intel_pm.c 152.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33
#include <drm/i915_powerwell.h>
34

35 36 37
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
38
 *
39 40
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
41
 *
42 43
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
44 45
 */

46 47 48 49 50 51 52 53
static bool intel_crtc_active(struct drm_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 */
	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
}

54
static void i8xx_disable_fbc(struct drm_device *dev)
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

76
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 78 79 80 81 82 83 84 85 86 87
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

88
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

	/* FBC_CTL wants 64B units */
	cfb_pitch = (cfb_pitch / 64) - 1;
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
	fbc_ctl2 |= plane;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

115 116
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
117 118
}

119
static bool i8xx_fbc_enabled(struct drm_device *dev)
120 121 122 123 124 125
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

126
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

150
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
151 152
}

153
static void g4x_disable_fbc(struct drm_device *dev)
154 155 156 157 158 159 160 161 162 163 164 165 166 167
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

168
static bool g4x_fbc_enabled(struct drm_device *dev)
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
	gen6_gt_force_wake_get(dev_priv);
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
	gen6_gt_force_wake_put(dev_priv);
}

195
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
220 221 222 223 224 225 226 227 228 229
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

230
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
231 232
}

233
static void ironlake_disable_fbc(struct drm_device *dev)
234 235 236 237 238 239 240 241 242 243
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

244
		if (IS_IVYBRIDGE(dev))
245
			/* WaFbcDisableDpfcClockGating:ivb */
246 247 248 249
			I915_WRITE(ILK_DSPCLK_GATE_D,
				   I915_READ(ILK_DSPCLK_GATE_D) &
				   ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);

250
		if (IS_HASWELL(dev))
251
			/* WaFbcDisableDpfcClockGating:hsw */
252 253 254 255
			I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
				   I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
				   ~HSW_DPFC_GATING_DISABLE);

256 257 258 259
		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

260
static bool ironlake_fbc_enabled(struct drm_device *dev)
261 262 263 264 265 266
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

267 268 269 270 271 272 273 274 275
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

276
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
277 278 279 280 281

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
282
	if (IS_IVYBRIDGE(dev)) {
283
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
284
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285
		/* WaFbcDisableDpfcClockGating:ivb */
R
Rodrigo Vivi 已提交
286 287 288
		I915_WRITE(ILK_DSPCLK_GATE_D,
			   I915_READ(ILK_DSPCLK_GATE_D) |
			   ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289
	} else {
290
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
291 292
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
293
		/* WaFbcDisableDpfcClockGating:hsw */
294 295 296
		I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
			   I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
			   HSW_DPFC_GATING_DISABLE);
R
Rodrigo Vivi 已提交
297
	}
298

299 300 301 302 303 304 305 306 307
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
327
	if (work == dev_priv->fbc.fbc_work) {
328 329 330 331 332 333 334
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

335 336 337
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
			dev_priv->fbc.y = work->crtc->y;
338 339
		}

340
		dev_priv->fbc.fbc_work = NULL;
341 342 343 344 345 346 347 348
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
349
	if (dev_priv->fbc.fbc_work == NULL)
350 351 352 353 354
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
355
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
356 357
	 * entirely asynchronously.
	 */
358
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
359
		/* tasklet was killed before being run, clean up */
360
		kfree(dev_priv->fbc.fbc_work);
361 362 363 364 365 366

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
367
	dev_priv->fbc.fbc_work = NULL;
368 369
}

370
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 372 373 374 375 376 377 378 379 380 381 382
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

	work = kzalloc(sizeof *work, GFP_KERNEL);
	if (work == NULL) {
383
		DRM_ERROR("Failed to allocate FBC work structure\n");
384 385 386 387 388 389 390 391 392
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

393
	dev_priv->fbc.fbc_work = work;
394 395 396 397 398 399 400 401 402 403 404

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
405 406
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
407 408 409 410 411 412 413 414 415 416 417 418 419 420
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
421
	dev_priv->fbc.plane = -1;
422 423
}

424 425 426 427 428 429 430 431 432 433
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

434 435 436 437 438 439 440 441 442 443
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
444
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
461
	unsigned int max_hdisplay, max_vdisplay;
462

463 464
	if (!I915_HAS_FBC(dev)) {
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
465
		return;
466
	}
467

468 469 470
	if (!i915_powersave) {
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
471
		return;
472
	}
473 474 475 476 477 478 479 480 481 482 483

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
484 485
		if (intel_crtc_active(tmp_crtc) &&
		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
486
			if (crtc) {
487 488
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
489 490 491 492 493 494 495
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
496 497
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
498 499 500 501 502 503 504 505
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;

506 507
	if (i915_enable_fbc < 0 &&
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
508 509
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
510
		goto out_disable;
511
	}
512
	if (!i915_enable_fbc) {
513 514
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
515 516 517 518
		goto out_disable;
	}
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
519 520 521
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
522 523
		goto out_disable;
	}
524 525 526 527 528 529 530 531 532 533

	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
		max_hdisplay = 4096;
		max_vdisplay = 2048;
	} else {
		max_hdisplay = 2048;
		max_vdisplay = 1536;
	}
	if ((crtc->mode.hdisplay > max_hdisplay) ||
	    (crtc->mode.vdisplay > max_vdisplay)) {
534 535
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
536 537
		goto out_disable;
	}
R
Rodrigo Vivi 已提交
538 539
	if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
	    intel_crtc->plane != 0) {
540 541
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
			DRM_DEBUG_KMS("plane not 0, disabling compression\n");
542 543 544 545 546 547 548 549
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
550 551
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
552 553 554 555 556 557 558
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

559
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
560 561
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
562 563 564
		goto out_disable;
	}

565 566 567 568 569
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
570 571 572
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
604
	dev_priv->fbc.no_fbc_reason = FBC_OK;
605 606 607 608 609 610 611 612
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
613
	i915_gem_stolen_cleanup_compression(dev);
614 615
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

683
	dev_priv->ips.r_t = dev_priv->mem_freq;
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
715
		dev_priv->ips.c_m = 0;
716
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
717
		dev_priv->ips.c_m = 1;
718
	} else {
719
		dev_priv->ips.c_m = 2;
720 721 722
	}
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

761
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

785
static void pineview_disable_cxsr(struct drm_device *dev)
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

809
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

825
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

842
static int i845_get_fifo_size(struct drm_device *dev, int plane)
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

858
static int i830_get_fifo_size(struct drm_device *dev, int plane)
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1080
		if (intel_crtc_active(crtc)) {
1081 1082 1083 1084 1085 1086 1087 1088 1089
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1090
static void pineview_update_wm(struct drm_device *dev)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
		int clock = crtc->mode.clock;
		int pixel_size = crtc->fb->bits_per_pixel / 8;

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1174
	if (!intel_crtc_active(crtc)) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

	htotal = crtc->mode.htotal;
	hdisplay = crtc->mode.hdisplay;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	hdisplay = crtc->mode.hdisplay;
	htotal = crtc->mode.htotal;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1303
	if (!intel_crtc_active(crtc))
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		return false;

	clock = crtc->mode.clock;	/* VESA DOT Clock */
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1368
static void valleyview_update_wm(struct drm_device *dev)
1369 1370 1371 1372 1373
{
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1374
	int ignore_plane_sr, ignore_cursor_sr;
1375 1376 1377 1378
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1379
	if (g4x_compute_wm0(dev, PIPE_A,
1380 1381 1382
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1383
		enabled |= 1 << PIPE_A;
1384

