912
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1913
				     const struct intel_wm_config *config,
1914 1915 1916 1917 1918 1919
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1920
	if (is_sprite && !config->sprites_enabled)
1921 1922 1923
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1924
	if (level == 0 || config->num_pipes_active > 1) {
1925
		fifo_size /= INTEL_INFO(to_i915(dev))->num_pipes;
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1936
	if (config->sprites_enabled) {
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1948
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1949 1950 1951 1952
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1953 1954
				      int level,
				      const struct intel_wm_config *config)
1955 1956
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1957
	if (level > 0 && config->num_pipes_active > 1)
1958 1959 1960
		return 64;

	/* otherwise just report max that registers can hold */
1961
	return ilk_cursor_wm_reg_max(dev, level);
1962 1963
}

1964
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1965 1966 1967
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1968
				    struct ilk_wm_maximums *max)
1969
{
1970 1971 1972
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1973
	max->fbc = ilk_fbc_wm_reg_max(dev);
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1986
static bool ilk_validate_wm_level(int level,
1987
				  const struct ilk_wm_maximums *max,
1988
				  struct intel_wm_level *result)
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2027
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2028
				 const struct intel_crtc *intel_crtc,
2029
				 int level,
2030
				 struct intel_crtc_state *cstate,
2031 2032 2033
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2034
				 struct intel_wm_level *result)
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2059 2060 2061
	result->enable = true;
}

2062
static uint32_t
2063
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2064
{
2065 2066
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2067 2068
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2069
	u32 linetime, ips_linetime;
2070

2071 2072 2073 2074
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2075
	if (WARN_ON(intel_state->cdclk == 0))
2076
		return 0;
2077

2078 2079 2080
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2081 2082 2083
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2084
					 intel_state->cdclk);
2085

2086 2087
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2088 2089
}

2090 2091
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2092
{
2093
	if (IS_GEN9(dev_priv)) {
2094
		uint32_t val;
2095
		int ret, i;
2096
		int level, max_level = ilk_wm_max_level(dev_priv);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2152
		/*
2153 2154
		 * WaWmMemoryReadLatency:skl
		 *
2155
		 * punit doesn't take into account the read latency so we need
2156 2157
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2158
		 */
2159 2160 2161 2162 2163
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2164
				wm[level] += 2;
2165
			}
2166 2167
		}

2168
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2169 2170 2171 2172 2173
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2174 2175 2176 2177
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2178
	} else if (INTEL_GEN(dev_priv) >= 6) {
2179 2180 2181 2182 2183 2184
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2185
	} else if (INTEL_GEN(dev_priv) >= 5) {
2186 2187 2188 2189 2190 2191
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2192 2193 2194
	}
}

2195 2196
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2197 2198
{
	/* ILK sprite LP0 latency is 1300 ns */
2199
	if (IS_GEN5(dev_priv))
2200 2201 2202
		wm[0] = 13;
}

2203 2204
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2205 2206
{
	/* ILK cursor LP0 latency is 1300 ns */
2207
	if (IS_GEN5(dev_priv))
2208 2209 2210
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2211
	if (IS_IVYBRIDGE(dev_priv))
2212 2213 2214
		wm[3] *= 2;
}

2215
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2216 2217
{
	/* how many WM levels are we expecting */
2218
	if (INTEL_GEN(dev_priv) >= 9)
2219
		return 7;
2220
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2221
		return 4;
2222
	else if (INTEL_GEN(dev_priv) >= 6)
2223
		return 3;
2224
	else
2225 2226
		return 2;
}
2227

2228
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2229
				   const char *name,
2230
				   const uint16_t wm[8])
2231
{
2232
	int level, max_level = ilk_wm_max_level(dev_priv);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2243 2244 2245 2246
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2247
		if (IS_GEN9(dev_priv))
2248 2249
			latency *= 10;
		else if (level > 0)
2250 2251 2252 2253 2254 2255 2256 2257
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2258 2259 2260
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2261
	int level, max_level = ilk_wm_max_level(dev_priv);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2273
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2289 2290 2291
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2292 2293
}

2294
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2295
{
2296
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2297 2298 2299 2300 2301 2302

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2303
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2304
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2305

2306 2307 2308
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2309

2310
	if (IS_GEN6(dev_priv))
2311
		snb_wm_latency_quirk(dev_priv);
2312 2313
}

2314
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2315
{
2316
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2317
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2318 2319
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2343
/* Compute new watermarks for the pipe */
2344
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2345
{
2346 2347
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2348
	struct intel_pipe_wm *pipe_wm;
2349
	struct drm_device *dev = state->dev;
2350
	const struct drm_i915_private *dev_priv = to_i915(dev);
2351
	struct intel_plane *intel_plane;
2352
	struct intel_plane_state *pristate = NULL;
2353
	struct intel_plane_state *sprstate = NULL;
2354
	struct intel_plane_state *curstate = NULL;
2355
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2356
	struct ilk_wm_maximums max;
2357

2358
	pipe_wm = &cstate->wm.ilk.optimal;
2359

2360
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2361 2362 2363 2364 2365 2366
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2367 2368

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2369
			pristate = ps;
2370
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2371
			sprstate = ps;
2372
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2373
			curstate = ps;
2374 2375
	}

2376
	pipe_wm->pipe_enabled = cstate->base.active;
2377
	if (sprstate) {
2378 2379 2380 2381
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2382 2383
	}

2384 2385
	usable_level = max_level;

2386
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2387
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2388
		usable_level = 1;
2389 2390

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2391
	if (pipe_wm->sprites_scaled)
2392
		usable_level = 0;
2393

2394
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2395 2396 2397 2398
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2399

2400
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2401
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2402

2403
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2404
		return -EINVAL;
2405 2406 2407 2408

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2409
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2410

2411
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2412
				     pristate, sprstate, curstate, wm);
2413 2414 2415 2416 2417 2418

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2419 2420 2421 2422 2423 2424
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2425
			usable_level = level;
2426 2427
	}

2428
	return 0;
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438 2439
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2440
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2441
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2442
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2443 2444 2445 2446 2447 2448

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2449
	*a = newstate->wm.ilk.optimal;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2478
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2479 2480 2481 2482 2483
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2493 2494
	ret_wm->enable = true;

2495
	for_each_intel_crtc(dev, intel_crtc) {
2496
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2497 2498 2499 2500
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2501

2502 2503 2504 2505 2506
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2507
		if (!wm->enable)
2508
			ret_wm->enable = false;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2521
			 const struct intel_wm_config *config,
2522
			 const struct ilk_wm_maximums *max,
2523 2524
			 struct intel_pipe_wm *merged)
{
2525
	struct drm_i915_private *dev_priv = to_i915(dev);
2526
	int level, max_level = ilk_wm_max_level(dev_priv);
2527
	int last_enabled_level = max_level;
2528

2529
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2530
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2531
	    config->num_pipes_active > 1)
2532
		last_enabled_level = 0;
2533

2534 2535
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2536 2537 2538 2539 2540 2541 2542

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2543 2544 2545 2546 2547
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2548 2549 2550 2551 2552 2553

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2554 2555
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2556 2557 2558
			wm->fbc_val = 0;
		}
	}
2559 2560 2561 2562 2563 2564 2565

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2566
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2567
	    intel_fbc_is_active(dev_priv)) {
2568 2569 2570 2571 2572 2573
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2574 2575
}

2576 2577 2578 2579 2580 2581
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2582 2583 2584
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2585
	struct drm_i915_private *dev_priv = to_i915(dev);
2586

2587
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2588 2589 2590 2591 2592
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2593
static void ilk_compute_wm_results(struct drm_device *dev,
2594
				   const struct intel_pipe_wm *merged,
2595
				   enum intel_ddb_partitioning partitioning,
2596
				   struct ilk_wm_values *results)
2597
{
2598 2599
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2600

2601
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2602
	results->partitioning = partitioning;
2603

2604
	/* LP1+ register values */
2605
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2606
		const struct intel_wm_level *r;
2607

2608
		level = ilk_wm_lp_to_level(wm_lp, merged);
2609

2610
		r = &merged->wm[level];
2611

2612 2613 2614 2615 2616
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2617
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2618 2619 2620
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2621 2622 2623
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2624 2625 2626 2627 2628 2629 2630
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2631 2632 2633 2634
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2635 2636 2637 2638 2639
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2640
	}
2641

2642
	/* LP0 register values */
2643
	for_each_intel_crtc(dev, intel_crtc) {
2644
		enum pipe pipe = intel_crtc->pipe;
2645 2646
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2647 2648 2649 2650

		if (WARN_ON(!r->enable))
			continue;

