intel_pm.c 239.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

389
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
390
{
391 392
	bool ret;

393
	mutex_lock(&dev_priv->wm.wm_mutex);
394
	ret = _intel_set_memory_cxsr(dev_priv, enable);
395 396
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
397 398

	return ret;
399
}
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
415
static const int pessimal_latency_ns = 5000;
416

417 418 419
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

420
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
421
{
422
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
423
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
425 426
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
427

428
	switch (pipe) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
449 450
		MISSING_CASE(pipe);
		return;
451 452
	}

453 454 455 456 457 458 459 460 461 462 463
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;

	DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
		      pipe_name(pipe),
		      fifo_state->plane[PLANE_PRIMARY],
		      fifo_state->plane[PLANE_SPRITE0],
		      fifo_state->plane[PLANE_SPRITE1],
		      fifo_state->plane[PLANE_CURSOR]);
464 465
}

466
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
467 468 469 470 471 472 473 474 475 476 477 478 479 480
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

481
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

497
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
514 515 516 517 518
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
521 522 523 524 525
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params pineview_cursor_wm = {
528 529 530 531 532
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
533 534
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
535 536 537 538 539
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
540 541
};
static const struct intel_watermark_params g4x_wm_info = {
542 543 544 545 546
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
547 548
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
549 550 551 552 553
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
554 555
};
static const struct intel_watermark_params i965_cursor_wm_info = {
556 557 558 559 560
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
561 562
};
static const struct intel_watermark_params i945_wm_info = {
563 564 565 566 567
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params i915_wm_info = {
570 571 572 573 574
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
575
};
576
static const struct intel_watermark_params i830_a_wm_info = {
577 578 579 580 581
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
582
};
583 584 585 586 587 588 589
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
590
static const struct intel_watermark_params i845_wm_info = {
591 592 593 594 595
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
596 597 598 599 600 601
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
602
 * @cpp: bytes per pixel
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
618
					int fifo_size, int cpp,
619 620 621 622 623 624 625 626 627 628
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
629
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
630 631 632 633 634 635 636 637 638 639 640 641 642 643
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
644 645 646 647 648 649 650 651 652 653 654

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

655 656 657
	return wm_size;
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
				   const struct intel_plane_state *plane_state)
{
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);

	/* FIXME check the 'enable' instead */
	if (!crtc_state->base.active)
		return false;

	/*
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
	 */
	if (plane->id == PLANE_CURSOR)
		return plane_state->base.fb != NULL;
	else
		return plane_state->base.visible;
}

681
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
682
{
683
	struct intel_crtc *crtc, *enabled = NULL;
684

685
	for_each_intel_crtc(&dev_priv->drm, crtc) {
686
		if (intel_crtc_active(crtc)) {
687 688 689 690 691 692 693 694 695
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

696
static void pineview_update_wm(struct intel_crtc *unused_crtc)
697
{
698
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
699
	struct intel_crtc *crtc;
700 701 702 703
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

704 705 706 707
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
708 709
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
710
		intel_set_memory_cxsr(dev_priv, false);
711 712 713
		return;
	}

714
	crtc = single_enabled_crtc(dev_priv);
715
	if (crtc) {
716 717 718 719
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
720
		int cpp = fb->format->cpp[0];
721
		int clock = adjusted_mode->crtc_clock;
722 723 724 725

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
726
					cpp, latency->display_sr);
727 728
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
729
		reg |= FW_WM(wm, SR);
730 731 732 733 734 735
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
736
					cpp, latency->cursor_sr);
737 738
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
739
		reg |= FW_WM(wm, CURSOR_SR);
740 741 742 743 744
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
745
					cpp, latency->display_hpll_disable);
746 747
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
748
		reg |= FW_WM(wm, HPLL_SR);
749 750 751 752 753
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
754
					cpp, latency->cursor_hpll_disable);
755 756
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
757
		reg |= FW_WM(wm, HPLL_CURSOR);
758 759 760
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

761
		intel_set_memory_cxsr(dev_priv, true);
762
	} else {
763
		intel_set_memory_cxsr(dev_priv, false);
764 765 766
	}
}

767
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
768 769 770 771 772 773 774 775
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
776
	struct intel_crtc *crtc;
777
	const struct drm_display_mode *adjusted_mode;
778
	const struct drm_framebuffer *fb;
779
	int htotal, hdisplay, clock, cpp;
780 781 782
	int line_time_us, line_count;
	int entries, tlb_miss;

783
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
784
	if (!intel_crtc_active(crtc)) {
785 786 787 788 789
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

790 791
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
792
	clock = adjusted_mode->crtc_clock;
793
	htotal = adjusted_mode->crtc_htotal;
794
	hdisplay = crtc->config->pipe_src_w;
795
	cpp = fb->format->cpp[0];
796 797

	/* Use the small buffer method to calculate plane watermark */
798
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
799 800 801 802 803 804 805 806 807
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
808
	line_time_us = max(htotal * 1000 / clock, 1);
809
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
810
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
829
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
830 831 832 833 834 835 836 837
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
838
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
839 840 841 842 843
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
844
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
845 846 847 848 849 850 851 852 853 854 855 856
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

857
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
858 859 860 861 862 863
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
864
	struct intel_crtc *crtc;
865
	const struct drm_display_mode *adjusted_mode;
866
	const struct drm_framebuffer *fb;
867
	int hdisplay, htotal, cpp, clock;
868 869 870 871 872 873 874 875 876 877
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

878
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
879 880
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
881
	clock = adjusted_mode->crtc_clock;
882
	htotal = adjusted_mode->crtc_htotal;
883
	hdisplay = crtc->config->pipe_src_w;
884
	cpp = fb->format->cpp[0];
885

886
	line_time_us = max(htotal * 1000 / clock, 1);
887
	line_count = (latency_ns / line_time_us + 1000) / 1000;
888
	line_size = hdisplay * cpp;
889 890

	/* Use the minimum of the small and large buffer method for primary */
891
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
892 893 894 895 896 897
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
898
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
899 900 901
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

902
	return g4x_check_srwm(dev_priv,
903 904 905 906
			      *display_wm, *cursor_wm,
			      display, cursor);
}

907 908 909
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

910
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
911 912
				const struct vlv_wm_values *wm)
{
913 914 915
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
916 917
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

918 919 920 921 922 923
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
924

925 926 927 928 929 930 931 932 933 934 935
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

936
	I915_WRITE(DSPFW1,
937
		   FW_WM(wm->sr.plane, SR) |
938 939 940
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
941
	I915_WRITE(DSPFW2,
942 943 944
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
945
	I915_WRITE(DSPFW3,
946
		   FW_WM(wm->sr.cursor, CURSOR_SR));
947 948 949

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
950 951
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
952
		I915_WRITE(DSPFW8_CHV,
953 954
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
955
		I915_WRITE(DSPFW9_CHV,
956 957
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
958
		I915_WRITE(DSPHOWM,
959
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
960 961 962 963 964 965 966 967 968
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
969 970
	} else {
		I915_WRITE(DSPFW7,
971 972
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
973
		I915_WRITE(DSPHOWM,
974
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
975 976 977 978 979 980
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
981 982 983
	}

	POSTING_READ(DSPFW1);
984 985
}

986 987
#undef FW_WM_VLV

988 989 990 991
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
992
				   unsigned int cpp,
993 994 995 996 997
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
998
	ret = (ret + 1) * horiz_pixels * cpp;
999 1000 1001 1002 1003
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

1004
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1005 1006 1007 1008
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

1009 1010
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

1011 1012 1013
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1014 1015

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1016 1017 1018
	}
}

1019 1020
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
1021 1022
				     int level)
{
1023
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1024
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1025 1026
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1027
	int clock, htotal, cpp, width, wm;
1028 1029 1030 1031

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1032
	if (!plane_state->base.visible)
1033 1034
		return 0;

1035
	cpp = plane_state->base.fb->format->cpp[0];
1036 1037 1038
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1039 1040 1041
	if (WARN_ON(htotal == 0))
		htotal = 1;