1385
	if (g4x_compute_wm0(dev, PIPE_B,
1386 1387 1388
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1389
		enabled |= 1 << PIPE_B;
1390 1391 1392 1393 1394 1395

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1396 1397 1398 1399 1400
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1401
			     &ignore_plane_sr, &cursor_sr)) {
1402
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403
	} else {
1404 1405
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406 1407
		plane_sr = cursor_sr = 0;
	}
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1420
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421 1422
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1423 1424
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 1426
}

1427
static void g4x_update_wm(struct drm_device *dev)
1428 1429 1430 1431 1432 1433 1434
{
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1435
	if (g4x_compute_wm0(dev, PIPE_A,
1436 1437 1438
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1439
		enabled |= 1 << PIPE_A;
1440

1441
	if (g4x_compute_wm0(dev, PIPE_B,
1442 1443 1444
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1445
		enabled |= 1 << PIPE_B;
1446 1447 1448 1449 1450 1451

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1452
			     &plane_sr, &cursor_sr)) {
1453
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1454
	} else {
1455 1456
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1457 1458
		plane_sr = cursor_sr = 0;
	}
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1471
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1472 1473 1474
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1475
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1476 1477 1478
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1479
static void i965_update_wm(struct drm_device *dev)
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
		int clock = crtc->mode.clock;
		int htotal = crtc->mode.htotal;
		int hdisplay = crtc->mode.hdisplay;
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1544
static void i9xx_update_wm(struct drm_device *dev)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1564
	if (intel_crtc_active(crtc)) {
1565 1566 1567 1568
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1569
		planea_wm = intel_calculate_wm(crtc->mode.clock,
1570
					       wm_info, fifo_size, cpp,
1571 1572 1573 1574 1575 1576 1577
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1578
	if (intel_crtc_active(crtc)) {
1579 1580 1581 1582
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1583
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1584
					       wm_info, fifo_size, cpp,
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
		int clock = enabled->mode.clock;
		int htotal = enabled->mode.htotal;
		int hdisplay = enabled->mode.hdisplay;
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1661
static void i830_update_wm(struct drm_device *dev)
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
				       dev_priv->display.get_fifo_size(dev, 0),
1674
				       4, latency_ns);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1708 1709 1710 1711
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	hdisplay = crtc->mode.hdisplay;
	htotal = crtc->mode.htotal;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1788
static void ironlake_update_wm(struct drm_device *dev)
1789 1790 1791 1792 1793 1794
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1795
	if (g4x_compute_wm0(dev, PIPE_A,
1796
			    &ironlake_display_wm_info,
1797
			    dev_priv->wm.pri_latency[0] * 100,
1798
			    &ironlake_cursor_wm_info,
1799
			    dev_priv->wm.cur_latency[0] * 100,
1800 1801 1802 1803 1804 1805
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1806
		enabled |= 1 << PIPE_A;
1807 1808
	}

1809
	if (g4x_compute_wm0(dev, PIPE_B,
1810
			    &ironlake_display_wm_info,
1811
			    dev_priv->wm.pri_latency[0] * 100,
1812
			    &ironlake_cursor_wm_info,
1813
			    dev_priv->wm.cur_latency[0] * 100,
1814 1815 1816 1817 1818 1819
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1820
		enabled |= 1 << PIPE_B;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1837
				   dev_priv->wm.pri_latency[1] * 500,
1838 1839 1840 1841 1842 1843 1844
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1845
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1846 1847 1848 1849 1850 1851
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1852
				   dev_priv->wm.pri_latency[2] * 500,
1853 1854 1855 1856 1857 1858 1859
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1860
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1871
static void sandybridge_update_wm(struct drm_device *dev)
1872 1873
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1874
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
1875 1876 1877 1878 1879
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1880
	if (g4x_compute_wm0(dev, PIPE_A,
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1891
		enabled |= 1 << PIPE_A;
1892 1893
	}

1894
	if (g4x_compute_wm0(dev, PIPE_B,
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1905
		enabled |= 1 << PIPE_B;
1906 1907
	}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
1929
				   dev_priv->wm.pri_latency[1] * 500,
1930 1931 1932 1933 1934 1935 1936
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
1937
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1938 1939 1940 1941 1942 1943
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
1944
				   dev_priv->wm.pri_latency[2] * 500,
1945 1946 1947 1948 1949 1950 1951
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
1952
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1953 1954 1955 1956 1957 1958
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
1959
				   dev_priv->wm.pri_latency[3] * 500,
1960 1961 1962 1963 1964 1965 1966
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
1967
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1968 1969 1970 1971 1972 1973 1974 1975
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

static void ivybridge_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1976
	int latency = dev_priv->wm.pri_latency[0] * 100;	/* In unit 0.1us */
1977 1978 1979 1980 1981 1982
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
1983
	if (g4x_compute_wm0(dev, PIPE_A,
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1994
		enabled |= 1 << PIPE_A;
1995 1996
	}

1997
	if (g4x_compute_wm0(dev, PIPE_B,
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2008
		enabled |= 1 << PIPE_B;
2009 2010
	}

2011
	if (g4x_compute_wm0(dev, PIPE_C,
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2022
		enabled |= 1 << PIPE_C;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
2046
				   dev_priv->wm.pri_latency[1] * 500,
2047 2048 2049 2050 2051 2052 2053
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
2054
		   (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2055 2056 2057 2058 2059 2060
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
2061
				   dev_priv->wm.pri_latency[2] * 500,
2062 2063 2064 2065 2066 2067 2068
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
2069
		   (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2070 2071 2072 2073
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2074
	/* WM3, note we have to correct the cursor latency */
2075
	if (!ironlake_compute_srwm(dev, 3, enabled,
2076
				   dev_priv->wm.pri_latency[3] * 500,
2077 2078
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2079 2080
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
2081
				   dev_priv->wm.cur_latency[3] * 500,
2082 2083 2084
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2085 2086 2087 2088
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
2089
		   (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2090 2091 2092 2093 2094
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2095 2096
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
2097 2098 2099 2100
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	uint32_t pixel_rate, pfit_size;

2101
	pixel_rate = intel_crtc->config.adjusted_mode.clock;
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

	pfit_size = intel_crtc->config.pch_pfit.size;
	if (pfit_size) {
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;

		pipe_w = intel_crtc->config.requested_mode.hdisplay;
		pipe_h = intel_crtc->config.requested_mode.vdisplay;
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

2126
/* latency must be in 0.1us units. */
2127
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2128 2129 2130 2131
			       uint32_t latency)
{
	uint64_t ret;

2132 2133 2134
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2135 2136 2137 2138 2139 2140
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

2141
/* latency must be in 0.1us units. */
2142
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2143 2144 2145 2146 2147
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