2651
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2652

2653 2654 2655 2656
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2657 2658 2659
	}
}

2660 2661
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2662
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2663 2664
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2665
{
2666
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2667
	int level1 = 0, level2 = 0;
2668

2669 2670 2671 2672 2673
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2674 2675
	}

2676 2677
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2678 2679 2680
			return r2;
		else
			return r1;
2681
	} else if (level1 > level2) {
2682 2683 2684 2685 2686 2687
		return r1;
	} else {
		return r2;
	}
}

2688 2689 2690 2691 2692 2693 2694 2695
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2696
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2697 2698
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2699 2700 2701 2702 2703
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2704
	for_each_pipe(dev_priv, pipe) {
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2748 2749
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2750
{
2751
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2752
	bool changed = false;
2753

2754 2755 2756
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2757
		changed = true;
2758 2759 2760 2761
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2762
		changed = true;
2763 2764 2765 2766
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2767
		changed = true;
2768
	}
2769

2770 2771 2772 2773
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2774

2775 2776 2777 2778 2779 2780 2781
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2782 2783
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2784
{
2785
	struct drm_device *dev = &dev_priv->drm;
2786
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2787 2788 2789
	unsigned int dirty;
	uint32_t val;

2790
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2791 2792 2793 2794 2795
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2796
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2797
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2798
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2799
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2800
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2801 2802
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2803
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2804
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2806
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2807
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2808 2809
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2810
	if (dirty & WM_DIRTY_DDB) {
2811
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2826 2827
	}

2828
	if (dirty & WM_DIRTY_FBC) {
2829 2830 2831 2832 2833 2834 2835 2836
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2837 2838 2839 2840 2841
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2842 2843 2844 2845 2846
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2847

2848
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2849
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2850
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2851
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2852
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2853
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2854 2855

	dev_priv->wm.hw = *results;
2856 2857
}

2858
bool ilk_disable_lp_wm(struct drm_device *dev)
2859
{
2860
	struct drm_i915_private *dev_priv = to_i915(dev);
2861 2862 2863 2864

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2865
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2904 2905 2906
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2907 2908 2909 2910 2911 2912 2913 2914
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2915 2916
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2929
intel_enable_sagv(struct drm_i915_private *dev_priv)
2930 2931 2932
{
	int ret;

2933 2934 2935 2936
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2952
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2953
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2954
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2955 2956 2957 2958 2959 2960
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2961
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2962 2963 2964 2965
	return 0;
}

static int
2966
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2980
intel_disable_sagv(struct drm_i915_private *dev_priv)
2981 2982 2983
{
	int ret, result;

2984 2985 2986 2987
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2988 2989 2990 2991 2992 2993
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2994
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3006
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3007
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3008
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3009 3010 3011 3012 3013 3014
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3015
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3016 3017 3018
	return 0;
}

3019
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3020 3021 3022 3023
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3024 3025
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3026 3027
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3028
	enum pipe pipe;
3029
	int level, latency;
3030

3031 3032 3033
	if (!intel_has_sagv(dev_priv))
		return false;

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3047
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3048
	cstate = to_intel_crtc_state(crtc->base.state);
3049

3050
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3051 3052
		return false;

3053
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3054
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3055

3056
		/* Skip this plane if it's not enabled */
3057
		if (!wm->wm[0].plane_en)
3058 3059 3060
			continue;

		/* Find the highest enabled wm level for this plane */
3061
		for (level = ilk_wm_max_level(dev_priv);
3062
		     !wm->wm[level].plane_en; --level)
3063 3064
		     { }

3065 3066 3067 3068 3069 3070 3071
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3072 3073 3074 3075 3076
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3077
		if (latency < SKL_SAGV_BLOCK_TIME)
3078 3079 3080 3081 3082 3083
			return false;
	}

	return true;
}

3084 3085
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3086
				   const struct intel_crtc_state *cstate,
3087 3088
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3089
{
3090 3091 3092
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3093
	struct drm_crtc *for_crtc = cstate->base.crtc;
3094 3095
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3096

3097
	if (WARN_ON(!state) || !cstate->base.active) {
3098 3099
		alloc->start = 0;
		alloc->end = 0;
3100
		*num_active = hweight32(dev_priv->active_crtcs);
3101 3102 3103
		return;
	}

3104 3105 3106 3107 3108
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3109 3110
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3111 3112 3113

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3114
	/*
3115 3116 3117 3118 3119 3120
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3121
	 */
3122
	if (!intel_state->active_pipe_changes) {
3123 3124 3125 3126 3127
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3128
		return;
3129
	}
3130 3131 3132 3133 3134 3135

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3136 3137
}

3138
static unsigned int skl_cursor_allocation(int num_active)
3139
{
3140
	if (num_active == 1)
3141 3142 3143 3144 3145
		return 32;

	return 8;
}

3146 3147 3148 3149
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3150 3151
	if (entry->end)
		entry->end += 1;
3152 3153
}

3154 3155
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3156 3157 3158 3159 3160
{
	enum pipe pipe;
	int plane;
	u32 val;

3161 3162
	memset(ddb, 0, sizeof(*ddb));

3163
	for_each_pipe(dev_priv, pipe) {
3164 3165 3166 3167
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3168 3169
			continue;

3170
		for_each_universal_plane(dev_priv, pipe, plane) {
3171 3172 3173 3174 3175 3176
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3177 3178
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3179 3180

		intel_display_power_put(dev_priv, power_domain);
3181 3182 3183
	}
}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3206
	if (WARN_ON(!pstate->base.visible))
3207 3208 3209
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3210 3211 3212 3213
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3214
	if (drm_rotation_90_or_270(pstate->base.rotation))
3215 3216 3217 3218 3219 3220 3221 3222 3223
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3224
static unsigned int
3225 3226 3227
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3228
{
3229
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3230
	struct drm_framebuffer *fb = pstate->fb;
3231
	uint32_t down_scale_amount, data_rate;
3232
	uint32_t width = 0, height = 0;
3233 3234
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3235
	if (!intel_pstate->base.visible)
3236 3237 3238 3239 3240
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3241

3242 3243
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3244

3245
	if (drm_rotation_90_or_270(pstate->rotation))
3246
		swap(width, height);
3247 3248

	/* for planar format */
3249
	if (format == DRM_FORMAT_NV12) {
3250
		if (y)  /* y-plane data rate */
3251
			data_rate = width * height *
3252
				drm_format_plane_cpp(format, 0);
3253
		else    /* uv-plane data rate */
3254
			data_rate = (width / 2) * (height / 2) *
3255
				drm_format_plane_cpp(format, 1);
3256 3257 3258
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3259 3260
	}

3261 3262 3263
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3264 3265 3266 3267 3268 3269 3270 3271
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3272 3273 3274
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3275
{
3276 3277
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3278
	struct drm_plane *plane;
3279
	const struct intel_plane *intel_plane;
3280
	const struct drm_plane_state *pstate;
3281
	unsigned int rate, total_data_rate = 0;
3282
	int id;
3283 3284 3285

	if (WARN_ON(!state))
		return 0;
3286

3287
	/* Calculate and cache data rate for each plane */
3288
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3289 3290 3291 3292 3293 3294
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3295 3296 3297
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3298 3299 3300 3301

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3302
		plane_y_data_rate[id] = rate;
3303

3304
		total_data_rate += rate;
3305 3306 3307 3308 3309
	}

	return total_data_rate;
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3332 3333
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3334

3335
	if (drm_rotation_90_or_270(pstate->rotation))
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3349
	if (drm_rotation_90_or_270(pstate->rotation)) {
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3397
static int
3398
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3399 3400
		      struct skl_ddb_allocation *ddb /* out */)
{
3401
	struct drm_atomic_state *state = cstate->base.state;
3402
	struct drm_crtc *crtc = cstate->base.crtc;
3403 3404 3405
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3406
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3407
	uint16_t alloc_size, start;
3408 3409
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3410
	unsigned int total_data_rate;
3411 3412
	int num_active;
	int id, i;
3413 3414
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3415

3416 3417 3418 3419
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3420 3421 3422
	if (WARN_ON(!state))
		return 0;

3423
	if (!cstate->base.active) {
3424
		alloc->start = alloc->end = 0;
3425 3426 3427
		return 0;
	}

3428
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3429
	alloc_size = skl_ddb_entry_size(alloc);
3430 3431
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3432
		return 0;
3433 3434
	}

3435
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3436

3437 3438 3439 3440 3441
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3442

3443
	for (i = 0; i < I915_MAX_PLANES; i++) {
3444 3445
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3446 3447
	}

