intel_pm.c 236.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381 382 383 384
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
385 386
}

387
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
388
{
389 390
	bool ret;

391
	mutex_lock(&dev_priv->wm.wm_mutex);
392
	ret = _intel_set_memory_cxsr(dev_priv, enable);
393 394
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
395 396

	return ret;
397
}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
413
static const int pessimal_latency_ns = 5000;
414

415 416 417
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

418
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
419
{
420
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
421
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
422
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
423 424
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
425

426
	switch (pipe) {
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
447 448
		MISSING_CASE(pipe);
		return;
449 450
	}

451 452 453 454 455 456 457 458 459 460 461
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;

	DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
		      pipe_name(pipe),
		      fifo_state->plane[PLANE_PRIMARY],
		      fifo_state->plane[PLANE_SPRITE0],
		      fifo_state->plane[PLANE_SPRITE1],
		      fifo_state->plane[PLANE_CURSOR]);
462 463
}

464
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
465 466 467 468 469 470 471 472 473 474 475 476 477 478
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

479
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

495
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
512 513 514 515 516
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
519 520 521 522 523
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params pineview_cursor_wm = {
526 527 528 529 530
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
533 534 535 536 537
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
538 539
};
static const struct intel_watermark_params g4x_wm_info = {
540 541 542 543 544
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
545 546
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
547 548 549 550 551
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
552 553
};
static const struct intel_watermark_params i965_cursor_wm_info = {
554 555 556 557 558
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
559 560
};
static const struct intel_watermark_params i945_wm_info = {
561 562 563 564 565
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
566 567
};
static const struct intel_watermark_params i915_wm_info = {
568 569 570 571 572
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
573
};
574
static const struct intel_watermark_params i830_a_wm_info = {
575 576 577 578 579
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
580
};
581 582 583 584 585 586 587
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
588
static const struct intel_watermark_params i845_wm_info = {
589 590 591 592 593
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
594 595 596 597 598 599
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
600
 * @cpp: bytes per pixel
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
616
					int fifo_size, int cpp,
617 618 619 620 621 622 623 624 625 626
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
627
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
628 629 630 631 632 633 634 635 636 637 638 639 640 641
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
642 643 644 645 646 647 648 649 650 651 652

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

653 654 655
	return wm_size;
}

656
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
657
{
658
	struct intel_crtc *crtc, *enabled = NULL;
659

660
	for_each_intel_crtc(&dev_priv->drm, crtc) {
661
		if (intel_crtc_active(crtc)) {
662 663 664 665 666 667 668 669 670
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

671
static void pineview_update_wm(struct intel_crtc *unused_crtc)
672
{
673
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
674
	struct intel_crtc *crtc;
675 676 677 678
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

679 680 681 682
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
683 684
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
685
		intel_set_memory_cxsr(dev_priv, false);
686 687 688
		return;
	}

689
	crtc = single_enabled_crtc(dev_priv);
690
	if (crtc) {
691 692 693 694
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
695
		int cpp = fb->format->cpp[0];
696
		int clock = adjusted_mode->crtc_clock;
697 698 699 700

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
701
					cpp, latency->display_sr);
702 703
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
704
		reg |= FW_WM(wm, SR);
705 706 707 708 709 710
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
711
					cpp, latency->cursor_sr);
712 713
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
714
		reg |= FW_WM(wm, CURSOR_SR);
715 716 717 718 719
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
720
					cpp, latency->display_hpll_disable);
721 722
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
723
		reg |= FW_WM(wm, HPLL_SR);
724 725 726 727 728
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
729
					cpp, latency->cursor_hpll_disable);
730 731
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
732
		reg |= FW_WM(wm, HPLL_CURSOR);
733 734 735
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

736
		intel_set_memory_cxsr(dev_priv, true);
737
	} else {
738
		intel_set_memory_cxsr(dev_priv, false);
739 740 741
	}
}

742
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
743 744 745 746 747 748 749 750
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
751
	struct intel_crtc *crtc;
752
	const struct drm_display_mode *adjusted_mode;
753
	const struct drm_framebuffer *fb;
754
	int htotal, hdisplay, clock, cpp;
755 756 757
	int line_time_us, line_count;
	int entries, tlb_miss;

758
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
759
	if (!intel_crtc_active(crtc)) {
760 761 762 763 764
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

765 766
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
767
	clock = adjusted_mode->crtc_clock;
768
	htotal = adjusted_mode->crtc_htotal;
769
	hdisplay = crtc->config->pipe_src_w;
770
	cpp = fb->format->cpp[0];
771 772

	/* Use the small buffer method to calculate plane watermark */
773
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
774 775 776 777 778 779 780 781 782
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
783
	line_time_us = max(htotal * 1000 / clock, 1);
784
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
785
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
804
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
805 806 807 808 809 810 811 812
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
813
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
814 815 816 817 818
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
819
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
820 821 822 823 824 825 826 827 828 829 830 831
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

832
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
833 834 835 836 837 838
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
839
	struct intel_crtc *crtc;
840
	const struct drm_display_mode *adjusted_mode;
841
	const struct drm_framebuffer *fb;
842
	int hdisplay, htotal, cpp, clock;
843 844 845 846 847 848 849 850 851 852
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

853
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
854 855
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
856
	clock = adjusted_mode->crtc_clock;
857
	htotal = adjusted_mode->crtc_htotal;
858
	hdisplay = crtc->config->pipe_src_w;
859
	cpp = fb->format->cpp[0];
860

861
	line_time_us = max(htotal * 1000 / clock, 1);
862
	line_count = (latency_ns / line_time_us + 1000) / 1000;
863
	line_size = hdisplay * cpp;
864 865

	/* Use the minimum of the small and large buffer method for primary */
866
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
867 868 869 870 871 872
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
873
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
874 875 876
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

877
	return g4x_check_srwm(dev_priv,
878 879 880 881
			      *display_wm, *cursor_wm,
			      display, cursor);
}

882 883 884
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

885
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
886 887
				const struct vlv_wm_values *wm)
{
888 889 890
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
891 892
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

893 894 895 896 897 898
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
899

900 901 902 903 904 905 906 907 908 909 910
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

911
	I915_WRITE(DSPFW1,
912
		   FW_WM(wm->sr.plane, SR) |
913 914 915
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
916
	I915_WRITE(DSPFW2,
917 918 919
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
920
	I915_WRITE(DSPFW3,
921
		   FW_WM(wm->sr.cursor, CURSOR_SR));
922 923 924

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
925 926
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
927
		I915_WRITE(DSPFW8_CHV,
928 929
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
930
		I915_WRITE(DSPFW9_CHV,
931 932
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
933
		I915_WRITE(DSPHOWM,
934
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
935 936 937 938 939 940 941 942 943
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
944 945
	} else {
		I915_WRITE(DSPFW7,
946 947
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
948
		I915_WRITE(DSPHOWM,
949
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
950 951 952 953 954 955
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
956 957 958
	}

	POSTING_READ(DSPFW1);
959 960
}

961 962
#undef FW_WM_VLV

963 964 965 966
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
967
				   unsigned int cpp,
968 969 970 971 972
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
973
	ret = (ret + 1) * horiz_pixels * cpp;
974 975 976 977 978
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

979
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
980 981 982 983
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

984 985
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

986 987 988
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
989 990

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
991 992 993
	}
}

994 995
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
996 997
				     int level)
{
998
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
999
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1000 1001
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1002
	int clock, htotal, cpp, width, wm;
1003 1004 1005 1006

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1007
	if (!plane_state->base.visible)
1008 1009
		return 0;

1010
	cpp = plane_state->base.fb->format->cpp[0];
1011 1012 1013
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1026
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1027 1028 1029 1030 1031 1032
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1033 1034 1035 1036 1037 1038
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1039
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1040
{
1041
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1042 1043
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1044
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1045 1046 1047
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1048
	int fifo_extra, fifo_left = fifo_size;
1049
	int sprite0_fifo_extra = 0;
1050 1051
	unsigned int total_rate;
	enum plane_id plane_id;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1064 1065
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1066 1067
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1068

1069 1070
	if (total_rate > fifo_size)
		return -EINVAL;
1071

1072 1073
	if (total_rate == 0)
		total_rate = 1;
1074

1075
	for_each_plane_id_on_crtc(crtc, plane_id) {
1076 1077
		unsigned int rate;

1078 1079
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1080 1081 1082
			continue;
		}

1083 1084 1085
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1086 1087
	}

1088 1089 1090
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1091 1092 1093
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1094 1095

	/* spread the remainder evenly */
1096
	for_each_plane_id_on_crtc(crtc, plane_id) {
1097 1098 1099 1100 1101
		int plane_extra;

		if (fifo_left == 0)
			break;

1102
		if ((active_planes & BIT(plane_id)) == 0)
1103 1104 1105
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1106
		fifo_state->plane[plane_id] += plane_extra;
1107 1108 1109
		fifo_left -= plane_extra;
	}

1110 1111 1112 1113 1114 1115 1116 1117 1118
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1119 1120
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static int vlv_num_wm_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	for (; level < vlv_num_wm_levels(dev_priv); level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1143 1144 1145 1146 1147 1148 1149 1150
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1151 1152 1153 1154
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1155
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156
				 int level, enum plane_id plane_id, u16 value)
1157
{
1158 1159
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int num_levels = vlv_num_wm_levels(dev_priv);
1160
	bool dirty = false;
1161

1162 1163
	for (; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1164

1165
		dirty |= raw->plane[plane_id] != value;
1166
		raw->plane[plane_id] = value;
1167
	}
1168 1169

	return dirty;
1170 1171
}

1172
static bool vlv_plane_wm_compute(struct intel_crtc_state *crtc_state,
1173
				 const struct intel_plane_state *plane_state)
1174
{
1175 1176 1177
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
	int num_levels = vlv_num_wm_levels(to_i915(plane->base.dev));
1178
	int level;
1179
	bool dirty = false;
1180

1181
	if (!plane_state->base.visible) {
1182 1183
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1184
	}
1185

1186 1187 1188 1189
	for (level = 0; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1190

1191 1192
		if (wm > max_wm)
			break;
1193

1194
		dirty |= raw->plane[plane_id] != wm;
1195 1196
		raw->plane[plane_id] = wm;
	}
1197

1198
	/* mark all higher levels as invalid */
1199
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209
out:
	if (dirty)
		DRM_DEBUG_KMS("%s wms: [0]=%d,[1]=%d,[2]=%d\n",
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1210
}
1211

1212 1213 1214 1215 1216 1217 1218
static bool vlv_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				  enum plane_id plane_id, int level)
{
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1219

1220 1221
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static bool vlv_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
{
	return vlv_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1242
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1243 1244 1245 1246
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1247
	unsigned int dirty = 0;
1248 1249 1250 1251 1252 1253 1254 1255

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		if (vlv_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1288
	}
1289

1290 1291 1292 1293 1294 1295 1296
	/* initially allow all levels */
	wm_state->num_levels = vlv_num_wm_levels(dev_priv);
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1297
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1298

1299
	for (level = 0; level < wm_state->num_levels; level++) {
1300 1301
		const struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1302

1303 1304
		if (!vlv_crtc_wm_is_valid(crtc_state, level))
			break;
1305

1306 1307 1308 1309 1310 1311 1312 1313
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1314
						 raw->plane[PLANE_SPRITE0],
1315 1316
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1317

1318 1319 1320
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1321 1322
	}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1333 1334
}

1335 1336 1337
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1338 1339
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1340
{
1341
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1342
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1343 1344
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1345
	int sprite0_start, sprite1_start, fifo_size;
1346

1347 1348 1349
	if (!crtc_state->fifo_changed)
		return;

1350 1351 1352
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1353

1354 1355
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1356

1357 1358
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1359 1360
	spin_lock(&dev_priv->wm.dsparb_lock);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1417 1418 1419 1420

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1421 1422 1423 1424
}

#undef VLV_FIFO

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1435 1436
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
1459 1460
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
1461 1462 1463 1464

	return 0;
}

1465
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1466 1467 1468 1469 1470
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1471
	wm->level = dev_priv->wm.max_level;
1472 1473
	wm->cxsr = true;