2148 2149 2150
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

2151 2152 2153 2154 2155 2156
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2157
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2158 2159 2160 2161 2162
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
struct hsw_pipe_wm_parameters {
	bool active;
	bool sprite_enabled;
	uint8_t pri_bytes_per_pixel;
	uint8_t spr_bytes_per_pixel;
	uint8_t cur_bytes_per_pixel;
	uint32_t pri_horiz_pixels;
	uint32_t spr_horiz_pixels;
	uint32_t cur_horiz_pixels;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
};

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

struct hsw_lp_wm_result {
	bool enable;
	uint32_t pri_val;
	uint32_t spr_val;
	uint32_t cur_val;
	uint32_t fbc_val;
};

2191 2192 2193 2194 2195
struct hsw_wm_values {
	uint32_t wm_pipe[3];
	uint32_t wm_lp[3];
	uint32_t wm_lp_spr[3];
	uint32_t wm_linetime[3];
2196
	bool enable_fbc_wm;
2197 2198
};

2199 2200 2201 2202
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2203
static uint32_t ilk_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2204 2205
				   uint32_t mem_value,
				   bool is_lp)
2206
{
2207 2208
	uint32_t method1, method2;

2209 2210 2211 2212
	/* TODO: for now, assume the primary plane is always enabled. */
	if (!params->active)
		return 0;

2213
	method1 = ilk_wm_method1(params->pixel_rate,
2214 2215 2216 2217 2218 2219
				 params->pri_bytes_per_pixel,
				 mem_value);

	if (!is_lp)
		return method1;

2220
	method2 = ilk_wm_method2(params->pixel_rate,
2221 2222 2223 2224 2225 2226
				 params->pipe_htotal,
				 params->pri_horiz_pixels,
				 params->pri_bytes_per_pixel,
				 mem_value);

	return min(method1, method2);
2227 2228
}

2229 2230 2231 2232
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2233
static uint32_t ilk_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2234 2235 2236 2237 2238 2239 2240
				   uint32_t mem_value)
{
	uint32_t method1, method2;

	if (!params->active || !params->sprite_enabled)
		return 0;

2241
	method1 = ilk_wm_method1(params->pixel_rate,
2242 2243
				 params->spr_bytes_per_pixel,
				 mem_value);
2244
	method2 = ilk_wm_method2(params->pixel_rate,
2245 2246 2247 2248 2249 2250 2251
				 params->pipe_htotal,
				 params->spr_horiz_pixels,
				 params->spr_bytes_per_pixel,
				 mem_value);
	return min(method1, method2);
}

2252 2253 2254 2255
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2256
static uint32_t ilk_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2257 2258 2259 2260 2261
				   uint32_t mem_value)
{
	if (!params->active)
		return 0;

2262
	return ilk_wm_method2(params->pixel_rate,
2263 2264 2265 2266 2267 2268
			      params->pipe_htotal,
			      params->cur_horiz_pixels,
			      params->cur_bytes_per_pixel,
			      mem_value);
}

2269
/* Only for WM_LP. */
2270
static uint32_t ilk_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2271
				   uint32_t pri_val)
2272 2273 2274 2275
{
	if (!params->active)
		return 0;

2276
	return ilk_wm_fbc(pri_val,
2277 2278 2279 2280
			  params->pri_horiz_pixels,
			  params->pri_bytes_per_pixel);
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
				 int level,
				 struct hsw_pipe_wm_parameters *p,
				 struct hsw_lp_wm_result *result)
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2304 2305
static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
			      int level, struct hsw_wm_maximums *max,
2306 2307 2308 2309
			      struct hsw_pipe_wm_parameters *params,
			      struct hsw_lp_wm_result *result)
{
	enum pipe pipe;
2310 2311 2312 2313
	struct hsw_lp_wm_result res[3];

	for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
		ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
2314

2315 2316 2317 2318 2319
	result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
	result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
	result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
	result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
	result->enable = true;
2320

2321 2322 2323
	if (!result->enable)
		return false;

2324 2325 2326 2327 2328 2329
	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;
	return result->enable;
}

2330
static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2331
				    enum pipe pipe,
2332 2333 2334
				    struct hsw_pipe_wm_parameters *params)
{
	uint32_t pri_val, cur_val, spr_val;
2335 2336 2337 2338
	/* WM0 latency values stored in 0.1us units */
	uint16_t pri_latency = dev_priv->wm.pri_latency[0];
	uint16_t spr_latency = dev_priv->wm.spr_latency[0];
	uint16_t cur_latency = dev_priv->wm.cur_latency[0];
2339

2340 2341 2342
	pri_val = ilk_compute_pri_wm(params, pri_latency, false);
	spr_val = ilk_compute_spr_wm(params, spr_latency);
	cur_val = ilk_compute_cur_wm(params, cur_latency);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	WARN(pri_val > 127,
	     "Primary WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));
	WARN(spr_val > 127,
	     "Sprite WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));
	WARN(cur_val > 63,
	     "Cursor WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));

	return (pri_val << WM0_PIPE_PLANE_SHIFT) |
	       (spr_val << WM0_PIPE_SPRITE_SHIFT) |
	       cur_val;
}

static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2361 2362
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2363 2364
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2365
	u32 linetime, ips_linetime;
2366

2367 2368
	if (!intel_crtc_active(crtc))
		return 0;
2369

2370 2371 2372
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2373 2374 2375
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2376

2377 2378
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_HASWELL(dev)) {
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2391 2392 2393 2394
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2395 2396 2397 2398 2399 2400 2401
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2402 2403 2404 2405 2406 2407 2408
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2409 2410 2411
	}
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
				   const uint16_t wm[5])
{
	int level, max_level;

	/* how many WM levels are we expecting */
	if (IS_HASWELL(dev))
		max_level = 4;
	else if (INTEL_INFO(dev)->gen >= 6)
		max_level = 3;
	else
		max_level = 2;

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

		/* WM1+ latency values in 0.5us units */
		if (level > 0)
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
static void intel_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2476 2477 2478 2479

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2480 2481
}

2482 2483
static void hsw_compute_wm_parameters(struct drm_device *dev,
				      struct hsw_pipe_wm_parameters *params,
2484 2485
				      struct hsw_wm_maximums *lp_max_1_2,
				      struct hsw_wm_maximums *lp_max_5_6)
2486 2487
{
	struct drm_crtc *crtc;
2488
	struct drm_plane *plane;
2489
	enum pipe pipe;
2490
	int pipes_active = 0, sprites_enabled = 0;
2491

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_crtc->pipe;
		p = &params[pipe];

		p->active = intel_crtc_active(crtc);
		if (!p->active)
			continue;

2503 2504
		pipes_active++;

2505
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2506
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
		p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur_bytes_per_pixel = 4;
		p->pri_horiz_pixels =
			intel_crtc->config.requested_mode.hdisplay;
		p->cur_horiz_pixels = 64;
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_plane->pipe;
		p = &params[pipe];