3448 3449 3450
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3451
	/*
3452 3453
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3454 3455 3456
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3457 3458 3459
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3460
	if (total_data_rate == 0)
3461
		return 0;
3462

3463
	start = alloc->start;
3464
	for (id = 0; id < I915_MAX_PLANES; id++) {
3465 3466
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3467

3468 3469 3470
		if (id == PLANE_CURSOR)
			continue;

3471
		data_rate = plane_data_rate[id];
3472 3473

		/*
3474
		 * allocation for (packed formats) or (uv-plane part of planar format):
3475 3476 3477
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3478
		plane_blocks = minimum[id];
3479 3480
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3481

3482 3483 3484 3485 3486
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3487 3488

		start += plane_blocks;
3489 3490 3491 3492

		/*
		 * allocation for y_plane part of planar format:
		 */
3493
		y_data_rate = plane_y_data_rate[id];
3494 3495 3496 3497

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3498

3499 3500 3501 3502
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3503 3504

		start += y_plane_blocks;
3505 3506
	}

3507
	return 0;
3508 3509
}

3510 3511
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3512
 * for the read latency) and cpp should always be <= 8, so that
3513 3514 3515
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3516
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3517 3518 3519 3520 3521 3522
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3523
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3524 3525 3526 3527 3528 3529
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3530
			       uint32_t latency, uint32_t plane_blocks_per_line)
3531
{
3532 3533
	uint32_t ret;
	uint32_t wm_intermediate_val;
3534 3535 3536 3537 3538 3539

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3540
				plane_blocks_per_line;
3541 3542 3543 3544

	return ret;
}

3545 3546 3547 3548 3549 3550 3551 3552
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3553
	if (WARN_ON(!pstate->base.visible))
3554 3555 3556 3557 3558 3559
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3560
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3561 3562 3563 3564 3565 3566 3567 3568
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3569 3570 3571 3572 3573 3574 3575 3576
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3577
{
3578 3579
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3580 3581 3582 3583 3584
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3585
	uint8_t cpp;
3586
	uint32_t width = 0, height = 0;
3587
	uint32_t plane_pixel_rate;
3588
	uint32_t y_tile_minimum, y_min_scanlines;
3589 3590 3591
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3592

3593
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3594 3595 3596
		*enabled = false;
		return 0;
	}
3597

3598 3599 3600
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3601 3602
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3603

3604
	if (drm_rotation_90_or_270(pstate->rotation))
3605 3606
		swap(width, height);

3607
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3608 3609
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3610
	if (drm_rotation_90_or_270(pstate->rotation)) {
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3625 3626 3627
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3628 3629 3630 3631 3632
		}
	} else {
		y_min_scanlines = 4;
	}

3633 3634 3635
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3649 3650
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3651
				 cstate->base.adjusted_mode.crtc_htotal,
3652
				 latency,
3653
				 plane_blocks_per_line);
3654

3655 3656
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3657 3658
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3659 3660
		selected_result = max(method2, y_tile_minimum);
	} else {
3661 3662 3663 3664
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3665 3666 3667 3668
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3669

3670 3671
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3672

3673
	if (level >= 1 && level <= 7) {
3674
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3675 3676
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3677
			res_lines += y_min_scanlines;
3678
		} else {
3679
			res_blocks++;
3680
		}
3681
	}
3682

3683 3684
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3701
	}
3702 3703 3704

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3705
	*enabled = true;
3706

3707
	return 0;
3708 3709
}

3710 3711 3712 3713
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3714
		     struct intel_plane *intel_plane,
3715 3716
		     int level,
		     struct skl_wm_level *result)
3717
{
3718
	struct drm_atomic_state *state = cstate->base.state;
3719
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3720 3721
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3722
	uint16_t ddb_blocks;
3723
	enum pipe pipe = intel_crtc->pipe;
3724
	int ret;
L
Lyude 已提交
3725 3726 3727 3728 3729 3730
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3731

3732
	/*
L
Lyude 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3742
	 */
L
Lyude 已提交
3743 3744
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3745

L
Lyude 已提交
3746
	WARN_ON(!intel_pstate->base.fb);
3747

L
Lyude 已提交
3748
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3749

L
Lyude 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3760 3761

	return 0;
3762 3763
}

3764
static uint32_t
3765
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3766
{
3767 3768
	uint32_t pixel_rate;

3769
	if (!cstate->base.active)
3770 3771
		return 0;

3772 3773 3774
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3775
		return 0;
3776

3777
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3778
			    pixel_rate);
3779 3780
}

3781
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3782
				      struct skl_wm_level *trans_wm /* out */)
3783
{
3784
	if (!cstate->base.active)
3785
		return;
3786 3787

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3788
	trans_wm->plane_en = false;
3789 3790
}

3791 3792 3793
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3794
{
3795
	struct drm_device *dev = cstate->base.crtc->dev;
3796
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3797 3798
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3799
	int level, max_level = ilk_wm_max_level(dev_priv);
3800
	int ret;
3801

L
Lyude 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3821
	}
3822
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3823

3824
	return 0;
3825 3826
}

3827 3828
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3829 3830 3831 3832 3833 3834 3835 3836
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3852
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3853 3854
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3855 3856 3857 3858 3859
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3860
	int level, max_level = ilk_wm_max_level(dev_priv);
3861 3862 3863
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3864 3865
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3866
	}
3867 3868
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3869 3870

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3871
			    &ddb->plane[pipe][plane]);
3872
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3873
			    &ddb->y_plane[pipe][plane]);
3874 3875 3876
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3877 3878
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3879 3880 3881 3882
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3883
	int level, max_level = ilk_wm_max_level(dev_priv);
3884 3885 3886
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3887 3888
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3889
	}
3890
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3891

3892
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3893
			    &ddb->plane[pipe][PLANE_CURSOR]);
3894 3895
}

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3910 3911
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3912
{
3913
	return a->start < b->end && b->start < a->end;
3914 3915
}

3916
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3917
				 struct intel_crtc *intel_crtc)
3918
{
3919 3920 3921 3922 3923 3924
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3925

3926 3927
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3928

3929
		if (other_intel_crtc == intel_crtc)
3930 3931
			continue;

3932
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3933
			return true;
3934 3935
	}

3936
	return false;
3937 3938
}

3939
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3940
			      const struct skl_pipe_wm *old_pipe_wm,
3941
			      struct skl_pipe_wm *pipe_wm, /* out */
3942
			      struct skl_ddb_allocation *ddb, /* out */
3943
			      bool *changed /* out */)
3944
{
3945
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3946
	int ret;
3947

3948 3949 3950
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3951

3952
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3953 3954 3955
		*changed = false;
	else
		*changed = true;
3956

3957
	return 0;
3958 3959
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3973
static int
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3991
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4008 4009 4010 4011 4012 4013 4014
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4015
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4016
	uint32_t realloc_pipes = pipes_modified(state);
4017 4018 4019 4020 4021 4022 4023 4024
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4025 4026 4027 4028 4029 4030
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4031 4032
		intel_state->active_pipe_changes = ~0;

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4056
	if (intel_state->active_pipe_changes) {
4057
		realloc_pipes = ~0;
4058 4059
		intel_state->wm_results.dirty_pipes = ~0;
	}
4060

4061 4062 4063 4064 4065 4066
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4067 4068 4069 4070 4071 4072 4073
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4074
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4075 4076
		if (ret)
			return ret;
4077

4078
		ret = skl_ddb_add_affected_planes(cstate);
4079 4080
		if (ret)
			return ret;
4081 4082 4083 4084 4085
	}

	return 0;
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4110
	int i;
4111 4112

	for_each_crtc_in_state(state, crtc, cstate, i) {
4113 4114
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4115

4116
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4117 4118 4119 4120 4121 4122 4123 4124 4125
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4126 4127 4128 4129 4130
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4131 4132 4133 4134
		}
	}
}

4135 4136 4137 4138 4139
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4140 4141 4142
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4143
	bool changed = false;
4144
	int ret, i;
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4159 4160 4161
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4162 4163 4164 4165
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4179 4180
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4181 4182

		pipe_wm = &intel_cstate->wm.skl.optimal;
4183 4184
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4198 4199
	skl_print_wm_changes(state);

4200 4201 4202
	return 0;
}

4203 4204 4205 4206 4207 4208
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4209
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4210
	enum pipe pipe = crtc->pipe;
4211 4212 4213 4214
	int plane;