1474
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1475
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1490 1491 1492
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1493
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1494
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1495 1496 1497
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
1498
		if (crtc->active && wm->cxsr)
1499 1500
			wm->sr = wm_state->sr[wm->level];

1501 1502 1503 1504
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1505 1506 1507
	}
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1518
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1519
{
1520 1521
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1522

1523
	vlv_merge_wm(dev_priv, &new_wm);
1524

1525
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1526 1527
		return;

1528
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1529 1530
		chv_set_memory_dvfs(dev_priv, false);

1531
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1532 1533
		chv_set_memory_pm5(dev_priv, false);

1534
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1535
		_intel_set_memory_cxsr(dev_priv, false);
1536

1537
	vlv_write_wm_values(dev_priv, &new_wm);
1538

1539
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1540
		_intel_set_memory_cxsr(dev_priv, true);
1541

1542
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1543 1544
		chv_set_memory_pm5(dev_priv, true);

1545
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1546 1547
		chv_set_memory_dvfs(dev_priv, true);

1548
	*old_wm = new_wm;
1549 1550
}

1551 1552 1553 1554 1555 1556 1557
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1574 1575 1576 1577
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1578 1579
#define single_plane_enabled(mask) is_power_of_2(mask)

1580
static void g4x_update_wm(struct intel_crtc *crtc)
1581
{
1582
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1583 1584 1585 1586
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1587
	bool cxsr_enabled;
1588

1589
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1590 1591
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1592
			    &planea_wm, &cursora_wm))
1593
		enabled |= 1 << PIPE_A;
1594

1595
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1596 1597
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1598
			    &planeb_wm, &cursorb_wm))
1599
		enabled |= 1 << PIPE_B;
1600 1601

	if (single_plane_enabled(enabled) &&
1602
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1603 1604 1605
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1606
			     &plane_sr, &cursor_sr)) {
1607
		cxsr_enabled = true;
1608
	} else {
1609
		cxsr_enabled = false;
1610
		intel_set_memory_cxsr(dev_priv, false);
1611 1612
		plane_sr = cursor_sr = 0;
	}
1613

1614 1615
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1616 1617 1618 1619 1620
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1621 1622 1623 1624
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1625
	I915_WRITE(DSPFW2,
1626
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1627
		   FW_WM(cursora_wm, CURSORA));
1628 1629
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1630
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1631
		   FW_WM(cursor_sr, CURSOR_SR));
1632 1633 1634

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1635 1636
}

1637
static void i965_update_wm(struct intel_crtc *unused_crtc)
1638
{
1639
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1640
	struct intel_crtc *crtc;
1641 1642
	int srwm = 1;
	int cursor_sr = 16;
1643
	bool cxsr_enabled;
1644 1645

	/* Calc sr entries for one plane configs */
1646
	crtc = single_enabled_crtc(dev_priv);
1647 1648 1649
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1650 1651 1652 1653
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1654
		int clock = adjusted_mode->crtc_clock;
1655
		int htotal = adjusted_mode->crtc_htotal;
1656
		int hdisplay = crtc->config->pipe_src_w;
1657
		int cpp = fb->format->cpp[0];
1658 1659 1660
		unsigned long line_time_us;
		int entries;

1661
		line_time_us = max(htotal * 1000 / clock, 1);
1662 1663 1664

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1665
			cpp * hdisplay;
1666 1667 1668 1669 1670 1671 1672 1673 1674
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1675
			cpp * crtc->base.cursor->state->crtc_w;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1687
		cxsr_enabled = true;
1688
	} else {
1689
		cxsr_enabled = false;
1690
		/* Turn off self refresh if both pipes are enabled */
1691
		intel_set_memory_cxsr(dev_priv, false);
1692 1693 1694 1695 1696 1697
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1698 1699 1700 1701 1702 1703
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1704
	/* update cursor SR watermark */
1705
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1706 1707 1708

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1709 1710
}

1711 1712
#undef FW_WM

1713
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1714
{
1715
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1716 1717 1718 1719 1720 1721
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1722
	struct intel_crtc *crtc, *enabled = NULL;
1723

1724
	if (IS_I945GM(dev_priv))
1725
		wm_info = &i945_wm_info;
1726
	else if (!IS_GEN2(dev_priv))
1727 1728
		wm_info = &i915_wm_info;
	else
1729
		wm_info = &i830_a_wm_info;
1730

1731
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1732
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1733 1734 1735 1736 1737 1738 1739
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1740
		if (IS_GEN2(dev_priv))
1741
			cpp = 4;
1742
		else
1743
			cpp = fb->format->cpp[0];
1744

1745
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1746
					       wm_info, fifo_size, cpp,
1747
					       pessimal_latency_ns);
1748
		enabled = crtc;
1749
	} else {
1750
		planea_wm = fifo_size - wm_info->guard_size;
1751 1752 1753 1754
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1755
	if (IS_GEN2(dev_priv))
1756
		wm_info = &i830_bc_wm_info;
1757

1758
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1759
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1760 1761 1762 1763 1764 1765 1766
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1767
		if (IS_GEN2(dev_priv))
1768
			cpp = 4;
1769
		else
1770
			cpp = fb->format->cpp[0];
1771

1772
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1773
					       wm_info, fifo_size, cpp,
1774
					       pessimal_latency_ns);
1775 1776 1777 1778
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1779
	} else {
1780
		planeb_wm = fifo_size - wm_info->guard_size;
1781 1782 1783
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1784 1785 1786

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1787
	if (IS_I915GM(dev_priv) && enabled) {
1788
		struct drm_i915_gem_object *obj;
1789

1790
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1791 1792

		/* self-refresh seems busted with untiled */
1793
		if (!i915_gem_object_is_tiled(obj))
1794 1795 1796
			enabled = NULL;
	}

1797 1798 1799 1800 1801 1802
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1803
	intel_set_memory_cxsr(dev_priv, false);
1804 1805

	/* Calc sr entries for one plane configs */
1806
	if (HAS_FW_BLC(dev_priv) && enabled) {
1807 1808
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1809 1810 1811 1812
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1813
		int clock = adjusted_mode->crtc_clock;
1814
		int htotal = adjusted_mode->crtc_htotal;
1815 1816
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1817 1818 1819
		unsigned long line_time_us;
		int entries;

1820
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1821
			cpp = 4;
1822
		else
1823
			cpp = fb->format->cpp[0];
1824

1825
		line_time_us = max(htotal * 1000 / clock, 1);
1826 1827 1828

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1829
			cpp * hdisplay;
1830 1831 1832 1833 1834 1835
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1836
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1837 1838
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1839
		else
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1856 1857
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1858 1859
}

1860
static void i845_update_wm(struct intel_crtc *unused_crtc)
1861
{
1862
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1863
	struct intel_crtc *crtc;
1864
	const struct drm_display_mode *adjusted_mode;
1865 1866 1867
	uint32_t fwater_lo;
	int planea_wm;

1868
	crtc = single_enabled_crtc(dev_priv);
1869 1870 1871
	if (crtc == NULL)
		return;

1872
	adjusted_mode = &crtc->config->base.adjusted_mode;
1873
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1874
				       &i845_wm_info,
1875
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1876
				       4, pessimal_latency_ns);
1877 1878 1879 1880 1881 1882 1883 1884
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1885
/* latency must be in 0.1us units. */
1886
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1887 1888 1889
{
	uint64_t ret;

1890 1891 1892
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1893
	ret = (uint64_t) pixel_rate * cpp * latency;
1894 1895 1896 1897 1898
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1899
/* latency must be in 0.1us units. */
1900
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1901
			       uint32_t horiz_pixels, uint8_t cpp,
1902 1903 1904 1905
			       uint32_t latency)
{
	uint32_t ret;

1906 1907
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1908 1909
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1910

1911
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1912
	ret = (ret + 1) * horiz_pixels * cpp;
1913 1914 1915 1916
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1917
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1918
			   uint8_t cpp)
1919
{
1920 1921 1922 1923 1924 1925
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1926
	if (WARN_ON(!cpp))
1927 1928 1929 1930
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1931
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1932 1933
}

1934
struct ilk_wm_maximums {
1935 1936 1937 1938 1939 1940
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1941 1942 1943 1944
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1945
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1946
				   const struct intel_plane_state *pstate,
1947 1948
				   uint32_t mem_value,
				   bool is_lp)
1949
{
1950
	uint32_t method1, method2;
1951
	int cpp;
1952

1953
	if (!cstate->base.active || !pstate->base.visible)
1954 1955
		return 0;

1956
	cpp = pstate->base.fb->format->cpp[0];
1957

1958
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1959 1960 1961 1962

	if (!is_lp)
		return method1;

1963
	method2 = ilk_wm_method2(cstate->pixel_rate,
1964
				 cstate->base.adjusted_mode.crtc_htotal,
1965
				 drm_rect_width(&pstate->base.dst),
1966
				 cpp, mem_value);
1967 1968

	return min(method1, method2);
1969 1970
}

1971 1972 1973 1974
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1975
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1976
				   const struct intel_plane_state *pstate,
1977 1978 1979
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1980
	int cpp;
1981

1982
	if (!cstate->base.active || !pstate->base.visible)
1983 1984
		return 0;

1985
	cpp = pstate->base.fb->format->cpp[0];
1986

1987 1988
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
1989
				 cstate->base.adjusted_mode.crtc_htotal,
1990
				 drm_rect_width(&pstate->base.dst),
1991
				 cpp, mem_value);
1992 1993 1994
	return min(method1, method2);
}

1995 1996 1997 1998
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1999
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2000
				   const struct intel_plane_state *pstate,
2001 2002
				   uint32_t mem_value)
{
2003 2004
	int cpp;

2005
	/*
2006 2007 2008 2009 2010 2011
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
2012
	 */
2013
	if (!cstate->base.active || !pstate->base.fb)
2014 2015
		return 0;

2016 2017
	cpp = pstate->base.fb->format->cpp[0];

2018
	return ilk_wm_method2(cstate->pixel_rate,
2019
			      cstate->base.adjusted_mode.crtc_htotal,
2020
			      pstate->base.crtc_w, cpp, mem_value);
2021 2022
}

2023
/* Only for WM_LP. */
2024
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2025
				   const struct intel_plane_state *pstate,
2026
				   uint32_t pri_val)
2027
{
2028
	int cpp;
2029

2030
	if (!cstate->base.active || !pstate->base.visible)
2031 2032
		return 0;

2033
	cpp = pstate->base.fb->format->cpp[0];
2034

2035
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2036 2037
}

2038 2039
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2040
{
2041
	if (INTEL_GEN(dev_priv) >= 8)
2042
		return 3072;
2043
	else if (INTEL_GEN(dev_priv) >= 7)
2044 2045 2046 2047 2048
		return 768;
	else
		return 512;
}

2049 2050 2051
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2052
{
2053
	if (INTEL_GEN(dev_priv) >= 8)
2054 2055
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2056
	else if (INTEL_GEN(dev_priv) >= 7)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2067 2068
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2069
{
2070
	if (INTEL_GEN(dev_priv) >= 7)
2071 2072 2073 2074 2075
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2076
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2077
{
2078
	if (INTEL_GEN(dev_priv) >= 8)
2079 2080 2081 2082 2083
		return 31;
	else
		return 15;
}

2084 2085 2086
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2087
				     const struct intel_wm_config *config,
2088 2089 2090
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2091 2092
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2093 2094

	/* if sprites aren't enabled, sprites get nothing */
2095
	if (is_sprite && !config->sprites_enabled)
2096 2097 2098
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2099
	if (level == 0 || config->num_pipes_active > 1) {
2100
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2101 2102 2103 2104 2105 2106

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2107
		if (INTEL_GEN(dev_priv) <= 6)
2108 2109 2110
			fifo_size /= 2;
	}

2111
	if (config->sprites_enabled) {
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2123
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2124 2125 2126 2127
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2128 2129
				      int level,
				      const struct intel_wm_config *config)
2130 2131
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2132
	if (level > 0 && config->num_pipes_active > 1)
2133 2134 2135
		return 64;