2521
		p->sprite_enabled = intel_plane->wm.enabled;
2522 2523
		p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
		p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2524 2525 2526 2527 2528 2529

		if (p->sprite_enabled)
			sprites_enabled++;
	}

	if (pipes_active > 1) {
2530 2531 2532
		lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
		lp_max_1_2->spr = lp_max_5_6->spr = 128;
		lp_max_1_2->cur = lp_max_5_6->cur = 64;
2533 2534
	} else {
		lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2535
		lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2536
		lp_max_1_2->spr = 384;
2537 2538
		lp_max_5_6->spr = 640;
		lp_max_1_2->cur = lp_max_5_6->cur = 255;
2539
	}
2540
	lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2541 2542 2543 2544
}

static void hsw_compute_wm_results(struct drm_device *dev,
				   struct hsw_pipe_wm_parameters *params,
2545
				   struct hsw_wm_maximums *lp_maximums,
2546 2547 2548 2549
				   struct hsw_wm_values *results)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
2550
	struct hsw_lp_wm_result lp_results[4] = {};
2551
	enum pipe pipe;
2552 2553 2554
	int level, max_level, wm_lp;

	for (level = 1; level <= 4; level++)
2555 2556
		if (!hsw_compute_lp_wm(dev_priv, level,
				       lp_maximums, params,
2557 2558 2559 2560 2561 2562 2563 2564
				       &lp_results[level - 1]))
			break;
	max_level = level - 1;

	/* The spec says it is preferred to disable FBC WMs instead of disabling
	 * a WM level. */
	results->enable_fbc_wm = true;
	for (level = 1; level <= max_level; level++) {
2565
		if (!lp_results[level - 1].fbc_val > lp_maximums->fbc) {
2566
			results->enable_fbc_wm = false;
2567
			lp_results[level - 1].fbc_val = 0;
2568 2569 2570 2571 2572 2573
		}
	}

	memset(results, 0, sizeof(*results));
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		const struct hsw_lp_wm_result *r;
2574

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
		level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
		if (level > max_level)
			break;

		r = &lp_results[level - 1];
		results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
							  r->fbc_val,
							  r->pri_val,
							  r->cur_val);
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2586 2587

	for_each_pipe(pipe)
2588
		results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, pipe,
2589
							     &params[pipe]);
2590 2591 2592

	for_each_pipe(pipe) {
		crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2593 2594 2595 2596
		results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
	}
}

2597 2598
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2599 2600
static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
						  struct hsw_wm_values *r2)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
{
	int i, val_r1 = 0, val_r2 = 0;

	for (i = 0; i < 3; i++) {
		if (r1->wm_lp[i] & WM3_LP_EN)
			val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
		if (r2->wm_lp[i] & WM3_LP_EN)
			val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
	}

	if (val_r1 == val_r2) {
		if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
			return r2;
		else
			return r1;
	} else if (val_r1 > val_r2) {
		return r1;
	} else {
		return r2;
	}
}

2623 2624 2625 2626 2627 2628
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
				struct hsw_wm_values *results,
2629
				enum intel_ddb_partitioning partitioning)
2630 2631 2632
{
	struct hsw_wm_values previous;
	uint32_t val;
2633
	enum intel_ddb_partitioning prev_partitioning;
2634
	bool prev_enable_fbc_wm;
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649

	previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
	previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
	previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
	previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
	previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
	previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
	previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
	previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
	previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));

	prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2650
				INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2651

2652 2653
	prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);

2654 2655 2656 2657 2658 2659 2660 2661
	if (memcmp(results->wm_pipe, previous.wm_pipe,
		   sizeof(results->wm_pipe)) == 0 &&
	    memcmp(results->wm_lp, previous.wm_lp,
		   sizeof(results->wm_lp)) == 0 &&
	    memcmp(results->wm_lp_spr, previous.wm_lp_spr,
		   sizeof(results->wm_lp_spr)) == 0 &&
	    memcmp(results->wm_linetime, previous.wm_linetime,
		   sizeof(results->wm_linetime)) == 0 &&
2662 2663
	    partitioning == prev_partitioning &&
	    results->enable_fbc_wm == prev_enable_fbc_wm)
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
		return;

	if (previous.wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, 0);
	if (previous.wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, 0);
	if (previous.wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, 0);

	if (previous.wm_pipe[0] != results->wm_pipe[0])
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
	if (previous.wm_pipe[1] != results->wm_pipe[1])
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
	if (previous.wm_pipe[2] != results->wm_pipe[2])
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

	if (previous.wm_linetime[0] != results->wm_linetime[0])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
	if (previous.wm_linetime[1] != results->wm_linetime[1])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
	if (previous.wm_linetime[2] != results->wm_linetime[2])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

	if (prev_partitioning != partitioning) {
		val = I915_READ(WM_MISC);
2689
		if (partitioning == INTEL_DDB_PART_1_2)
2690 2691 2692 2693
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2694 2695
	}

2696 2697 2698 2699 2700 2701 2702 2703 2704
	if (prev_enable_fbc_wm != results->enable_fbc_wm) {
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
	if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
	if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

	if (results->wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
	if (results->wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
	if (results->wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
}

static void haswell_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2723
	struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2724
	struct hsw_pipe_wm_parameters params[3];
2725
	struct hsw_wm_values results_1_2, results_5_6, *best_results;
2726
	enum intel_ddb_partitioning partitioning;
2727

2728
	hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2729

2730 2731
	hsw_compute_wm_results(dev, params,
			       &lp_max_1_2, &results_1_2);
2732
	if (lp_max_1_2.pri != lp_max_5_6.pri) {
2733 2734
		hsw_compute_wm_results(dev, params,
				       &lp_max_5_6, &results_5_6);
2735 2736 2737 2738 2739 2740
		best_results = hsw_find_best_result(&results_1_2, &results_5_6);
	} else {
		best_results = &results_1_2;
	}

	partitioning = (best_results == &results_1_2) ?
2741
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2742

2743
	hsw_write_wm_values(dev_priv, best_results, partitioning);
2744 2745
}

2746 2747
static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
				     uint32_t sprite_width, int pixel_size,
2748
				     bool enabled, bool scaled)
2749 2750 2751 2752 2753 2754 2755
{
	struct drm_plane *plane;

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe == pipe) {
2756 2757
			intel_plane->wm.enabled = enabled;
			intel_plane->wm.scaled = scaled;
2758
			intel_plane->wm.horiz_pixels = sprite_width;
2759 2760 2761 2762 2763 2764 2765 2766
			intel_plane->wm.bytes_per_pixel = pixel_size;
			break;
		}
	}

	haswell_update_wm(dev);
}

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
2778
	if (!intel_crtc_active(crtc)) {
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		*sprite_wm = display->guard_size;
		return false;
	}

	clock = crtc->mode.clock;

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	clock = crtc->mode.clock;
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

2843
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2844
					 uint32_t sprite_width, int pixel_size,
2845
					 bool enabled, bool scaled)
2846 2847
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2848
	int latency = dev_priv->wm.spr_latency[0] * 100;	/* In unit 0.1us */
2849 2850 2851 2852
	u32 val;
	int sprite_wm, reg;
	int ret;

2853
	if (!enabled)
2854 2855
		return;

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
2874 2875
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
2876 2877 2878 2879 2880 2881
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2882
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2883 2884 2885 2886 2887