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4215 4216

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4217 4218 4219 4220 4221

	for_each_universal_plane(dev_priv, pipe, plane)
		skl_write_plane_wm(crtc, &pipe_wm->planes[plane], ddb, plane);

	skl_write_cursor_wm(crtc, &pipe_wm->planes[PLANE_CURSOR], ddb);
4222 4223
}

4224 4225
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4226
{
4227
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4228
	struct drm_device *dev = intel_crtc->base.dev;
4229
	struct drm_i915_private *dev_priv = to_i915(dev);
4230
	struct skl_wm_values *results = &state->wm_results;
4231
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4232
	enum pipe pipe = intel_crtc->pipe;
4233

4234
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4235 4236
		return;

4237
	mutex_lock(&dev_priv->wm.wm_mutex);
4238

4239 4240
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4241 4242

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4243

4244 4245
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4246
	mutex_unlock(&dev_priv->wm.wm_mutex);
4247 4248
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4267
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4268
{
4269
	struct drm_device *dev = &dev_priv->drm;
4270
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4271
	struct ilk_wm_maximums max;
4272
	struct intel_wm_config config = {};
4273
	struct ilk_wm_values results = {};
4274
	enum intel_ddb_partitioning partitioning;
4275

4276 4277 4278 4279
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4280 4281

	/* 5/6 split only in single pipe config on IVB+ */
4282
	if (INTEL_INFO(dev)->gen >= 7 &&
4283 4284 4285
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4286

4287
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4288
	} else {
4289
		best_lp_wm = &lp_wm_1_2;
4290 4291
	}

4292
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4293
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4294

4295
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4296

4297
	ilk_write_wm_values(dev_priv, &results);
4298 4299
}

4300 4301
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4302
{
4303 4304
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4305

4306
	mutex_lock(&dev_priv->wm.wm_mutex);
4307
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4308 4309 4310
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4311

4312 4313
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4314 4315 4316
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4317

4318 4319
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4320
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4321 4322 4323
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4324 4325
}

4326 4327
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4328
{
4329 4330 4331 4332
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4333 4334
}

4335 4336
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4337 4338
{
	struct drm_device *dev = crtc->dev;
4339
	struct drm_i915_private *dev_priv = to_i915(dev);
4340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4341 4342
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4343
	enum pipe pipe = intel_crtc->pipe;
4344 4345
	int level, id, max_level;
	uint32_t val;
4346

4347
	max_level = ilk_wm_max_level(dev_priv);
4348

4349 4350
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4351
		wm = &out->planes[id];
4352

4353 4354 4355 4356 4357
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4358

4359
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4360 4361
		}

4362 4363 4364 4365 4366 4367
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4368 4369
	}

4370 4371
	if (!intel_crtc->active)
		return;
4372

4373
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4374 4375 4376 4377
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4378
	struct drm_i915_private *dev_priv = to_i915(dev);
4379
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4380
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4381
	struct drm_crtc *crtc;
4382 4383
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4384

4385
	skl_ddb_get_hw_state(dev_priv, ddb);
4386 4387 4388 4389 4390 4391
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4392
		if (intel_crtc->active)
4393 4394
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4395

4396 4397 4398 4399 4400 4401 4402
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4403 4404
}

4405 4406 4407
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4408
	struct drm_i915_private *dev_priv = to_i915(dev);
4409
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4410
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4411
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4412
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4413
	enum pipe pipe = intel_crtc->pipe;
4414
	static const i915_reg_t wm0_pipe_reg[] = {
4415 4416 4417 4418 4419 4420
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4421
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4422
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4423

4424 4425
	memset(active, 0, sizeof(*active));

4426
	active->pipe_enabled = intel_crtc->active;
4427 4428

	if (active->pipe_enabled) {
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4443
		int level, max_level = ilk_wm_max_level(dev_priv);
4444 4445 4446 4447 4448 4449 4450 4451 4452

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4453 4454

	intel_crtc->wm.active.ilk = *active;
4455 4456
}

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
4555
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4556 4557 4558
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
4559
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4574 4575 4576 4577 4578 4579 4580 4581 4582
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4583
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4610 4611
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4612
	struct drm_i915_private *dev_priv = to_i915(dev);
4613
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4614 4615
	struct drm_crtc *crtc;

4616
	for_each_crtc(dev, crtc)
4617 4618 4619 4620 4621 4622 4623
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4624 4625 4626 4627
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4628

4629
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4630 4631
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4632
	else if (IS_IVYBRIDGE(dev_priv))
4633 4634
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4635 4636 4637 4638 4639

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4672
void intel_update_watermarks(struct intel_crtc *crtc)
4673
{
4674
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4675 4676

	if (dev_priv->display.update_wm)
4677
		dev_priv->display.update_wm(crtc);
4678 4679
}

4680
/*
4681 4682 4683 4684 4685 4686 4687 4688
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4689
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4690 4691 4692
{
	u16 rgvswctl;

4693 4694
	assert_spin_locked(&mchdev_lock);

4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4712
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4713
{
4714
	u32 rgvmodectl;
4715 4716
	u8 fmax, fmin, fstart, vstart;

4717 4718
	spin_lock_irq(&mchdev_lock);

4719 4720
	rgvmodectl = I915_READ(MEMMODECTL);

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4741
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4742 4743
		PXVFREQ_PX_SHIFT;

4744 4745
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4746

4747 4748 4749
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4766
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4767
		DRM_ERROR("stuck trying to change perf mode\n");
4768
	mdelay(1);
4769

4770
	ironlake_set_drps(dev_priv, fstart);
4771

4772 4773
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4774
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4775
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4776
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4777 4778

	spin_unlock_irq(&mchdev_lock);
4779 4780
}

4781
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4782
{
4783 4784 4785 4786 4787
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4788 4789 4790 4791 4792 4793 4794 4795 4796

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4797
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4798
	mdelay(1);
4799 4800
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4801
	mdelay(1);
4802

4803
	spin_unlock_irq(&mchdev_lock);
4804 4805
}

4806 4807 4808 4809 4810
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4811
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4812
{
4813
	u32 limits;
4814

4815 4816 4817 4818 4819 4820
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4821
	if (IS_GEN9(dev_priv)) {
4822 4823 4824 4825 4826 4827 4828 4829
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4830 4831 4832 4833

	return limits;
}

4834 4835 4836
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4837 4838
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4839 4840 4841 4842

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4843 4844
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4845 4846 4847 4848
			new_power = BETWEEN;
		break;

	case BETWEEN:
4849 4850
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4851
			new_power = LOW_POWER;
4852 4853
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4854 4855 4856 4857
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4858 4859
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4860 4861 4862 4863
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4864
	if (val <= dev_priv->rps.min_freq_softlimit)
4865
		new_power = LOW_POWER;
4866
	if (val >= dev_priv->rps.max_freq_softlimit)
4867 4868 4869 4870 4871 4872 4873 4874
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4875 4876
		ei_up = 16000;
		threshold_up = 95;
4877 4878

		/* Downclock if less than 85% busy over 32ms */
4879 4880
		ei_down = 32000;
		threshold_down = 85;
4881 4882 4883 4884
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4885 4886
		ei_up = 13000;
		threshold_up = 90;
4887 4888

		/* Downclock if less than 75% busy over 32ms */
4889 4890
		ei_down = 32000;
		threshold_down = 75;
4891 4892 4893 4894
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4895 4896
		ei_up = 10000;
		threshold_up = 85;
4897 4898

		/* Downclock if less than 60% busy over 32ms */
4899 4900
		ei_down = 32000;
		threshold_down = 60;
4901 4902 4903
		break;
	}

4904
	I915_WRITE(GEN6_RP_UP_EI,
4905
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4906
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4907 4908
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4909 4910

	I915_WRITE(GEN6_RP_DOWN_EI,
4911
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4912
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4923

4924
	dev_priv->rps.power = new_power;
4925 4926
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4927 4928 4929
	dev_priv->rps.last_adj = 0;
}

4930 4931 4932 4933 4934
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4935
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4936
	if (val < dev_priv->rps.max_freq_softlimit)
4937
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4938

4939 4940
	mask &= dev_priv->pm_rps_events;

4941
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4942 4943
}

4944 4945 4946
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4947
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4948
{
4949
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4950
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4951 4952
		return;

4953
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4954 4955
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4956

C
Chris Wilson 已提交
4957 4958 4959 4960 4961
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4962

4963
		if (IS_GEN9(dev_priv))
4964 4965
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4966
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4967 4968 4969 4970 4971 4972 4973
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4974
	}
4975 4976 4977 4978

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4979
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4980
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4981

4982 4983
	POSTING_READ(GEN6_RPNSWREQ);

4984
	dev_priv->rps.cur_freq = val;
4985
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4986 4987
}

4988
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4989 4990
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4991 4992
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4993

4994
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4995 4996 4997
		      "Odd GPU freq value\n"))
		val &= ~1;