	/* otherwise just report max that registers can hold */
2136
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2137 2138
}

2139
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2140 2141 2142
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2143
				    struct ilk_wm_maximums *max)
2144
{
2145 2146 2147
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2148
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2149 2150
}

2151
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2152 2153 2154
					int level,
					struct ilk_wm_maximums *max)
{
2155 2156 2157 2158
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2159 2160
}

2161
static bool ilk_validate_wm_level(int level,
2162
				  const struct ilk_wm_maximums *max,
2163
				  struct intel_wm_level *result)
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2202
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2203
				 const struct intel_crtc *intel_crtc,
2204
				 int level,
2205
				 struct intel_crtc_state *cstate,
2206 2207 2208
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2209
				 struct intel_wm_level *result)
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2234 2235 2236
	result->enable = true;
}

2237
static uint32_t
2238
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2239
{
2240 2241
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2242 2243
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2244
	u32 linetime, ips_linetime;
2245

2246 2247 2248 2249
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2250
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2251
		return 0;
2252

2253 2254 2255
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2256 2257 2258
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2259
					 intel_state->cdclk.logical.cdclk);
2260

2261 2262
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2263 2264
}

2265 2266
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2267
{
2268
	if (IS_GEN9(dev_priv)) {
2269
		uint32_t val;
2270
		int ret, i;
2271
		int level, max_level = ilk_wm_max_level(dev_priv);
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2327
		/*
2328
		 * WaWmMemoryReadLatency:skl,glk
2329
		 *
2330
		 * punit doesn't take into account the read latency so we need
2331 2332
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2333
		 */
2334 2335 2336 2337 2338
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2339
				wm[level] += 2;
2340
			}
2341 2342
		}

2343
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2344 2345 2346 2347 2348
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2349 2350 2351 2352
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2353
	} else if (INTEL_GEN(dev_priv) >= 6) {
2354 2355 2356 2357 2358 2359
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2360
	} else if (INTEL_GEN(dev_priv) >= 5) {
2361 2362 2363 2364 2365 2366
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2367 2368 2369
	}
}

2370 2371
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2372 2373
{
	/* ILK sprite LP0 latency is 1300 ns */
2374
	if (IS_GEN5(dev_priv))
2375 2376 2377
		wm[0] = 13;
}

2378 2379
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2380 2381
{
	/* ILK cursor LP0 latency is 1300 ns */
2382
	if (IS_GEN5(dev_priv))
2383 2384 2385
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2386
	if (IS_IVYBRIDGE(dev_priv))
2387 2388 2389
		wm[3] *= 2;
}

2390
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2391 2392
{
	/* how many WM levels are we expecting */
2393
	if (INTEL_GEN(dev_priv) >= 9)
2394
		return 7;
2395
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2396
		return 4;
2397
	else if (INTEL_GEN(dev_priv) >= 6)
2398
		return 3;
2399
	else
2400 2401
		return 2;
}
2402

2403
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2404
				   const char *name,
2405
				   const uint16_t wm[8])
2406
{
2407
	int level, max_level = ilk_wm_max_level(dev_priv);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2418 2419 2420 2421
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2422
		if (IS_GEN9(dev_priv))
2423 2424
			latency *= 10;
		else if (level > 0)
2425 2426 2427 2428 2429 2430 2431 2432
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2433 2434 2435
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2436
	int level, max_level = ilk_wm_max_level(dev_priv);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2448
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2464 2465 2466
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2467 2468
}

2469
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2470
{
2471
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2472 2473 2474 2475 2476 2477

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2478
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2479
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2480

2481 2482 2483
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2484

2485
	if (IS_GEN6(dev_priv))
2486
		snb_wm_latency_quirk(dev_priv);
2487 2488
}

2489
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2490
{
2491
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2492
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2493 2494
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2518
/* Compute new watermarks for the pipe */
2519
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2520
{
2521 2522
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2523
	struct intel_pipe_wm *pipe_wm;
2524
	struct drm_device *dev = state->dev;
2525
	const struct drm_i915_private *dev_priv = to_i915(dev);
2526
	struct intel_plane *intel_plane;
2527
	struct intel_plane_state *pristate = NULL;
2528
	struct intel_plane_state *sprstate = NULL;
2529
	struct intel_plane_state *curstate = NULL;
2530
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2531
	struct ilk_wm_maximums max;
2532

2533
	pipe_wm = &cstate->wm.ilk.optimal;
2534

2535
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2536 2537 2538 2539 2540 2541
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2542 2543

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2544
			pristate = ps;
2545
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2546
			sprstate = ps;
2547
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2548
			curstate = ps;
2549 2550
	}

2551
	pipe_wm->pipe_enabled = cstate->base.active;
2552
	if (sprstate) {
2553 2554 2555 2556
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2557 2558
	}

2559 2560
	usable_level = max_level;

2561
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2562
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2563
		usable_level = 1;
2564 2565

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2566
	if (pipe_wm->sprites_scaled)
2567
		usable_level = 0;
2568

2569
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2570 2571 2572 2573
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2574

2575
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2576
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2577

2578
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2579
		return -EINVAL;
2580

2581
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2582 2583

	for (level = 1; level <= max_level; level++) {
2584
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2585

2586
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2587
				     pristate, sprstate, curstate, wm);
2588 2589 2590 2591 2592 2593

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2594 2595 2596 2597 2598 2599
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2600
			usable_level = level;
2601 2602
	}

2603
	return 0;
2604 2605
}

2606 2607 2608 2609 2610 2611 2612 2613 2614
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2615
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2616
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2617
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2618 2619 2620 2621 2622 2623

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2624
	*a = newstate->wm.ilk.optimal;
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2653 2654
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
2655 2656 2657 2658

	return 0;
}

2659 2660 2661 2662 2663 2664 2665 2666 2667
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2668 2669
	ret_wm->enable = true;

2670
	for_each_intel_crtc(dev, intel_crtc) {
2671
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2672 2673 2674 2675
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2676

2677 2678 2679 2680 2681
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2682
		if (!wm->enable)
2683
			ret_wm->enable = false;
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2696
			 const struct intel_wm_config *config,
2697
			 const struct ilk_wm_maximums *max,
2698 2699
			 struct intel_pipe_wm *merged)
{
2700
	struct drm_i915_private *dev_priv = to_i915(dev);
2701
	int level, max_level = ilk_wm_max_level(dev_priv);
2702
	int last_enabled_level = max_level;
2703

2704
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2705
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2706
	    config->num_pipes_active > 1)
2707
		last_enabled_level = 0;
2708

2709
	/* ILK: FBC WM must be disabled always */
2710
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2711 2712 2713 2714 2715 2716 2717

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2718 2719 2720 2721 2722
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2723 2724 2725 2726 2727 2728

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2729 2730
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2731 2732 2733
			wm->fbc_val = 0;
		}
	}
2734 2735 2736 2737 2738 2739 2740

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2741
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2742
	    intel_fbc_is_active(dev_priv)) {
2743 2744 2745 2746 2747 2748
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2749 2750
}

2751 2752 2753 2754 2755 2756
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2757 2758 2759
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2760
	struct drm_i915_private *dev_priv = to_i915(dev);
2761

2762
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2763 2764 2765 2766 2767
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2768
static void ilk_compute_wm_results(struct drm_device *dev,
2769
				   const struct intel_pipe_wm *merged,
2770
				   enum intel_ddb_partitioning partitioning,
2771
				   struct ilk_wm_values *results)
2772
{
2773
	struct drm_i915_private *dev_priv = to_i915(dev);
2774 2775
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2776

2777
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2778
	results->partitioning = partitioning;
2779

2780
	/* LP1+ register values */
2781
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2782
		const struct intel_wm_level *r;
2783

2784
		level = ilk_wm_lp_to_level(wm_lp, merged);
2785

2786
		r = &merged->wm[level];
2787

2788 2789 2790 2791 2792
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2793
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2794 2795 2796
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2797 2798 2799
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2800
		if (INTEL_GEN(dev_priv) >= 8)
2801 2802 2803 2804 2805 2806
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2807 2808 2809 2810
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2811
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2812 2813 2814 2815
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2816
	}
2817

2818
	/* LP0 register values */
2819
	for_each_intel_crtc(dev, intel_crtc) {
2820
		enum pipe pipe = intel_crtc->pipe;
2821 2822
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2823 2824 2825 2826

		if (WARN_ON(!r->enable))
			continue;

2827
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2828

2829 2830 2831 2832
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2833 2834 2835
	}
}

2836 2837
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2838
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2839 2840
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2841
{
2842
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2843
	int level1 = 0, level2 = 0;
2844

2845 2846 2847 2848 2849
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2850 2851
	}

2852 2853
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2854 2855 2856
			return r2;
		else
			return r1;
2857
	} else if (level1 > level2) {
2858 2859 2860 2861 2862 2863
		return r1;
	} else {
		return r2;
	}
}

2864 2865 2866 2867 2868 2869 2870 2871
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2872
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2873 2874
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2875 2876 2877 2878 2879
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2880
	for_each_pipe(dev_priv, pipe) {
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2924 2925
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2926
{
2927
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2928
	bool changed = false;
2929

2930 2931 2932
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2933
		changed = true;
2934 2935 2936 2937
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2938
		changed = true;
2939 2940 2941 2942
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2943
		changed = true;
2944
	}
2945

2946 2947 2948 2949
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2950

2951 2952 2953 2954 2955 2956 2957
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2958 2959
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2960
{
2961
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2962 2963 2964
	unsigned int dirty;
	uint32_t val;

2965
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2966 2967 2968 2969 2970
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2971
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2972
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2973
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2974
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2975
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2976 2977
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2978
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2979
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2980
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2981
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2982
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2983 2984
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2985
	if (dirty & WM_DIRTY_DDB) {
2986
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3001 3002
	}

3003
	if (dirty & WM_DIRTY_FBC) {
3004 3005 3006 3007 3008 3009 3010 3011
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3012 3013 3014 3015
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3016
	if (INTEL_GEN(dev_priv) >= 7) {
3017 3018 3019 3020 3021
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3022

3023
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3024
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3025
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3026
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3027
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3028
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3029 3030

	dev_priv->wm.hw = *results;
3031 3032
}

3033
bool ilk_disable_lp_wm(struct drm_device *dev)
3034
{
3035
	struct drm_i915_private *dev_priv = to_i915(dev);
3036 3037 3038 3039

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3040
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3041

3042 3043 3044 3045 3046 3047 3048 3049
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3050
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3051 3052 3053 3054 3055
		return true;

	return false;
}

3056 3057 3058
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3059 3060 3061 3062 3063 3064 3065 3066
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3081
intel_enable_sagv(struct drm_i915_private *dev_priv)
3082 3083 3084
{
	int ret;

3085 3086 3087 3088
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3104
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3105
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3106
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3107 3108 3109 3110 3111 3112
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3113
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3114 3115 3116 3117
	return 0;
}

int
3118
intel_disable_sagv(struct drm_i915_private *dev_priv)
3119
{
3120
	int ret;
3121

3122 3123 3124 3125
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3126 3127 3128 3129 3130 3131
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3132 3133 3134 3135
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3136 3137 3138 3139 3140 3141
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3142
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3143
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3144
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3145
		return 0;
3146 3147 3148
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3149 3150
	}

3151
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3152 3153 3154
	return 0;
}

3155
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3156 3157 3158 3159
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3160 3161
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3162
	struct intel_crtc_state *cstate;
3163
	enum pipe pipe;
3164
	int level, latency;
3165

3166 3167 3168
	if (!intel_has_sagv(dev_priv))
		return false;

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3182
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3183
	cstate = to_intel_crtc_state(crtc->base.state);
3184

3185
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3186 3187
		return false;

3188
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3189 3190
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3191

3192
		/* Skip this plane if it's not enabled */
3193
		if (!wm->wm[0].plane_en)
3194 3195 3196
			continue;

		/* Find the highest enabled wm level for this plane */
3197
		for (level = ilk_wm_max_level(dev_priv);
3198
		     !wm->wm[level].plane_en; --level)
3199 3200
		     { }

