intel_pm.c 213.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34
/**
35 36
 * DOC: RC6
 *
B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

57 58
static void bxt_init_clock_gating(struct drm_device *dev)
{
59 60
	struct drm_i915_private *dev_priv = dev->dev_private;

61 62 63 64
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

65 66
	/*
	 * FIXME:
67
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
68 69
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
70
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
71 72 73 74 75 76 77 78

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
79 80
}

81 82
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
83
	struct drm_i915_private *dev_priv = dev->dev_private;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
122
	struct drm_i915_private *dev_priv = dev->dev_private;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

148
	dev_priv->ips.r_t = dev_priv->mem_freq;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
180
		dev_priv->ips.c_m = 0;
181
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
182
		dev_priv->ips.c_m = 1;
183
	} else {
184
		dev_priv->ips.c_m = 2;
185 186 187
	}
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

226
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

288 289 290
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

291
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
292
{
293 294
	struct drm_device *dev = dev_priv->dev;
	u32 val;
295

296
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
297
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
298
		POSTING_READ(FW_BLC_SELF_VLV);
299
		dev_priv->wm.vlv.cxsr = enable;
300 301
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
302
		POSTING_READ(FW_BLC_SELF);
303 304 305 306
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
307
		POSTING_READ(DSPFW3);
308 309 310 311
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
312
		POSTING_READ(FW_BLC_SELF);
313 314 315 316
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
317
		POSTING_READ(INSTPM);
318 319 320
	} else {
		return;
	}
321

322 323
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
324 325
}

326

327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
341
static const int pessimal_latency_ns = 5000;
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

398
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

414
static int i830_get_fifo_size(struct drm_device *dev, int plane)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

431
static int i845_get_fifo_size(struct drm_device *dev, int plane)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
449 450 451 452 453
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
454 455
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
456 457 458 459 460
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
461 462
};
static const struct intel_watermark_params pineview_cursor_wm = {
463 464 465 466 467
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468 469
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
470 471 472 473 474
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475 476
};
static const struct intel_watermark_params g4x_wm_info = {
477 478 479 480 481
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
482 483
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
484 485 486 487 488
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params i965_cursor_wm_info = {
491 492 493 494 495
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params i945_wm_info = {
498 499 500 501 502
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params i915_wm_info = {
505 506 507 508 509
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
510
};
511
static const struct intel_watermark_params i830_a_wm_info = {
512 513 514 515 516
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
517
};
518 519 520 521 522 523 524
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
525
static const struct intel_watermark_params i845_wm_info = {
526 527 528 529 530
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
531 532 533 534 535 536
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
537
 * @cpp: bytes per pixel
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
553
					int fifo_size, int cpp,
554 555 556 557 558 559 560 561 562 563
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
564
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
565 566 567 568 569 570 571 572 573 574 575 576 577 578
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
579 580 581 582 583 584 585 586 587 588 589

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

590 591 592 593 594 595 596
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

597
	for_each_crtc(dev, crtc) {
598
		if (intel_crtc_active(crtc)) {
599 600 601 602 603 604 605 606 607
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

608
static void pineview_update_wm(struct drm_crtc *unused_crtc)
609
{
610
	struct drm_device *dev = unused_crtc->dev;
611 612 613 614 615 616 617 618 619 620
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
621
		intel_set_memory_cxsr(dev_priv, false);
622 623 624 625 626
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
627
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
628
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
629
		int clock = adjusted_mode->crtc_clock;
630 631 632 633

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
634
					cpp, latency->display_sr);
635 636
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
637
		reg |= FW_WM(wm, SR);
638 639 640 641 642 643
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
644
					cpp, latency->cursor_sr);
645 646
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
647
		reg |= FW_WM(wm, CURSOR_SR);
648 649 650 651 652
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
653
					cpp, latency->display_hpll_disable);
654 655
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
656
		reg |= FW_WM(wm, HPLL_SR);
657 658 659 660 661
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
662
					cpp, latency->cursor_hpll_disable);
663 664
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
665
		reg |= FW_WM(wm, HPLL_CURSOR);
666 667 668
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

669
		intel_set_memory_cxsr(dev_priv, true);
670
	} else {
671
		intel_set_memory_cxsr(dev_priv, false);
672 673 674 675 676 677 678 679 680 681 682 683 684
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
685
	const struct drm_display_mode *adjusted_mode;
686
	int htotal, hdisplay, clock, cpp;
687 688 689 690
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
691
	if (!intel_crtc_active(crtc)) {
692 693 694 695 696
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

697
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
698
	clock = adjusted_mode->crtc_clock;
699
	htotal = adjusted_mode->crtc_htotal;
700
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
701
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
702 703

	/* Use the small buffer method to calculate plane watermark */
704
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
705 706 707 708 709 710 711 712 713
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
714
	line_time_us = max(htotal * 1000 / clock, 1);
715
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
716
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
771
	const struct drm_display_mode *adjusted_mode;
772
	int hdisplay, htotal, cpp, clock;
773 774 775 776 777 778 779 780 781 782 783
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
784
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
785
	clock = adjusted_mode->crtc_clock;
786
	htotal = adjusted_mode->crtc_htotal;
787
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
788
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
789

790
	line_time_us = max(htotal * 1000 / clock, 1);
791
	line_count = (latency_ns / line_time_us + 1000) / 1000;
792
	line_size = hdisplay * cpp;
793 794

	/* Use the minimum of the small and large buffer method for primary */
795
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
796 797 798 799 800 801
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
802
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
803 804 805 806 807 808 809 810
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

811 812 813
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

814 815 816 817 818 819 820 821 822 823 824 825
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

826
	I915_WRITE(DSPFW1,
827 828 829 830
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
831
	I915_WRITE(DSPFW2,
832 833 834
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
835
	I915_WRITE(DSPFW3,
836
		   FW_WM(wm->sr.cursor, CURSOR_SR));
837 838 839

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
840 841
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
842
		I915_WRITE(DSPFW8_CHV,
843 844
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
845
		I915_WRITE(DSPFW9_CHV,
846 847
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
848
		I915_WRITE(DSPHOWM,
849 850 851 852 853 854 855 856 857 858
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
859 860
	} else {
		I915_WRITE(DSPFW7,
861 862
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
863
		I915_WRITE(DSPHOWM,
864 865 866 867 868 869 870
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
871 872
	}

873 874 875 876 877 878
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

879
	POSTING_READ(DSPFW1);
880 881
}

882 883
#undef FW_WM_VLV

884 885 886 887 888 889
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

890 891 892 893
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
894
				   unsigned int cpp,
895 896 897 898 899
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
900
	ret = (ret + 1) * horiz_pixels * cpp;
901 902 903 904 905 906 907 908 909 910 911 912
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

913 914
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

915 916 917
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
918 919

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
920 921 922 923 924 925 926 927 928
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
929
	int clock, htotal, cpp, width, wm;
930 931 932 933 934 935 936

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

937
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
953
		wm = vlv_wm_method2(clock, htotal, width, cpp,
954 955 956 957 958 959
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1061
static void vlv_compute_wm(struct intel_crtc *crtc)
1062 1063 1064 1065 1066 1067 1068 1069 1070
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1071
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1072
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1073 1074 1075

	wm_state->num_active_planes = 0;

1076
	vlv_compute_fifo(crtc);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1133
					wm_state->wm[level].cursor;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1152
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1153 1154 1155 1156 1157 1158 1159
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1250 1251 1252 1253 1254 1255
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1256
	wm->level = to_i915(dev)->wm.max_level;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1275 1276 1277
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1304
	vlv_compute_wm(intel_crtc);
1305 1306
	vlv_merge_wm(dev, &wm);

1307 1308 1309
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1310
		return;
1311
	}
1312 1313 1314 1315 1316 1317 1318 1319 1320

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1321
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1322 1323
		intel_set_memory_cxsr(dev_priv, false);

1324 1325 1326
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1327 1328 1329 1330 1331 1332 1333 1334
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1335
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1347 1348
}

1349 1350
#define single_plane_enabled(mask) is_power_of_2(mask)

1351
static void g4x_update_wm(struct drm_crtc *crtc)
1352
{
1353
	struct drm_device *dev = crtc->dev;
1354 1355 1356 1357 1358
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1359
	bool cxsr_enabled;
1360

1361
	if (g4x_compute_wm0(dev, PIPE_A,
1362 1363
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1364
			    &planea_wm, &cursora_wm))
1365
		enabled |= 1 << PIPE_A;
1366

1367
	if (g4x_compute_wm0(dev, PIPE_B,
1368 1369
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1370
			    &planeb_wm, &cursorb_wm))
1371
		enabled |= 1 << PIPE_B;
1372 1373 1374 1375 1376 1377

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1378
			     &plane_sr, &cursor_sr)) {
1379
		cxsr_enabled = true;
1380
	} else {
1381
		cxsr_enabled = false;
1382
		intel_set_memory_cxsr(dev_priv, false);
1383 1384
		plane_sr = cursor_sr = 0;
	}
1385

1386 1387
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1388 1389 1390 1391 1392
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1393 1394 1395 1396
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1397
	I915_WRITE(DSPFW2,
1398
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1399
		   FW_WM(cursora_wm, CURSORA));
1400 1401
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1402
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1403
		   FW_WM(cursor_sr, CURSOR_SR));
1404 1405 1406

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1407 1408
}

1409
static void i965_update_wm(struct drm_crtc *unused_crtc)
1410
{
1411
	struct drm_device *dev = unused_crtc->dev;
1412 1413 1414 1415
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1416
	bool cxsr_enabled;
1417 1418 1419 1420 1421 1422

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1423
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1424
		int clock = adjusted_mode->crtc_clock;
1425
		int htotal = adjusted_mode->crtc_htotal;
1426
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1427
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1428 1429 1430
		unsigned long line_time_us;
		int entries;