4998 4999
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5000
	if (val != dev_priv->rps.cur_freq) {
5001
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5002 5003 5004
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5005 5006 5007 5008 5009

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5010
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5011 5012
 *
 * * If Gfx is Idle, then
5013 5014 5015
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5016 5017 5018
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5019
	u32 val = dev_priv->rps.idle_freq;
5020

5021
	if (dev_priv->rps.cur_freq <= val)
5022 5023
		return;

5024 5025 5026
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5027
	valleyview_set_rps(dev_priv, val);
5028
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5029 5030
}

5031 5032 5033 5034 5035 5036 5037 5038
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5039

5040 5041
		gen6_enable_rps_interrupts(dev_priv);

5042 5043 5044 5045 5046
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5047 5048 5049 5050
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5051 5052
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5053 5054 5055 5056 5057 5058 5059
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5060
	mutex_lock(&dev_priv->rps.hw_lock);
5061
	if (dev_priv->rps.enabled) {
5062
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5063
			vlv_set_rps_idle(dev_priv);
5064
		else
5065
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5066
		dev_priv->rps.last_adj = 0;
5067 5068
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5069
	}
5070
	mutex_unlock(&dev_priv->rps.hw_lock);
5071

5072
	spin_lock(&dev_priv->rps.client_lock);
5073 5074
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5075
	spin_unlock(&dev_priv->rps.client_lock);
5076 5077
}

5078
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5079 5080
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5081
{
5082 5083 5084
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5085
	if (!(dev_priv->gt.awake &&
5086
	      dev_priv->rps.enabled &&
5087
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5088
		return;
5089

5090 5091 5092
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5093
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5094 5095
		rps = NULL;

5096 5097 5098 5099 5100
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5101
			schedule_work(&dev_priv->rps.work);
5102 5103
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5104

5105 5106 5107
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5108 5109
		} else
			dev_priv->rps.boosts++;
5110
	}
5111
	spin_unlock(&dev_priv->rps.client_lock);
5112 5113
}

5114
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5115
{
5116 5117
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5118
	else
5119
		gen6_set_rps(dev_priv, val);
5120 5121
}

5122
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5123 5124
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5125
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5126 5127
}

5128
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5129 5130 5131 5132
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5133
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5134 5135
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5136
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5137
	I915_WRITE(GEN6_RP_CONTROL, 0);
5138 5139
}

5140
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5141 5142 5143 5144
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5145
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5146
{
5147 5148
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5149
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5150

5151
	I915_WRITE(GEN6_RC_CONTROL, 0);
5152

5153
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5154 5155
}

5156
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5157
{
5158
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5159 5160 5161 5162 5163
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5164
	if (HAS_RC6p(dev_priv))
5165 5166 5167 5168 5169
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5170 5171

	else
5172 5173
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5174 5175
}

5176
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5177
{
5178
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5179 5180
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5192 5193

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5194
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5195 5196 5197 5198 5199 5200 5201 5202
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5203 5204 5205
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5206
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5207 5208 5209 5210 5211 5212 5213
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5214
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5215 5216 5217
		enable_rc6 = false;
	}

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5232 5233 5234 5235 5236 5237
		enable_rc6 = false;
	}

	return enable_rc6;
}

5238
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5239
{
5240
	/* No RC6 before Ironlake and code is gone for ilk. */
5241
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5242 5243
		return 0;

5244 5245 5246
	if (!enable_rc6)
		return 0;

5247
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5248 5249 5250 5251
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5252
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5253 5254 5255
	if (enable_rc6 >= 0) {
		int mask;

5256
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5257 5258 5259 5260 5261 5262
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5263 5264 5265
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5266 5267 5268

		return enable_rc6 & mask;
	}
5269

5270
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5271
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5272 5273

	return INTEL_RC6_ENABLE;
5274 5275
}

5276
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5277 5278
{
	/* All of these values are in units of 50MHz */
5279

5280
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5281
	if (IS_BROXTON(dev_priv)) {
5282
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5283 5284 5285 5286
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5287
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5288 5289 5290 5291
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5292
	/* hw_max = RP0 until we check for overclocking */
5293
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5294

5295
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5296 5297
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5298 5299 5300 5301 5302
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5303
			dev_priv->rps.efficient_freq =
5304 5305 5306 5307
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5308 5309
	}

5310
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5311
		/* Store the frequency values in 16.66 MHZ units, which is
5312 5313
		 * the natural hardware unit for SKL
		 */
5314 5315 5316 5317 5318 5319
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5320 5321
}

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5334
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5335
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5336 5337 5338
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5339
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5340
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5341 5342 5343 5344 5345 5346 5347 5348 5349
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5350
		gen9_disable_rps(dev_priv);
5351 5352 5353 5354
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5355 5356 5357 5358 5359 5360 5361 5362
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5363 5364
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5365 5366 5367
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5368
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5369 5370 5371 5372

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5373
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5374
{
5375
	struct intel_engine_cs *engine;
5376
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5377 5378 5379 5380 5381 5382 5383
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5384
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5385 5386 5387 5388 5389

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5390 5391

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5392
	if (IS_SKYLAKE(dev_priv))
5393 5394 5395
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5396 5397
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5398
	for_each_engine(engine, dev_priv, id)
5399
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5400

5401
	if (HAS_GUC(dev_priv))
5402 5403
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5404 5405
	I915_WRITE(GEN6_RC_SLEEP, 0);

5406 5407 5408 5409
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5410
	/* 3a: Enable RC6 */
5411
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5412
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5413
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5414
	/* WaRsUseTimeoutMode:bxt */
5415
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5416
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5417 5418 5419
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5420 5421
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5422 5423 5424
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5425
	}
Z
Zhe Wang 已提交
5426

5427 5428
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5429
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5430
	 */
5431
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5432 5433 5434 5435
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5436

5437
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5438 5439
}

5440
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5441
{
5442
	struct intel_engine_cs *engine;
5443
	enum intel_engine_id id;
5444
	uint32_t rc6_mask = 0;
5445 5446 5447 5448 5449 5450

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5451
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5452 5453 5454 5455 5456 5457 5458 5459

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5460
	for_each_engine(engine, dev_priv, id)
5461
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5462
	I915_WRITE(GEN6_RC_SLEEP, 0);
5463
	if (IS_BROADWELL(dev_priv))
5464 5465 5466
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5467 5468

	/* 3: Enable RC6 */
5469
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5470
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5471 5472
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5473 5474 5475 5476 5477 5478 5479
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5480 5481

	/* 4 Program defaults and thresholds for RPS*/
5482 5483 5484 5485
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5500 5501

	/* 5: Enable RPS */
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5512
	reset_rps(dev_priv, gen6_set_rps);
5513

5514
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5515 5516
}

5517
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5518
{
5519
	struct intel_engine_cs *engine;
5520
	enum intel_engine_id id;
5521
	u32 rc6vids, rc6_mask = 0;
5522 5523
	u32 gtfifodbg;
	int rc6_mode;
5524
	int ret;
5525

5526
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5527

5528 5529 5530 5531 5532 5533 5534 5535 5536
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5537 5538
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5539 5540 5541 5542
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5543
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5554
	for_each_engine(engine, dev_priv, id)
5555
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5556 5557 5558

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5559
	if (IS_IVYBRIDGE(dev_priv))
5560 5561 5562
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5563
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5564 5565
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5566
	/* Check if we are enabling RC6 */
5567
	rc6_mode = intel_enable_rc6();
5568 5569 5570
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5571
	/* We don't use those on Haswell */
5572
	if (!IS_HASWELL(dev_priv)) {
5573 5574
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5575

5576 5577 5578
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5579

5580
	intel_print_rc6_info(dev_priv, rc6_mask);
5581 5582 5583 5584 5585 5586

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5587 5588
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5589 5590
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5591
	reset_rps(dev_priv, gen6_set_rps);
5592

5593 5594
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5595
	if (IS_GEN6(dev_priv) && ret) {
5596
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5597
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5598 5599 5600 5601 5602 5603 5604 5605 5606
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5607
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5608 5609
}

5610
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5611 5612
{
	int min_freq = 15;
5613 5614
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5615
	unsigned int max_gpu_freq, min_gpu_freq;
5616
	int scaling_factor = 180;
5617
	struct cpufreq_policy *policy;
5618

5619
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5620

5621 5622 5623 5624 5625 5626 5627 5628 5629
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5630
		max_ia_freq = tsc_khz;
5631
	}
5632 5633 5634 5635

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5636
	min_ring_freq = I915_READ(DCLK) & 0xf;
5637 5638
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5639