3201 3202 3203
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3204
		    plane->base.state->fb->modifier ==
3205 3206 3207
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3208 3209 3210 3211 3212
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3213
		if (latency < SKL_SAGV_BLOCK_TIME)
3214 3215 3216 3217 3218 3219
			return false;
	}

	return true;
}

3220 3221
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3222
				   const struct intel_crtc_state *cstate,
3223 3224
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3225
{
3226 3227 3228
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3229
	struct drm_crtc *for_crtc = cstate->base.crtc;
3230 3231
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3232

3233
	if (WARN_ON(!state) || !cstate->base.active) {
3234 3235
		alloc->start = 0;
		alloc->end = 0;
3236
		*num_active = hweight32(dev_priv->active_crtcs);
3237 3238 3239
		return;
	}

3240 3241 3242 3243 3244
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3245 3246
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3247 3248 3249

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3250
	/*
3251 3252 3253 3254 3255 3256
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3257
	 */
3258
	if (!intel_state->active_pipe_changes) {
3259 3260 3261 3262 3263
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3264
		return;
3265
	}
3266 3267 3268 3269 3270 3271

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3272 3273
}

3274
static unsigned int skl_cursor_allocation(int num_active)
3275
{
3276
	if (num_active == 1)
3277 3278 3279 3280 3281
		return 32;

	return 8;
}

3282 3283 3284 3285
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3286 3287
	if (entry->end)
		entry->end += 1;
3288 3289
}

3290 3291
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3292
{
3293
	struct intel_crtc *crtc;
3294

3295 3296
	memset(ddb, 0, sizeof(*ddb));

3297
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3298
		enum intel_display_power_domain power_domain;
3299 3300
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3301 3302 3303

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3304 3305
			continue;

3306 3307 3308 3309 3310 3311 3312
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3313

3314 3315
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3316 3317

		intel_display_power_put(dev_priv, power_domain);
3318 3319 3320
	}
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3343
	if (WARN_ON(!pstate->base.visible))
3344 3345 3346
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3347 3348 3349 3350
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3351
	if (drm_rotation_90_or_270(pstate->base.rotation))
3352 3353 3354 3355 3356 3357 3358 3359 3360
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3361
static unsigned int
3362 3363 3364
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3365
{
3366
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3367
	uint32_t down_scale_amount, data_rate;
3368
	uint32_t width = 0, height = 0;
3369 3370
	struct drm_framebuffer *fb;
	u32 format;
3371

3372
	if (!intel_pstate->base.visible)
3373
		return 0;
3374 3375

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3376
	format = fb->format->format;
3377

3378 3379 3380 3381
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3382

3383 3384
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3385

3386
	if (drm_rotation_90_or_270(pstate->rotation))
3387
		swap(width, height);
3388 3389

	/* for planar format */
3390
	if (format == DRM_FORMAT_NV12) {
3391
		if (y)  /* y-plane data rate */
3392
			data_rate = width * height *
3393
				fb->format->cpp[0];
3394
		else    /* uv-plane data rate */
3395
			data_rate = (width / 2) * (height / 2) *
3396
				fb->format->cpp[1];
3397 3398
	} else {
		/* for packed formats */
3399
		data_rate = width * height * fb->format->cpp[0];
3400 3401
	}

3402 3403 3404
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3405 3406 3407 3408 3409 3410 3411 3412
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3413 3414 3415
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3416
{
3417 3418
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3419 3420
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3421
	unsigned int total_data_rate = 0;
3422 3423 3424

	if (WARN_ON(!state))
		return 0;
3425

3426
	/* Calculate and cache data rate for each plane */
3427
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3428 3429
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3430 3431 3432 3433

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3434
		plane_data_rate[plane_id] = rate;
3435 3436

		total_data_rate += rate;
3437 3438 3439 3440

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3441
		plane_y_data_rate[plane_id] = rate;
3442

3443
		total_data_rate += rate;
3444 3445 3446 3447 3448
	}

	return total_data_rate;
}

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3463
	if (y && fb->format->format != DRM_FORMAT_NV12)
3464 3465 3466
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3467 3468
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3469 3470
		return 8;

3471 3472
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3473

3474
	if (drm_rotation_90_or_270(pstate->rotation))
3475 3476 3477
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3478
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3479 3480 3481 3482
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3483
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3484
		plane_bpp = fb->format->cpp[1];
3485
	else
3486
		plane_bpp = fb->format->cpp[0];
3487

3488
	if (drm_rotation_90_or_270(pstate->rotation)) {
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3512 3513 3514 3515 3516 3517 3518 3519
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3520
		enum plane_id plane_id = to_intel_plane(plane)->id;
3521

3522
		if (plane_id == PLANE_CURSOR)
3523 3524 3525 3526 3527
			continue;

		if (!pstate->visible)
			continue;

3528 3529
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3530 3531 3532 3533 3534
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3535
static int
3536
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3537 3538
		      struct skl_ddb_allocation *ddb /* out */)
{
3539
	struct drm_atomic_state *state = cstate->base.state;
3540
	struct drm_crtc *crtc = cstate->base.crtc;
3541 3542 3543
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3544
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3545
	uint16_t alloc_size, start;
3546 3547
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3548
	unsigned int total_data_rate;
3549
	enum plane_id plane_id;
3550
	int num_active;
3551 3552
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3553

3554 3555 3556 3557
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3558 3559 3560
	if (WARN_ON(!state))
		return 0;

3561
	if (!cstate->base.active) {
3562
		alloc->start = alloc->end = 0;
3563 3564 3565
		return 0;
	}

3566
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3567
	alloc_size = skl_ddb_entry_size(alloc);
3568 3569
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3570
		return 0;
3571 3572
	}

3573
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3574

3575 3576 3577 3578 3579
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3580

3581 3582 3583
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3584 3585
	}

3586 3587 3588
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3589
	/*
3590 3591
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3592 3593 3594
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3595 3596 3597
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3598
	if (total_data_rate == 0)
3599
		return 0;
3600

3601
	start = alloc->start;
3602
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3603 3604
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3605

3606
		if (plane_id == PLANE_CURSOR)
3607 3608
			continue;

3609
		data_rate = plane_data_rate[plane_id];
3610 3611

		/*
3612
		 * allocation for (packed formats) or (uv-plane part of planar format):
3613 3614 3615
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3616
		plane_blocks = minimum[plane_id];
3617 3618
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3619

3620 3621
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3622 3623
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3624
		}
3625 3626

		start += plane_blocks;
3627 3628 3629 3630

		/*
		 * allocation for y_plane part of planar format:
		 */
3631
		y_data_rate = plane_y_data_rate[plane_id];
3632

3633
		y_plane_blocks = y_minimum[plane_id];
3634 3635
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3636

3637
		if (y_data_rate) {
3638 3639
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3640
		}
3641 3642

		start += y_plane_blocks;
3643 3644
	}

3645
	return 0;
3646 3647
}

3648 3649
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3650
 * for the read latency) and cpp should always be <= 8, so that
3651 3652 3653
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3654 3655
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3656
{
3657 3658
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3659 3660

	if (latency == 0)
3661
		return FP_16_16_MAX;
3662

3663 3664
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3665 3666 3667
	return ret;
}

3668 3669 3670 3671
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3672
{
3673
	uint32_t wm_intermediate_val;
3674
	uint_fixed_16_16_t ret;
3675 3676

	if (latency == 0)
3677
		return FP_16_16_MAX;
3678 3679

	wm_intermediate_val = latency * pixel_rate;
3680 3681 3682
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3683 3684 3685
	return ret;
}

3686 3687 3688 3689 3690 3691 3692 3693
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3694
	if (WARN_ON(!pstate->base.visible))
3695 3696 3697 3698 3699 3700
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3701
	adjusted_pixel_rate = cstate->pixel_rate;
3702 3703 3704 3705 3706 3707 3708 3709
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3710 3711 3712 3713 3714 3715 3716 3717
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3718
{
3719 3720
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3721
	uint32_t latency = dev_priv->wm.skl_latency[level];
3722 3723 3724 3725 3726
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3727
	uint32_t res_blocks, res_lines;
3728
	uint8_t cpp;
3729
	uint32_t width = 0, height = 0;
3730
	uint32_t plane_pixel_rate;
3731 3732
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3733 3734 3735
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3736
	bool y_tiled, x_tiled;
3737

3738
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3739 3740 3741
		*enabled = false;
		return 0;
	}
3742

3743 3744 3745 3746
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3747 3748 3749 3750
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3751
	if (apply_memory_bw_wa && x_tiled)
3752 3753
		latency += 15;

3754 3755
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3756

3757
	if (drm_rotation_90_or_270(pstate->rotation))
3758 3759
		swap(width, height);

3760
	cpp = fb->format->cpp[0];
3761 3762
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3763
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3764
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3765 3766
			fb->format->cpp[1] :
			fb->format->cpp[0];
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3778 3779 3780
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3781 3782 3783 3784 3785
		}
	} else {
		y_min_scanlines = 4;
	}

3786 3787 3788
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3789
	plane_bytes_per_line = width * cpp;
3790
	if (y_tiled) {
3791 3792
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3793
		plane_blocks_per_line =
3794
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3795
	} else if (x_tiled) {
3796 3797
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3798
	} else {
3799 3800
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3801 3802
	}

3803 3804
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3805
				 cstate->base.adjusted_mode.crtc_htotal,
3806
				 latency,
3807
				 plane_blocks_per_line);
3808

3809 3810
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3811

3812
	if (y_tiled) {
3813
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3814
	} else {
3815 3816 3817
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3818 3819 3820
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3821 3822 3823
		else
			selected_result = method1;
	}
3824

3825 3826 3827
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3828

3829
	if (level >= 1 && level <= 7) {
3830
		if (y_tiled) {
3831
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3832
			res_lines += y_min_scanlines;
3833
		} else {
3834
			res_blocks++;
3835
		}
3836
	}
3837

3838 3839
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3840 3841 3842 3843 3844 3845 3846 3847

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3848 3849
			struct drm_plane *plane = pstate->plane;

3850
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3851 3852
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3853 3854 3855
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3856
	}
3857 3858 3859

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3860
	*enabled = true;
3861

3862
	return 0;
3863 3864
}

3865 3866 3867 3868
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3869
		     struct intel_plane *intel_plane,
3870 3871
		     int level,
		     struct skl_wm_level *result)
3872
{
3873
	struct drm_atomic_state *state = cstate->base.state;
3874
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3875 3876
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3877
	uint16_t ddb_blocks;
3878
	enum pipe pipe = intel_crtc->pipe;
3879
	int ret;
L
Lyude 已提交
3880 3881 3882 3883 3884

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3885

3886
	/*
L
Lyude 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3896
	 */
L
Lyude 已提交
3897 3898
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3899

L
Lyude 已提交
3900
	WARN_ON(!intel_pstate->base.fb);
3901

3902
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3903

L
Lyude 已提交
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3914 3915

	return 0;
3916 3917
}

3918
static uint32_t
3919
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3920
{
M
Mahesh Kumar 已提交
3921 3922
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3923
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3924
	uint32_t linetime_wm;
3925

3926
	if (!cstate->base.active)
3927 3928
		return 0;

3929
	pixel_rate = cstate->pixel_rate;
3930 3931

	if (WARN_ON(pixel_rate == 0))
3932
		return 0;
3933

M
Mahesh Kumar 已提交
3934 3935 3936 3937 3938 3939 3940 3941
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3942 3943
}

3944
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3945
				      struct skl_wm_level *trans_wm /* out */)
3946
{
3947
	if (!cstate->base.active)
3948
		return;
3949 3950

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3951
	trans_wm->plane_en = false;
3952 3953
}

3954 3955 3956
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3957
{
3958
	struct drm_device *dev = cstate->base.crtc->dev;
3959
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3960 3961
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3962
	int level, max_level = ilk_wm_max_level(dev_priv);
3963
	int ret;
3964

L
Lyude 已提交
3965 3966 3967 3968 3969 3970 3971 3972 3973
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3974
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3975 3976 3977 3978 3979 3980 3981 3982 3983