1431
		line_time_us = max(htotal * 1000 / clock, 1);
1432 1433 1434

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1435
			cpp * hdisplay;
1436 1437 1438 1439 1440 1441 1442 1443 1444
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445
			cpp * crtc->cursor->state->crtc_w;
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1457
		cxsr_enabled = true;
1458
	} else {
1459
		cxsr_enabled = false;
1460
		/* Turn off self refresh if both pipes are enabled */
1461
		intel_set_memory_cxsr(dev_priv, false);
1462 1463 1464 1465 1466 1467
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1468 1469 1470 1471 1472 1473
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1474
	/* update cursor SR watermark */
1475
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1476 1477 1478

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1479 1480
}

1481 1482
#undef FW_WM

1483
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1484
{
1485
	struct drm_device *dev = unused_crtc->dev;
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1500
		wm_info = &i830_a_wm_info;
1501 1502 1503

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1504
	if (intel_crtc_active(crtc)) {
1505
		const struct drm_display_mode *adjusted_mode;
1506
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1507 1508 1509
		if (IS_GEN2(dev))
			cpp = 4;

1510
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1511
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1512
					       wm_info, fifo_size, cpp,
1513
					       pessimal_latency_ns);
1514
		enabled = crtc;
1515
	} else {
1516
		planea_wm = fifo_size - wm_info->guard_size;
1517 1518 1519 1520 1521 1522
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1523 1524 1525

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1526
	if (intel_crtc_active(crtc)) {
1527
		const struct drm_display_mode *adjusted_mode;
1528
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1529 1530 1531
		if (IS_GEN2(dev))
			cpp = 4;

1532
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1533
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1534
					       wm_info, fifo_size, cpp,
1535
					       pessimal_latency_ns);
1536 1537 1538 1539
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1540
	} else {
1541
		planeb_wm = fifo_size - wm_info->guard_size;
1542 1543 1544
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1545 1546 1547

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1548
	if (IS_I915GM(dev) && enabled) {
1549
		struct drm_i915_gem_object *obj;
1550

1551
		obj = intel_fb_obj(enabled->primary->state->fb);
1552 1553

		/* self-refresh seems busted with untiled */
1554
		if (obj->tiling_mode == I915_TILING_NONE)
1555 1556 1557
			enabled = NULL;
	}

1558 1559 1560 1561 1562 1563
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1564
	intel_set_memory_cxsr(dev_priv, false);
1565 1566 1567 1568 1569

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1570
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1571
		int clock = adjusted_mode->crtc_clock;
1572
		int htotal = adjusted_mode->crtc_htotal;
1573
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1574
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1575 1576 1577
		unsigned long line_time_us;
		int entries;

1578
		line_time_us = max(htotal * 1000 / clock, 1);
1579 1580 1581

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1582
			cpp * hdisplay;
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1609 1610
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1611 1612
}

1613
static void i845_update_wm(struct drm_crtc *unused_crtc)
1614
{
1615
	struct drm_device *dev = unused_crtc->dev;
1616 1617
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1618
	const struct drm_display_mode *adjusted_mode;
1619 1620 1621 1622 1623 1624 1625
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1626
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1627
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1628
				       &i845_wm_info,
1629
				       dev_priv->display.get_fifo_size(dev, 0),
1630
				       4, pessimal_latency_ns);
1631 1632 1633 1634 1635 1636 1637 1638
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1639
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1640
{
1641
	uint32_t pixel_rate;
1642

1643
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1644 1645 1646 1647

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1648
	if (pipe_config->pch_pfit.enabled) {
1649
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1650 1651 1652 1653
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1654 1655 1656 1657 1658 1659 1660 1661

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1662 1663 1664
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1665 1666 1667 1668 1669 1670 1671
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1672
/* latency must be in 0.1us units. */
1673
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1674 1675 1676
{
	uint64_t ret;

1677 1678 1679
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1680
	ret = (uint64_t) pixel_rate * cpp * latency;
1681 1682 1683 1684 1685
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1686
/* latency must be in 0.1us units. */
1687
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1688
			       uint32_t horiz_pixels, uint8_t cpp,
1689 1690 1691 1692
			       uint32_t latency)
{
	uint32_t ret;

1693 1694
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1695 1696
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1697

1698
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1699
	ret = (ret + 1) * horiz_pixels * cpp;
1700 1701 1702 1703
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1704
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1705
			   uint8_t cpp)
1706
{
1707 1708 1709 1710 1711 1712
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1713
	if (WARN_ON(!cpp))
1714 1715 1716 1717
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1718
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1719 1720
}

1721
struct ilk_wm_maximums {
1722 1723 1724 1725 1726 1727
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1728 1729 1730 1731
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1732
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1733
				   const struct intel_plane_state *pstate,
1734 1735
				   uint32_t mem_value,
				   bool is_lp)
1736
{
1737 1738
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1739 1740
	uint32_t method1, method2;

1741
	if (!cstate->base.active || !pstate->visible)
1742 1743
		return 0;

1744
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1745 1746 1747 1748

	if (!is_lp)
		return method1;

1749 1750
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1751
				 drm_rect_width(&pstate->dst),
1752
				 cpp, mem_value);
1753 1754

	return min(method1, method2);
1755 1756
}

1757 1758 1759 1760
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1761
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1762
				   const struct intel_plane_state *pstate,
1763 1764
				   uint32_t mem_value)
{
1765 1766
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1767 1768
	uint32_t method1, method2;

1769
	if (!cstate->base.active || !pstate->visible)
1770 1771
		return 0;

1772
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1773 1774
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1775
				 drm_rect_width(&pstate->dst),
1776
				 cpp, mem_value);
1777 1778 1779
	return min(method1, method2);
}

1780 1781 1782 1783
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1784
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1785
				   const struct intel_plane_state *pstate,
1786 1787
				   uint32_t mem_value)
{
1788 1789 1790 1791 1792 1793 1794
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1795

1796
	if (!cstate->base.active)
1797 1798
		return 0;

1799 1800
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1801
			      width, cpp, mem_value);
1802 1803
}

1804
/* Only for WM_LP. */
1805
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1806
				   const struct intel_plane_state *pstate,
1807
				   uint32_t pri_val)
1808
{
1809 1810
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1811

1812
	if (!cstate->base.active || !pstate->visible)
1813 1814
		return 0;

1815
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1816 1817
}

1818 1819
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1820 1821 1822
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1823 1824 1825 1826 1827
		return 768;
	else
		return 512;
}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1862 1863 1864
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1865
				     const struct intel_wm_config *config,
1866 1867 1868 1869 1870 1871
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1872
	if (is_sprite && !config->sprites_enabled)
1873 1874 1875
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1876
	if (level == 0 || config->num_pipes_active > 1) {
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1888
	if (config->sprites_enabled) {
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1900
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1901 1902 1903 1904
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1905 1906
				      int level,
				      const struct intel_wm_config *config)
1907 1908
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1909
	if (level > 0 && config->num_pipes_active > 1)
1910 1911 1912
		return 64;

	/* otherwise just report max that registers can hold */
1913
	return ilk_cursor_wm_reg_max(dev, level);
1914 1915
}

1916
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1917 1918 1919
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1920
				    struct ilk_wm_maximums *max)
1921
{
1922 1923 1924
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1925
	max->fbc = ilk_fbc_wm_reg_max(dev);
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1938
static bool ilk_validate_wm_level(int level,
1939
				  const struct ilk_wm_maximums *max,
1940
				  struct intel_wm_level *result)
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1979
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1980
				 const struct intel_crtc *intel_crtc,
1981
				 int level,
1982
				 struct intel_crtc_state *cstate,
1983 1984 1985
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1986
				 struct intel_wm_level *result)
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2011 2012 2013
	result->enable = true;
}

2014
static uint32_t
2015
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2016
{
2017 2018
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2019 2020
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2021
	u32 linetime, ips_linetime;
2022

2023 2024 2025 2026
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2027
	if (WARN_ON(intel_state->cdclk == 0))
2028
		return 0;
2029

2030 2031 2032
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2033 2034 2035
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2036
					 intel_state->cdclk);
2037

2038 2039
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2040 2041
}

2042
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2043 2044 2045
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2046 2047
	if (IS_GEN9(dev)) {
		uint32_t val;
2048
		int ret, i;
2049
		int level, max_level = ilk_wm_max_level(dev);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2092
		/*
2093 2094
		 * WaWmMemoryReadLatency:skl
		 *
2095 2096 2097 2098 2099 2100 2101 2102
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2103 2104 2105 2106 2107
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2108 2109 2110 2111 2112
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2113 2114 2115
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2116

2117 2118
				break;
			}
2119
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2120 2121 2122 2123 2124
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2125 2126 2127 2128
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2129 2130 2131 2132 2133 2134 2135
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2136 2137 2138 2139 2140 2141 2142
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2143 2144 2145
	}
}

2146 2147 2148
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2149
	if (IS_GEN5(dev))
2150 2151 2152 2153 2154 2155
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2156
	if (IS_GEN5(dev))
2157 2158 2159 2160 2161 2162 2163
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2164
int ilk_wm_max_level(const struct drm_device *dev)
2165 2166
{
	/* how many WM levels are we expecting */
2167
	if (INTEL_INFO(dev)->gen >= 9)
2168 2169
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2170
		return 4;
2171
	else if (INTEL_INFO(dev)->gen >= 6)
2172
		return 3;
2173
	else
2174 2175
		return 2;
}
2176

2177 2178
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2179
				   const uint16_t wm[8])
2180 2181
{
	int level, max_level = ilk_wm_max_level(dev);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2192 2193 2194 2195 2196 2197 2198
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2199 2200 2201 2202 2203 2204 2205 2206
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2244
static void ilk_setup_wm_latency(struct drm_device *dev)
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2257 2258 2259 2260