5640
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5641 5642 5643 5644 5645 5646 5647 5648
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5649 5650 5651 5652 5653
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5654 5655
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5656 5657
		unsigned int ia_freq = 0, ring_freq = 0;

5658
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5659 5660 5661 5662 5663
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5664
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5665 5666
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5667
		} else if (IS_HASWELL(dev_priv)) {
5668
			ring_freq = mult_frac(gpu_freq, 5, 4);
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5685

B
Ben Widawsky 已提交
5686 5687
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5688 5689 5690
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5691 5692 5693
	}
}

5694
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5695 5696 5697
{
	u32 val, rp0;

5698
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5699

5700
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5715
	}
5716 5717 5718

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5732 5733 5734 5735
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5736 5737 5738
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5739 5740 5741
	return rp1;
}

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5753
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5754 5755 5756
{
	u32 val, rp0;

5757
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5770
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5771
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5772
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5773 5774 5775 5776 5777
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5778
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5779
{
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5791 5792
}

5793 5794 5795 5796 5797 5798 5799 5800 5801
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5802 5803 5804 5805 5806 5807 5808 5809 5810

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5811
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5812
{
5813
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5814
	unsigned long pctx_paddr, paddr;
5815 5816 5817 5818 5819
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5820
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5821
		paddr = (dev_priv->mm.stolen_base +
5822
			 (ggtt->stolen_size - pctx_size));
5823 5824 5825 5826

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5827 5828

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5829 5830
}

5831
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5844
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5845
								      pcbr_offset,
5846
								      I915_GTT_OFFSET_NONE,
5847 5848 5849 5850
								      pctx_size);
		goto out;
	}

5851 5852
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5853 5854 5855 5856 5857 5858 5859 5860
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5861
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5862 5863
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5864
		goto out;
5865 5866 5867 5868 5869 5870
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5871
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5872 5873 5874
	dev_priv->vlv_pctx = pctx;
}

5875
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5876 5877 5878 5879
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5880
	i915_gem_object_put(dev_priv->vlv_pctx);
5881 5882 5883
	dev_priv->vlv_pctx = NULL;
}

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5895
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5896
{
5897
	u32 val;
5898

5899
	valleyview_setup_pctx(dev_priv);
5900

5901 5902
	vlv_init_gpll_ref_freq(dev_priv);

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5916
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5917

5918 5919 5920
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5921
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5922 5923 5924 5925
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5926
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5927 5928
			 dev_priv->rps.efficient_freq);

5929 5930
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5931
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5932 5933
			 dev_priv->rps.rp1_freq);

5934 5935
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5936
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5937 5938 5939
			 dev_priv->rps.min_freq);
}

5940
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5941
{
5942
	u32 val;
5943

5944
	cherryview_setup_pctx(dev_priv);
5945

5946 5947
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5948
	mutex_lock(&dev_priv->sb_lock);
5949
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5950
	mutex_unlock(&dev_priv->sb_lock);
5951

5952 5953 5954 5955
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5956
	default:
5957 5958 5959
		dev_priv->mem_freq = 1600;
		break;
	}
5960
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5961

5962 5963 5964
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5965
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5966 5967 5968 5969
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5970
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5971 5972
			 dev_priv->rps.efficient_freq);

5973 5974
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5975
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5976 5977
			 dev_priv->rps.rp1_freq);

5978 5979
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5980
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5981
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5982 5983
			 dev_priv->rps.min_freq);

5984 5985 5986 5987 5988
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5989 5990
}

5991
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5992
{
5993
	valleyview_cleanup_pctx(dev_priv);
5994 5995
}

5996
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5997
{
5998
	struct intel_engine_cs *engine;
5999
	enum intel_engine_id id;
6000
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6001 6002 6003

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6004 6005
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6016
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6017

6018 6019 6020
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6021 6022 6023 6024 6025
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6026
	for_each_engine(engine, dev_priv, id)
6027
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6028 6029
	I915_WRITE(GEN6_RC_SLEEP, 0);

6030 6031
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6043 6044
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6045
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6046 6047 6048

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6049
	/* 4 Program defaults and thresholds for RPS*/
6050
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6061
		   GEN6_RP_MEDIA_IS_GFX |
6062 6063 6064 6065
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6066 6067 6068 6069 6070 6071
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6072 6073
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6074 6075 6076
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6077
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6078 6079
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6080
	reset_rps(dev_priv, valleyview_set_rps);
6081

6082
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6083 6084
}

6085
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6086
{
6087
	struct intel_engine_cs *engine;
6088
	enum intel_engine_id id;
6089
	u32 gtfifodbg, val, rc6_mode = 0;
6090 6091 6092

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6093 6094
	valleyview_check_pctx(dev_priv);

6095 6096
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6097 6098
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6099 6100 6101
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6102
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6103
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6104

6105 6106 6107
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6108
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6128
	for_each_engine(engine, dev_priv, id)
6129
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6130

6131
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6132 6133

	/* allows RC6 residency counter to work */
6134
	I915_WRITE(VLV_COUNTER_CONTROL,
6135 6136
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6137 6138
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6139

6140
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6141
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6142

6143
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6144

6145
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6146

D
Deepak S 已提交
6147 6148 6149 6150 6151 6152
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6153
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6154

6155 6156 6157
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6158
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6159 6160
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6161
	reset_rps(dev_priv, valleyview_set_rps);
6162

6163
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6164 6165
}

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6195
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6196 6197 6198 6199 6200 6201
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6202 6203
	assert_spin_locked(&mchdev_lock);

6204
	diff1 = now - dev_priv->ips.last_time1;
6205 6206 6207 6208 6209 6210 6211

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6212
		return dev_priv->ips.chipset_power;
6213 6214 6215 6216 6217 6218 6219 6220

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6221 6222
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6223 6224
		diff += total_count;
	} else {
6225
		diff = total_count - dev_priv->ips.last_count1;
6226 6227 6228
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6229 6230
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6241 6242
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6243

6244
	dev_priv->ips.chipset_power = ret;
6245 6246 6247 6248

	return ret;
}

6249 6250 6251 6252
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6253
	if (INTEL_INFO(dev_priv)->gen != 5)
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6292
{
6293 6294 6295
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6296
	if (INTEL_INFO(dev_priv)->is_mobile)
6297 6298 6299
		return vm > 0 ? vm : 0;

	return vd;
6300 6301
}

6302
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6303
{
6304
	u64 now, diff, diffms;
6305 6306
	u32 count;

6307
	assert_spin_locked(&mchdev_lock);
6308

6309 6310 6311
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6312 6313 6314 6315 6316 6317 6318

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6319 6320
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6321 6322
		diff += count;
	} else {
6323
		diff = count - dev_priv->ips.last_count2;
6324 6325
	}

6326 6327
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6328 6329 6330 6331

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6332
	dev_priv->ips.gfx_power = diff;
6333 6334
}

6335 6336
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6337
	if (INTEL_INFO(dev_priv)->gen != 5)
6338 6339
		return;

6340
	spin_lock_irq(&mchdev_lock);
6341 6342 6343

	__i915_update_gfx_val(dev_priv);

6344
	spin_unlock_irq(&mchdev_lock);
6345 6346
}

6347
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6348 6349 6350 6351
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6352 6353
	assert_spin_locked(&mchdev_lock);

6354
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6374
	corr2 = (corr * dev_priv->ips.corr);
6375 6376 6377 6378

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6379
	__i915_update_gfx_val(dev_priv);
6380

6381
	return dev_priv->ips.gfx_power + state2;
6382 6383
}

6384 6385 6386 6387
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6388
	if (INTEL_INFO(dev_priv)->gen != 5)
6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6411
	spin_lock_irq(&mchdev_lock);
6412 6413 6414 6415
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6416 6417
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6418 6419 6420 6421

	ret = chipset_val + graphics_val;

out_unlock:
6422
	spin_unlock_irq(&mchdev_lock);
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6438
	spin_lock_irq(&mchdev_lock);
6439 6440 6441 6442 6443 6444
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6445 6446
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6447 6448

out_unlock:
6449
	spin_unlock_irq(&mchdev_lock);
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6466
	spin_lock_irq(&mchdev_lock);
6467 6468 6469 6470 6471 6472
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6473 6474
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6475 6476

out_unlock:
6477
	spin_unlock_irq(&mchdev_lock);
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6492
	spin_lock_irq(&mchdev_lock);
6493 6494
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6495
	spin_unlock_irq(&mchdev_lock);
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6512
	spin_lock_irq(&mchdev_lock);
6513 6514 6515 6516 6517 6518
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6519
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6520