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3984
	}
3985
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3986

3987
	return 0;
3988 3989
}

3990 3991
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3992 3993 3994 3995 3996 3997 3998 3999
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4015 4016 4017
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4018
			       enum plane_id plane_id)
4019 4020 4021 4022
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4023
	int level, max_level = ilk_wm_max_level(dev_priv);
4024 4025 4026
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4027
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4028
				   &wm->wm[level]);
4029
	}
4030
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4031
			   &wm->trans_wm);
4032

4033 4034 4035 4036
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4037 4038
}

4039 4040 4041
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4042 4043 4044 4045
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4046
	int level, max_level = ilk_wm_max_level(dev_priv);
4047 4048 4049
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4050 4051
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4052
	}
4053
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4054

4055
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4056
			    &ddb->plane[pipe][PLANE_CURSOR]);
4057 4058
}

4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4073 4074
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4075
{
4076
	return a->start < b->end && b->start < a->end;
4077 4078
}

4079 4080 4081
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4082
{
4083
	int i;
4084

4085 4086 4087
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4088
			return true;
4089

4090
	return false;
4091 4092
}

4093
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4094
			      const struct skl_pipe_wm *old_pipe_wm,
4095
			      struct skl_pipe_wm *pipe_wm, /* out */
4096
			      struct skl_ddb_allocation *ddb, /* out */
4097
			      bool *changed /* out */)
4098
{
4099
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4100
	int ret;
4101

4102 4103 4104
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4105

4106
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4107 4108 4109
		*changed = false;
	else
		*changed = true;
4110

4111
	return 0;
4112 4113
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4127
static int
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4144
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4145
		enum plane_id plane_id = to_intel_plane(plane)->id;
4146

4147 4148 4149 4150
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4161 4162 4163 4164 4165 4166 4167
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4168
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4169
	uint32_t realloc_pipes = pipes_modified(state);
4170 4171 4172 4173 4174 4175 4176 4177
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4178 4179 4180 4181 4182 4183
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4184 4185
		intel_state->active_pipe_changes = ~0;

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4209
	if (intel_state->active_pipe_changes) {
4210
		realloc_pipes = ~0;
4211 4212
		intel_state->wm_results.dirty_pipes = ~0;
	}
4213

4214 4215 4216 4217 4218 4219
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4220 4221 4222 4223 4224 4225 4226
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4227
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4228 4229
		if (ret)
			return ret;
4230

4231
		ret = skl_ddb_add_affected_planes(cstate);
4232 4233
		if (ret)
			return ret;
4234 4235 4236 4237 4238
	}

	return 0;
}

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4262
	int i;
4263 4264

	for_each_crtc_in_state(state, crtc, cstate, i) {
4265 4266
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4267

4268
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4269
			enum plane_id plane_id = intel_plane->id;
4270 4271
			const struct skl_ddb_entry *old, *new;

4272 4273
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4274 4275 4276 4277

			if (skl_ddb_entry_equal(old, new))
				continue;

4278 4279 4280 4281 4282
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4283 4284 4285 4286
		}
	}
}

4287 4288 4289 4290 4291
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4292 4293 4294
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4295
	bool changed = false;
4296
	int ret, i;
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4311 4312 4313
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4314 4315 4316 4317
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4331 4332
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4333 4334

		pipe_wm = &intel_cstate->wm.skl.optimal;
4335 4336
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4350 4351
	skl_print_wm_changes(state);

4352 4353 4354
	return 0;
}

4355 4356 4357 4358 4359 4360
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4361
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4362
	enum pipe pipe = crtc->pipe;
4363
	enum plane_id plane_id;
4364 4365 4366

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4367 4368

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4369

4370 4371 4372 4373 4374 4375 4376 4377
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4378 4379
}

4380 4381
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4382
{
4383
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4384
	struct drm_device *dev = intel_crtc->base.dev;
4385
	struct drm_i915_private *dev_priv = to_i915(dev);
4386
	struct skl_wm_values *results = &state->wm_results;
4387
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4388
	enum pipe pipe = intel_crtc->pipe;
4389

4390
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4391 4392
		return;

4393
	mutex_lock(&dev_priv->wm.wm_mutex);
4394

4395 4396
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4397 4398

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4399 4400

	mutex_unlock(&dev_priv->wm.wm_mutex);
4401 4402
}

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4421
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4422
{
4423
	struct drm_device *dev = &dev_priv->drm;
4424
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4425
	struct ilk_wm_maximums max;
4426
	struct intel_wm_config config = {};
4427
	struct ilk_wm_values results = {};
4428
	enum intel_ddb_partitioning partitioning;
4429

4430 4431 4432 4433
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4434 4435

	/* 5/6 split only in single pipe config on IVB+ */
4436
	if (INTEL_GEN(dev_priv) >= 7 &&
4437 4438 4439
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4440

4441
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4442
	} else {
4443
		best_lp_wm = &lp_wm_1_2;
4444 4445
	}

4446
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4447
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4448

4449
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4450

4451
	ilk_write_wm_values(dev_priv, &results);
4452 4453
}

4454 4455
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4456
{
4457 4458
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4459

4460
	mutex_lock(&dev_priv->wm.wm_mutex);
4461
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4462 4463 4464
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4465

4466 4467
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4468 4469 4470
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4471

4472 4473
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4474
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4475 4476 4477
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4478 4479
}

4480 4481
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4482
{
4483 4484 4485 4486
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4487 4488
}

4489 4490
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4491
{
4492
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4493 4494
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4495 4496
	int level, max_level;
	enum plane_id plane_id;
4497
	uint32_t val;
4498

4499
	max_level = ilk_wm_max_level(dev_priv);
4500

4501 4502
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4503

4504
		for (level = 0; level <= max_level; level++) {
4505 4506
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4507 4508
			else
				val = I915_READ(CUR_WM(pipe, level));
4509

4510
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4511 4512
		}

4513 4514
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4515 4516 4517 4518
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4519 4520
	}

4521 4522
	if (!intel_crtc->active)
		return;
4523

4524
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4525 4526 4527 4528
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4529
	struct drm_i915_private *dev_priv = to_i915(dev);
4530
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4531
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4532
	struct drm_crtc *crtc;
4533 4534
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4535

4536
	skl_ddb_get_hw_state(dev_priv, ddb);
4537 4538 4539 4540 4541 4542
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4543
		if (intel_crtc->active)
4544 4545
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4546

4547 4548 4549 4550 4551 4552 4553
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4554 4555
}

4556 4557 4558
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4559
	struct drm_i915_private *dev_priv = to_i915(dev);
4560
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4561
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4562
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4563
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4564
	enum pipe pipe = intel_crtc->pipe;
4565
	static const i915_reg_t wm0_pipe_reg[] = {
4566 4567 4568 4569 4570 4571
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4572
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4573
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4574

4575 4576
	memset(active, 0, sizeof(*active));

4577
	active->pipe_enabled = intel_crtc->active;
4578 4579

	if (active->pipe_enabled) {
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4594
		int level, max_level = ilk_wm_max_level(dev_priv);
4595 4596 4597 4598 4599 4600 4601 4602 4603

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4604 4605

	intel_crtc->wm.active.ilk = *active;
4606 4607
}

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4622
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4623
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4624
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4625
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4626
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4627
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4628
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4629 4630 4631 4632 4633
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4634 4635 4636
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4637 4638

	tmp = I915_READ(DSPFW2);
4639 4640 4641
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4642 4643 4644 4645 4646 4647

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4648 4649
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4650 4651

		tmp = I915_READ(DSPFW8_CHV);
4652 4653
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4654 4655

		tmp = I915_READ(DSPFW9_CHV);
4656 4657
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4658 4659 4660

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4661 4662 4663 4664 4665 4666 4667 4668 4669
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4670 4671
	} else {
		tmp = I915_READ(DSPFW7);
4672 4673
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4674 4675 4676

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4677 4678 4679 4680 4681 4682
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4693
	struct intel_crtc *crtc;
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4708 4709 4710 4711 4712 4713 4714 4715 4716
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4717
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4731 4732 4733 4734

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
4773
		crtc_state->wm.vlv.intermediate = *active;
4774

4775
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4776 4777 4778 4779 4780
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4781
	}
4782 4783 4784 4785 4786

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

4836 4837
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4838
	struct drm_i915_private *dev_priv = to_i915(dev);
4839
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4840 4841
	struct drm_crtc *crtc;

4842
	for_each_crtc(dev, crtc)
4843 4844 4845 4846 4847 4848 4849
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4850
	if (INTEL_GEN(dev_priv) >= 7) {
4851 4852 4853
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4854

4855
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4856 4857
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4858
	else if (IS_IVYBRIDGE(dev_priv))
4859 4860
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4861 4862 4863 4864 4865

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4898
void intel_update_watermarks(struct intel_crtc *crtc)
4899
{
4900
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4901 4902

	if (dev_priv->display.update_wm)
4903
		dev_priv->display.update_wm(crtc);
4904 4905
}

4906
/*
4907 4908 4909 4910 4911 4912 4913 4914
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4915
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4916 4917 4918
{
	u16 rgvswctl;

4919
	lockdep_assert_held(&mchdev_lock);
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4938
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4939
{
4940
	u32 rgvmodectl;
4941 4942
	u8 fmax, fmin, fstart, vstart;

4943 4944
	spin_lock_irq(&mchdev_lock);

4945 4946
	rgvmodectl = I915_READ(MEMMODECTL);

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4967
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4968 4969
		PXVFREQ_PX_SHIFT;

4970 4971
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4972

4973 4974 4975
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4992
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4993
		DRM_ERROR("stuck trying to change perf mode\n");
4994
	mdelay(1);
4995

4996
	ironlake_set_drps(dev_priv, fstart);
4997

4998 4999
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5000
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5001
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5002
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5003 5004

	spin_unlock_irq(&mchdev_lock);
5005 5006
}

5007
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5008
{
5009 5010 5011 5012 5013
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5014 5015 5016 5017 5018 5019 5020 5021 5022

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5023
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5024
	mdelay(1);
5025 5026
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5027
	mdelay(1);
5028

5029
	spin_unlock_irq(&mchdev_lock);
5030 5031
}

5032 5033 5034 5035 5036
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5037
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5038
{
5039
	u32 limits;
5040

5041 5042 5043 5044 5045 5046
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5047
	if (IS_GEN9(dev_priv)) {
5048 5049 5050 5051 5052 5053 5054 5055
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5056 5057 5058 5059

	return limits;
}

5060 5061 5062
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5063 5064
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5065 5066 5067 5068

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5069 5070
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5071 5072 5073 5074
			new_power = BETWEEN;
		break;

	case BETWEEN:
5075 5076
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5077
			new_power = LOW_POWER;
5078 5079
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5080 5081 5082 5083
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5084 5085
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5086 5087 5088 5089
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5090
	if (val <= dev_priv->rps.min_freq_softlimit)
5091
		new_power = LOW_POWER;
5092
	if (val >= dev_priv->rps.max_freq_softlimit)
5093 5094 5095 5096 5097 5098 5099 5100
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5101 5102
		ei_up = 16000;
		threshold_up = 95;
5103 5104

		/* Downclock if less than 85% busy over 32ms */
5105 5106
		ei_down = 32000;
		threshold_down = 85;
5107 5108 5109 5110
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5111 5112
		ei_up = 13000;
		threshold_up = 90;
5113 5114

		/* Downclock if less than 75% busy over 32ms */
5115 5116
		ei_down = 32000;
		threshold_down = 75;
5117 5118 5119 5120
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5121 5122
		ei_up = 10000;
		threshold_up = 85;
5123 5124

		/* Downclock if less than 60% busy over 32ms */
5125 5126
		ei_down = 32000;
		threshold_down = 60;
5127 5128 5129
		break;
	}

5130 5131 5132 5133 5134 5135
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5136
	I915_WRITE(GEN6_RP_UP_EI,
5137
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5138
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5139 5140
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5141 5142

	I915_WRITE(GEN6_RP_DOWN_EI,
5143
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5144
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5155