1042
	if (plane->id == PLANE_CURSOR) {
1043 1044 1045 1046 1047 1048 1049 1050
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1051
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1052 1053 1054 1055 1056 1057
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1058 1059 1060 1061 1062 1063
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1064
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1065
{
1066
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1067 1068
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1069
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1070 1071 1072
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1073
	int fifo_extra, fifo_left = fifo_size;
1074
	int sprite0_fifo_extra = 0;
1075 1076
	unsigned int total_rate;
	enum plane_id plane_id;
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1089 1090
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1091 1092
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1093

1094 1095
	if (total_rate > fifo_size)
		return -EINVAL;
1096

1097 1098
	if (total_rate == 0)
		total_rate = 1;
1099

1100
	for_each_plane_id_on_crtc(crtc, plane_id) {
1101 1102
		unsigned int rate;

1103 1104
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1105 1106 1107
			continue;
		}

1108 1109 1110
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1111 1112
	}

1113 1114 1115
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1116 1117 1118
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1119 1120

	/* spread the remainder evenly */
1121
	for_each_plane_id_on_crtc(crtc, plane_id) {
1122 1123 1124 1125 1126
		int plane_extra;

		if (fifo_left == 0)
			break;

1127
		if ((active_planes & BIT(plane_id)) == 0)
1128 1129 1130
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1131
		fifo_state->plane[plane_id] += plane_extra;
1132 1133 1134
		fifo_left -= plane_extra;
	}

1135 1136 1137 1138 1139 1140 1141 1142 1143
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1144 1145
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static int vlv_num_wm_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	for (; level < vlv_num_wm_levels(dev_priv); level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1168 1169 1170 1171 1172 1173 1174 1175
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1176 1177 1178 1179
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1180
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1181
				 int level, enum plane_id plane_id, u16 value)
1182
{
1183 1184
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int num_levels = vlv_num_wm_levels(dev_priv);
1185
	bool dirty = false;
1186

1187 1188
	for (; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1189

1190
		dirty |= raw->plane[plane_id] != value;
1191
		raw->plane[plane_id] = value;
1192
	}
1193 1194

	return dirty;
1195 1196
}

1197
static bool vlv_plane_wm_compute(struct intel_crtc_state *crtc_state,
1198
				 const struct intel_plane_state *plane_state)
1199
{
1200 1201 1202
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
	int num_levels = vlv_num_wm_levels(to_i915(plane->base.dev));
1203
	int level;
1204
	bool dirty = false;
1205

1206
	if (!plane_state->base.visible) {
1207 1208
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1209
	}
1210

1211 1212 1213 1214
	for (level = 0; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1215

1216 1217
		if (wm > max_wm)
			break;
1218

1219
		dirty |= raw->plane[plane_id] != wm;
1220 1221
		raw->plane[plane_id] = wm;
	}
1222

1223
	/* mark all higher levels as invalid */
1224
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234
out:
	if (dirty)
		DRM_DEBUG_KMS("%s wms: [0]=%d,[1]=%d,[2]=%d\n",
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1235
}
1236

1237 1238 1239 1240 1241 1242 1243
static bool vlv_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				  enum plane_id plane_id, int level)
{
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1244

1245 1246
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static bool vlv_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
{
	return vlv_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1267
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1268 1269 1270 1271
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1272
	unsigned int dirty = 0;
1273 1274 1275 1276 1277 1278 1279 1280

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		if (vlv_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1313
	}
1314

1315 1316 1317 1318 1319 1320 1321
	/* initially allow all levels */
	wm_state->num_levels = vlv_num_wm_levels(dev_priv);
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1322
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1323

1324
	for (level = 0; level < wm_state->num_levels; level++) {
1325 1326
		const struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1327

1328 1329
		if (!vlv_crtc_wm_is_valid(crtc_state, level))
			break;
1330

1331 1332 1333 1334 1335 1336 1337 1338
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1339
						 raw->plane[PLANE_SPRITE0],
1340 1341
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1342

1343 1344 1345
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1346 1347
	}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1358 1359
}

1360 1361 1362
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1363 1364
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1365
{
1366
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1367
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1368 1369
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1370
	int sprite0_start, sprite1_start, fifo_size;
1371

1372 1373 1374
	if (!crtc_state->fifo_changed)
		return;

1375 1376 1377
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1378

1379 1380
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1381

1382 1383
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1394

1395 1396 1397
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1398 1399
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1411 1412
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1413 1414
		break;
	case PIPE_B:
1415 1416
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1428 1429
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1430 1431
		break;
	case PIPE_C:
1432 1433
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

1445 1446
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
1447 1448 1449 1450
		break;
	default:
		break;
	}
1451

1452
	POSTING_READ_FW(DSPARB);
1453

1454
	spin_unlock(&dev_priv->uncore.lock);
1455 1456 1457 1458
}

#undef VLV_FIFO

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1469 1470
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
1493 1494
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
1495 1496 1497 1498

	return 0;
}

1499
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1500 1501 1502 1503 1504
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1505
	wm->level = dev_priv->wm.max_level;
1506 1507
	wm->cxsr = true;

1508
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1509
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1524 1525 1526
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1527
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1528
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1529 1530 1531
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
1532
		if (crtc->active && wm->cxsr)
1533 1534
			wm->sr = wm_state->sr[wm->level];

1535 1536 1537 1538
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1539 1540 1541
	}
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1552
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1553
{
1554 1555
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1556

1557
	vlv_merge_wm(dev_priv, &new_wm);
1558

1559
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1560 1561
		return;

1562
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1563 1564
		chv_set_memory_dvfs(dev_priv, false);

1565
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1566 1567
		chv_set_memory_pm5(dev_priv, false);

1568
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1569
		_intel_set_memory_cxsr(dev_priv, false);
1570

1571
	vlv_write_wm_values(dev_priv, &new_wm);
1572

1573
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1574
		_intel_set_memory_cxsr(dev_priv, true);
1575

1576
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1577 1578
		chv_set_memory_pm5(dev_priv, true);

1579
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1580 1581
		chv_set_memory_dvfs(dev_priv, true);

1582
	*old_wm = new_wm;
1583 1584
}

1585 1586 1587 1588 1589 1590 1591
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1608 1609 1610 1611
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1612 1613
#define single_plane_enabled(mask) is_power_of_2(mask)

1614
static void g4x_update_wm(struct intel_crtc *crtc)
1615
{
1616
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1617 1618 1619 1620
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1621
	bool cxsr_enabled;
1622

1623
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1624 1625
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1626
			    &planea_wm, &cursora_wm))
1627
		enabled |= 1 << PIPE_A;
1628

1629
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1630 1631
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1632
			    &planeb_wm, &cursorb_wm))
1633
		enabled |= 1 << PIPE_B;
1634 1635

	if (single_plane_enabled(enabled) &&
1636
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1637 1638 1639
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1640
			     &plane_sr, &cursor_sr)) {
1641
		cxsr_enabled = true;
1642
	} else {
1643
		cxsr_enabled = false;
1644
		intel_set_memory_cxsr(dev_priv, false);
1645 1646
		plane_sr = cursor_sr = 0;
	}
1647

1648 1649
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1650 1651 1652 1653 1654
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1655 1656 1657 1658
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1659
	I915_WRITE(DSPFW2,
1660
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1661
		   FW_WM(cursora_wm, CURSORA));
1662 1663
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1664
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1665
		   FW_WM(cursor_sr, CURSOR_SR));
1666 1667 1668

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1669 1670
}

1671
static void i965_update_wm(struct intel_crtc *unused_crtc)
1672
{
1673
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1674
	struct intel_crtc *crtc;
1675 1676
	int srwm = 1;
	int cursor_sr = 16;
1677
	bool cxsr_enabled;
1678 1679

	/* Calc sr entries for one plane configs */
1680
	crtc = single_enabled_crtc(dev_priv);
1681 1682 1683
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1684 1685 1686 1687
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1688
		int clock = adjusted_mode->crtc_clock;
1689
		int htotal = adjusted_mode->crtc_htotal;
1690
		int hdisplay = crtc->config->pipe_src_w;
1691
		int cpp = fb->format->cpp[0];
1692 1693 1694
		unsigned long line_time_us;
		int entries;