6521
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6522 6523 6524
		ret = false;

out_unlock:
6525
	spin_unlock_irq(&mchdev_lock);
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6553 6554
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6555
	spin_lock_irq(&mchdev_lock);
6556
	i915_mch_dev = dev_priv;
6557
	spin_unlock_irq(&mchdev_lock);
6558 6559 6560 6561 6562 6563

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6564
	spin_lock_irq(&mchdev_lock);
6565
	i915_mch_dev = NULL;
6566
	spin_unlock_irq(&mchdev_lock);
6567
}
6568

6569
static void intel_init_emon(struct drm_i915_private *dev_priv)
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6586
		I915_WRITE(PEW(i), 0);
6587
	for (i = 0; i < 3; i++)
6588
		I915_WRITE(DEW(i), 0);
6589 6590 6591

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6592
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6613
		I915_WRITE(PXW(i), val);
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6629
		I915_WRITE(PXWL(i), 0);
6630 6631 6632 6633 6634 6635

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6636
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6637 6638
}

6639
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6640
{
6641 6642 6643 6644 6645 6646 6647 6648
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6649

6650
	mutex_lock(&dev_priv->drm.struct_mutex);
6651 6652 6653
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6654 6655 6656 6657
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6658
	else if (INTEL_GEN(dev_priv) >= 6)
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6688 6689 6690
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6691
	mutex_unlock(&dev_priv->rps.hw_lock);
6692
	mutex_unlock(&dev_priv->drm.struct_mutex);
6693 6694

	intel_autoenable_gt_powersave(dev_priv);
6695 6696
}

6697
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6698
{
6699
	if (IS_VALLEYVIEW(dev_priv))
6700
		valleyview_cleanup_gt_powersave(dev_priv);
6701 6702 6703

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6704 6705
}

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6725 6726 6727 6728
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6729 6730

	gen6_reset_rps_interrupts(dev_priv);
6731 6732
}

6733
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6734
{
6735 6736
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6737

6738
	mutex_lock(&dev_priv->rps.hw_lock);
6739

6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6751
	}
6752 6753 6754

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6755 6756
}

6757
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6758
{
6759 6760 6761
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6762 6763
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6764

6765 6766 6767
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6768

6769
	mutex_lock(&dev_priv->rps.hw_lock);
6770 6771 6772 6773 6774

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6775
	} else if (INTEL_GEN(dev_priv) >= 9) {
6776 6777 6778
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6779
			gen6_update_ring_freq(dev_priv);
6780 6781
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6782
		gen6_update_ring_freq(dev_priv);
6783
	} else if (INTEL_GEN(dev_priv) >= 6) {
6784
		gen6_enable_rps(dev_priv);
6785
		gen6_update_ring_freq(dev_priv);
6786 6787 6788
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6789
	}
6790 6791 6792 6793 6794 6795 6796

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6797
	dev_priv->rps.enabled = true;
6798 6799
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6800

6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6811
	rcs = dev_priv->engine[RCS];
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6864
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6865 6866 6867 6868 6869 6870 6871 6872 6873
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6874
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6875
{
6876
	enum pipe pipe;
6877

6878
	for_each_pipe(dev_priv, pipe) {
6879 6880 6881
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6882 6883 6884

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6885 6886 6887
	}
}

6888
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6900
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6901
{
6902
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6903

6904 6905 6906 6907
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6908 6909 6910
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6928
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6929 6930 6931
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6932

6933
	ilk_init_lp_watermarks(dev_priv);
6934 6935 6936 6937 6938 6939 6940 6941

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6942
	if (IS_IRONLAKE_M(dev_priv)) {
6943
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6944 6945 6946 6947 6948 6949 6950 6951
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6952 6953
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6954 6955 6956 6957 6958 6959
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6960

6961
	/* WaDisableRenderCachePipelinedFlush:ilk */
6962 6963
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6964

6965 6966 6967
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6968
	g4x_disable_trickle_feed(dev_priv);
6969

6970
	ibx_init_clock_gating(dev_priv);
6971 6972
}

6973
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6974 6975
{
	int pipe;
6976
	uint32_t val;
6977 6978 6979 6980 6981 6982

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6983 6984 6985
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6986 6987
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6988 6989 6990
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6991
	for_each_pipe(dev_priv, pipe) {
6992 6993 6994
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6995
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6996
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6997 6998 6999
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7000 7001
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7002
	/* WADP0ClockGatingDisable */
7003
	for_each_pipe(dev_priv, pipe) {
7004 7005 7006
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7007 7008
}

7009
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7010 7011 7012 7013
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7014 7015 7016
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7017 7018
}

7019
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7020
{
7021
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7022

7023
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7024 7025 7026 7027 7028

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7029
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7030 7031 7032
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7033 7034 7035
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7036 7037 7038
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7039 7040 7041 7042
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7043 7044
	 */
	I915_WRITE(GEN6_GT_MODE,
7045
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7046

7047
	ilk_init_lp_watermarks(dev_priv);
7048 7049

	I915_WRITE(CACHE_MODE_0,
7050
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7066
	 *
7067 7068
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7069 7070 7071 7072 7073
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7074
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7075 7076
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7077

7078 7079 7080 7081 7082 7083 7084 7085
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7086 7087 7088 7089 7090 7091 7092 7093
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7094 7095
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7096 7097 7098 7099 7100 7101 7102
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7103 7104 7105 7106
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7107

7108
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7109

7110
	cpt_init_clock_gating(dev_priv);
7111

7112
	gen6_check_mch_setup(dev_priv);
7113 7114 7115 7116 7117 7118
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7119
	/*
7120
	 * WaVSThreadDispatchOverride:ivb,vlv
7121 7122 7123 7124
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7125 7126 7127 7128 7129 7130 7131 7132
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7133
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7134 7135 7136 7137 7138
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7139
	if (HAS_PCH_LPT_LP(dev_priv))
7140 7141 7142
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7143 7144

	/* WADPOClockGatingDisable:hsw */
7145 7146
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7147
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7148 7149
}

7150
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7151
{
7152
	if (HAS_PCH_LPT_LP(dev_priv)) {
7153 7154 7155 7156 7157 7158 7159
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7183
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7184
{
7185
	gen9_init_clock_gating(dev_priv);
7186 7187 7188 7189 7190

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7191 7192 7193 7194 7195

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7196 7197 7198 7199

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7200 7201
}

7202
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7203
{
7204
	gen9_init_clock_gating(dev_priv);
7205 7206 7207 7208

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7209 7210 7211 7212

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7213 7214
}

7215
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7216
{
7217
	enum pipe pipe;
B
Ben Widawsky 已提交
7218

7219
	ilk_init_lp_watermarks(dev_priv);
7220

7221
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7222
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7223

7224
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7225 7226 7227
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7228
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7229
	for_each_pipe(dev_priv, pipe) {
7230
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7231
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7232
			   BDW_DPRS_MASK_VBLANK_SRD);
7233
	}
7234

7235 7236 7237 7238 7239
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7240

7241 7242
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7243 7244 7245 7246

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7247

7248 7249
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7250

7251 7252 7253 7254 7255 7256 7257
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7258 7259 7260 7261
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7262
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7263 7264
}

7265
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7266
{
7267
	ilk_init_lp_watermarks(dev_priv);
7268

7269 7270 7271 7272 7273
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7274
	/* This is required by WaCatErrorRejectionIssue:hsw */
7275 7276 7277 7278
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7279 7280 7281
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7282

7283 7284 7285
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7286 7287 7288 7289
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7290
	/* WaDisable4x2SubspanOptimization:hsw */
7291 7292
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7293

7294 7295 7296
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7297 7298 7299 7300
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7301 7302
	 */
	I915_WRITE(GEN7_GT_MODE,
7303
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7304

7305 7306 7307 7308
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7309
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7310 7311
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7312 7313 7314
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7315

7316
	lpt_init_clock_gating(dev_priv);
7317 7318
}

7319
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7320
{
7321
	uint32_t snpcr;
7322

7323
	ilk_init_lp_watermarks(dev_priv);
7324

7325
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7326

7327
	/* WaDisableEarlyCull:ivb */
7328 7329 7330
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7331
	/* WaDisableBackToBackFlipFix:ivb */
7332 7333 7334 7335
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7336
	/* WaDisablePSDDualDispatchEnable:ivb */
7337
	if (IS_IVB_GT1(dev_priv))
7338 7339 7340
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7341 7342 7343
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7344
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7345 7346 7347
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7348
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7349 7350 7351
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7352
		   GEN7_WA_L3_CHICKEN_MODE);
7353
	if (IS_IVB_GT1(dev_priv))
7354 7355
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7356 7357 7358 7359
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7360 7361
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7362
	}
7363