5156
skip_hw_write:
5157
	dev_priv->rps.power = new_power;
5158 5159
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5160 5161 5162
	dev_priv->rps.last_adj = 0;
}

5163 5164 5165 5166 5167
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
5168
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5169
	if (val < dev_priv->rps.max_freq_softlimit)
5170
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5171

5172 5173
	mask &= dev_priv->pm_rps_events;

5174
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5175 5176
}

5177 5178 5179
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5180
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5181
{
C
Chris Wilson 已提交
5182 5183 5184 5185 5186
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5187

5188
		if (IS_GEN9(dev_priv))
5189 5190
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5191
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5192 5193 5194 5195 5196 5197 5198
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5199
	}
5200 5201 5202 5203

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5204
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5205
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5206

5207
	dev_priv->rps.cur_freq = val;
5208
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5209 5210

	return 0;
5211 5212
}

5213
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5214
{
5215 5216
	int err;

5217
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5218 5219 5220
		      "Odd GPU freq value\n"))
		val &= ~1;

5221 5222
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5223
	if (val != dev_priv->rps.cur_freq) {
5224 5225 5226 5227
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5228
		gen6_set_rps_thresholds(dev_priv, val);
5229
	}
5230 5231 5232

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5233 5234

	return 0;
5235 5236
}

5237
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5238 5239
 *
 * * If Gfx is Idle, then
5240 5241 5242
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5243 5244 5245
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5246
	u32 val = dev_priv->rps.idle_freq;
5247
	int err;
5248

5249
	if (dev_priv->rps.cur_freq <= val)
5250 5251
		return;

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5264
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5265
	err = valleyview_set_rps(dev_priv, val);
5266
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5267 5268 5269

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5270 5271
}

5272 5273 5274 5275
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5276 5277
		u8 freq;

5278 5279 5280 5281
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5282

5283 5284
		gen6_enable_rps_interrupts(dev_priv);

5285 5286 5287 5288 5289 5290
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5291
		if (intel_set_rps(dev_priv,
5292
				  clamp(freq,
5293 5294 5295
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5296 5297 5298 5299
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5300 5301
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5302 5303 5304 5305 5306 5307 5308
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5309
	mutex_lock(&dev_priv->rps.hw_lock);
5310
	if (dev_priv->rps.enabled) {
5311
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5312
			vlv_set_rps_idle(dev_priv);
5313
		else
5314
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5315
		dev_priv->rps.last_adj = 0;
5316 5317
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5318
	}
5319
	mutex_unlock(&dev_priv->rps.hw_lock);
5320

5321
	spin_lock(&dev_priv->rps.client_lock);
5322 5323
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5324
	spin_unlock(&dev_priv->rps.client_lock);
5325 5326
}

5327
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5328 5329
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5330
{
5331 5332 5333
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5334
	if (!(dev_priv->gt.awake &&
5335
	      dev_priv->rps.enabled &&
5336
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5337
		return;
5338

5339 5340 5341
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5342
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5343 5344
		rps = NULL;

5345 5346 5347 5348 5349
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5350
			schedule_work(&dev_priv->rps.work);
5351 5352
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5353

5354 5355 5356
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5357 5358
		} else
			dev_priv->rps.boosts++;
5359
	}
5360
	spin_unlock(&dev_priv->rps.client_lock);
5361 5362
}

5363
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5364
{
5365 5366
	int err;

5367 5368 5369 5370
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5371 5372 5373 5374 5375
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5376
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5377
		err = valleyview_set_rps(dev_priv, val);
5378
	else
5379 5380 5381
		err = gen6_set_rps(dev_priv, val);

	return err;
5382 5383
}

5384
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5385 5386
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5387
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5388 5389
}

5390
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5391 5392 5393 5394
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5395
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5396 5397
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5398
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5399
	I915_WRITE(GEN6_RP_CONTROL, 0);
5400 5401
}

5402
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5403 5404 5405 5406
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5407
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5408
{
5409 5410
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5411
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5412

5413
	I915_WRITE(GEN6_RC_CONTROL, 0);
5414

5415
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5416 5417
}

5418
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5419
{
5420
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5421 5422 5423 5424 5425
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5426
	if (HAS_RC6p(dev_priv))
5427 5428 5429 5430 5431
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5432 5433

	else
5434 5435
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5436 5437
}

5438
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5439
{
5440
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5441 5442
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5454 5455

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5456
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5457 5458 5459 5460 5461 5462 5463 5464
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5465 5466 5467
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5468
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5469 5470 5471 5472 5473 5474 5475
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5476
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5477 5478 5479
		enable_rc6 = false;
	}

5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5494 5495 5496 5497 5498 5499
		enable_rc6 = false;
	}

	return enable_rc6;
}

5500
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5501
{
5502
	/* No RC6 before Ironlake and code is gone for ilk. */
5503
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5504 5505
		return 0;

5506 5507 5508
	if (!enable_rc6)
		return 0;

5509
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5510 5511 5512 5513
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5514
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5515 5516 5517
	if (enable_rc6 >= 0) {
		int mask;

5518
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5519 5520 5521 5522 5523 5524
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5525 5526 5527
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5528 5529 5530

		return enable_rc6 & mask;
	}
5531

5532
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5533
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5534 5535

	return INTEL_RC6_ENABLE;
5536 5537
}

5538
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5539 5540
{
	/* All of these values are in units of 50MHz */
5541

5542
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5543
	if (IS_GEN9_LP(dev_priv)) {
5544
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5545 5546 5547 5548
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5549
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5550 5551 5552 5553
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5554
	/* hw_max = RP0 until we check for overclocking */
5555
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5556

5557
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5558
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5559
	    IS_GEN9_BC(dev_priv)) {
5560 5561 5562 5563 5564
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5565
			dev_priv->rps.efficient_freq =
5566 5567 5568 5569
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5570 5571
	}

5572
	if (IS_GEN9_BC(dev_priv)) {
5573
		/* Store the frequency values in 16.66 MHZ units, which is
5574 5575
		 * the natural hardware unit for SKL
		 */
5576 5577 5578 5579 5580 5581
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5582 5583
}

5584
static void reset_rps(struct drm_i915_private *dev_priv,
5585
		      int (*set)(struct drm_i915_private *, u8))
5586 5587 5588 5589 5590 5591 5592
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5593 5594
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5595 5596
}

J
Jesse Barnes 已提交
5597
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5598
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5599 5600 5601
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5602 5603 5604 5605 5606 5607 5608 5609
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5610 5611
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5612 5613 5614
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5615
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5616 5617 5618 5619

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5620
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5621
{
5622
	struct intel_engine_cs *engine;
5623
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5624 5625 5626 5627 5628 5629 5630
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5631
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5632 5633 5634 5635 5636

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5637 5638

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5639
	if (IS_SKYLAKE(dev_priv))
5640 5641 5642
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5643 5644
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5645
	for_each_engine(engine, dev_priv, id)
5646
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5647

5648
	if (HAS_GUC(dev_priv))
5649 5650
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5651 5652
	I915_WRITE(GEN6_RC_SLEEP, 0);

5653 5654 5655 5656
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5657
	/* 3a: Enable RC6 */
5658
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5659
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5660
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5661 5662 5663
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5664

5665 5666
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5667
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5668
	 */
5669
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5670 5671 5672 5673
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5674

5675
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5676 5677
}

5678
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5679
{
5680
	struct intel_engine_cs *engine;
5681
	enum intel_engine_id id;
5682
	uint32_t rc6_mask = 0;
5683 5684 5685 5686 5687 5688

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5689
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5690 5691 5692 5693 5694 5695 5696 5697

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5698
	for_each_engine(engine, dev_priv, id)
5699
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5700
	I915_WRITE(GEN6_RC_SLEEP, 0);
5701
	if (IS_BROADWELL(dev_priv))
5702 5703 5704
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5705 5706

	/* 3: Enable RC6 */
5707
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5708
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5709 5710
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5711 5712 5713 5714 5715 5716 5717
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5718 5719

	/* 4 Program defaults and thresholds for RPS*/
5720 5721 5722 5723
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5738 5739

	/* 5: Enable RPS */
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5750
	reset_rps(dev_priv, gen6_set_rps);
5751

5752
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5753 5754
}

5755
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5756
{
5757
	struct intel_engine_cs *engine;
5758
	enum intel_engine_id id;
5759
	u32 rc6vids, rc6_mask = 0;
5760 5761
	u32 gtfifodbg;
	int rc6_mode;
5762
	int ret;
5763

5764
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5765

5766 5767 5768 5769 5770 5771 5772 5773 5774
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5775 5776
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5777 5778 5779 5780
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5781
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5792
	for_each_engine(engine, dev_priv, id)
5793
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5794 5795 5796

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5797
	if (IS_IVYBRIDGE(dev_priv))
5798 5799 5800
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5801
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5802 5803
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5804
	/* Check if we are enabling RC6 */
5805
	rc6_mode = intel_enable_rc6();
5806 5807 5808
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5809
	/* We don't use those on Haswell */
5810
	if (!IS_HASWELL(dev_priv)) {
5811 5812
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5813

5814 5815 5816
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5817

5818
	intel_print_rc6_info(dev_priv, rc6_mask);
5819 5820 5821 5822 5823 5824

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5825 5826
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5827 5828
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5829
	reset_rps(dev_priv, gen6_set_rps);
5830

5831 5832
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5833
	if (IS_GEN6(dev_priv) && ret) {
5834
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5835
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5836 5837 5838 5839 5840 5841 5842 5843 5844
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5845
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5846 5847
}

5848
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5849 5850
{
	int min_freq = 15;
5851 5852
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5853
	unsigned int max_gpu_freq, min_gpu_freq;
5854
	int scaling_factor = 180;
5855
	struct cpufreq_policy *policy;
5856

5857
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5858

5859 5860 5861 5862 5863 5864 5865 5866 5867
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5868
		max_ia_freq = tsc_khz;
5869
	}
5870 5871 5872 5873

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5874
	min_ring_freq = I915_READ(DCLK) & 0xf;
5875 5876
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5877

5878
	if (IS_GEN9_BC(dev_priv)) {
5879 5880 5881 5882 5883 5884 5885 5886
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5887 5888 5889 5890 5891
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5892 5893
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5894 5895
		unsigned int ia_freq = 0, ring_freq = 0;

5896
		if (IS_GEN9_BC(dev_priv)) {
5897 5898 5899 5900 5901
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5902
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5903 5904
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5905
		} else if (IS_HASWELL(dev_priv)) {
5906
			ring_freq = mult_frac(gpu_freq, 5, 4);
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5923

B
Ben Widawsky 已提交
5924 5925
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5926 5927 5928
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5929 5930 5931
	}
}

5932
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5933 5934 5935
{
	u32 val, rp0;

5936
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5937

5938
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5953
	}
5954 5955 5956

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5970 5971 5972 5973
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5974 5975 5976
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5977 5978 5979
	return rp1;
}

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6002
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6003 6004 6005
{
	u32 val, rp0;

6006
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6019
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6020
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6021
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6022 6023 6024 6025 6026
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6027
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6028
{
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6040 6041
}

6042 6043 6044 6045 6046 6047 6048 6049 6050
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6051 6052 6053 6054 6055 6056 6057 6058 6059

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6060
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6061
{
6062
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6063
	unsigned long pctx_paddr, paddr;
6064 6065 6066 6067 6068
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6069
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6070
		paddr = (dev_priv->mm.stolen_base +
6071
			 (ggtt->stolen_size - pctx_size));
6072 6073 6074 6075

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6076 6077

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6078 6079
}

6080
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6093
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6094
								      pcbr_offset,
6095
								      I915_GTT_OFFSET_NONE,
6096 6097 6098 6099
								      pctx_size);
		goto out;
	}

6100 6101
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6102 6103 6104 6105 6106 6107 6108 6109
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6110
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6111 6112
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6113
		goto out;
6114 6115 6116 6117 6118 6119
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6120
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6121 6122 6123
	dev_priv->vlv_pctx = pctx;
}