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
2888
					      dev_priv->wm.spr_latency[1] * 500,
2889 2890
					      &sprite_wm);
	if (!ret) {
2891 2892
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
2904
					      dev_priv->wm.spr_latency[2] * 500,
2905 2906
					      &sprite_wm);
	if (!ret) {
2907 2908
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
2909 2910 2911 2912 2913 2914 2915
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
2916
					      dev_priv->wm.spr_latency[3] * 500,
2917 2918
					      &sprite_wm);
	if (!ret) {
2919 2920
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
void intel_update_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->display.update_wm)
		dev_priv->display.update_wm(dev);
}

void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2967
				    uint32_t sprite_width, int pixel_size,
2968
				    bool enabled, bool scaled)
2969 2970 2971 2972 2973
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->display.update_sprite_wm)
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2974
						   pixel_size, enabled, scaled);
2975 2976
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

B
Ben Widawsky 已提交
2991
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3021 3022 3023 3024 3025
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3026 3027
	assert_spin_locked(&mchdev_lock);

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3045
static void ironlake_enable_drps(struct drm_device *dev)
3046 3047 3048 3049 3050
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3051 3052
	spin_lock_irq(&mchdev_lock);

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3076 3077
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3078

3079 3080 3081
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3098
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3099
		DRM_ERROR("stuck trying to change perf mode\n");
3100
	mdelay(1);
3101 3102 3103

	ironlake_set_drps(dev, fstart);

3104
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3105
		I915_READ(0x112e0);
3106 3107 3108
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
3109 3110

	spin_unlock_irq(&mchdev_lock);
3111 3112
}

3113
static void ironlake_disable_drps(struct drm_device *dev)
3114 3115
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3116 3117 3118 3119 3120
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3121 3122 3123 3124 3125 3126 3127 3128 3129

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3130
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3131
	mdelay(1);
3132 3133
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3134
	mdelay(1);
3135

3136
	spin_unlock_irq(&mchdev_lock);
3137 3138
}

3139 3140 3141 3142 3143
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3144
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3145
{
3146
	u32 limits;
3147

3148
	limits = 0;
3149 3150 3151 3152

	if (*val >= dev_priv->rps.max_delay)
		*val = dev_priv->rps.max_delay;
	limits |= dev_priv->rps.max_delay << 24;
3153 3154 3155 3156 3157 3158 3159

	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3160 3161 3162
	if (*val <= dev_priv->rps.min_delay) {
		*val = dev_priv->rps.min_delay;
		limits |= dev_priv->rps.min_delay << 16;
3163 3164 3165 3166 3167 3168 3169 3170
	}

	return limits;
}

void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3171
	u32 limits = gen6_rps_limits(dev_priv, &val);
3172

3173
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3174 3175
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3176

3177
	if (val == dev_priv->rps.cur_delay)
3178 3179
		return;

3180 3181 3182 3183 3184 3185 3186 3187
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3188 3189 3190 3191 3192 3193

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);

3194 3195
	POSTING_READ(GEN6_RPNSWREQ);

3196
	dev_priv->rps.cur_delay = val;
3197 3198

	trace_intel_gpu_freq_change(val * 50);
3199 3200
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
/*
 * Wait until the previous freq change has completed,
 * or the timeout elapsed, and then update our notion
 * of the current GPU frequency.
 */
static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
{
	u32 pval;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

3212 3213
	if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
		DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

	pval >>= 8;

	if (pval != dev_priv->rps.cur_delay)
		DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
				 vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
				 dev_priv->rps.cur_delay,
				 vlv_gpu_freq(dev_priv->mem_freq, pval), pval);

	dev_priv->rps.cur_delay = pval;
}

3226 3227 3228
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3229 3230

	gen6_rps_limits(dev_priv, &val);
3231 3232 3233 3234 3235

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

3236 3237
	vlv_update_rps_cur_delay(dev_priv);

3238
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3239 3240
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.cur_delay),
3241 3242
			 dev_priv->rps.cur_delay,
			 vlv_gpu_freq(dev_priv->mem_freq, val), val);
3243 3244 3245 3246

	if (val == dev_priv->rps.cur_delay)
		return;

3247
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3248

3249
	dev_priv->rps.cur_delay = val;
3250 3251 3252 3253

	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
}

3254
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3255 3256 3257 3258
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3259
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3260 3261 3262 3263 3264
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3265
	spin_lock_irq(&dev_priv->irq_lock);
3266
	dev_priv->rps.pm_iir = 0;
3267
	spin_unlock_irq(&dev_priv->irq_lock);
3268

3269
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3270 3271
}

3272
static void gen6_disable_rps(struct drm_device *dev)
3273 3274 3275 3276
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3277
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3278

3279 3280 3281 3282 3283 3284 3285 3286
	gen6_disable_rps_interrupts(dev);
}

static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3287

3288
	gen6_disable_rps_interrupts(dev);
3289 3290 3291 3292 3293

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3294 3295
}

3296 3297
int intel_enable_rc6(const struct drm_device *dev)
{
3298 3299 3300 3301
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

3302
	/* Respect the kernel parameter if it is set */
3303 3304 3305
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3306 3307 3308
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3309

3310 3311
	if (IS_HASWELL(dev)) {
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3312
		return INTEL_RC6_ENABLE;
3313
	}
3314

3315
	/* snb/ivb have more than one rc6 state. */
3316 3317 3318 3319
	if (INTEL_INFO(dev)->gen == 6) {
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
		return INTEL_RC6_ENABLE;
	}
3320

3321 3322 3323 3324
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3325 3326 3327 3328 3329
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
3330
	WARN_ON(dev_priv->rps.pm_iir);
3331 3332 3333 3334 3335 3336 3337
	I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
	spin_unlock_irq(&dev_priv->irq_lock);
	/* unmask all PM interrupts */
	I915_WRITE(GEN6_PMINTRMSK, 0);
}

3338
static void gen6_enable_rps(struct drm_device *dev)
3339
{
3340
	struct drm_i915_private *dev_priv = dev->dev_private;
3341
	struct intel_ring_buffer *ring;
3342 3343
	u32 rp_state_cap;
	u32 gt_perf_status;
3344
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3345 3346
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3347
	int i, ret;
3348

3349
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	gen6_gt_force_wake_get(dev_priv);

3367 3368 3369
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3370 3371
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3372 3373
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
	dev_priv->rps.cur_delay = 0;
3374

3375 3376 3377 3378 3379 3380 3381 3382 3383
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3384 3385
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3386 3387 3388 3389

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3390
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3391 3392
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3393
	/* Check if we are enabling RC6 */
3394 3395 3396 3397
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3398 3399 3400 3401
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3402

3403 3404 3405
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3406 3407

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3408 3409 3410
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3411 3412 3413 3414 3415 3416

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
	if (IS_HASWELL(dev)) {
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(10));
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			   HSW_FREQUENCY(12));
	} else {
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(10) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			   GEN6_FREQUENCY(12));
	}
3430 3431 3432

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3433 3434
		   dev_priv->rps.max_delay << 24 |
		   dev_priv->rps.min_delay << 16);
3435

3436 3437 3438 3439
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3440

3441 3442 3443
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
3444
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3445 3446 3447
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
3448
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3449

B
Ben Widawsky 已提交
3450
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3451
	if (!ret) {
B
Ben Widawsky 已提交
3452 3453
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3454
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3455
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3456 3457
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3458
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3459 3460 3461
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3462 3463
	}