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2261 2262 2263

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2264 2265
}

2266 2267 2268 2269 2270 2271 2272 2273
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2297
/* Compute new watermarks for the pipe */
2298
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2299
{
2300 2301
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2302
	struct intel_pipe_wm *pipe_wm;
2303
	struct drm_device *dev = state->dev;
2304
	const struct drm_i915_private *dev_priv = dev->dev_private;
2305
	struct intel_plane *intel_plane;
2306
	struct intel_plane_state *pristate = NULL;
2307
	struct intel_plane_state *sprstate = NULL;
2308
	struct intel_plane_state *curstate = NULL;
2309
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2310
	struct ilk_wm_maximums max;
2311

2312
	pipe_wm = &cstate->wm.ilk.optimal;
2313

2314
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2315 2316 2317 2318 2319 2320
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2321 2322

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2323
			pristate = ps;
2324
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2325
			sprstate = ps;
2326
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2327
			curstate = ps;
2328 2329
	}

2330
	pipe_wm->pipe_enabled = cstate->base.active;
2331 2332 2333 2334 2335 2336 2337
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2338 2339
	usable_level = max_level;

2340
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2341
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2342
		usable_level = 1;
2343 2344

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2345
	if (pipe_wm->sprites_scaled)
2346
		usable_level = 0;
2347

2348
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2349 2350 2351 2352
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2353

2354
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2355
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2356

2357
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2358
		return -EINVAL;
2359 2360 2361 2362

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2363
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2364

2365
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2366
				     pristate, sprstate, curstate, wm);
2367 2368 2369 2370 2371 2372

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2373 2374 2375 2376 2377 2378
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2379
			usable_level = level;
2380 2381
	}

2382
	return 0;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2394
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2395 2396 2397 2398 2399 2400 2401 2402
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2403
	*a = newstate->wm.ilk.optimal;
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2432
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2433 2434 2435 2436 2437
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2447 2448
	ret_wm->enable = true;

2449
	for_each_intel_crtc(dev, intel_crtc) {
2450
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2451 2452 2453 2454
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2455

2456 2457 2458 2459 2460
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2461
		if (!wm->enable)
2462
			ret_wm->enable = false;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2475
			 const struct intel_wm_config *config,
2476
			 const struct ilk_wm_maximums *max,
2477 2478
			 struct intel_pipe_wm *merged)
{
2479
	struct drm_i915_private *dev_priv = dev->dev_private;
2480
	int level, max_level = ilk_wm_max_level(dev);
2481
	int last_enabled_level = max_level;
2482

2483 2484 2485
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2486
		last_enabled_level = 0;
2487

2488 2489
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2490 2491 2492 2493 2494 2495 2496

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2497 2498 2499 2500 2501
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2502 2503 2504 2505 2506 2507

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2508 2509
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2510 2511 2512
			wm->fbc_val = 0;
		}
	}
2513 2514 2515 2516 2517 2518 2519

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2520
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2521
	    intel_fbc_is_active(dev_priv)) {
2522 2523 2524 2525 2526 2527
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2528 2529
}

2530 2531 2532 2533 2534 2535
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2536 2537 2538 2539 2540
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2541
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2542 2543 2544 2545 2546
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2547
static void ilk_compute_wm_results(struct drm_device *dev,
2548
				   const struct intel_pipe_wm *merged,
2549
				   enum intel_ddb_partitioning partitioning,
2550
				   struct ilk_wm_values *results)
2551
{
2552 2553
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2554

2555
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2556
	results->partitioning = partitioning;
2557

2558
	/* LP1+ register values */
2559
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2560
		const struct intel_wm_level *r;
2561

2562
		level = ilk_wm_lp_to_level(wm_lp, merged);
2563

2564
		r = &merged->wm[level];
2565

2566 2567 2568 2569 2570
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2571
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2572 2573 2574
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2575 2576 2577
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2578 2579 2580 2581 2582 2583 2584
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2585 2586 2587 2588
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2589 2590 2591 2592 2593
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2594
	}
2595

2596
	/* LP0 register values */
2597
	for_each_intel_crtc(dev, intel_crtc) {
2598
		enum pipe pipe = intel_crtc->pipe;
2599 2600
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2601 2602 2603 2604

		if (WARN_ON(!r->enable))
			continue;

2605
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2606

2607 2608 2609 2610
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2611 2612 2613
	}
}

2614 2615
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2616
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2617 2618
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2619
{
2620 2621
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2622

2623 2624 2625 2626 2627
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2628 2629
	}

2630 2631
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2632 2633 2634
			return r2;
		else
			return r1;
2635
	} else if (level1 > level2) {
2636 2637 2638 2639 2640 2641
		return r1;
	} else {
		return r2;
	}
}

2642 2643 2644 2645 2646 2647 2648 2649
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2650
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2651 2652
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2653 2654 2655 2656 2657
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2658
	for_each_pipe(dev_priv, pipe) {
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2702 2703
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2704
{
2705
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2706
	bool changed = false;
2707

2708 2709 2710
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2711
		changed = true;
2712 2713 2714 2715
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2716
		changed = true;
2717 2718 2719 2720
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2721
		changed = true;
2722
	}
2723

2724 2725 2726 2727
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2728

2729 2730 2731 2732 2733 2734 2735
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2736 2737
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2738 2739
{
	struct drm_device *dev = dev_priv->dev;
2740
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2741 2742 2743
	unsigned int dirty;
	uint32_t val;

2744
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2745 2746 2747 2748 2749
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2750
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2751
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2752
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2753
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2754
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2755 2756
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2757
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2758
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2759
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2760
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2761
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2762 2763
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2764
	if (dirty & WM_DIRTY_DDB) {
2765
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2780 2781
	}

2782
	if (dirty & WM_DIRTY_FBC) {
2783 2784 2785 2786 2787 2788 2789 2790
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2791 2792 2793 2794 2795
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2796 2797 2798 2799 2800
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2801

2802
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2803
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2804
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2805
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2806
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2807
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2808 2809

	dev_priv->wm.hw = *results;
2810 2811
}

2812
bool ilk_disable_lp_wm(struct drm_device *dev)
2813 2814 2815 2816 2817 2818
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2819 2820 2821 2822 2823 2824
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2825
#define BXT_DDB_SIZE		512
2826

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2849 2850
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2851
				   const struct intel_crtc_state *cstate,
2852 2853
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2854
{
2855 2856 2857
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2858
	struct drm_crtc *for_crtc = cstate->base.crtc;
2859 2860
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2861 2862
	int pipe = to_intel_crtc(for_crtc)->pipe;

2863
	if (WARN_ON(!state) || !cstate->base.active) {
2864 2865
		alloc->start = 0;
		alloc->end = 0;
2866
		*num_active = hweight32(dev_priv->active_crtcs);
2867 2868 2869
		return;
	}

2870 2871 2872 2873 2874
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2875 2876 2877 2878
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2879 2880 2881

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2882
	/*
2883 2884 2885 2886 2887 2888
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2889
	 */
2890 2891 2892
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2893
	}
2894 2895 2896 2897 2898 2899

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2900 2901
}

2902
static unsigned int skl_cursor_allocation(int num_active)
2903
{
2904
	if (num_active == 1)
2905 2906 2907 2908 2909
		return 32;

	return 8;
}

2910 2911 2912 2913
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2914 2915
	if (entry->end)
		entry->end += 1;
2916 2917
}

2918 2919
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2920 2921 2922 2923 2924
{
	enum pipe pipe;
	int plane;
	u32 val;

2925 2926
	memset(ddb, 0, sizeof(*ddb));

2927
	for_each_pipe(dev_priv, pipe) {
2928 2929 2930 2931
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2932 2933
			continue;

2934
		for_each_plane(dev_priv, pipe, plane) {
2935 2936 2937 2938 2939 2940
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2941 2942
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2943 2944

		intel_display_power_put(dev_priv, power_domain);
2945 2946 2947
	}
}

2948
static unsigned int
2949 2950 2951
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2952
{
2953
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2954
	struct drm_framebuffer *fb = pstate->fb;
2955
	uint32_t width = 0, height = 0;
2956 2957 2958 2959 2960 2961 2962 2963
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
2964 2965 2966 2967 2968 2969

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
2970 2971

	/* for planar format */
2972
	if (format == DRM_FORMAT_NV12) {
2973
		if (y)  /* y-plane data rate */
2974
			return width * height *
2975
				drm_format_plane_cpp(format, 0);
2976
		else    /* uv-plane data rate */
2977
			return (width / 2) * (height / 2) *
2978
				drm_format_plane_cpp(format, 1);
2979 2980 2981
	}

	/* for packed formats */
2982
	return width * height * drm_format_plane_cpp(format, 0);
2983 2984 2985 2986 2987 2988 2989 2990
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2991
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
2992
{
2993 2994 2995 2996 2997
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2998
	const struct drm_plane *plane;
2999
	const struct intel_plane *intel_plane;
3000
	struct drm_plane_state *pstate;
3001
	unsigned int rate, total_data_rate = 0;
3002
	int id;
3003 3004 3005 3006
	int i;

	if (WARN_ON(!state))
		return 0;
3007

3008
	/* Calculate and cache data rate for each plane */
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3025
	}
3026

3027 3028 3029
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3030

3031
		/* packed/uv */
3032 3033
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3034 3035
	}

3036 3037
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3038 3039 3040
	return total_data_rate;
}

3041
static int
3042
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3043 3044
		      struct skl_ddb_allocation *ddb /* out */)
{
3045
	struct drm_atomic_state *state = cstate->base.state;
3046
	struct drm_crtc *crtc = cstate->base.crtc;
3047 3048
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3049
	struct intel_plane *intel_plane;
3050 3051
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3052
	enum pipe pipe = intel_crtc->pipe;
3053
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3054
	uint16_t alloc_size, start, cursor_blocks;
3055 3056
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3057
	unsigned int total_data_rate;
3058 3059
	int num_active;
	int id, i;
3060