1695
		line_time_us = max(htotal * 1000 / clock, 1);
1696 1697 1698

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1699
			cpp * hdisplay;
1700 1701 1702 1703 1704 1705 1706 1707 1708
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1709
			cpp * crtc->base.cursor->state->crtc_w;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1721
		cxsr_enabled = true;
1722
	} else {
1723
		cxsr_enabled = false;
1724
		/* Turn off self refresh if both pipes are enabled */
1725
		intel_set_memory_cxsr(dev_priv, false);
1726 1727 1728 1729 1730 1731
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1732 1733 1734 1735 1736 1737
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1738
	/* update cursor SR watermark */
1739
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1740 1741 1742

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1743 1744
}

1745 1746
#undef FW_WM

1747
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1748
{
1749
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1750 1751 1752 1753 1754 1755
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1756
	struct intel_crtc *crtc, *enabled = NULL;
1757

1758
	if (IS_I945GM(dev_priv))
1759
		wm_info = &i945_wm_info;
1760
	else if (!IS_GEN2(dev_priv))
1761 1762
		wm_info = &i915_wm_info;
	else
1763
		wm_info = &i830_a_wm_info;
1764

1765
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1766
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1767 1768 1769 1770 1771 1772 1773
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1774
		if (IS_GEN2(dev_priv))
1775
			cpp = 4;
1776
		else
1777
			cpp = fb->format->cpp[0];
1778

1779
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1780
					       wm_info, fifo_size, cpp,
1781
					       pessimal_latency_ns);
1782
		enabled = crtc;
1783
	} else {
1784
		planea_wm = fifo_size - wm_info->guard_size;
1785 1786 1787 1788
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1789
	if (IS_GEN2(dev_priv))
1790
		wm_info = &i830_bc_wm_info;
1791

1792
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1793
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1794 1795 1796 1797 1798 1799 1800
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1801
		if (IS_GEN2(dev_priv))
1802
			cpp = 4;
1803
		else
1804
			cpp = fb->format->cpp[0];
1805

1806
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1807
					       wm_info, fifo_size, cpp,
1808
					       pessimal_latency_ns);
1809 1810 1811 1812
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1813
	} else {
1814
		planeb_wm = fifo_size - wm_info->guard_size;
1815 1816 1817
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1818 1819 1820

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1821
	if (IS_I915GM(dev_priv) && enabled) {
1822
		struct drm_i915_gem_object *obj;
1823

1824
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1825 1826

		/* self-refresh seems busted with untiled */
1827
		if (!i915_gem_object_is_tiled(obj))
1828 1829 1830
			enabled = NULL;
	}

1831 1832 1833 1834 1835 1836
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1837
	intel_set_memory_cxsr(dev_priv, false);
1838 1839

	/* Calc sr entries for one plane configs */
1840
	if (HAS_FW_BLC(dev_priv) && enabled) {
1841 1842
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1843 1844 1845 1846
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1847
		int clock = adjusted_mode->crtc_clock;
1848
		int htotal = adjusted_mode->crtc_htotal;
1849 1850
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1851 1852 1853
		unsigned long line_time_us;
		int entries;

1854
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1855
			cpp = 4;
1856
		else
1857
			cpp = fb->format->cpp[0];
1858

1859
		line_time_us = max(htotal * 1000 / clock, 1);
1860 1861 1862

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1863
			cpp * hdisplay;
1864 1865 1866 1867 1868 1869
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1870
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1871 1872
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1873
		else
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1890 1891
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1892 1893
}

1894
static void i845_update_wm(struct intel_crtc *unused_crtc)
1895
{
1896
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1897
	struct intel_crtc *crtc;
1898
	const struct drm_display_mode *adjusted_mode;
1899 1900 1901
	uint32_t fwater_lo;
	int planea_wm;

1902
	crtc = single_enabled_crtc(dev_priv);
1903 1904 1905
	if (crtc == NULL)
		return;

1906
	adjusted_mode = &crtc->config->base.adjusted_mode;
1907
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1908
				       &i845_wm_info,
1909
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1910
				       4, pessimal_latency_ns);
1911 1912 1913 1914 1915 1916 1917 1918
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1919
/* latency must be in 0.1us units. */
1920
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1921 1922 1923
{
	uint64_t ret;

1924 1925 1926
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1927
	ret = (uint64_t) pixel_rate * cpp * latency;
1928 1929 1930 1931 1932
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1933
/* latency must be in 0.1us units. */
1934
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1935
			       uint32_t horiz_pixels, uint8_t cpp,
1936 1937 1938 1939
			       uint32_t latency)
{
	uint32_t ret;

1940 1941
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1942 1943
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1944

1945
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1946
	ret = (ret + 1) * horiz_pixels * cpp;
1947 1948 1949 1950
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1951
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1952
			   uint8_t cpp)
1953
{
1954 1955 1956 1957 1958 1959
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1960
	if (WARN_ON(!cpp))
1961 1962 1963 1964
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1965
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1966 1967
}

1968
struct ilk_wm_maximums {
1969 1970 1971 1972 1973 1974
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1975 1976 1977 1978
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1979
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1980
				   const struct intel_plane_state *pstate,
1981 1982
				   uint32_t mem_value,
				   bool is_lp)
1983
{
1984
	uint32_t method1, method2;
1985
	int cpp;
1986

1987
	if (!intel_wm_plane_visible(cstate, pstate))
1988 1989
		return 0;

1990
	cpp = pstate->base.fb->format->cpp[0];
1991

1992
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1993 1994 1995 1996

	if (!is_lp)
		return method1;

1997
	method2 = ilk_wm_method2(cstate->pixel_rate,
1998
				 cstate->base.adjusted_mode.crtc_htotal,
1999
				 drm_rect_width(&pstate->base.dst),
2000
				 cpp, mem_value);
2001 2002

	return min(method1, method2);
2003 2004
}

2005 2006 2007 2008
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2009
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2010
				   const struct intel_plane_state *pstate,
2011 2012 2013
				   uint32_t mem_value)
{
	uint32_t method1, method2;
2014
	int cpp;
2015

2016
	if (!intel_wm_plane_visible(cstate, pstate))
2017 2018
		return 0;

2019
	cpp = pstate->base.fb->format->cpp[0];
2020

2021 2022
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2023
				 cstate->base.adjusted_mode.crtc_htotal,
2024
				 drm_rect_width(&pstate->base.dst),
2025
				 cpp, mem_value);
2026 2027 2028
	return min(method1, method2);
}

2029 2030 2031 2032
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2033
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2034
				   const struct intel_plane_state *pstate,
2035 2036
				   uint32_t mem_value)
{
2037 2038
	int cpp;

2039
	if (!intel_wm_plane_visible(cstate, pstate))
2040 2041
		return 0;

2042 2043
	cpp = pstate->base.fb->format->cpp[0];

2044
	return ilk_wm_method2(cstate->pixel_rate,
2045
			      cstate->base.adjusted_mode.crtc_htotal,
2046
			      pstate->base.crtc_w, cpp, mem_value);
2047 2048
}

2049
/* Only for WM_LP. */
2050
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2051
				   const struct intel_plane_state *pstate,
2052
				   uint32_t pri_val)
2053
{
2054
	int cpp;
2055

2056
	if (!intel_wm_plane_visible(cstate, pstate))
2057 2058
		return 0;

2059
	cpp = pstate->base.fb->format->cpp[0];
2060

2061
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2062 2063
}

2064 2065
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2066
{
2067
	if (INTEL_GEN(dev_priv) >= 8)
2068
		return 3072;
2069
	else if (INTEL_GEN(dev_priv) >= 7)
2070 2071 2072 2073 2074
		return 768;
	else
		return 512;
}

2075 2076 2077
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2078
{
2079
	if (INTEL_GEN(dev_priv) >= 8)
2080 2081
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2082
	else if (INTEL_GEN(dev_priv) >= 7)
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2093 2094
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2095
{
2096
	if (INTEL_GEN(dev_priv) >= 7)
2097 2098 2099 2100 2101
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2102
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2103
{
2104
	if (INTEL_GEN(dev_priv) >= 8)
2105 2106 2107 2108 2109
		return 31;
	else
		return 15;
}

2110 2111 2112
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2113
				     const struct intel_wm_config *config,
2114 2115 2116
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2117 2118
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2119 2120