7364
	/* WaForceL3Serialization:ivb */
7365 7366 7367
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7368
	/*
7369
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7370
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7371 7372
	 */
	I915_WRITE(GEN6_UCGCTL2,
7373
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7374

7375
	/* This is required by WaCatErrorRejectionIssue:ivb */
7376 7377 7378 7379
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7380
	g4x_disable_trickle_feed(dev_priv);
7381 7382

	gen7_setup_fixed_func_scheduler(dev_priv);
7383

7384 7385 7386 7387 7388
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7389

7390
	/* WaDisable4x2SubspanOptimization:ivb */
7391 7392
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7393

7394 7395 7396
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7397 7398 7399 7400
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7401 7402
	 */
	I915_WRITE(GEN7_GT_MODE,
7403
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7404

7405 7406 7407 7408
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7409

7410
	if (!HAS_PCH_NOP(dev_priv))
7411
		cpt_init_clock_gating(dev_priv);
7412

7413
	gen6_check_mch_setup(dev_priv);
7414 7415
}

7416
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7417
{
7418
	/* WaDisableEarlyCull:vlv */
7419 7420 7421
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7422
	/* WaDisableBackToBackFlipFix:vlv */
7423 7424 7425 7426
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7427
	/* WaPsdDispatchEnable:vlv */
7428
	/* WaDisablePSDDualDispatchEnable:vlv */
7429
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7430 7431
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7432

7433 7434 7435
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7436
	/* WaForceL3Serialization:vlv */
7437 7438 7439
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7440
	/* WaDisableDopClockGating:vlv */
7441 7442 7443
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7444
	/* This is required by WaCatErrorRejectionIssue:vlv */
7445 7446 7447 7448
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7449 7450
	gen7_setup_fixed_func_scheduler(dev_priv);

7451
	/*
7452
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7453
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7454 7455
	 */
	I915_WRITE(GEN6_UCGCTL2,
7456
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7457

7458 7459 7460 7461 7462
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7463

7464 7465 7466 7467
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7468 7469
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7470

7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7482 7483 7484 7485 7486 7487
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7488
	/*
7489
	 * WaDisableVLVClockGating_VBIIssue:vlv
7490 7491 7492
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7493
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7494 7495
}

7496
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7497
{
7498 7499 7500 7501 7502
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7503 7504 7505 7506

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7507 7508 7509 7510

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7511 7512 7513 7514

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7515

7516 7517 7518 7519 7520 7521 7522
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7523 7524 7525 7526 7527
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7528 7529
}

7530
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7542
	if (IS_GM45(dev_priv))
7543 7544
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7545 7546 7547 7548

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7549

7550 7551 7552
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7553
	g4x_disable_trickle_feed(dev_priv);
7554 7555
}

7556
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7557 7558 7559 7560 7561 7562
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7563 7564
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7565 7566 7567

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7568 7569
}

7570
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7571 7572 7573 7574 7575 7576 7577
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7578 7579
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7580 7581 7582

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7583 7584
}

7585
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7586 7587 7588 7589 7590 7591
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7592

7593
	if (IS_PINEVIEW(dev_priv))
7594
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7595 7596 7597

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7598 7599

	/* interrupts should cause a wake up from C3 */
7600
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7601 7602 7603

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7604 7605 7606

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7607 7608
}

7609
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7610 7611
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7612 7613 7614 7615

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7616 7617 7618

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7619 7620
}

7621
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7622 7623
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7624 7625 7626 7627

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7628 7629
}

7630
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7631
{
7632
	dev_priv->display.init_clock_gating(dev_priv);
7633 7634
}

7635
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7636
{
7637 7638
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7639 7640
}

7641
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7658
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7659
	else if (IS_KABYLAKE(dev_priv))
7660
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7695
/* Set up chip specific power management-related functions */
7696
void intel_init_pm(struct drm_i915_private *dev_priv)
7697
{
7698
	intel_fbc_init(dev_priv);
7699

7700
	/* For cxsr */
7701
	if (IS_PINEVIEW(dev_priv))
7702
		i915_pineview_get_mem_freq(dev_priv);
7703
	else if (IS_GEN5(dev_priv))
7704
		i915_ironlake_get_mem_freq(dev_priv);
7705

7706
	/* For FIFO watermark updates */
7707
	if (INTEL_GEN(dev_priv) >= 9) {
7708
		skl_setup_wm_latency(dev_priv);
7709
		dev_priv->display.initial_watermarks = skl_initial_wm;
7710
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7711
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7712
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7713
		ilk_setup_wm_latency(dev_priv);
7714

7715
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7716
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7717
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7718
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7719
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7720 7721 7722 7723 7724 7725
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7726 7727 7728 7729
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7730
	} else if (IS_CHERRYVIEW(dev_priv)) {
7731
		vlv_setup_wm_latency(dev_priv);
7732
		dev_priv->display.update_wm = vlv_update_wm;
7733
	} else if (IS_VALLEYVIEW(dev_priv)) {
7734
		vlv_setup_wm_latency(dev_priv);
7735
		dev_priv->display.update_wm = vlv_update_wm;
7736
	} else if (IS_PINEVIEW(dev_priv)) {
7737
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7738 7739 7740 7741 7742 7743 7744 7745 7746
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7747
			intel_set_memory_cxsr(dev_priv, false);
7748 7749 7750
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7751
	} else if (IS_G4X(dev_priv)) {
7752
		dev_priv->display.update_wm = g4x_update_wm;
7753
	} else if (IS_GEN4(dev_priv)) {
7754
		dev_priv->display.update_wm = i965_update_wm;
7755
	} else if (IS_GEN3(dev_priv)) {
7756 7757
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7758
	} else if (IS_GEN2(dev_priv)) {
7759
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7760
			dev_priv->display.update_wm = i845_update_wm;
7761
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7762 7763
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7764
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7765 7766 7767
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7768 7769 7770
	}
}

7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7783
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7815
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7816
{
7817 7818
	int status;

7819
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7820

7821 7822 7823 7824 7825 7826
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7827 7828 7829 7830
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7831 7832 7833
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7834

7835 7836 7837
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7838 7839 7840 7841
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7842 7843
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7844

7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7856 7857 7858
	return 0;
}

7859
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7860
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7861
{
7862 7863
	int status;

7864
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7865

7866 7867 7868 7869 7870 7871
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7872 7873 7874 7875
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7876 7877
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7878

7879 7880 7881
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7882 7883 7884 7885
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7886
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7887

7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7899 7900
	return 0;
}
7901

7902 7903
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7904 7905 7906 7907 7908
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7909 7910
}

7911
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7912
{
7913
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7914 7915
}

7916
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7917
{
7918 7919 7920 7921 7922
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7923 7924
}

7925
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7926
{
7927
	/* CHV needs even values */
7928
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7929 7930
}

7931
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7932
{
7933
	if (IS_GEN9(dev_priv))
7934 7935
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7936
	else if (IS_CHERRYVIEW(dev_priv))
7937
		return chv_gpu_freq(dev_priv, val);
7938
	else if (IS_VALLEYVIEW(dev_priv))
7939 7940 7941
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7942 7943
}

7944 7945
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7946
	if (IS_GEN9(dev_priv))
7947 7948
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7949
	else if (IS_CHERRYVIEW(dev_priv))
7950
		return chv_freq_opcode(dev_priv, val);
7951
	else if (IS_VALLEYVIEW(dev_priv))
7952 7953
		return byt_freq_opcode(dev_priv, val);
	else
7954
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7955
}
7956

7957 7958
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7959
	struct drm_i915_gem_request *req;
7960 7961 7962 7963 7964
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7965
	struct drm_i915_gem_request *req = boost->req;
7966

7967
	if (!i915_gem_request_completed(req))
7968
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7969

7970
	i915_gem_request_put(req);
7971 7972 7973
	kfree(boost);
}

7974
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7975 7976 7977
{
	struct request_boost *boost;

7978
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7979 7980
		return;

7981
	if (i915_gem_request_completed(req))
7982 7983
		return;

7984 7985 7986 7987
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7988
	boost->req = i915_gem_request_get(req);
7989 7990

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7991
	queue_work(req->i915->wq, &boost->work);
7992 7993
}

D
Daniel Vetter 已提交
7994
void intel_pm_setup(struct drm_device *dev)
7995
{
7996
	struct drm_i915_private *dev_priv = to_i915(dev);
7997

D
Daniel Vetter 已提交
7998
	mutex_init(&dev_priv->rps.hw_lock);
7999
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8000

8001 8002
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8003
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8004

8005
	dev_priv->pm.suspended = false;
8006
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8007
}