3061 3062 3063
	if (WARN_ON(!state))
		return 0;

3064 3065 3066 3067 3068 3069 3070
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3071
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3072
	alloc_size = skl_ddb_entry_size(alloc);
3073 3074
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3075
		return 0;
3076 3077
	}

3078
	cursor_blocks = skl_cursor_allocation(num_active);
3079 3080
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3081 3082 3083

	alloc_size -= cursor_blocks;

3084
	/* 1. Allocate the mininum required blocks for each active plane */
3085 3086 3087
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3088

3089 3090
		if (intel_plane->pipe != pipe)
			continue;
3091

3092 3093 3094 3095 3096 3097 3098 3099 3100
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3101
		}
3102 3103 3104 3105 3106 3107

		minimum[id] = 8;
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			y_minimum[id] = 8;
		else
			y_minimum[id] = 0;
3108
	}
3109

3110 3111 3112
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3113 3114
	}

3115
	/*
3116 3117
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3118 3119 3120
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3121
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3122
	if (total_data_rate == 0)
3123
		return 0;
3124

3125
	start = alloc->start;
3126
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3127 3128
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3129
		int id = skl_wm_plane_id(intel_plane);
3130

3131
		data_rate = cstate->wm.skl.plane_data_rate[id];
3132 3133

		/*
3134
		 * allocation for (packed formats) or (uv-plane part of planar format):
3135 3136 3137
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3138
		plane_blocks = minimum[id];
3139 3140
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3141

3142 3143 3144 3145 3146
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3147 3148

		start += plane_blocks;
3149 3150 3151 3152

		/*
		 * allocation for y_plane part of planar format:
		 */
3153 3154 3155 3156 3157
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3158

3159 3160 3161 3162
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3163 3164

		start += y_plane_blocks;
3165 3166
	}

3167
	return 0;
3168 3169
}

3170
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3171 3172
{
	/* TODO: Take into account the scalers once we support them */
3173
	return config->base.adjusted_mode.crtc_clock;
3174 3175 3176 3177
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3178
 * for the read latency) and cpp should always be <= 8, so that
3179 3180 3181
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3182
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3183 3184 3185 3186 3187 3188
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3189
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3190 3191 3192 3193 3194 3195
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3196
			       uint32_t horiz_pixels, uint8_t cpp,
3197
			       uint64_t tiling, uint32_t latency)
3198
{
3199 3200 3201
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3202 3203 3204 3205

	if (latency == 0)
		return UINT_MAX;

3206
	plane_bytes_per_line = horiz_pixels * cpp;
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3217 3218
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3219
				plane_blocks_per_line;
3220 3221 3222 3223

	return ret;
}

3224 3225 3226 3227 3228 3229 3230 3231
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3232
{
3233 3234
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3235 3236 3237 3238 3239
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3240
	uint8_t cpp;
3241
	uint32_t width = 0, height = 0;
3242

3243 3244 3245 3246
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3247

3248 3249 3250
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3251
	if (intel_rotation_90_or_270(pstate->rotation))
3252 3253
		swap(width, height);

3254
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3255
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3256
				 cpp, latency);
3257 3258
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
3259 3260 3261
				 width,
				 cpp,
				 fb->modifier[0],
3262
				 latency);
3263

3264
	plane_bytes_per_line = width * cpp;
3265
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3266

3267 3268
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3269 3270
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3271
		if (intel_rotation_90_or_270(pstate->rotation)) {
3272
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3273 3274 3275
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3276
			switch (cpp) {
3277 3278 3279 3280 3281 3282 3283 3284
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3285
			}
3286 3287
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3288 3289 3290 3291 3292 3293 3294
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3295

3296 3297
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3298

3299
	if (level >= 1 && level <= 7) {
3300 3301
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3302 3303 3304 3305
			res_lines += 4;
		else
			res_blocks++;
	}
3306

3307 3308 3309 3310
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
		return 0;
	}
3311 3312 3313

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3314
	*enabled = true;
3315

3316
	return 0;
3317 3318
}

3319 3320 3321 3322 3323 3324
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3325
{
3326
	struct drm_device *dev = dev_priv->dev;
3327
	struct drm_atomic_state *state = cstate->base.state;
3328
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3329
	struct drm_plane *plane;
3330
	struct intel_plane *intel_plane;
3331
	struct intel_plane_state *intel_pstate;
3332
	uint16_t ddb_blocks;
3333
	enum pipe pipe = intel_crtc->pipe;
3334
	int ret;
3335

3336 3337 3338 3339 3340 3341 3342
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3343
		int i = skl_wm_plane_id(intel_plane);
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3370 3371
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3382
	}
3383 3384

	return 0;
3385 3386
}

3387
static uint32_t
3388
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3389
{
3390
	if (!cstate->base.active)
3391 3392
		return 0;

3393
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3394
		return 0;
3395

3396 3397
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3398 3399
}

3400
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3401
				      struct skl_wm_level *trans_wm /* out */)
3402
{
3403
	struct drm_crtc *crtc = cstate->base.crtc;
3404
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3405
	struct intel_plane *intel_plane;
3406

3407
	if (!cstate->base.active)
3408
		return;
3409 3410

	/* Until we know more, just disable transition WMs */
3411 3412 3413
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3414
		trans_wm->plane_en[i] = false;
3415
	}
3416 3417
}

3418 3419 3420
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3421
{
3422
	struct drm_device *dev = cstate->base.crtc->dev;
3423 3424
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3425
	int ret;
3426 3427

	for (level = 0; level <= max_level; level++) {
3428 3429 3430 3431
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3432
	}
3433
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3434

3435
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3436 3437

	return 0;
3438 3439 3440 3441 3442 3443 3444 3445 3446
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3447 3448
	uint32_t temp;
	int i;
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3465 3466
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3467

3468
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3469 3470
			temp |= PLANE_WM_EN;

3471
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3472 3473 3474

	}

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3487 3488 3489
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3490 3491
		temp |= PLANE_WM_EN;

3492
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3493

3494 3495 3496
	r->wm_linetime[pipe] = p_wm->linetime;
}

3497 3498
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3499 3500 3501 3502 3503 3504 3505 3506
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3507 3508 3509 3510 3511 3512
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3513
	for_each_intel_crtc(dev, crtc) {
3514 3515 3516
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3517
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3518
			continue;
3519 3520
		if (!crtc->active)
			continue;
3521

3522
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3523

3524 3525 3526 3527 3528
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3529
				   new->plane[pipe][PLANE_CURSOR][level]);
3530
		}
3531 3532 3533
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3534 3535
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3536

3537
		for (i = 0; i < intel_num_planes(crtc); i++) {
3538 3539 3540
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3541 3542 3543 3544
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3545 3546

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3547
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3548 3549 3550
	}
}

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3575 3576
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3577 3578 3579
{
	int plane;

3580 3581
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3582
	for_each_plane(dev_priv, pipe, plane) {
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3609
	bool reallocated[I915_MAX_PIPES] = {};
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3632
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3657
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3658
			intel_wait_for_vblank(dev, pipe);
3659
			reallocated[pipe] = true;
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3682
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3683 3684 3685
	}
}

3686 3687 3688 3689
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3690
{
3691 3692
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3693
	int ret;
3694

3695 3696 3697
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3698

3699
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3700 3701 3702
		*changed = false;
	else
		*changed = true;
3703

3704
	return 0;
3705 3706
}

3707 3708 3709 3710 3711 3712 3713
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3714
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	unsigned realloc_pipes = dev_priv->active_crtcs;
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3740
	if (intel_state->active_pipe_changes) {
3741
		realloc_pipes = ~0;
3742 3743
		intel_state->wm_results.dirty_pipes = ~0;
	}
3744 3745 3746 3747 3748 3749 3750 3751

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3752
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3765 3766 3767
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3768
	bool changed = false;
3769
	int ret, i;
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3784 3785 3786
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3787 3788 3789 3790
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

3823 3824 3825
	return 0;
}

3826 3827 3828 3829 3830 3831
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3832
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3833
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
3834

3835
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
3836 3837
		return;

3838 3839 3840
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
3841 3842

	skl_write_wm_values(dev_priv, results);
3843
	skl_flush_wm_values(dev_priv, results);
3844 3845 3846

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3847 3848

	mutex_unlock(&dev_priv->wm.wm_mutex);
3849 3850
}

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3869
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3870
{
3871
	struct drm_device *dev = dev_priv->dev;
3872
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3873
	struct ilk_wm_maximums max;
3874
	struct intel_wm_config config = {};
3875
	struct ilk_wm_values results = {};
3876
	enum intel_ddb_partitioning partitioning;
3877

3878 3879 3880 3881
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3882 3883

	/* 5/6 split only in single pipe config on IVB+ */
3884
	if (INTEL_INFO(dev)->gen >= 7 &&
3885 3886 3887
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3888

3889
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3890
	} else {
3891
		best_lp_wm = &lp_wm_1_2;
3892 3893
	}

3894
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3895
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3896

3897
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3898

3899
	ilk_write_wm_values(dev_priv, &results);
3900 3901
}

3902
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3903
{
3904 3905
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3906

3907
	mutex_lock(&dev_priv->wm.wm_mutex);
3908
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
3909 3910 3911
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
3912

3913 3914 3915 3916
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3917

3918 3919
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
3920
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
3921 3922 3923
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
3924 3925
}

3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3944 3945
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3946
					val & PLANE_WM_BLOCKS_MASK;
3947
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3960 3961
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3962
					val & PLANE_WM_BLOCKS_MASK;
3963
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3976
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3977
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3990
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3991 3992 3993 3994
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3995
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3996

3997
	if (!intel_crtc->active)
3998 3999
		return;