	/* if sprites aren't enabled, sprites get nothing */
2121
	if (is_sprite && !config->sprites_enabled)
2122 2123 2124
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2125
	if (level == 0 || config->num_pipes_active > 1) {
2126
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2127 2128 2129 2130 2131 2132

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2133
		if (INTEL_GEN(dev_priv) <= 6)
2134 2135 2136
			fifo_size /= 2;
	}

2137
	if (config->sprites_enabled) {
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2149
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2150 2151 2152 2153
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2154 2155
				      int level,
				      const struct intel_wm_config *config)
2156 2157
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2158
	if (level > 0 && config->num_pipes_active > 1)
2159 2160 2161
		return 64;

	/* otherwise just report max that registers can hold */
2162
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2163 2164
}

2165
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2166 2167 2168
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2169
				    struct ilk_wm_maximums *max)
2170
{
2171 2172 2173
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2174
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2175 2176
}

2177
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2178 2179 2180
					int level,
					struct ilk_wm_maximums *max)
{
2181 2182 2183 2184
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2185 2186
}

2187
static bool ilk_validate_wm_level(int level,
2188
				  const struct ilk_wm_maximums *max,
2189
				  struct intel_wm_level *result)
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2228
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2229
				 const struct intel_crtc *intel_crtc,
2230
				 int level,
2231
				 struct intel_crtc_state *cstate,
2232 2233 2234
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2235
				 struct intel_wm_level *result)
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2260 2261 2262
	result->enable = true;
}

2263
static uint32_t
2264
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2265
{
2266 2267
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2268 2269
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2270
	u32 linetime, ips_linetime;
2271

2272 2273 2274 2275
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2276
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2277
		return 0;
2278

2279 2280 2281
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2282 2283 2284
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2285
					 intel_state->cdclk.logical.cdclk);
2286

2287 2288
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2289 2290
}

2291 2292
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2293
{
2294
	if (IS_GEN9(dev_priv)) {
2295
		uint32_t val;
2296
		int ret, i;
2297
		int level, max_level = ilk_wm_max_level(dev_priv);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2353
		/*
2354
		 * WaWmMemoryReadLatency:skl,glk
2355
		 *
2356
		 * punit doesn't take into account the read latency so we need
2357 2358
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2359
		 */
2360 2361 2362 2363 2364
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2365
				wm[level] += 2;
2366
			}
2367 2368
		}

2369
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2370 2371 2372 2373 2374
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2375 2376 2377 2378
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2379
	} else if (INTEL_GEN(dev_priv) >= 6) {
2380 2381 2382 2383 2384 2385
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2386
	} else if (INTEL_GEN(dev_priv) >= 5) {
2387 2388 2389 2390 2391 2392
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2393 2394 2395
	}
}

2396 2397
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2398 2399
{
	/* ILK sprite LP0 latency is 1300 ns */
2400
	if (IS_GEN5(dev_priv))
2401 2402 2403
		wm[0] = 13;
}

2404 2405
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2406 2407
{
	/* ILK cursor LP0 latency is 1300 ns */
2408
	if (IS_GEN5(dev_priv))
2409 2410 2411
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2412
	if (IS_IVYBRIDGE(dev_priv))
2413 2414 2415
		wm[3] *= 2;
}

2416
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2417 2418
{
	/* how many WM levels are we expecting */
2419
	if (INTEL_GEN(dev_priv) >= 9)
2420
		return 7;
2421
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2422
		return 4;
2423
	else if (INTEL_GEN(dev_priv) >= 6)
2424
		return 3;
2425
	else
2426 2427
		return 2;
}
2428

2429
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2430
				   const char *name,
2431
				   const uint16_t wm[8])
2432
{
2433
	int level, max_level = ilk_wm_max_level(dev_priv);
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2444 2445 2446 2447
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2448
		if (IS_GEN9(dev_priv))
2449 2450
			latency *= 10;
		else if (level > 0)
2451 2452 2453 2454 2455 2456 2457 2458
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2459 2460 2461
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2462
	int level, max_level = ilk_wm_max_level(dev_priv);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2474
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2490 2491 2492
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2493 2494
}

2495
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2496
{
2497
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2498 2499 2500 2501 2502 2503

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2504
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2505
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2506

2507 2508 2509
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2510

2511
	if (IS_GEN6(dev_priv))
2512
		snb_wm_latency_quirk(dev_priv);
2513 2514
}

2515
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2516
{
2517
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2518
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2544
/* Compute new watermarks for the pipe */
2545
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2546
{
2547 2548
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2549
	struct intel_pipe_wm *pipe_wm;
2550
	struct drm_device *dev = state->dev;
2551
	const struct drm_i915_private *dev_priv = to_i915(dev);
2552
	struct intel_plane *intel_plane;
2553
	struct intel_plane_state *pristate = NULL;
2554
	struct intel_plane_state *sprstate = NULL;
2555
	struct intel_plane_state *curstate = NULL;
2556
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2557
	struct ilk_wm_maximums max;
2558

2559
	pipe_wm = &cstate->wm.ilk.optimal;
2560

2561
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2562 2563 2564 2565 2566 2567
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2568 2569

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2570
			pristate = ps;
2571
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2572
			sprstate = ps;
2573
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2574
			curstate = ps;
2575 2576
	}

2577
	pipe_wm->pipe_enabled = cstate->base.active;
2578
	if (sprstate) {
2579 2580 2581 2582
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2583 2584
	}

2585 2586
	usable_level = max_level;

2587
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2588
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2589
		usable_level = 1;
2590 2591

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2592
	if (pipe_wm->sprites_scaled)
2593
		usable_level = 0;
2594

2595
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2596 2597 2598 2599
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2600

2601
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2602
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2603

2604
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2605
		return -EINVAL;
2606

2607
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2608 2609

	for (level = 1; level <= max_level; level++) {
2610
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2611

2612
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2613
				     pristate, sprstate, curstate, wm);
2614 2615 2616 2617 2618 2619

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2620 2621 2622 2623 2624 2625
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2626
			usable_level = level;
2627 2628
	}

2629
	return 0;
2630 2631
}

2632 2633 2634 2635 2636 2637 2638 2639 2640
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2641
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2642
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2643
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2644 2645 2646 2647 2648 2649

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2650
	*a = newstate->wm.ilk.optimal;
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2679 2680
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
2681 2682 2683 2684

	return 0;
}

2685 2686 2687 2688 2689 2690 2691 2692 2693
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2694 2695
	ret_wm->enable = true;

2696
	for_each_intel_crtc(dev, intel_crtc) {
2697
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2698 2699 2700 2701
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2702

2703 2704 2705 2706 2707
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2708
		if (!wm->enable)
2709
			ret_wm->enable = false;
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2722
			 const struct intel_wm_config *config,
2723
			 const struct ilk_wm_maximums *max,
2724 2725
			 struct intel_pipe_wm *merged)
{
2726
	struct drm_i915_private *dev_priv = to_i915(dev);
2727
	int level, max_level = ilk_wm_max_level(dev_priv);
2728
	int last_enabled_level = max_level;
2729

2730
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2731
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2732
	    config->num_pipes_active > 1)
2733
		last_enabled_level = 0;
2734

2735
	/* ILK: FBC WM must be disabled always */
2736
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2737 2738 2739 2740 2741 2742 2743

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2744 2745 2746 2747 2748
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2749 2750 2751 2752 2753 2754

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2755 2756
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2757 2758 2759
			wm->fbc_val = 0;
		}
	}
2760 2761 2762 2763 2764 2765 2766

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2767
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2768
	    intel_fbc_is_active(dev_priv)) {
2769 2770 2771 2772 2773 2774
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2775 2776
}

2777 2778 2779 2780 2781 2782
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2783 2784 2785
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2786
	struct drm_i915_private *dev_priv = to_i915(dev);
2787

2788
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2789 2790 2791 2792 2793
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2794
static void ilk_compute_wm_results(struct drm_device *dev,
2795
				   const struct intel_pipe_wm *merged,
2796
				   enum intel_ddb_partitioning partitioning,
2797
				   struct ilk_wm_values *results)
2798
{
2799
	struct drm_i915_private *dev_priv = to_i915(dev);
2800 2801
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2802