6124
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6125 6126 6127 6128
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6129
	i915_gem_object_put(dev_priv->vlv_pctx);
6130 6131 6132
	dev_priv->vlv_pctx = NULL;
}

6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6144
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6145
{
6146
	u32 val;
6147

6148
	valleyview_setup_pctx(dev_priv);
6149

6150 6151
	vlv_init_gpll_ref_freq(dev_priv);

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6165
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6166

6167 6168 6169
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6170
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6171 6172 6173 6174
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6175
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6176 6177
			 dev_priv->rps.efficient_freq);

6178 6179
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6180
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6181 6182
			 dev_priv->rps.rp1_freq);

6183 6184
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6185
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6186 6187 6188
			 dev_priv->rps.min_freq);
}

6189
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6190
{
6191
	u32 val;
6192

6193
	cherryview_setup_pctx(dev_priv);
6194

6195 6196
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6197
	mutex_lock(&dev_priv->sb_lock);
6198
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6199
	mutex_unlock(&dev_priv->sb_lock);
6200

6201 6202 6203 6204
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6205
	default:
6206 6207 6208
		dev_priv->mem_freq = 1600;
		break;
	}
6209
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6210

6211 6212 6213
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6214
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6215 6216 6217 6218
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6219
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6220 6221
			 dev_priv->rps.efficient_freq);

6222 6223
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6224
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6225 6226
			 dev_priv->rps.rp1_freq);

6227
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6228
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6229
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6230 6231
			 dev_priv->rps.min_freq);

6232 6233 6234 6235 6236
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6237 6238
}

6239
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6240
{
6241
	valleyview_cleanup_pctx(dev_priv);
6242 6243
}

6244
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6245
{
6246
	struct intel_engine_cs *engine;
6247
	enum intel_engine_id id;
6248
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6249 6250 6251

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6252 6253
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6264
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6265

6266 6267 6268
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6269 6270 6271 6272 6273
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6274
	for_each_engine(engine, dev_priv, id)
6275
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6276 6277
	I915_WRITE(GEN6_RC_SLEEP, 0);

6278 6279
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6291 6292
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6293
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6294 6295 6296

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6297
	/* 4 Program defaults and thresholds for RPS*/
6298
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6309
		   GEN6_RP_MEDIA_IS_GFX |
6310 6311 6312 6313
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6314 6315 6316 6317 6318 6319
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6320 6321
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6322 6323 6324
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6325
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6326 6327
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6328
	reset_rps(dev_priv, valleyview_set_rps);
6329

6330
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6331 6332
}

6333
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6334
{
6335
	struct intel_engine_cs *engine;
6336
	enum intel_engine_id id;
6337
	u32 gtfifodbg, val, rc6_mode = 0;
6338 6339 6340

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6341 6342
	valleyview_check_pctx(dev_priv);

6343 6344
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6345 6346
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6347 6348 6349
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6350
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6351
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6352

6353 6354 6355
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6356
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6376
	for_each_engine(engine, dev_priv, id)
6377
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6378

6379
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6380 6381

	/* allows RC6 residency counter to work */
6382
	I915_WRITE(VLV_COUNTER_CONTROL,
6383 6384
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6385 6386
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6387

6388
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6389
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6390

6391
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6392

6393
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6394

D
Deepak S 已提交
6395 6396 6397 6398 6399 6400
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6401
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6402

6403 6404 6405
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6406
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6407 6408
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6409
	reset_rps(dev_priv, valleyview_set_rps);
6410

6411
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6412 6413
}

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6443
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6444 6445 6446 6447 6448 6449
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6450
	lockdep_assert_held(&mchdev_lock);
6451

6452
	diff1 = now - dev_priv->ips.last_time1;
6453 6454 6455 6456 6457 6458 6459

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6460
		return dev_priv->ips.chipset_power;
6461 6462 6463 6464 6465 6466 6467 6468

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6469 6470
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6471 6472
		diff += total_count;
	} else {
6473
		diff = total_count - dev_priv->ips.last_count1;
6474 6475 6476
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6477 6478
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6489 6490
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6491

6492
	dev_priv->ips.chipset_power = ret;
6493 6494 6495 6496

	return ret;
}

6497 6498 6499 6500
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6501
	if (INTEL_INFO(dev_priv)->gen != 5)
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6540
{
6541 6542 6543
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6544
	if (INTEL_INFO(dev_priv)->is_mobile)
6545 6546 6547
		return vm > 0 ? vm : 0;

	return vd;
6548 6549
}

6550
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6551
{
6552
	u64 now, diff, diffms;
6553 6554
	u32 count;

6555
	lockdep_assert_held(&mchdev_lock);
6556

6557 6558 6559
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6560 6561 6562 6563 6564 6565 6566

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6567 6568
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6569 6570
		diff += count;
	} else {
6571
		diff = count - dev_priv->ips.last_count2;
6572 6573
	}

6574 6575
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6576 6577 6578 6579

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6580
	dev_priv->ips.gfx_power = diff;
6581 6582
}

6583 6584
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6585
	if (INTEL_INFO(dev_priv)->gen != 5)
6586 6587
		return;

6588
	spin_lock_irq(&mchdev_lock);
6589 6590 6591

	__i915_update_gfx_val(dev_priv);

6592
	spin_unlock_irq(&mchdev_lock);
6593 6594
}

6595
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6596 6597 6598 6599
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6600
	lockdep_assert_held(&mchdev_lock);
6601

6602
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6622
	corr2 = (corr * dev_priv->ips.corr);
6623 6624 6625 6626

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6627
	__i915_update_gfx_val(dev_priv);
6628

6629
	return dev_priv->ips.gfx_power + state2;
6630 6631
}

6632 6633 6634 6635
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6636
	if (INTEL_INFO(dev_priv)->gen != 5)
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6659
	spin_lock_irq(&mchdev_lock);
6660 6661 6662 6663
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6664 6665
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6666 6667 6668 6669

	ret = chipset_val + graphics_val;

out_unlock:
6670
	spin_unlock_irq(&mchdev_lock);
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6686
	spin_lock_irq(&mchdev_lock);
6687 6688 6689 6690 6691 6692
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6693 6694
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6695 6696

out_unlock:
6697
	spin_unlock_irq(&mchdev_lock);
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6714
	spin_lock_irq(&mchdev_lock);
6715 6716 6717 6718 6719 6720
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6721 6722
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6723 6724

out_unlock:
6725
	spin_unlock_irq(&mchdev_lock);
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6740
	spin_lock_irq(&mchdev_lock);
6741 6742
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6743
	spin_unlock_irq(&mchdev_lock);
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6760
	spin_lock_irq(&mchdev_lock);
6761 6762 6763 6764 6765 6766
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6767
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6768

6769
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6770 6771 6772
		ret = false;

out_unlock:
6773
	spin_unlock_irq(&mchdev_lock);
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6801 6802
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6803
	spin_lock_irq(&mchdev_lock);
6804
	i915_mch_dev = dev_priv;
6805
	spin_unlock_irq(&mchdev_lock);
6806 6807 6808 6809 6810 6811

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6812
	spin_lock_irq(&mchdev_lock);
6813
	i915_mch_dev = NULL;
6814
	spin_unlock_irq(&mchdev_lock);
6815
}
6816

6817
static void intel_init_emon(struct drm_i915_private *dev_priv)
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6834
		I915_WRITE(PEW(i), 0);
6835
	for (i = 0; i < 3; i++)
6836
		I915_WRITE(DEW(i), 0);
6837 6838 6839

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6840
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6861
		I915_WRITE(PXW(i), val);
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6877
		I915_WRITE(PXWL(i), 0);
6878 6879 6880 6881 6882 6883

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6884
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6885 6886
}

6887
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6888
{
6889 6890 6891 6892 6893 6894 6895 6896
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6897

6898
	mutex_lock(&dev_priv->drm.struct_mutex);
6899 6900 6901
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6902 6903 6904 6905
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6906
	else if (INTEL_GEN(dev_priv) >= 6)
6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6936 6937 6938
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6939
	mutex_unlock(&dev_priv->rps.hw_lock);
6940
	mutex_unlock(&dev_priv->drm.struct_mutex);
6941 6942

	intel_autoenable_gt_powersave(dev_priv);
6943 6944
}

6945
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6946
{
6947
	if (IS_VALLEYVIEW(dev_priv))
6948
		valleyview_cleanup_gt_powersave(dev_priv);
6949 6950 6951

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6952 6953
}

6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6973 6974 6975 6976
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6977 6978

	gen6_reset_rps_interrupts(dev_priv);
6979 6980
}

6981
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6982
{
6983 6984
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6985

6986
	mutex_lock(&dev_priv->rps.hw_lock);
6987

6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6999
	}
7000 7001 7002

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7003 7004
}

7005
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7006
{
7007 7008 7009
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7010 7011
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7012

7013 7014 7015
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7016

7017
	mutex_lock(&dev_priv->rps.hw_lock);
7018 7019 7020 7021 7022

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7023
	} else if (INTEL_GEN(dev_priv) >= 9) {
7024 7025
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7026
		if (IS_GEN9_BC(dev_priv))
7027
			gen6_update_ring_freq(dev_priv);
7028 7029
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7030
		gen6_update_ring_freq(dev_priv);
7031
	} else if (INTEL_GEN(dev_priv) >= 6) {
7032
		gen6_enable_rps(dev_priv);
7033
		gen6_update_ring_freq(dev_priv);
7034 7035 7036
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7037
	}
7038 7039 7040 7041 7042 7043 7044

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7045
	dev_priv->rps.enabled = true;
7046 7047
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7048

7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7059
	rcs = dev_priv->engine[RCS];
7060
	if (rcs->last_retired_context)
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7112
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7113 7114 7115 7116 7117 7118 7119 7120 7121
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7122
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7123
{
7124
	enum pipe pipe;
7125

7126
	for_each_pipe(dev_priv, pipe) {
7127 7128 7129
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7130 7131 7132

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7133 7134 7135
	}
}

7136
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7148
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7149
{
7150
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7151

7152 7153 7154 7155
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7156 7157 7158
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7176
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7177 7178 7179
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7180

7181
	ilk_init_lp_watermarks(dev_priv);
7182 7183 7184 7185 7186 7187 7188 7189

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7190
	if (IS_IRONLAKE_M(dev_priv)) {
7191
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7192 7193 7194 7195 7196 7197 7198 7199
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7200 7201
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7202 7203 7204 7205 7206 7207
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7208

7209
	/* WaDisableRenderCachePipelinedFlush:ilk */
7210 7211
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7212

7213 7214 7215
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7216
	g4x_disable_trickle_feed(dev_priv);
7217

7218
	ibx_init_clock_gating(dev_priv);
7219 7220
}

7221
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7222 7223
{
	int pipe;
7224
	uint32_t val;
7225 7226 7227 7228 7229 7230

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7231 7232 7233
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7234 7235
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7236 7237 7238
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7239
	for_each_pipe(dev_priv, pipe) {
7240 7241 7242
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7243
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7244
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7245 7246 7247
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7248 7249
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7250
	/* WADP0ClockGatingDisable */
7251
	for_each_pipe(dev_priv, pipe) {
7252 7253 7254
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7255 7256
}

7257
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7258 7259 7260 7261
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7262 7263 7264
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7265 7266
}

7267
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7268
{
7269
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7270

7271
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7272 7273 7274 7275 7276

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7277
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7278 7279 7280
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7281 7282 7283
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7284 7285 7286
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7287 7288 7289 7290
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7291 7292
	 */
	I915_WRITE(GEN6_GT_MODE,
7293
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7294

7295
	ilk_init_lp_watermarks(dev_priv);
7296 7297

	I915_WRITE(CACHE_MODE_0,
7298
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7314
	 *
7315 7316
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7317 7318 7319 7320 7321
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7322
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7323 7324
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7325

7326 7327 7328 7329 7330 7331 7332 7333
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7334 7335 7336 7337 7338 7339 7340 7341
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7342 7343
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7344 7345 7346 7347 7348 7349 7350
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7351 7352 7353 7354
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7355