4000
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4001 4002 4003 4004 4005 4006 4007 4008 4009

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4010
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4011 4012 4013 4014 4015 4016 4017 4018
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4019
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4020
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4021 4022

	intel_crtc->wm.active.skl = *active;
4023 4024 4025 4026
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4027 4028
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4029
	struct drm_crtc *crtc;
4030
	struct intel_crtc *intel_crtc;
4031

4032
	skl_ddb_get_hw_state(dev_priv, ddb);
4033 4034
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4035

4036 4037 4038 4039 4040 4041 4042 4043
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	/* Calculate plane data rates */
	for_each_intel_crtc(dev, intel_crtc) {
		struct intel_crtc_state *cstate = intel_crtc->config;
		struct intel_plane *intel_plane;

		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
			const struct drm_plane_state *pstate =
				intel_plane->base.state;
			int id = skl_wm_plane_id(intel_plane);

			cstate->wm.skl.plane_data_rate[id] =
				skl_plane_relative_data_rate(cstate, pstate, 0);
			cstate->wm.skl.plane_y_data_rate[id] =
				skl_plane_relative_data_rate(cstate, pstate, 1);
		}
	}
4060 4061
}

4062 4063 4064 4065
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4066
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4067
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4068
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4069
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4070
	enum pipe pipe = intel_crtc->pipe;
4071
	static const i915_reg_t wm0_pipe_reg[] = {
4072 4073 4074 4075 4076 4077
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4078
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4079
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4080

4081
	active->pipe_enabled = intel_crtc->active;
4082 4083

	if (active->pipe_enabled) {
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4108 4109

	intel_crtc->wm.active.ilk = *active;
4110 4111
}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4229 4230 4231 4232 4233 4234 4235 4236 4237
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4238
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4265 4266 4267
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4268
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4269 4270
	struct drm_crtc *crtc;

4271
	for_each_crtc(dev, crtc)
4272 4273 4274 4275 4276 4277 4278
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4279 4280 4281 4282
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4283

4284
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4285 4286 4287 4288 4289
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4290 4291 4292 4293 4294

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4327
void intel_update_watermarks(struct drm_crtc *crtc)
4328
{
4329
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4330 4331

	if (dev_priv->display.update_wm)
4332
		dev_priv->display.update_wm(crtc);
4333 4334
}

4335
/*
4336 4337 4338 4339 4340 4341 4342 4343
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4344
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4345 4346 4347
{
	u16 rgvswctl;

4348 4349
	assert_spin_locked(&mchdev_lock);

4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4367
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4368
{
4369
	u32 rgvmodectl;
4370 4371
	u8 fmax, fmin, fstart, vstart;

4372 4373
	spin_lock_irq(&mchdev_lock);

4374 4375
	rgvmodectl = I915_READ(MEMMODECTL);

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4396
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4397 4398
		PXVFREQ_PX_SHIFT;

4399 4400
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4401

4402 4403 4404
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4421
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4422
		DRM_ERROR("stuck trying to change perf mode\n");
4423
	mdelay(1);
4424

4425
	ironlake_set_drps(dev_priv, fstart);
4426

4427 4428
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4429
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4430
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4431
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4432 4433

	spin_unlock_irq(&mchdev_lock);
4434 4435
}

4436
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4437
{
4438 4439 4440 4441 4442
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4443 4444 4445 4446 4447 4448 4449 4450 4451

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4452
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4453
	mdelay(1);
4454 4455
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4456
	mdelay(1);
4457

4458
	spin_unlock_irq(&mchdev_lock);
4459 4460
}

4461 4462 4463 4464 4465
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4466
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4467
{
4468
	u32 limits;
4469

4470 4471 4472 4473 4474 4475
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4476
	if (IS_GEN9(dev_priv)) {
4477 4478 4479 4480 4481 4482 4483 4484
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4485 4486 4487 4488

	return limits;
}

4489 4490 4491
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4492 4493
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4494 4495 4496 4497

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4498
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4499 4500 4501 4502
			new_power = BETWEEN;
		break;

	case BETWEEN:
4503
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4504
			new_power = LOW_POWER;
4505
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4506 4507 4508 4509
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4510
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4511 4512 4513 4514
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4515
	if (val <= dev_priv->rps.min_freq_softlimit)
4516
		new_power = LOW_POWER;
4517
	if (val >= dev_priv->rps.max_freq_softlimit)
4518 4519 4520 4521 4522 4523 4524 4525
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4526 4527
		ei_up = 16000;
		threshold_up = 95;
4528 4529

		/* Downclock if less than 85% busy over 32ms */
4530 4531
		ei_down = 32000;
		threshold_down = 85;
4532 4533 4534 4535
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4536 4537
		ei_up = 13000;
		threshold_up = 90;
4538 4539

		/* Downclock if less than 75% busy over 32ms */
4540 4541
		ei_down = 32000;
		threshold_down = 75;
4542 4543 4544 4545
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4546 4547
		ei_up = 10000;
		threshold_up = 85;
4548 4549

		/* Downclock if less than 60% busy over 32ms */
4550 4551
		ei_down = 32000;
		threshold_down = 60;
4552 4553 4554
		break;
	}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4573
	dev_priv->rps.power = new_power;
4574 4575
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4576 4577 4578
	dev_priv->rps.last_adj = 0;
}

4579 4580 4581 4582 4583
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4584
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4585
	if (val < dev_priv->rps.max_freq_softlimit)
4586
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4587

4588 4589
	mask &= dev_priv->pm_rps_events;

4590
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4591 4592
}

4593 4594 4595
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4596
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4597
{
4598
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4599
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4600 4601
		return;

4602
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4603 4604
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4605

C
Chris Wilson 已提交
4606 4607 4608 4609 4610
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4611

4612
		if (IS_GEN9(dev_priv))
4613 4614
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4615
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4616 4617 4618 4619 4620 4621 4622
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4623
	}
4624 4625 4626 4627

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4628
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4629
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4630

4631 4632
	POSTING_READ(GEN6_RPNSWREQ);

4633
	dev_priv->rps.cur_freq = val;
4634
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4635 4636
}

4637
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4638 4639
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4640 4641
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4642

4643
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4644 4645 4646
		      "Odd GPU freq value\n"))
		val &= ~1;

4647 4648
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4649
	if (val != dev_priv->rps.cur_freq) {
4650
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4651 4652 4653
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4654 4655 4656 4657 4658

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4659
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4660 4661
 *
 * * If Gfx is Idle, then
4662 4663 4664
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4665 4666 4667
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4668
	u32 val = dev_priv->rps.idle_freq;
4669

4670
	if (dev_priv->rps.cur_freq <= val)
4671 4672
		return;

4673 4674 4675
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4676
	valleyview_set_rps(dev_priv, val);
4677
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4678 4679
}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4692 4693 4694
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4695
	if (dev_priv->rps.enabled) {
4696
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4697
			vlv_set_rps_idle(dev_priv);
4698
		else
4699
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4700
		dev_priv->rps.last_adj = 0;
4701
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4702
	}
4703
	mutex_unlock(&dev_priv->rps.hw_lock);
4704

4705
	spin_lock(&dev_priv->rps.client_lock);
4706 4707
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4708
	spin_unlock(&dev_priv->rps.client_lock);
4709 4710
}

4711
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4712 4713
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4714
{
4715 4716 4717 4718 4719 4720 4721
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4722

4723 4724 4725
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4726
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4727 4728
		rps = NULL;

4729 4730 4731 4732 4733 4734 4735 4736
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4737

4738 4739 4740
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4741 4742
		} else
			dev_priv->rps.boosts++;
4743
	}
4744
	spin_unlock(&dev_priv->rps.client_lock);
4745 4746
}

4747
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4748
{
4749 4750
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4751
	else
4752
		gen6_set_rps(dev_priv, val);
4753 4754
}

4755
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4756 4757
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4758
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4759 4760
}

4761
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4762 4763 4764 4765
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4766
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4767 4768
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4769
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4770
	I915_WRITE(GEN6_RP_CONTROL, 0);
4771 4772
}

4773
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4774 4775 4776 4777
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4778
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4779
{
4780 4781
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4782
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783

4784
	I915_WRITE(GEN6_RC_CONTROL, 0);
4785

4786
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4787 4788
}

4789
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4790
{
4791
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4792 4793 4794 4795 4796
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4797
	if (HAS_RC6p(dev_priv))
4798
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4799 4800 4801
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4802 4803 4804

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4805
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4806 4807
}

4808
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4809
{
4810
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4824 4825 4826
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

4850
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
4851
{
4852
	/* No RC6 before Ironlake and code is gone for ilk. */
4853
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
4854 4855
		return 0;

4856 4857 4858
	if (!enable_rc6)
		return 0;

4859
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
4860 4861 4862 4863
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4864
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4865 4866 4867
	if (enable_rc6 >= 0) {
		int mask;

4868
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
4869 4870 4871 4872 4873 4874
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4875 4876
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4877 4878 4879

		return enable_rc6 & mask;
	}
4880

4881
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
4882
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4883 4884

	return INTEL_RC6_ENABLE;
4885 4886
}

4887
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
4888
{
4889 4890 4891 4892
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4893 4894
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4895
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4896
	if (IS_BROXTON(dev_priv)) {
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4908 4909 4910
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4911
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4912 4913
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4914 4915 4916 4917 4918
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4919 4920 4921 4922
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4923 4924
	}

4925
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
4926 4927 4928 4929 4930 4931 4932 4933 4934
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4935 4936
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4937 4938 4939 4940
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4941
	if (dev_priv->rps.min_freq_softlimit == 0) {
4942
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4943
			dev_priv->rps.min_freq_softlimit =
4944 4945
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4946 4947 4948 4949
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4950 4951
}

J
Jesse Barnes 已提交
4952
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4953
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
4954 4955 4956
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4957
	gen6_init_rps_frequencies(dev_priv);
4958