2803
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2804
	results->partitioning = partitioning;
2805

2806
	/* LP1+ register values */
2807
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2808
		const struct intel_wm_level *r;
2809

2810
		level = ilk_wm_lp_to_level(wm_lp, merged);
2811

2812
		r = &merged->wm[level];
2813

2814 2815 2816 2817 2818
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2819
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2820 2821 2822
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2823 2824 2825
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2826
		if (INTEL_GEN(dev_priv) >= 8)
2827 2828 2829 2830 2831 2832
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2833 2834 2835 2836
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2837
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2838 2839 2840 2841
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2842
	}
2843

2844
	/* LP0 register values */
2845
	for_each_intel_crtc(dev, intel_crtc) {
2846
		enum pipe pipe = intel_crtc->pipe;
2847 2848
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2849 2850 2851 2852

		if (WARN_ON(!r->enable))
			continue;

2853
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2854

2855 2856 2857 2858
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2859 2860 2861
	}
}

2862 2863
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2864
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2865 2866
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2867
{
2868
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2869
	int level1 = 0, level2 = 0;
2870

2871 2872 2873 2874 2875
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2876 2877
	}

2878 2879
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2880 2881 2882
			return r2;
		else
			return r1;
2883
	} else if (level1 > level2) {
2884 2885 2886 2887 2888 2889
		return r1;
	} else {
		return r2;
	}
}

2890 2891 2892 2893 2894 2895 2896 2897
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2898
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2899 2900
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2901 2902 2903 2904 2905
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2906
	for_each_pipe(dev_priv, pipe) {
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2950 2951
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2952
{
2953
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2954
	bool changed = false;
2955

2956 2957 2958
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2959
		changed = true;
2960 2961 2962 2963
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2964
		changed = true;
2965 2966 2967 2968
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2969
		changed = true;
2970
	}
2971

2972 2973 2974 2975
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2976

2977 2978 2979 2980 2981 2982 2983
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2984 2985
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2986
{
2987
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2988 2989 2990
	unsigned int dirty;
	uint32_t val;

2991
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2992 2993 2994 2995 2996
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2997
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2998
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2999
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3000
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3001
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3002 3003
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

3004
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3005
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3006
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3007
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3008
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3009 3010
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

3011
	if (dirty & WM_DIRTY_DDB) {
3012
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3027 3028
	}

3029
	if (dirty & WM_DIRTY_FBC) {
3030 3031 3032 3033 3034 3035 3036 3037
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3038 3039 3040 3041
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3042
	if (INTEL_GEN(dev_priv) >= 7) {
3043 3044 3045 3046 3047
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3048

3049
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3050
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3051
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3052
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3053
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3054
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3055 3056

	dev_priv->wm.hw = *results;
3057 3058
}

3059
bool ilk_disable_lp_wm(struct drm_device *dev)
3060
{
3061
	struct drm_i915_private *dev_priv = to_i915(dev);
3062 3063 3064 3065

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3066
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3067

3068 3069 3070 3071 3072 3073 3074 3075
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3076
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3077 3078 3079 3080 3081
		return true;

	return false;
}

3082 3083 3084
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3085 3086 3087 3088 3089 3090 3091 3092
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3093 3094
}

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3107
intel_enable_sagv(struct drm_i915_private *dev_priv)
3108 3109 3110
{
	int ret;

3111 3112 3113 3114
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3130
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3131
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3132
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3133 3134 3135 3136 3137 3138
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3139
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3140 3141 3142 3143
	return 0;
}

int
3144
intel_disable_sagv(struct drm_i915_private *dev_priv)
3145
{
3146
	int ret;
3147

3148 3149 3150 3151
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3152 3153 3154 3155 3156 3157
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3158 3159 3160 3161
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3162 3163 3164 3165 3166 3167
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3168
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3169
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3170
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3171
		return 0;
3172 3173 3174
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3175 3176
	}

3177
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3178 3179 3180
	return 0;
}

3181
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3182 3183 3184 3185
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3186 3187
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3188
	struct intel_crtc_state *cstate;
3189
	enum pipe pipe;
3190
	int level, latency;
3191

3192 3193 3194
	if (!intel_has_sagv(dev_priv))
		return false;

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3208
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3209
	cstate = to_intel_crtc_state(crtc->base.state);
3210

3211
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3212 3213
		return false;

3214
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3215 3216
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3217

3218
		/* Skip this plane if it's not enabled */
3219
		if (!wm->wm[0].plane_en)
3220 3221 3222
			continue;

		/* Find the highest enabled wm level for this plane */
3223
		for (level = ilk_wm_max_level(dev_priv);
3224
		     !wm->wm[level].plane_en; --level)
3225 3226
		     { }

3227 3228 3229
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3230
		    plane->base.state->fb->modifier ==
3231 3232 3233
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3234 3235 3236 3237 3238
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3239
		if (latency < SKL_SAGV_BLOCK_TIME)
3240 3241 3242 3243 3244 3245
			return false;
	}

	return true;
}

3246 3247
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3248
				   const struct intel_crtc_state *cstate,
3249 3250
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3251
{
3252 3253 3254
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3255
	struct drm_crtc *for_crtc = cstate->base.crtc;
3256 3257
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3258

3259
	if (WARN_ON(!state) || !cstate->base.active) {
3260 3261
		alloc->start = 0;
		alloc->end = 0;
3262
		*num_active = hweight32(dev_priv->active_crtcs);
3263 3264 3265
		return;
	}

3266 3267 3268 3269 3270
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3271 3272
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3273 3274 3275

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3276
	/*
3277 3278 3279 3280 3281 3282
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3283
	 */
3284
	if (!intel_state->active_pipe_changes) {
3285 3286 3287 3288 3289
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3290
		return;
3291
	}
3292 3293 3294 3295 3296 3297

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3298 3299
}

3300
static unsigned int skl_cursor_allocation(int num_active)
3301
{
3302
	if (num_active == 1)
3303 3304 3305 3306 3307
		return 32;

	return 8;
}

3308 3309 3310 3311
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3312 3313
	if (entry->end)
		entry->end += 1;
3314 3315
}

3316 3317
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3318
{
3319
	struct intel_crtc *crtc;
3320

3321 3322
	memset(ddb, 0, sizeof(*ddb));

3323
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3324
		enum intel_display_power_domain power_domain;
3325 3326
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3327 3328 3329

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3330 3331
			continue;

3332 3333 3334 3335 3336 3337 3338
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3339

3340 3341
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3342 3343

		intel_display_power_put(dev_priv, power_domain);
3344 3345 3346
	}
}

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
3364 3365
skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
			   const struct intel_plane_state *pstate)
3366
{
3367
	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3368 3369 3370
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3371
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3372 3373 3374
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	if (plane->id == PLANE_CURSOR) {
		src_w = pstate->base.src_w;
		src_h = pstate->base.src_h;
		dst_w = pstate->base.crtc_w;
		dst_h = pstate->base.crtc_h;
	} else {
		src_w = drm_rect_width(&pstate->base.src);
		src_h = drm_rect_height(&pstate->base.src);
		dst_w = drm_rect_width(&pstate->base.dst);
		dst_h = drm_rect_height(&pstate->base.dst);
	}

3387
	if (drm_rotation_90_or_270(pstate->base.rotation))
3388 3389 3390 3391 3392 3393 3394 3395 3396
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3397
static unsigned int
3398 3399 3400
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3401
{
3402
	struct intel_plane *plane = to_intel_plane(pstate->plane);
3403
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3404
	uint32_t down_scale_amount, data_rate;
3405
	uint32_t width = 0, height = 0;
3406 3407
	struct drm_framebuffer *fb;
	u32 format;
3408

3409
	if (!intel_pstate->base.visible)
3410
		return 0;
3411 3412

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3413
	format = fb->format->format;
3414

3415
	if (plane->id == PLANE_CURSOR)
3416 3417 3418
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3419

3420 3421
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3422

3423
	if (drm_rotation_90_or_270(pstate->rotation))
3424
		swap(width, height);
3425 3426