3464
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3465

3466
	gen6_enable_rps_interrupts(dev);
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3482 3483 3484
	gen6_gt_force_wake_put(dev_priv);
}

3485
static void gen6_update_ring_freq(struct drm_device *dev)
3486
{
3487
	struct drm_i915_private *dev_priv = dev->dev_private;
3488
	int min_freq = 15;
3489 3490
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3491 3492
	int scaling_factor = 180;

3493
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	max_ia_freq = cpufreq_quick_get_max(0);
	/*
	 * Default to measured freq if none found, PCU will ensure we don't go
	 * over
	 */
	if (!max_ia_freq)
		max_ia_freq = tsc_khz;

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3506 3507 3508 3509
	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
	/* convert DDR frequency from units of 133.3MHz to bandwidth */
	min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;

3510 3511 3512 3513 3514
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3515
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3516
	     gpu_freq--) {
3517
		int diff = dev_priv->rps.max_delay - gpu_freq;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		unsigned int ia_freq = 0, ring_freq = 0;

		if (IS_HASWELL(dev)) {
			ring_freq = (gpu_freq * 5 + 3) / 4;
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3538

B
Ben Widawsky 已提交
3539 3540
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3541 3542 3543
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3544 3545 3546
	}
}

3547 3548 3549 3550
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

3551
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

3564
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3565
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3566
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3567 3568 3569 3570 3571 3572 3573
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
3574
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3575 3576
}

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
static void vlv_rps_timer_work(struct work_struct *work)
{
	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
						    rps.vlv_work.work);

	/*
	 * Timer fired, we must be idle.  Drop to min voltage state.
	 * Note: we use RPe here since it should match the
	 * Vmin we were shooting for.  That should give us better
	 * perf when we come back out of RC6 than if we used the
	 * min freq available.
	 */
	mutex_lock(&dev_priv->rps.hw_lock);
3590 3591
	if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3592 3593 3594
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
3611
								      I915_GTT_OFFSET_NONE,
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

3637 3638 3639 3640
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
3641
	u32 gtfifodbg, val;
3642 3643 3644 3645 3646 3647 3648 3649 3650
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3651 3652
	valleyview_setup_pctx(dev);

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
	gen6_gt_force_wake_get(dev_priv);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

	I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);

	/* allows RC6 residency counter to work */
	I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE);

3684
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
3697 3698 3699 3700 3701 3702
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3703 3704 3705 3706
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.cur_delay),
			 dev_priv->rps.cur_delay);
3707 3708 3709

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3710 3711 3712 3713
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.max_delay),
			 dev_priv->rps.max_delay);
3714

3715 3716 3717 3718 3719
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.rpe_delay),
			 dev_priv->rps.rpe_delay);
3720

3721 3722 3723 3724 3725
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.min_delay),
			 dev_priv->rps.min_delay);
3726

3727 3728 3729 3730
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.rpe_delay),
			 dev_priv->rps.rpe_delay);
3731

3732 3733
	INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);

3734
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3735

3736
	gen6_enable_rps_interrupts(dev);
3737 3738 3739 3740

	gen6_gt_force_wake_put(dev_priv);
}

3741
void ironlake_teardown_rc6(struct drm_device *dev)
3742 3743 3744
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3745 3746 3747 3748
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
3749 3750
	}

3751 3752 3753 3754
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
3755 3756 3757
	}
}

3758
static void ironlake_disable_rc6(struct drm_device *dev)
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3780 3781 3782
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
3783 3784
		return -ENOMEM;

3785 3786 3787
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
3788 3789 3790 3791 3792 3793 3794
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

3795
static void ironlake_enable_rc6(struct drm_device *dev)
3796 3797
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3798
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3799
	bool was_interruptible;
3800 3801 3802 3803 3804 3805 3806 3807
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

3808 3809
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

3810
	ret = ironlake_setup_rc6(dev);
3811
	if (ret)
3812 3813
		return;

3814 3815 3816
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

3817 3818 3819 3820
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
3821
	ret = intel_ring_begin(ring, 6);
3822 3823
	if (ret) {
		ironlake_teardown_rc6(dev);
3824
		dev_priv->mm.interruptible = was_interruptible;
3825 3826 3827
		return;
	}

3828 3829
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
3830
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3831 3832 3833 3834 3835 3836 3837 3838
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
3839 3840 3841 3842 3843 3844

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
3845 3846
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
3847
	if (ret) {
3848
		DRM_ERROR("failed to enable ironlake power savings\n");
3849 3850 3851 3852
		ironlake_teardown_rc6(dev);
		return;
	}

3853
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3854 3855 3856
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
}

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

3886
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3887 3888 3889 3890 3891 3892
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

3893 3894
	assert_spin_locked(&mchdev_lock);

3895
	diff1 = now - dev_priv->ips.last_time1;
3896 3897 3898 3899 3900 3901 3902

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
3903
		return dev_priv->ips.chipset_power;
3904 3905 3906 3907 3908 3909 3910 3911

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
3912 3913
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
3914 3915
		diff += total_count;
	} else {
3916
		diff = total_count - dev_priv->ips.last_count1;
3917 3918 3919
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3920 3921
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

3932 3933
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
3934

3935
	dev_priv->ips.chipset_power = ret;
3936 3937 3938 3939

	return ret;
}

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

4112
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4113 4114 4115 4116 4117 4118
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

4119
	assert_spin_locked(&mchdev_lock);
4120 4121

	getrawmonotonic(&now);
4122
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4123 4124 4125 4126 4127 4128 4129 4130

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

4131 4132
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
4133 4134
		diff += count;
	} else {
4135
		diff = count - dev_priv->ips.last_count2;
4136 4137
	}

4138 4139
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
4140 4141 4142 4143

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4144
	dev_priv->ips.gfx_power = diff;
4145 4146
}

4147 4148 4149 4150 4151
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4152
	spin_lock_irq(&mchdev_lock);
4153 4154 4155

	__i915_update_gfx_val(dev_priv);

4156
	spin_unlock_irq(&mchdev_lock);
4157 4158
}

4159
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4160 4161 4162 4163
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4164 4165
	assert_spin_locked(&mchdev_lock);

4166
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4186
	corr2 = (corr * dev_priv->ips.corr);
4187 4188 4189 4190

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4191
	__i915_update_gfx_val(dev_priv);
4192

4193
	return dev_priv->ips.gfx_power + state2;
4194 4195
}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4223
	spin_lock_irq(&mchdev_lock);
4224 4225 4226 4227
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4228 4229
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4230 4231 4232 4233

	ret = chipset_val + graphics_val;

out_unlock:
4234
	spin_unlock_irq(&mchdev_lock);
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4250
	spin_lock_irq(&mchdev_lock);
4251 4252 4253 4254 4255 4256
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4257 4258
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4259 4260

out_unlock:
4261
	spin_unlock_irq(&mchdev_lock);
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4278
	spin_lock_irq(&mchdev_lock);
4279 4280 4281 4282 4283 4284
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4285 4286
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4287 4288

out_unlock:
4289
	spin_unlock_irq(&mchdev_lock);
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4303
	struct intel_ring_buffer *ring;
4304
	bool ret = false;
4305
	int i;
4306