4959
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4960
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
4961 4962 4963 4964 4965 4966 4967 4968 4969
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
4970
		gen9_disable_rps(dev_priv);
4971 4972 4973 4974
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4975 4976 4977 4978 4979 4980 4981 4982
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4983 4984
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4985 4986 4987 4988
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4989
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
4990 4991 4992 4993

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

4994
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4995
{
4996
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
4997 4998 4999 5000 5001 5002 5003
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5004
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5005 5006 5007 5008 5009

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5010 5011

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5012
	if (IS_SKYLAKE(dev_priv))
5013 5014 5015
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5016 5017
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5018
	for_each_engine(engine, dev_priv)
5019
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5020

5021
	if (HAS_GUC_UCODE(dev_priv))
5022 5023
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5024 5025
	I915_WRITE(GEN6_RC_SLEEP, 0);

5026 5027 5028 5029
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5030
	/* 3a: Enable RC6 */
5031
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5032
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5033
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5034
	/* WaRsUseTimeoutMode */
5035 5036
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5037
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5038 5039 5040
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5041 5042
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5043 5044 5045
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5046
	}
Z
Zhe Wang 已提交
5047

5048 5049
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5050
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5051
	 */
5052
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5053 5054 5055 5056
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5057

5058
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5059 5060
}

5061
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5062
{
5063
	struct intel_engine_cs *engine;
5064
	uint32_t rc6_mask = 0;
5065 5066 5067 5068 5069 5070

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5071
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5072 5073 5074 5075

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5076
	/* Initialize rps frequencies */
5077
	gen6_init_rps_frequencies(dev_priv);
5078 5079 5080 5081 5082

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5083
	for_each_engine(engine, dev_priv)
5084
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5085
	I915_WRITE(GEN6_RC_SLEEP, 0);
5086
	if (IS_BROADWELL(dev_priv))
5087 5088 5089
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5090 5091

	/* 3: Enable RC6 */
5092
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5093
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5094 5095
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5096 5097 5098 5099 5100 5101 5102
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5103 5104

	/* 4 Program defaults and thresholds for RPS*/
5105 5106 5107 5108
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5123 5124

	/* 5: Enable RPS */
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5135
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5136
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5137

5138
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5139 5140
}

5141
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5142
{
5143
	struct intel_engine_cs *engine;
5144
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5145 5146
	u32 gtfifodbg;
	int rc6_mode;
5147
	int ret;
5148

5149
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5150

5151 5152 5153 5154 5155 5156 5157 5158 5159
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5160 5161
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5162 5163 5164 5165
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5166
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5167

5168
	/* Initialize rps frequencies */
5169
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5170

5171 5172 5173 5174 5175 5176 5177 5178 5179
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5180
	for_each_engine(engine, dev_priv)
5181
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5182 5183 5184

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5185
	if (IS_IVYBRIDGE(dev_priv))
5186 5187 5188
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5189
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5190 5191
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5192
	/* Check if we are enabling RC6 */
5193
	rc6_mode = intel_enable_rc6();
5194 5195 5196
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5197
	/* We don't use those on Haswell */
5198
	if (!IS_HASWELL(dev_priv)) {
5199 5200
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5201

5202 5203 5204
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5205

5206
	intel_print_rc6_info(dev_priv, rc6_mask);
5207 5208 5209 5210 5211 5212

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5213 5214
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5215 5216
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5217
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5218
	if (ret)
B
Ben Widawsky 已提交
5219
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5220 5221 5222 5223

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5224
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5225
				 (pcu_mbox & 0xff) * 50);
5226
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5227 5228
	}

5229
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5230
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5231

5232 5233
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5234
	if (IS_GEN6(dev_priv) && ret) {
5235
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5236
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5237 5238 5239 5240 5241 5242 5243 5244 5245
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5246
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5247 5248
}

5249
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5250 5251
{
	int min_freq = 15;
5252 5253
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5254
	unsigned int max_gpu_freq, min_gpu_freq;
5255
	int scaling_factor = 180;
5256
	struct cpufreq_policy *policy;
5257

5258
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5259

5260 5261 5262 5263 5264 5265 5266 5267 5268
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5269
		max_ia_freq = tsc_khz;
5270
	}
5271 5272 5273 5274

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5275
	min_ring_freq = I915_READ(DCLK) & 0xf;
5276 5277
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5278

5279
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5280 5281 5282 5283 5284 5285 5286 5287
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5288 5289 5290 5291 5292
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5293 5294
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5295 5296
		unsigned int ia_freq = 0, ring_freq = 0;

5297
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5298 5299 5300 5301 5302
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5303
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5304 5305
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5306
		} else if (IS_HASWELL(dev_priv)) {
5307
			ring_freq = mult_frac(gpu_freq, 5, 4);
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5324

B
Ben Widawsky 已提交
5325 5326
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5327 5328 5329
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5330 5331 5332
	}
}

5333
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5334
{
5335
	if (!HAS_CORE_RING_FREQ(dev_priv))
5336 5337 5338
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5339
	__gen6_update_ring_freq(dev_priv);
5340 5341 5342
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5343
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5344 5345 5346
{
	u32 val, rp0;

5347
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5348

5349
	switch (INTEL_INFO(dev_priv)->eu_total) {
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5364
	}
5365 5366 5367

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5381 5382 5383 5384
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5385 5386 5387
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5388 5389 5390
	return rp1;
}

5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5402
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5403 5404 5405
{
	u32 val, rp0;

5406
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5419
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5420
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5421
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5422 5423 5424 5425 5426
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5427
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5428
{
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5440 5441
}

5442 5443 5444 5445 5446 5447 5448 5449 5450
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5451 5452 5453 5454 5455 5456 5457 5458 5459

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5460
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5461
{
5462
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5463
	unsigned long pctx_paddr, paddr;
5464 5465 5466 5467 5468
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5469
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5470
		paddr = (dev_priv->mm.stolen_base +
5471
			 (ggtt->stolen_size - pctx_size));
5472 5473 5474 5475

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5476 5477

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5478 5479
}

5480
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5481 5482 5483 5484 5485 5486
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5487
	mutex_lock(&dev_priv->dev->struct_mutex);
5488

5489 5490 5491 5492 5493 5494 5495 5496
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5497
								      I915_GTT_OFFSET_NONE,
5498 5499 5500 5501
								      pctx_size);
		goto out;
	}

5502 5503
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5504 5505 5506 5507 5508 5509 5510 5511
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5512
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5513 5514
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5515
		goto out;
5516 5517 5518 5519 5520 5521
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5522
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5523
	dev_priv->vlv_pctx = pctx;
5524
	mutex_unlock(&dev_priv->dev->struct_mutex);
5525 5526
}

5527
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5528 5529 5530 5531
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5532
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5533 5534 5535
	dev_priv->vlv_pctx = NULL;
}

5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5547
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5548
{
5549
	u32 val;
5550

5551
	valleyview_setup_pctx(dev_priv);
5552

5553 5554
	vlv_init_gpll_ref_freq(dev_priv);

5555 5556
	mutex_lock(&dev_priv->rps.hw_lock);

5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5570
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5571

5572 5573 5574
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5575
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5576 5577 5578 5579
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5580
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5581 5582
			 dev_priv->rps.efficient_freq);

5583 5584
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5585
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5586 5587
			 dev_priv->rps.rp1_freq);

5588 5589
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5590
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5591 5592
			 dev_priv->rps.min_freq);

5593 5594
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5605
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5606
{
5607
	u32 val;
5608

5609
	cherryview_setup_pctx(dev_priv);
5610

5611 5612
	vlv_init_gpll_ref_freq(dev_priv);

5613 5614
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5615
	mutex_lock(&dev_priv->sb_lock);
5616
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5617
	mutex_unlock(&dev_priv->sb_lock);
5618

5619 5620 5621 5622
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5623
	default:
5624 5625 5626
		dev_priv->mem_freq = 1600;
		break;
	}
5627
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5628

5629 5630 5631
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5632
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5633 5634 5635 5636
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5637
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5638 5639
			 dev_priv->rps.efficient_freq);

5640 5641
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5642
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5643 5644
			 dev_priv->rps.rp1_freq);

5645 5646
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5647
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5648
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5649 5650
			 dev_priv->rps.min_freq);

5651 5652 5653 5654 5655 5656
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5657 5658
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5659 5660 5661 5662 5663 5664 5665 5666
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5667 5668
}

5669
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5670
{
5671
	valleyview_cleanup_pctx(dev_priv);
5672 5673
}

5674
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5675
{
5676
	struct intel_engine_cs *engine;
5677
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5678 5679 5680

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5681 5682
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5693
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5694

5695 5696 5697
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5698 5699 5700 5701 5702
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5703
	for_each_engine(engine, dev_priv)
5704
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5705 5706
	I915_WRITE(GEN6_RC_SLEEP, 0);

5707 5708
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5720 5721
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5722
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5723 5724 5725

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5726
	/* 4 Program defaults and thresholds for RPS*/
5727
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5738
		   GEN6_RP_MEDIA_IS_GFX |
5739 5740 5741 5742
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5743 5744 5745 5746 5747 5748
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5749 5750
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5751 5752 5753
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5754
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5755 5756 5757 5758
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5759
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5760 5761 5762
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5763 5764
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5765

5766
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5767

5768
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5769 5770
}

5771
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5772
{
5773
	struct intel_engine_cs *engine;
5774
	u32 gtfifodbg, val, rc6_mode = 0;
5775 5776 5777

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5778 5779
	valleyview_check_pctx(dev_priv);

5780 5781
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5782 5783
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5784 5785 5786
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5787
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5788
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5789

5790 5791 5792
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5793
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5813
	for_each_engine(engine, dev_priv)
5814
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5815