	/* for planar format */
3427
	if (format == DRM_FORMAT_NV12) {
3428
		if (y)  /* y-plane data rate */
3429
			data_rate = width * height *
3430
				fb->format->cpp[0];
3431
		else    /* uv-plane data rate */
3432
			data_rate = (width / 2) * (height / 2) *
3433
				fb->format->cpp[1];
3434 3435
	} else {
		/* for packed formats */
3436
		data_rate = width * height * fb->format->cpp[0];
3437 3438
	}

3439
	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
3440 3441

	return (uint64_t)data_rate * down_scale_amount >> 16;
3442 3443 3444 3445 3446 3447 3448 3449
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3450 3451 3452
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3453
{
3454 3455
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3456 3457
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3458
	unsigned int total_data_rate = 0;
3459 3460 3461

	if (WARN_ON(!state))
		return 0;
3462

3463
	/* Calculate and cache data rate for each plane */
3464
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3465 3466
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3467 3468 3469 3470

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3471
		plane_data_rate[plane_id] = rate;
3472 3473

		total_data_rate += rate;
3474 3475 3476 3477

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3478
		plane_y_data_rate[plane_id] = rate;
3479

3480
		total_data_rate += rate;
3481 3482 3483 3484 3485
	}

	return total_data_rate;
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3500
	if (y && fb->format->format != DRM_FORMAT_NV12)
3501 3502 3503
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3504 3505
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3506 3507
		return 8;

3508 3509
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3510

3511
	if (drm_rotation_90_or_270(pstate->rotation))
3512 3513 3514
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3515
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3516 3517 3518 3519
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3520
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3521
		plane_bpp = fb->format->cpp[1];
3522
	else
3523
		plane_bpp = fb->format->cpp[0];
3524

3525
	if (drm_rotation_90_or_270(pstate->rotation)) {
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3549 3550 3551 3552 3553 3554 3555 3556
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3557
		enum plane_id plane_id = to_intel_plane(plane)->id;
3558

3559
		if (plane_id == PLANE_CURSOR)
3560 3561 3562 3563 3564
			continue;

		if (!pstate->visible)
			continue;

3565 3566
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3567 3568 3569 3570 3571
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3572
static int
3573
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3574 3575
		      struct skl_ddb_allocation *ddb /* out */)
{
3576
	struct drm_atomic_state *state = cstate->base.state;
3577
	struct drm_crtc *crtc = cstate->base.crtc;
3578 3579 3580
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3581
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3582
	uint16_t alloc_size, start;
3583 3584
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3585
	unsigned int total_data_rate;
3586
	enum plane_id plane_id;
3587
	int num_active;
3588 3589
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3590

3591 3592 3593 3594
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3595 3596 3597
	if (WARN_ON(!state))
		return 0;

3598
	if (!cstate->base.active) {
3599
		alloc->start = alloc->end = 0;
3600 3601 3602
		return 0;
	}

3603
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3604
	alloc_size = skl_ddb_entry_size(alloc);
3605 3606
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3607
		return 0;
3608 3609
	}

3610
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3611

3612 3613 3614 3615 3616
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3617

3618 3619 3620
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3621 3622
	}

3623 3624 3625
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3626
	/*
3627 3628
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3629 3630 3631
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3632 3633 3634
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3635
	if (total_data_rate == 0)
3636
		return 0;
3637

3638
	start = alloc->start;
3639
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3640 3641
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3642

3643
		if (plane_id == PLANE_CURSOR)
3644 3645
			continue;

3646
		data_rate = plane_data_rate[plane_id];
3647 3648

		/*
3649
		 * allocation for (packed formats) or (uv-plane part of planar format):
3650 3651 3652
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3653
		plane_blocks = minimum[plane_id];
3654 3655
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3656

3657 3658
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3659 3660
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3661
		}
3662 3663

		start += plane_blocks;
3664 3665 3666 3667

		/*
		 * allocation for y_plane part of planar format:
		 */
3668
		y_data_rate = plane_y_data_rate[plane_id];
3669

3670
		y_plane_blocks = y_minimum[plane_id];
3671 3672
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3673

3674
		if (y_data_rate) {
3675 3676
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3677
		}
3678 3679

		start += y_plane_blocks;
3680 3681
	}

3682
	return 0;
3683 3684
}

3685 3686
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3687
 * for the read latency) and cpp should always be <= 8, so that
3688 3689 3690
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3691 3692
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3693
{
3694 3695
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3696 3697

	if (latency == 0)
3698
		return FP_16_16_MAX;
3699

3700 3701
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3702 3703 3704
	return ret;
}

3705 3706 3707 3708
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3709
{
3710
	uint32_t wm_intermediate_val;
3711
	uint_fixed_16_16_t ret;
3712 3713

	if (latency == 0)
3714
		return FP_16_16_MAX;
3715 3716

	wm_intermediate_val = latency * pixel_rate;
3717 3718 3719
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3720 3721 3722
	return ret;
}

3723 3724 3725 3726 3727 3728 3729 3730
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3731
	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3732 3733 3734 3735 3736 3737
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3738
	adjusted_pixel_rate = cstate->pixel_rate;
3739
	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
3740 3741 3742 3743 3744 3745 3746

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3747 3748 3749 3750 3751 3752 3753 3754
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3755
{
3756
	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
3757 3758
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3759
	uint32_t latency = dev_priv->wm.skl_latency[level];
3760 3761 3762 3763 3764
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3765
	uint32_t res_blocks, res_lines;
3766
	uint8_t cpp;
3767
	uint32_t width = 0, height = 0;
3768
	uint32_t plane_pixel_rate;
3769 3770
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3771 3772 3773
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3774
	bool y_tiled, x_tiled;
3775

3776 3777
	if (latency == 0 ||
	    !intel_wm_plane_visible(cstate, intel_pstate)) {
3778 3779 3780
		*enabled = false;
		return 0;
	}
3781

3782 3783 3784 3785
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3786 3787 3788 3789
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3790
	if (apply_memory_bw_wa && x_tiled)
3791 3792
		latency += 15;

3793 3794 3795 3796 3797 3798 3799
	if (plane->id == PLANE_CURSOR) {
		width = intel_pstate->base.crtc_w;
		height = intel_pstate->base.crtc_h;
	} else {
		width = drm_rect_width(&intel_pstate->base.src) >> 16;
		height = drm_rect_height(&intel_pstate->base.src) >> 16;
	}
3800

3801
	if (drm_rotation_90_or_270(pstate->rotation))
3802 3803
		swap(width, height);

3804
	cpp = fb->format->cpp[0];
3805 3806
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3807
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3808
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3809 3810
			fb->format->cpp[1] :
			fb->format->cpp[0];
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3822 3823 3824
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3825 3826 3827 3828 3829
		}
	} else {
		y_min_scanlines = 4;
	}

3830 3831 3832
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3833
	plane_bytes_per_line = width * cpp;
3834
	if (y_tiled) {
3835 3836
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3837
		plane_blocks_per_line =
3838
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3839
	} else if (x_tiled) {
3840 3841
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3842
	} else {
3843 3844
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3845 3846
	}

3847 3848
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3849
				 cstate->base.adjusted_mode.crtc_htotal,
3850
				 latency,
3851
				 plane_blocks_per_line);
3852

3853 3854
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3855

3856
	if (y_tiled) {
3857
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3858
	} else {
3859 3860 3861
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3862 3863 3864
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3865 3866 3867
		else
			selected_result = method1;
	}
3868

3869 3870 3871
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3872

3873
	if (level >= 1 && level <= 7) {
3874
		if (y_tiled) {
3875
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3876
			res_lines += y_min_scanlines;
3877
		} else {
3878
			res_blocks++;
3879
		}
3880
	}
3881

3882 3883
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3884 3885 3886 3887 3888 3889 3890 3891

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3892 3893
			struct drm_plane *plane = pstate->plane;

3894
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3895 3896
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3897 3898 3899
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3900
	}
3901 3902 3903

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3904
	*enabled = true;
3905

3906
	return 0;
3907 3908
}

3909 3910 3911 3912
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3913
		     struct intel_plane *intel_plane,
3914 3915
		     int level,
		     struct skl_wm_level *result)
3916
{
3917
	struct drm_atomic_state *state = cstate->base.state;
3918
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3919 3920
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3921
	uint16_t ddb_blocks;
3922
	enum pipe pipe = intel_crtc->pipe;
3923
	int ret;
L
Lyude 已提交
3924 3925 3926 3927 3928