4307
	spin_lock_irq(&mchdev_lock);
4308 4309 4310 4311
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4312 4313
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4314 4315

out_unlock:
4316
	spin_unlock_irq(&mchdev_lock);
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4333
	spin_lock_irq(&mchdev_lock);
4334 4335 4336 4337 4338 4339
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4340
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4341

4342
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4343 4344 4345
		ret = false;

out_unlock:
4346
	spin_unlock_irq(&mchdev_lock);
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4374 4375
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4376
	spin_lock_irq(&mchdev_lock);
4377
	i915_mch_dev = dev_priv;
4378
	spin_unlock_irq(&mchdev_lock);
4379 4380 4381 4382 4383 4384

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4385
	spin_lock_irq(&mchdev_lock);
4386
	i915_mch_dev = NULL;
4387
	spin_unlock_irq(&mchdev_lock);
4388
}
4389
static void intel_init_emon(struct drm_device *dev)
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4457
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4458 4459
}

4460 4461
void intel_disable_gt_powersave(struct drm_device *dev)
{
4462 4463
	struct drm_i915_private *dev_priv = dev->dev_private;

4464 4465 4466
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4467
	if (IS_IRONLAKE_M(dev)) {
4468
		ironlake_disable_drps(dev);
4469
		ironlake_disable_rc6(dev);
4470
	} else if (INTEL_INFO(dev)->gen >= 6) {
4471
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4472
		cancel_work_sync(&dev_priv->rps.work);
4473 4474
		if (IS_VALLEYVIEW(dev))
			cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4475
		mutex_lock(&dev_priv->rps.hw_lock);
4476 4477 4478 4479
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4480
		mutex_unlock(&dev_priv->rps.hw_lock);
4481
	}
4482 4483
}

4484 4485 4486 4487 4488 4489 4490
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4491
	mutex_lock(&dev_priv->rps.hw_lock);
4492 4493 4494 4495 4496 4497 4498

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4499
	mutex_unlock(&dev_priv->rps.hw_lock);
4500 4501
}

4502 4503
void intel_enable_gt_powersave(struct drm_device *dev)
{
4504 4505
	struct drm_i915_private *dev_priv = dev->dev_private;

4506 4507 4508 4509
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4510
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4511 4512 4513 4514 4515 4516 4517
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4518 4519 4520
	}
}

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}
}

4546
static void ironlake_init_clock_gating(struct drm_device *dev)
4547 4548
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4549
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4550

4551 4552 4553 4554
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
4555 4556 4557
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4575
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
4591
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
4592 4593 4594 4595 4596 4597 4598 4599
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

4600 4601
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

4602 4603 4604 4605 4606 4607
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
4608

4609
	/* WaDisableRenderCachePipelinedFlush:ilk */
4610 4611
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4612

4613
	g4x_disable_trickle_feed(dev);
4614

4615 4616 4617 4618 4619 4620 4621
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4622
	uint32_t val;
4623 4624 4625 4626 4627 4628 4629 4630 4631

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
4632 4633 4634
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
4635
	for_each_pipe(pipe) {
4636 4637 4638
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4639
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
4640
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4641 4642 4643
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4644 4645
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
4646 4647 4648 4649 4650
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
4651 4652
}

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

4666
static void gen6_init_clock_gating(struct drm_device *dev)
4667 4668
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4669
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4670

4671
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4672 4673 4674 4675 4676

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

4677
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4678 4679 4680
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

4681
	/* WaSetupGtModeTdRowDispatch:snb */
4682 4683 4684 4685
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

4686 4687 4688 4689 4690
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
4691
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
4707
	 *
4708 4709
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
4710 4711
	 */
	I915_WRITE(GEN6_UCGCTL2,
4712
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4713 4714 4715 4716
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
4717 4718
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4719 4720 4721 4722 4723 4724 4725 4726 4727

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
4728 4729
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
4730 4731 4732 4733 4734 4735 4736
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4737 4738 4739 4740
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4741

4742
	/* WaMbcDriverBootEnable:snb */
4743 4744 4745
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4746
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
4747 4748 4749 4750 4751

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4752 4753

	cpt_init_clock_gating(dev);
4754 4755

	gen6_check_mch_setup(dev);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

4767 4768 4769
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

4770 4771 4772
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4785 4786 4787 4788 4789

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4790 4791
}

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

4804 4805 4806 4807 4808 4809 4810 4811 4812
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4813
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4814 4815 4816
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

4817
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4818 4819 4820
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4821
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
4822 4823 4824 4825 4826
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

4827
	/* This is required by WaCatErrorRejectionIssue:hsw */
4828 4829 4830 4831
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

4832
	g4x_disable_trickle_feed(dev);
4833

4834
	/* WaVSRefCountFullforceMissDisable:hsw */
4835 4836
	gen7_setup_fixed_func_scheduler(dev_priv);

4837
	/* WaDisable4x2SubspanOptimization:hsw */
4838 4839
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4840

4841
	/* WaMbcDriverBootEnable:hsw */
4842 4843 4844
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4845
	/* WaSwitchSolVfFArbitrationPriority:hsw */
4846 4847
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

4848 4849 4850
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4851

4852
	lpt_init_clock_gating(dev);
4853 4854
}

4855
static void ivybridge_init_clock_gating(struct drm_device *dev)
4856 4857
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4858
	uint32_t snpcr;
4859 4860 4861 4862 4863

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

4864
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4865

4866
	/* WaDisableEarlyCull:ivb */
4867 4868 4869
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

4870
	/* WaDisableBackToBackFlipFix:ivb */
4871 4872 4873 4874
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

4875
	/* WaDisablePSDDualDispatchEnable:ivb */
4876 4877 4878 4879 4880 4881 4882
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

4883
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4884 4885 4886
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4887
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
4888 4889 4890
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4891 4892 4893 4894 4895 4896 4897 4898
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

4899

4900
	/* WaForceL3Serialization:ivb */
4901 4902 4903
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4915
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4916 4917 4918 4919 4920
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

4921
	/* This is required by WaCatErrorRejectionIssue:ivb */
4922 4923 4924 4925
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

4926
	g4x_disable_trickle_feed(dev);
4927

4928
	/* WaMbcDriverBootEnable:ivb */
4929 4930 4931
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4932
	/* WaVSRefCountFullforceMissDisable:ivb */
4933
	gen7_setup_fixed_func_scheduler(dev_priv);
4934

4935
	/* WaDisable4x2SubspanOptimization:ivb */
4936 4937
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4938 4939 4940 4941 4942

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4943

4944 4945
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
4946 4947

	gen6_check_mch_setup(dev);
4948 4949
}

4950
static void valleyview_init_clock_gating(struct drm_device *dev)
4951 4952 4953
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4954
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4955

4956
	/* WaDisableEarlyCull:vlv */
4957 4958 4959
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

4960
	/* WaDisableBackToBackFlipFix:vlv */
4961 4962 4963 4964
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

4965
	/* WaDisablePSDDualDispatchEnable:vlv */
4966
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4967 4968
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4969