5816
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5817 5818

	/* allows RC6 residency counter to work */
5819
	I915_WRITE(VLV_COUNTER_CONTROL,
5820 5821
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5822 5823
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5824

5825
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5826
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5827

5828
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
5829

5830
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5831

D
Deepak S 已提交
5832 5833 5834 5835 5836 5837
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5838
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5839

5840 5841 5842
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5843
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5844 5845
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5846
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5847
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5848
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5849
			 dev_priv->rps.cur_freq);
5850

5851
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5852 5853
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5854

5855
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5856

5857
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5858 5859
}

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5889
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5890 5891 5892 5893 5894 5895
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5896 5897
	assert_spin_locked(&mchdev_lock);

5898
	diff1 = now - dev_priv->ips.last_time1;
5899 5900 5901 5902 5903 5904 5905

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5906
		return dev_priv->ips.chipset_power;
5907 5908 5909 5910 5911 5912 5913 5914

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5915 5916
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5917 5918
		diff += total_count;
	} else {
5919
		diff = total_count - dev_priv->ips.last_count1;
5920 5921 5922
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5923 5924
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5935 5936
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5937

5938
	dev_priv->ips.chipset_power = ret;
5939 5940 5941 5942

	return ret;
}

5943 5944 5945 5946
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

5947
	if (INTEL_INFO(dev_priv)->gen != 5)
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5986
{
5987 5988 5989
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5990
	if (INTEL_INFO(dev_priv)->is_mobile)
5991 5992 5993
		return vm > 0 ? vm : 0;

	return vd;
5994 5995
}

5996
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5997
{
5998
	u64 now, diff, diffms;
5999 6000
	u32 count;

6001
	assert_spin_locked(&mchdev_lock);
6002

6003 6004 6005
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6006 6007 6008 6009 6010 6011 6012

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6013 6014
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6015 6016
		diff += count;
	} else {
6017
		diff = count - dev_priv->ips.last_count2;
6018 6019
	}

6020 6021
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6022 6023 6024 6025

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6026
	dev_priv->ips.gfx_power = diff;
6027 6028
}

6029 6030
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6031
	if (INTEL_INFO(dev_priv)->gen != 5)
6032 6033
		return;

6034
	spin_lock_irq(&mchdev_lock);
6035 6036 6037

	__i915_update_gfx_val(dev_priv);

6038
	spin_unlock_irq(&mchdev_lock);
6039 6040
}

6041
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6042 6043 6044 6045
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6046 6047
	assert_spin_locked(&mchdev_lock);

6048
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6068
	corr2 = (corr * dev_priv->ips.corr);
6069 6070 6071 6072

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6073
	__i915_update_gfx_val(dev_priv);
6074

6075
	return dev_priv->ips.gfx_power + state2;
6076 6077
}

6078 6079 6080 6081
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6082
	if (INTEL_INFO(dev_priv)->gen != 5)
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6105
	spin_lock_irq(&mchdev_lock);
6106 6107 6108 6109
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6110 6111
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6112 6113 6114 6115

	ret = chipset_val + graphics_val;

out_unlock:
6116
	spin_unlock_irq(&mchdev_lock);
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6132
	spin_lock_irq(&mchdev_lock);
6133 6134 6135 6136 6137 6138
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6139 6140
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6141 6142

out_unlock:
6143
	spin_unlock_irq(&mchdev_lock);
6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6160
	spin_lock_irq(&mchdev_lock);
6161 6162 6163 6164 6165 6166
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6167 6168
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6169 6170

out_unlock:
6171
	spin_unlock_irq(&mchdev_lock);
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6185
	struct intel_engine_cs *engine;
6186 6187
	bool ret = false;

6188
	spin_lock_irq(&mchdev_lock);
6189 6190 6191 6192
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6193
	for_each_engine(engine, dev_priv)
6194
		ret |= !list_empty(&engine->request_list);
6195 6196

out_unlock:
6197
	spin_unlock_irq(&mchdev_lock);
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6214
	spin_lock_irq(&mchdev_lock);
6215 6216 6217 6218 6219 6220
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6221
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6222

6223
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6224 6225 6226
		ret = false;

out_unlock:
6227
	spin_unlock_irq(&mchdev_lock);
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6255 6256
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6257
	spin_lock_irq(&mchdev_lock);
6258
	i915_mch_dev = dev_priv;
6259
	spin_unlock_irq(&mchdev_lock);
6260 6261 6262 6263 6264 6265

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6266
	spin_lock_irq(&mchdev_lock);
6267
	i915_mch_dev = NULL;
6268
	spin_unlock_irq(&mchdev_lock);
6269
}
6270

6271
static void intel_init_emon(struct drm_i915_private *dev_priv)
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6288
		I915_WRITE(PEW(i), 0);
6289
	for (i = 0; i < 3; i++)
6290
		I915_WRITE(DEW(i), 0);
6291 6292 6293

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6294
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6315
		I915_WRITE(PXW(i), val);
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6331
		I915_WRITE(PXWL(i), 0);
6332 6333 6334 6335 6336 6337

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6338
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6339 6340
}

6341
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6342
{
6343 6344 6345 6346 6347 6348 6349 6350
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6351

6352 6353 6354 6355
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6356 6357
}

6358
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6359
{
6360
	if (IS_CHERRYVIEW(dev_priv))
6361
		return;
6362 6363
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6364 6365 6366

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6367 6368
}

6369
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6370 6371 6372
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6373
	gen6_disable_rps_interrupts(dev_priv);
6374 6375
}

6376 6377
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6378
 * @dev_priv: i915 device
6379 6380 6381 6382 6383
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6384
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6385
{
6386
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6387 6388
		return;

6389
	gen6_suspend_rps(dev_priv);
6390 6391 6392

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6393 6394
}

6395
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6396
{
6397
	if (IS_IRONLAKE_M(dev_priv)) {
6398
		ironlake_disable_drps(dev_priv);
6399 6400
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6401

6402
		mutex_lock(&dev_priv->rps.hw_lock);
6403 6404 6405 6406 6407 6408 6409
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6410
		else
6411
			gen6_disable_rps(dev_priv);
6412

6413
		dev_priv->rps.enabled = false;
6414
		mutex_unlock(&dev_priv->rps.hw_lock);
6415
	}
6416 6417
}

6418 6419 6420 6421 6422 6423
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6424
	mutex_lock(&dev_priv->rps.hw_lock);
6425

6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6440
	} else {
6441 6442
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6443
	}
6444 6445 6446 6447 6448 6449 6450

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6451
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6452

6453
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6454

6455
	mutex_unlock(&dev_priv->rps.hw_lock);
6456 6457

	intel_runtime_pm_put(dev_priv);
6458 6459
}

6460
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6461
{
6462
	/* Powersaving is controlled by the host when inside a VM */
6463
	if (intel_vgpu_active(dev_priv))
6464 6465
		return;

6466
	if (IS_IRONLAKE_M(dev_priv)) {
6467
		ironlake_enable_drps(dev_priv);
6468 6469 6470 6471
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6472 6473 6474 6475
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6476 6477 6478 6479 6480 6481 6482
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6483
		 */
6484 6485 6486
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6487 6488 6489
	}
}

6490
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6491
{
6492
	if (INTEL_INFO(dev_priv)->gen < 6)
6493 6494
		return;

6495
	gen6_suspend_rps(dev_priv);
6496 6497 6498
	dev_priv->rps.enabled = false;
}

6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6511 6512 6513
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6514
	enum pipe pipe;
6515

6516
	for_each_pipe(dev_priv, pipe) {
6517 6518 6519
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6520 6521 6522

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6523 6524 6525
	}
}

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6540
static void ironlake_init_clock_gating(struct drm_device *dev)
6541 6542
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6543
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6544

6545 6546 6547 6548
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6549 6550 6551
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6569
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6570 6571 6572
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6573 6574

	ilk_init_lp_watermarks(dev);
6575 6576 6577 6578 6579 6580 6581 6582 6583

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6584
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6585 6586 6587 6588 6589 6590 6591 6592
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6593 6594
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6595 6596 6597 6598 6599 6600
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6601

6602
	/* WaDisableRenderCachePipelinedFlush:ilk */
6603 6604
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6605

6606 6607 6608
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6609
	g4x_disable_trickle_feed(dev);
6610

6611 6612 6613 6614 6615 6616 6617
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6618
	uint32_t val;
6619 6620 6621 6622 6623 6624

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6625 6626 6627
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6628 6629
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6630 6631 6632
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6633
	for_each_pipe(dev_priv, pipe) {
6634 6635 6636
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6637
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6638
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6639 6640 6641
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6642 6643
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6644
	/* WADP0ClockGatingDisable */
6645
	for_each_pipe(dev_priv, pipe) {
6646 6647 6648
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6649 6650
}

6651 6652 6653 6654 6655 6656
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6657 6658 6659
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6660 6661
}

6662
static void gen6_init_clock_gating(struct drm_device *dev)
6663 6664
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6665
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6666

6667
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6668 6669 6670 6671 6672

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6673
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6674 6675 6676
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6677 6678 6679
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6680 6681 6682
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6683 6684 6685 6686
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6687 6688
	 */
	I915_WRITE(GEN6_GT_MODE,
6689
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6690

6691
	ilk_init_lp_watermarks(dev);
6692 6693

	I915_WRITE(CACHE_MODE_0,
6694
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6710
	 *
6711 6712
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6713 6714 6715 6716 6717
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6718
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6719 6720
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6721

6722 6723 6724 6725 6726 6727 6728 6729
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6730 6731 6732 6733 6734 6735 6736 6737
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6738 6739
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6740 6741 6742 6743 6744 6745 6746
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6747 6748 6749 6750
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6751