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3929

3930
	/*
L
Lyude 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3940
	 */
L
Lyude 已提交
3941 3942
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3943

L
Lyude 已提交
3944
	WARN_ON(!intel_pstate->base.fb);
3945

3946
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3947

L
Lyude 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3958 3959

	return 0;
3960 3961
}

3962
static uint32_t
3963
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3964
{
M
Mahesh Kumar 已提交
3965 3966
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3967
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3968
	uint32_t linetime_wm;
3969

3970
	if (!cstate->base.active)
3971 3972
		return 0;

3973
	pixel_rate = cstate->pixel_rate;
3974 3975

	if (WARN_ON(pixel_rate == 0))
3976
		return 0;
3977

M
Mahesh Kumar 已提交
3978 3979 3980 3981 3982 3983 3984 3985
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3986 3987
}

3988
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3989
				      struct skl_wm_level *trans_wm /* out */)
3990
{
3991
	if (!cstate->base.active)
3992
		return;
3993 3994

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3995
	trans_wm->plane_en = false;
3996 3997
}

3998 3999 4000
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
4001
{
4002
	struct drm_device *dev = cstate->base.crtc->dev;
4003
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
4004 4005
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4006
	int level, max_level = ilk_wm_max_level(dev_priv);
4007
	int ret;
4008

L
Lyude 已提交
4009 4010 4011 4012 4013 4014 4015 4016 4017
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
4018
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
4028
	}
4029
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4030

4031
	return 0;
4032 4033
}

4034 4035
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4036 4037 4038 4039 4040 4041 4042 4043
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4059 4060 4061
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4062
			       enum plane_id plane_id)
4063 4064 4065 4066
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4067
	int level, max_level = ilk_wm_max_level(dev_priv);
4068 4069 4070
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4071
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4072
				   &wm->wm[level]);
4073
	}
4074
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4075
			   &wm->trans_wm);
4076

4077 4078 4079 4080
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4081 4082
}

4083 4084 4085
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4086 4087 4088 4089
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4090
	int level, max_level = ilk_wm_max_level(dev_priv);
4091 4092 4093
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4094 4095
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4096
	}
4097
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4098

4099
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4100
			    &ddb->plane[pipe][PLANE_CURSOR]);
4101 4102
}

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4117 4118
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4119
{
4120
	return a->start < b->end && b->start < a->end;
4121 4122
}

4123 4124 4125
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4126
{
4127
	int i;
4128

4129 4130 4131
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4132
			return true;
4133

4134
	return false;
4135 4136
}

4137
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4138
			      const struct skl_pipe_wm *old_pipe_wm,
4139
			      struct skl_pipe_wm *pipe_wm, /* out */
4140
			      struct skl_ddb_allocation *ddb, /* out */
4141
			      bool *changed /* out */)
4142
{
4143
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4144
	int ret;
4145

4146 4147 4148
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4149

4150
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4151 4152 4153
		*changed = false;
	else
		*changed = true;
4154

4155
	return 0;
4156 4157
}

4158 4159 4160 4161 4162 4163 4164
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4165
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4166 4167 4168 4169 4170
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4171
static int
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4188
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4189
		enum plane_id plane_id = to_intel_plane(plane)->id;
4190

4191 4192 4193 4194
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4205 4206 4207 4208 4209 4210 4211
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4212
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4213
	uint32_t realloc_pipes = pipes_modified(state);
4214 4215 4216 4217 4218 4219 4220 4221
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4222 4223 4224 4225 4226 4227
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4228 4229
		intel_state->active_pipe_changes = ~0;

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4253
	if (intel_state->active_pipe_changes) {
4254
		realloc_pipes = ~0;
4255 4256
		intel_state->wm_results.dirty_pipes = ~0;
	}
4257

4258 4259 4260 4261 4262 4263
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4264 4265 4266 4267 4268 4269 4270
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4271
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4272 4273
		if (ret)
			return ret;
4274

4275
		ret = skl_ddb_add_affected_planes(cstate);
4276 4277
		if (ret)
			return ret;
4278 4279 4280 4281 4282
	}

	return 0;
}

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4306
	int i;
4307

4308
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4309 4310
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4311

4312
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4313
			enum plane_id plane_id = intel_plane->id;
4314 4315
			const struct skl_ddb_entry *old, *new;

4316 4317
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4318 4319 4320 4321

			if (skl_ddb_entry_equal(old, new))
				continue;

4322 4323 4324 4325 4326
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4327 4328 4329 4330
		}
	}
}

4331 4332 4333 4334 4335
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4336 4337 4338
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4339
	bool changed = false;
4340
	int ret, i;
4341 4342 4343 4344 4345 4346 4347 4348 4349

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4350
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4351 4352 4353 4354
		changed = true;
	if (!changed)
		return 0;

4355 4356 4357
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4358 4359 4360 4361
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4372
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4373 4374
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4375 4376
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4377 4378

		pipe_wm = &intel_cstate->wm.skl.optimal;
4379 4380
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4394 4395
	skl_print_wm_changes(state);

4396 4397 4398
	return 0;
}

4399 4400 4401 4402 4403 4404
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4405
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4406
	enum pipe pipe = crtc->pipe;
4407
	enum plane_id plane_id;
4408 4409 4410

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4411 4412

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4413

4414 4415 4416 4417 4418 4419 4420 4421
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4422 4423
}

4424 4425
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4426
{
4427
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4428
	struct drm_device *dev = intel_crtc->base.dev;
4429
	struct drm_i915_private *dev_priv = to_i915(dev);
4430
	struct skl_wm_values *results = &state->wm_results;
4431
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4432
	enum pipe pipe = intel_crtc->pipe;
4433

4434
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4435 4436
		return;

4437
	mutex_lock(&dev_priv->wm.wm_mutex);
4438

4439 4440
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4441 4442

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4443 4444

	mutex_unlock(&dev_priv->wm.wm_mutex);
4445 4446
}

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4465
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4466
{
4467
	struct drm_device *dev = &dev_priv->drm;
4468
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4469
	struct ilk_wm_maximums max;
4470
	struct intel_wm_config config = {};
4471
	struct ilk_wm_values results = {};
4472
	enum intel_ddb_partitioning partitioning;
4473

4474 4475 4476 4477
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4478 4479

	/* 5/6 split only in single pipe config on IVB+ */
4480
	if (INTEL_GEN(dev_priv) >= 7 &&
4481 4482 4483
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4484

4485
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4486
	} else {
4487
		best_lp_wm = &lp_wm_1_2;
4488 4489
	}

4490
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4491
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4492

4493
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4494

4495
	ilk_write_wm_values(dev_priv, &results);
4496 4497
}

4498 4499
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4500
{
4501 4502
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4503

4504
	mutex_lock(&dev_priv->wm.wm_mutex);
4505
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4506 4507 4508
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4509

4510 4511
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4512 4513 4514
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4515

4516 4517
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4518
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4519 4520 4521
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4522 4523
}

4524 4525
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4526
{
4527 4528 4529 4530
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4531 4532
}

4533 4534
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4535
{
4536
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4537 4538
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4539 4540
	int level, max_level;
	enum plane_id plane_id;
4541
	uint32_t val;
4542

4543
	max_level = ilk_wm_max_level(dev_priv);
4544

4545 4546
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4547

4548
		for (level = 0; level <= max_level; level++) {
4549 4550
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4551 4552
			else
				val = I915_READ(CUR_WM(pipe, level));
4553

4554
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4555 4556
		}

4557 4558
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4559 4560 4561 4562
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4563 4564
	}

4565 4566
	if (!intel_crtc->active)
		return;
4567

4568
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4569 4570 4571 4572
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4573
	struct drm_i915_private *dev_priv = to_i915(dev);
4574
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4575
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4576
	struct drm_crtc *crtc;
4577 4578
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4579

4580
	skl_ddb_get_hw_state(dev_priv, ddb);
4581 4582 4583 4584 4585 4586
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4587
		if (intel_crtc->active)
4588 4589
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4590