7356
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7357

7358
	cpt_init_clock_gating(dev_priv);
7359

7360
	gen6_check_mch_setup(dev_priv);
7361 7362 7363 7364 7365 7366
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7367
	/*
7368
	 * WaVSThreadDispatchOverride:ivb,vlv
7369 7370 7371 7372
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7373 7374 7375 7376 7377 7378 7379 7380
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7381
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7382 7383 7384 7385 7386
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7387
	if (HAS_PCH_LPT_LP(dev_priv))
7388 7389 7390
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7391 7392

	/* WADPOClockGatingDisable:hsw */
7393 7394
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7395
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7396 7397
}

7398
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7399
{
7400
	if (HAS_PCH_LPT_LP(dev_priv)) {
7401 7402 7403 7404 7405 7406 7407
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7431
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7432
{
7433
	gen9_init_clock_gating(dev_priv);
7434 7435 7436 7437 7438

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7439 7440 7441 7442 7443

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7444 7445 7446 7447

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7448 7449
}

7450
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7451
{
7452
	gen9_init_clock_gating(dev_priv);
7453 7454 7455 7456

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7457 7458 7459 7460

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7461 7462
}

7463
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7464
{
7465
	enum pipe pipe;
B
Ben Widawsky 已提交
7466

7467
	ilk_init_lp_watermarks(dev_priv);
7468

7469
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7470
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7471

7472
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7473 7474 7475
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7476
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7477
	for_each_pipe(dev_priv, pipe) {
7478
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7479
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7480
			   BDW_DPRS_MASK_VBLANK_SRD);
7481
	}
7482

7483 7484 7485 7486 7487
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7488

7489 7490
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7491 7492 7493 7494

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7495

7496 7497
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7498

7499 7500 7501 7502 7503 7504 7505
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7506 7507 7508 7509
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7510
	lpt_init_clock_gating(dev_priv);
7511 7512 7513 7514 7515 7516 7517 7518

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7519 7520
}

7521
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7522
{
7523
	ilk_init_lp_watermarks(dev_priv);
7524

7525 7526 7527 7528 7529
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7530
	/* This is required by WaCatErrorRejectionIssue:hsw */
7531 7532 7533 7534
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7535 7536 7537
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7538

7539 7540 7541
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7542 7543 7544 7545
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7546
	/* WaDisable4x2SubspanOptimization:hsw */
7547 7548
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7549

7550 7551 7552
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7553 7554 7555 7556
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7557 7558
	 */
	I915_WRITE(GEN7_GT_MODE,
7559
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7560

7561 7562 7563 7564
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7565
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7566 7567
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7568 7569 7570
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7571

7572
	lpt_init_clock_gating(dev_priv);
7573 7574
}

7575
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7576
{
7577
	uint32_t snpcr;
7578

7579
	ilk_init_lp_watermarks(dev_priv);
7580

7581
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7582

7583
	/* WaDisableEarlyCull:ivb */
7584 7585 7586
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7587
	/* WaDisableBackToBackFlipFix:ivb */
7588 7589 7590 7591
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7592
	/* WaDisablePSDDualDispatchEnable:ivb */
7593
	if (IS_IVB_GT1(dev_priv))
7594 7595 7596
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7597 7598 7599
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7600
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7601 7602 7603
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7604
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7605 7606 7607
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7608
		   GEN7_WA_L3_CHICKEN_MODE);
7609
	if (IS_IVB_GT1(dev_priv))
7610 7611
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7612 7613 7614 7615
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7616 7617
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7618
	}
7619

7620
	/* WaForceL3Serialization:ivb */
7621 7622 7623
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7624
	/*
7625
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7626
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7627 7628
	 */
	I915_WRITE(GEN6_UCGCTL2,
7629
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7630

7631
	/* This is required by WaCatErrorRejectionIssue:ivb */
7632 7633 7634 7635
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7636
	g4x_disable_trickle_feed(dev_priv);
7637 7638

	gen7_setup_fixed_func_scheduler(dev_priv);
7639

7640 7641 7642 7643 7644
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7645

7646
	/* WaDisable4x2SubspanOptimization:ivb */
7647 7648
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7649

7650 7651 7652
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7653 7654 7655 7656
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7657 7658
	 */
	I915_WRITE(GEN7_GT_MODE,
7659
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7660

7661 7662 7663 7664
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7665

7666
	if (!HAS_PCH_NOP(dev_priv))
7667
		cpt_init_clock_gating(dev_priv);
7668

7669
	gen6_check_mch_setup(dev_priv);
7670 7671
}

7672
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7673
{
7674
	/* WaDisableEarlyCull:vlv */
7675 7676 7677
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7678
	/* WaDisableBackToBackFlipFix:vlv */
7679 7680 7681 7682
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7683
	/* WaPsdDispatchEnable:vlv */
7684
	/* WaDisablePSDDualDispatchEnable:vlv */
7685
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7686 7687
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7688

7689 7690 7691
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7692
	/* WaForceL3Serialization:vlv */
7693 7694 7695
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7696
	/* WaDisableDopClockGating:vlv */
7697 7698 7699
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7700
	/* This is required by WaCatErrorRejectionIssue:vlv */
7701 7702 7703 7704
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7705 7706
	gen7_setup_fixed_func_scheduler(dev_priv);

7707
	/*
7708
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7709
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7710 7711
	 */
	I915_WRITE(GEN6_UCGCTL2,
7712
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7713

7714 7715 7716 7717 7718
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7719

7720 7721 7722 7723
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7724 7725
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7726

7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7738 7739 7740 7741 7742 7743
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7744
	/*
7745
	 * WaDisableVLVClockGating_VBIIssue:vlv
7746 7747 7748
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7749
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7750 7751
}

7752
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7753
{
7754 7755 7756 7757 7758
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7759 7760 7761 7762

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7763 7764 7765 7766

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7767 7768 7769 7770

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7771

7772 7773 7774 7775 7776 7777 7778
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7779 7780 7781 7782 7783
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7784 7785
}

7786
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7798
	if (IS_GM45(dev_priv))
7799 7800
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7801 7802 7803 7804

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7805

7806 7807 7808
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7809
	g4x_disable_trickle_feed(dev_priv);
7810 7811
}

7812
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7813 7814 7815 7816 7817 7818
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7819 7820
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7821 7822 7823

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7824 7825
}

7826
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7827 7828 7829 7830 7831 7832 7833
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7834 7835
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7836 7837 7838

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7839 7840
}

7841
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7842 7843 7844 7845 7846 7847
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7848

7849
	if (IS_PINEVIEW(dev_priv))
7850
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7851 7852 7853

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7854 7855

	/* interrupts should cause a wake up from C3 */
7856
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7857 7858 7859

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7860 7861 7862

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7863 7864
}

7865
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7866 7867
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7868 7869 7870 7871

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7872 7873 7874

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7875 7876
}

7877
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7878
{
7879 7880 7881
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7882 7883
}

7884
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7885
{
7886
	dev_priv->display.init_clock_gating(dev_priv);
7887 7888
}

7889
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7890
{
7891 7892
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7893 7894
}

7895
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7912
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7913
	else if (IS_KABYLAKE(dev_priv))
7914
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7915
	else if (IS_BROXTON(dev_priv))
7916
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7917 7918
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7935
	else if (IS_I965GM(dev_priv))
7936
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7937
	else if (IS_I965G(dev_priv))
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7951
/* Set up chip specific power management-related functions */
7952
void intel_init_pm(struct drm_i915_private *dev_priv)
7953
{
7954
	intel_fbc_init(dev_priv);
7955

7956
	/* For cxsr */
7957
	if (IS_PINEVIEW(dev_priv))
7958
		i915_pineview_get_mem_freq(dev_priv);
7959
	else if (IS_GEN5(dev_priv))
7960
		i915_ironlake_get_mem_freq(dev_priv);
7961

7962
	/* For FIFO watermark updates */
7963
	if (INTEL_GEN(dev_priv) >= 9) {
7964
		skl_setup_wm_latency(dev_priv);
7965
		dev_priv->display.initial_watermarks = skl_initial_wm;
7966
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7967
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7968
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7969
		ilk_setup_wm_latency(dev_priv);
7970

7971
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7972
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7973
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7974
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7975
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7976 7977 7978 7979 7980 7981
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7982 7983 7984 7985
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7986
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7987
		vlv_setup_wm_latency(dev_priv);
7988
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7989
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7990
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7991
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7992
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7993
	} else if (IS_PINEVIEW(dev_priv)) {
7994
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7995 7996 7997 7998 7999 8000 8001 8002 8003
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8004
			intel_set_memory_cxsr(dev_priv, false);
8005 8006 8007
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8008
	} else if (IS_G4X(dev_priv)) {
8009
		dev_priv->display.update_wm = g4x_update_wm;
8010
	} else if (IS_GEN4(dev_priv)) {
8011
		dev_priv->display.update_wm = i965_update_wm;
8012
	} else if (IS_GEN3(dev_priv)) {
8013 8014
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8015
	} else if (IS_GEN2(dev_priv)) {
8016
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8017
			dev_priv->display.update_wm = i845_update_wm;
8018
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8019 8020
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8021
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8022 8023 8024
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8025 8026 8027
	}
}

8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8040
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8072
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8073
{
8074 8075
	int status;

8076
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8077

8078 8079 8080 8081 8082 8083
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8084 8085 8086 8087
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8088 8089 8090
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8091

8092 8093 8094
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8095 8096 8097 8098
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8099 8100
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8101

8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8113 8114 8115
	return 0;
}

8116
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8117
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8118
{
8119 8120
	int status;

8121
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8122

8123 8124 8125 8126 8127 8128
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8129 8130 8131 8132
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8133
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8134
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8135
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8136

8137 8138 8139
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8140 8141 8142 8143
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8144
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8145

8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8157 8158
	return 0;
}
8159

8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8181
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8182 8183
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8184
 * for @timeout_base_ms and if this times out for another 50 ms with
8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8220
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8221
	 * account for interrupts that could reduce the number of these
8222 8223
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8224 8225 8226 8227
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8228
	ret = wait_for_atomic(COND, 50);
8229 8230 8231 8232 8233 8234 8235
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8236 8237
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8238 8239 8240 8241 8242
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8243 8244
}

8245
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8246
{
8247
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8248 8249
}

8250
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8251
{
8252 8253 8254 8255 8256
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8257 8258
}

8259
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8260
{
8261
	/* CHV needs even values */
8262
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8263 8264
}

8265
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8266
{
8267
	if (IS_GEN9(dev_priv))
8268 8269
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8270
	else if (IS_CHERRYVIEW(dev_priv))
8271
		return chv_gpu_freq(dev_priv, val);
8272
	else if (IS_VALLEYVIEW(dev_priv))
8273 8274 8275
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8276 8277
}

8278 8279
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8280
	if (IS_GEN9(dev_priv))
8281 8282
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8283
	else if (IS_CHERRYVIEW(dev_priv))
8284
		return chv_freq_opcode(dev_priv, val);
8285
	else if (IS_VALLEYVIEW(dev_priv))
8286 8287
		return byt_freq_opcode(dev_priv, val);
	else
8288
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8289
}
8290

8291 8292
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8293
	struct drm_i915_gem_request *req;
8294 8295 8296 8297 8298
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8299
	struct drm_i915_gem_request *req = boost->req;
8300

8301
	if (!i915_gem_request_completed(req))
8302
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8303

8304
	i915_gem_request_put(req);
8305 8306 8307
	kfree(boost);
}

8308
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8309 8310 8311
{
	struct request_boost *boost;

8312
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8313 8314
		return;

8315
	if (i915_gem_request_completed(req))
8316 8317
		return;

8318 8319 8320 8321
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8322
	boost->req = i915_gem_request_get(req);
8323 8324

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8325
	queue_work(req->i915->wq, &boost->work);
8326 8327
}

8328
void intel_pm_setup(struct drm_i915_private *dev_priv)
8329
{
D
Daniel Vetter 已提交
8330
	mutex_init(&dev_priv->rps.hw_lock);
8331
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8332

8333 8334
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8335
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8336

8337
	dev_priv->pm.suspended = false;
8338
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8339
}