6752
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6753

6754
	cpt_init_clock_gating(dev);
6755 6756

	gen6_check_mch_setup(dev);
6757 6758 6759 6760 6761 6762
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6763
	/*
6764
	 * WaVSThreadDispatchOverride:ivb,vlv
6765 6766 6767 6768
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6769 6770 6771 6772 6773 6774 6775 6776
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6777 6778 6779 6780 6781 6782 6783 6784
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6785
	if (HAS_PCH_LPT_LP(dev))
6786 6787 6788
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6789 6790

	/* WADPOClockGatingDisable:hsw */
6791 6792
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6793
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6794 6795
}

6796 6797 6798 6799
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6800
	if (HAS_PCH_LPT_LP(dev)) {
6801 6802 6803 6804 6805 6806 6807
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

6831
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6832 6833
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6834
	enum pipe pipe;
B
Ben Widawsky 已提交
6835

6836
	ilk_init_lp_watermarks(dev);
6837

6838
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6839
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6840

6841
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6842 6843 6844
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6845
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6846
	for_each_pipe(dev_priv, pipe) {
6847
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6848
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6849
			   BDW_DPRS_MASK_VBLANK_SRD);
6850
	}
6851

6852 6853 6854 6855 6856
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6857

6858 6859
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6860 6861 6862 6863

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6864

6865 6866
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
6867

6868 6869 6870 6871 6872 6873 6874
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6875
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6876 6877
}

6878 6879 6880 6881
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6882
	ilk_init_lp_watermarks(dev);
6883

6884 6885 6886 6887 6888
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6889
	/* This is required by WaCatErrorRejectionIssue:hsw */
6890 6891 6892 6893
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6894 6895 6896
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6897

6898 6899 6900
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6901 6902 6903 6904
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6905
	/* WaDisable4x2SubspanOptimization:hsw */
6906 6907
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6908

6909 6910 6911
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6912 6913 6914 6915
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6916 6917
	 */
	I915_WRITE(GEN7_GT_MODE,
6918
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6919

6920 6921 6922 6923
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6924
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6925 6926
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6927 6928 6929
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6930

6931
	lpt_init_clock_gating(dev);
6932 6933
}

6934
static void ivybridge_init_clock_gating(struct drm_device *dev)
6935 6936
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6937
	uint32_t snpcr;
6938

6939
	ilk_init_lp_watermarks(dev);
6940

6941
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6942

6943
	/* WaDisableEarlyCull:ivb */
6944 6945 6946
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6947
	/* WaDisableBackToBackFlipFix:ivb */
6948 6949 6950 6951
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6952
	/* WaDisablePSDDualDispatchEnable:ivb */
6953 6954 6955 6956
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6957 6958 6959
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6960
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6961 6962 6963
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6964
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6965 6966 6967
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6968 6969 6970 6971
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6972 6973 6974 6975
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6976 6977
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6978
	}
6979

6980
	/* WaForceL3Serialization:ivb */
6981 6982 6983
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6984
	/*
6985
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6986
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6987 6988
	 */
	I915_WRITE(GEN6_UCGCTL2,
6989
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6990

6991
	/* This is required by WaCatErrorRejectionIssue:ivb */
6992 6993 6994 6995
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6996
	g4x_disable_trickle_feed(dev);
6997 6998

	gen7_setup_fixed_func_scheduler(dev_priv);
6999

7000 7001 7002 7003 7004
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7005

7006
	/* WaDisable4x2SubspanOptimization:ivb */
7007 7008
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7009

7010 7011 7012
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7013 7014 7015 7016
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7017 7018
	 */
	I915_WRITE(GEN7_GT_MODE,
7019
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7020

7021 7022 7023 7024
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7025

7026 7027
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7028 7029

	gen6_check_mch_setup(dev);
7030 7031
}

7032
static void valleyview_init_clock_gating(struct drm_device *dev)
7033 7034 7035
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7036
	/* WaDisableEarlyCull:vlv */
7037 7038 7039
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7040
	/* WaDisableBackToBackFlipFix:vlv */
7041 7042 7043 7044
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7045
	/* WaPsdDispatchEnable:vlv */
7046
	/* WaDisablePSDDualDispatchEnable:vlv */
7047
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7048 7049
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7050

7051 7052 7053
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7054
	/* WaForceL3Serialization:vlv */
7055 7056 7057
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7058
	/* WaDisableDopClockGating:vlv */
7059 7060 7061
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7062
	/* This is required by WaCatErrorRejectionIssue:vlv */
7063 7064 7065 7066
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7067 7068
	gen7_setup_fixed_func_scheduler(dev_priv);

7069
	/*
7070
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7071
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7072 7073
	 */
	I915_WRITE(GEN6_UCGCTL2,
7074
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7075

7076 7077 7078 7079 7080
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7081

7082 7083 7084 7085
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7086 7087
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7088

7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7100 7101 7102 7103 7104 7105
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7106
	/*
7107
	 * WaDisableVLVClockGating_VBIIssue:vlv
7108 7109 7110
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7111
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7112 7113
}

7114 7115 7116 7117
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7118 7119 7120 7121 7122
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7123 7124 7125 7126

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7127 7128 7129 7130

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7131 7132 7133 7134

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7135

7136 7137 7138 7139 7140 7141 7142
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7143 7144 7145 7146 7147
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7148 7149
}

7150
static void g4x_init_clock_gating(struct drm_device *dev)
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7166 7167 7168 7169

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7170

7171 7172 7173
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7174
	g4x_disable_trickle_feed(dev);
7175 7176
}

7177
static void crestline_init_clock_gating(struct drm_device *dev)
7178 7179 7180 7181 7182 7183 7184 7185
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7186 7187
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7188 7189 7190

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7191 7192
}

7193
static void broadwater_init_clock_gating(struct drm_device *dev)
7194 7195 7196 7197 7198 7199 7200 7201 7202
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7203 7204
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7205 7206 7207

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7208 7209
}

7210
static void gen3_init_clock_gating(struct drm_device *dev)
7211 7212 7213 7214 7215 7216 7217
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7218 7219 7220

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7221 7222 7223

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7224 7225

	/* interrupts should cause a wake up from C3 */
7226
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7227 7228 7229

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7230 7231 7232

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7233 7234
}

7235
static void i85x_init_clock_gating(struct drm_device *dev)
7236 7237 7238 7239
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7240 7241 7242 7243

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7244 7245 7246

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7247 7248
}

7249
static void i830_init_clock_gating(struct drm_device *dev)
7250 7251 7252 7253
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7254 7255 7256 7257

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7258 7259 7260 7261 7262 7263
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7264
	dev_priv->display.init_clock_gating(dev);
7265 7266
}

7267 7268 7269 7270 7271 7272
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	else if (IS_KABYLAKE(dev_priv))
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7327 7328 7329 7330 7331
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7332
	intel_fbc_init(dev_priv);
7333

7334 7335 7336 7337 7338 7339
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7340
	/* For FIFO watermark updates */
7341
	if (INTEL_INFO(dev)->gen >= 9) {
7342
		skl_setup_wm_latency(dev);
7343
		dev_priv->display.update_wm = skl_update_wm;
7344
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7345
	} else if (HAS_PCH_SPLIT(dev)) {
7346
		ilk_setup_wm_latency(dev);
7347

7348 7349 7350 7351
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7352
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7353 7354 7355 7356 7357 7358
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7359 7360 7361 7362
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7363
	} else if (IS_CHERRYVIEW(dev)) {
7364 7365
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7366
	} else if (IS_VALLEYVIEW(dev)) {
7367 7368
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7380
			intel_set_memory_cxsr(dev_priv, false);
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7391 7392 7393
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7394
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7395 7396
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7397
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7398 7399 7400
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7401 7402 7403
	}
}

7404
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7405
{
7406
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7407 7408 7409 7410 7411 7412 7413

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7414
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7429
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7430
{
7431
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7451

7452 7453
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7454 7455 7456 7457 7458
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7459 7460
}

7461
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7462
{
7463
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7464 7465
}

7466
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7467
{
7468 7469 7470 7471 7472
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7473 7474
}

7475
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7476
{
7477
	/* CHV needs even values */
7478
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7479 7480
}

7481
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7482
{
7483
	if (IS_GEN9(dev_priv))
7484 7485
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7486
	else if (IS_CHERRYVIEW(dev_priv))
7487
		return chv_gpu_freq(dev_priv, val);
7488
	else if (IS_VALLEYVIEW(dev_priv))
7489 7490 7491
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7492 7493
}

7494 7495
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7496
	if (IS_GEN9(dev_priv))
7497 7498
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7499
	else if (IS_CHERRYVIEW(dev_priv))
7500
		return chv_freq_opcode(dev_priv, val);
7501
	else if (IS_VALLEYVIEW(dev_priv))
7502 7503
		return byt_freq_opcode(dev_priv, val);
	else
7504
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7505
}
7506

7507 7508
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7509
	struct drm_i915_gem_request *req;
7510 7511 7512 7513 7514
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7515
	struct drm_i915_gem_request *req = boost->req;
7516

7517
	if (!i915_gem_request_completed(req, true))
7518
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7519

7520
	i915_gem_request_unreference(req);
7521 7522 7523
	kfree(boost);
}

7524
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7525 7526 7527
{
	struct request_boost *boost;

7528
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7529 7530
		return;

7531 7532 7533
	if (i915_gem_request_completed(req, true))
		return;

7534 7535 7536 7537
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7538 7539
	i915_gem_request_reference(req);
	boost->req = req;
7540 7541

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7542
	queue_work(req->i915->wq, &boost->work);
7543 7544
}

D
Daniel Vetter 已提交
7545
void intel_pm_setup(struct drm_device *dev)
7546 7547 7548
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7549
	mutex_init(&dev_priv->rps.hw_lock);
7550
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7551

7552 7553
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7554
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7555 7556
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7557

7558
	dev_priv->pm.suspended = false;
7559
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7560
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7561
}