4970
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4971 4972 4973
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4974
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
4975
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4976 4977
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

4978
	/* WaForceL3Serialization:vlv */
4979 4980 4981
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4982
	/* WaDisableDopClockGating:vlv */
4983 4984 4985
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

4986
	/* This is required by WaCatErrorRejectionIssue:vlv */
4987 4988 4989 4990
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

4991
	/* WaMbcDriverBootEnable:vlv */
4992 4993 4994
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5007
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5008
	 *
5009 5010
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
5011 5012 5013
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5014
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5015 5016 5017 5018
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5019 5020
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

5021
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5022

5023 5024
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5025

5026
	/*
5027
	 * WaDisableVLVClockGating_VBIIssue:vlv
5028 5029 5030
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
5041 5042
}

5043
static void g4x_init_clock_gating(struct drm_device *dev)
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5059 5060 5061 5062

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5063

5064
	g4x_disable_trickle_feed(dev);
5065 5066
}

5067
static void crestline_init_clock_gating(struct drm_device *dev)
5068 5069 5070 5071 5072 5073 5074 5075
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
5076 5077
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5078 5079
}

5080
static void broadwater_init_clock_gating(struct drm_device *dev)
5081 5082 5083 5084 5085 5086 5087 5088 5089
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
5090 5091
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5092 5093
}

5094
static void gen3_init_clock_gating(struct drm_device *dev)
5095 5096 5097 5098 5099 5100 5101
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
5102 5103 5104

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5105 5106 5107

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5108 5109
}

5110
static void i85x_init_clock_gating(struct drm_device *dev)
5111 5112 5113 5114 5115 5116
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

5117
static void i830_init_clock_gating(struct drm_device *dev)
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

5131 5132 5133 5134 5135 5136
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

5137 5138 5139 5140 5141
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
5142 5143
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
5144 5145 5146
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
	if (!HAS_POWER_WELL(dev))
		return true;

	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
	case POWER_DOMAIN_TRANSCODER_EDP:
		return true;
	case POWER_DOMAIN_PIPE_B:
	case POWER_DOMAIN_PIPE_C:
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
	case POWER_DOMAIN_TRANSCODER_A:
	case POWER_DOMAIN_TRANSCODER_B:
	case POWER_DOMAIN_TRANSCODER_C:
5162 5163
		return I915_READ(HSW_PWR_WELL_DRIVER) ==
		       (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5164 5165 5166
	default:
		BUG();
	}
5167 5168
}

5169
static void __intel_set_power_well(struct drm_device *dev, bool enable)
5170 5171
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5172 5173
	bool is_enabled, enable_requested;
	uint32_t tmp;
5174

5175 5176 5177
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	is_enabled = tmp & HSW_PWR_WELL_STATE;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5178

5179 5180 5181
	if (enable) {
		if (!enable_requested)
			I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5182

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				      HSW_PWR_WELL_STATE), 20))
				DRM_ERROR("Timeout enabling power well\n");
		}
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5193 5194
		}
	}
5195
}
5196

5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
static struct i915_power_well *hsw_pwr;

/* Display audio driver power well request */
void i915_request_power_well(void)
{
	if (WARN_ON(!hsw_pwr))
		return;

	spin_lock_irq(&hsw_pwr->lock);
	if (!hsw_pwr->count++ &&
			!hsw_pwr->i915_request)
		__intel_set_power_well(hsw_pwr->device, true);
	spin_unlock_irq(&hsw_pwr->lock);
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
void i915_release_power_well(void)
{
	if (WARN_ON(!hsw_pwr))
		return;

	spin_lock_irq(&hsw_pwr->lock);
	WARN_ON(!hsw_pwr->count);
	if (!--hsw_pwr->count &&
		       !hsw_pwr->i915_request)
		__intel_set_power_well(hsw_pwr->device, false);
	spin_unlock_irq(&hsw_pwr->lock);
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

int i915_init_power_well(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	hsw_pwr = &dev_priv->power_well;

	hsw_pwr->device = dev;
	spin_lock_init(&hsw_pwr->lock);
	hsw_pwr->count = 0;

	return 0;
}

void i915_remove_power_well(struct drm_device *dev)
{
	hsw_pwr = NULL;
}

void intel_set_power_well(struct drm_device *dev, bool enable)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_well *power_well = &dev_priv->power_well;

	if (!HAS_POWER_WELL(dev))
		return;

	if (!i915_disable_power_well && !enable)
		return;

	spin_lock_irq(&power_well->lock);
	power_well->i915_request = enable;

	/* only reject "disable" power well request */
	if (power_well->count && !enable) {
		spin_unlock_irq(&power_well->lock);
		return;
	}

	__intel_set_power_well(dev, enable);
	spin_unlock_irq(&power_well->lock);
}

5270 5271 5272 5273 5274
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5275
 */
5276
void intel_init_power_well(struct drm_device *dev)
5277 5278 5279
{
	struct drm_i915_private *dev_priv = dev->dev_private;

P
Paulo Zanoni 已提交
5280
	if (!HAS_POWER_WELL(dev))
5281 5282
		return;

5283 5284
	/* For now, we need the power well to be always enabled. */
	intel_set_power_well(dev, true);
5285

5286 5287 5288 5289
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5290 5291
}

5292 5293 5294 5295 5296 5297 5298 5299
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
		if (HAS_PCH_SPLIT(dev)) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
R
Rodrigo Vivi 已提交
5300
			if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5301 5302 5303 5304 5305
				dev_priv->display.enable_fbc =
					gen7_enable_fbc;
			else
				dev_priv->display.enable_fbc =
					ironlake_enable_fbc;
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
		} else if (IS_CRESTLINE(dev)) {
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
		/* 855GM needs testing */
	}

5319 5320 5321 5322 5323 5324
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

5325 5326
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
5327 5328
		intel_setup_wm_latency(dev);

5329
		if (IS_GEN5(dev)) {
5330 5331 5332
			if (dev_priv->wm.pri_latency[1] &&
			    dev_priv->wm.spr_latency[1] &&
			    dev_priv->wm.cur_latency[1])
5333 5334 5335 5336 5337 5338 5339 5340
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
5341 5342 5343
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
5344 5345 5346 5347 5348 5349 5350 5351 5352
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
5353 5354 5355
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
5356
				dev_priv->display.update_wm = ivybridge_update_wm;
5357 5358 5359 5360 5361 5362 5363
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5364
		} else if (IS_HASWELL(dev)) {
5365 5366 5367
			if (dev_priv->wm.pri_latency[0] &&
			    dev_priv->wm.spr_latency[0] &&
			    dev_priv->wm.cur_latency[0]) {
5368
				dev_priv->display.update_wm = haswell_update_wm;
5369 5370
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
5371 5372 5373 5374 5375
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
5376
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

B
Ben Widawsky 已提交
5430 5431
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
5432
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
5456
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
5476

5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
int vlv_gpu_freq(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	return ((val - 0xbd) * mult) + base;
}

int vlv_freq_opcode(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	val /= mult;
	val -= base / mult;
	val += 0xbd;

	if (val > 0xea)
		val = 0xea;

	return val;
}

5532 5533 5534 5535 5536 5537 5538 5539
void intel_pm_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
}