4591 4592 4593 4594 4595 4596 4597
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4598 4599
}

4600 4601 4602
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4603
	struct drm_i915_private *dev_priv = to_i915(dev);
4604
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4605
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4606
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4607
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4608
	enum pipe pipe = intel_crtc->pipe;
4609
	static const i915_reg_t wm0_pipe_reg[] = {
4610 4611 4612 4613 4614 4615
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4616
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4617
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4618

4619 4620
	memset(active, 0, sizeof(*active));

4621
	active->pipe_enabled = intel_crtc->active;
4622 4623

	if (active->pipe_enabled) {
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4638
		int level, max_level = ilk_wm_max_level(dev_priv);
4639 4640 4641 4642 4643 4644 4645 4646 4647

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4648 4649

	intel_crtc->wm.active.ilk = *active;
4650 4651
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4666
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4667
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4668
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4669
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4670
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4671
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4672
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4673 4674 4675 4676 4677
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4678 4679 4680
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4681 4682

	tmp = I915_READ(DSPFW2);
4683 4684 4685
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4686 4687 4688 4689 4690 4691

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4692 4693
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4694 4695

		tmp = I915_READ(DSPFW8_CHV);
4696 4697
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4698 4699

		tmp = I915_READ(DSPFW9_CHV);
4700 4701
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4702 4703 4704

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4705 4706 4707 4708 4709 4710 4711 4712 4713
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4714 4715
	} else {
		tmp = I915_READ(DSPFW7);
4716 4717
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4718 4719 4720

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4721 4722 4723 4724 4725 4726
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4737
	struct intel_crtc *crtc;
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4752 4753 4754 4755 4756 4757 4758 4759 4760
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4761
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4775 4776 4777 4778

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
4817
		crtc_state->wm.vlv.intermediate = *active;
4818

4819
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4820 4821 4822 4823 4824
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4825
	}
4826 4827 4828 4829 4830

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

4880 4881
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4882
	struct drm_i915_private *dev_priv = to_i915(dev);
4883
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4884 4885
	struct drm_crtc *crtc;

4886
	for_each_crtc(dev, crtc)
4887 4888 4889 4890 4891 4892 4893
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4894
	if (INTEL_GEN(dev_priv) >= 7) {
4895 4896 4897
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4898

4899
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4900 4901
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4902
	else if (IS_IVYBRIDGE(dev_priv))
4903 4904
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4905 4906 4907 4908 4909

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4942
void intel_update_watermarks(struct intel_crtc *crtc)
4943
{
4944
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4945 4946

	if (dev_priv->display.update_wm)
4947
		dev_priv->display.update_wm(crtc);
4948 4949
}

4950
/*
4951 4952 4953 4954 4955 4956 4957 4958
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4959
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4960 4961 4962
{
	u16 rgvswctl;

4963
	lockdep_assert_held(&mchdev_lock);
4964

4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4982
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4983
{
4984
	u32 rgvmodectl;
4985 4986
	u8 fmax, fmin, fstart, vstart;

4987 4988
	spin_lock_irq(&mchdev_lock);

4989 4990
	rgvmodectl = I915_READ(MEMMODECTL);

4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

5011
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5012 5013
		PXVFREQ_PX_SHIFT;

5014 5015
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
5016

5017 5018 5019
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5036
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5037
		DRM_ERROR("stuck trying to change perf mode\n");
5038
	mdelay(1);
5039

5040
	ironlake_set_drps(dev_priv, fstart);
5041

5042 5043
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5044
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5045
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5046
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5047 5048

	spin_unlock_irq(&mchdev_lock);
5049 5050
}

5051
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5052
{
5053 5054 5055 5056 5057
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5058 5059 5060 5061 5062 5063 5064 5065 5066

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5067
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5068
	mdelay(1);
5069 5070
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5071
	mdelay(1);
5072

5073
	spin_unlock_irq(&mchdev_lock);
5074 5075
}

5076 5077 5078 5079 5080
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5081
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5082
{
5083
	u32 limits;
5084

5085 5086 5087 5088 5089 5090
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5091
	if (IS_GEN9(dev_priv)) {
5092 5093 5094 5095 5096 5097 5098 5099
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5100 5101 5102 5103

	return limits;
}

5104 5105 5106
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5107 5108
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5109 5110 5111 5112

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5113 5114
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5115 5116 5117 5118
			new_power = BETWEEN;
		break;

	case BETWEEN:
5119 5120
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5121
			new_power = LOW_POWER;
5122 5123
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5124 5125 5126 5127
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5128 5129
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5130 5131 5132 5133
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5134
	if (val <= dev_priv->rps.min_freq_softlimit)
5135
		new_power = LOW_POWER;
5136
	if (val >= dev_priv->rps.max_freq_softlimit)
5137 5138 5139 5140 5141 5142 5143 5144
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5145 5146
		ei_up = 16000;
		threshold_up = 95;
5147 5148

		/* Downclock if less than 85% busy over 32ms */
5149 5150
		ei_down = 32000;
		threshold_down = 85;
5151 5152 5153 5154
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5155 5156
		ei_up = 13000;
		threshold_up = 90;
5157 5158

		/* Downclock if less than 75% busy over 32ms */
5159 5160
		ei_down = 32000;
		threshold_down = 75;
5161 5162 5163 5164
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5165 5166
		ei_up = 10000;
		threshold_up = 85;
5167 5168

		/* Downclock if less than 60% busy over 32ms */
5169 5170
		ei_down = 32000;
		threshold_down = 60;
5171 5172 5173
		break;
	}

5174 5175 5176 5177 5178 5179
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5180
	I915_WRITE(GEN6_RP_UP_EI,
5181
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5182
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5183 5184
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5185 5186

	I915_WRITE(GEN6_RP_DOWN_EI,
5187
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5188
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5199

5200
skip_hw_write:
5201
	dev_priv->rps.power = new_power;
5202 5203
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5204 5205 5206
	dev_priv->rps.last_adj = 0;
}

5207 5208 5209 5210
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5211
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5212
	if (val > dev_priv->rps.min_freq_softlimit)
5213
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5214
	if (val < dev_priv->rps.max_freq_softlimit)
5215
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5216

5217 5218
	mask &= dev_priv->pm_rps_events;

5219
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5220 5221
}

5222 5223 5224
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5225
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5226
{
C
Chris Wilson 已提交
5227 5228 5229 5230 5231
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5232

5233
		if (IS_GEN9(dev_priv))
5234 5235
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5236
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5237 5238 5239 5240 5241 5242 5243
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5244
	}
5245 5246 5247 5248

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5249
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5250
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5251

5252
	dev_priv->rps.cur_freq = val;
5253
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5254 5255

	return 0;
5256 5257
}

5258
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5259
{
5260 5261
	int err;

5262
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5263 5264 5265
		      "Odd GPU freq value\n"))
		val &= ~1;

5266 5267
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5268
	if (val != dev_priv->rps.cur_freq) {
5269 5270 5271 5272
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5273
		gen6_set_rps_thresholds(dev_priv, val);
5274
	}
5275 5276 5277

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5278 5279

	return 0;
5280 5281
}

5282
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5283 5284
 *
 * * If Gfx is Idle, then
5285 5286 5287
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5288 5289 5290
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5291
	u32 val = dev_priv->rps.idle_freq;
5292
	int err;
5293

5294
	if (dev_priv->rps.cur_freq <= val)
5295 5296
		return;

5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5309
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5310
	err = valleyview_set_rps(dev_priv, val);
5311
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5312 5313 5314

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5315 5316
}

5317 5318 5319 5320
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5321 5322
		u8 freq;

5323
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5324 5325 5326
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5327

5328 5329
		gen6_enable_rps_interrupts(dev_priv);

5330 5331 5332 5333 5334 5335
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5336
		if (intel_set_rps(dev_priv,
5337
				  clamp(freq,
5338 5339 5340
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5341 5342 5343 5344
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5345 5346
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5347 5348 5349 5350 5351 5352 5353
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5354
	mutex_lock(&dev_priv->rps.hw_lock);
5355
	if (dev_priv->rps.enabled) {
5356
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5357
			vlv_set_rps_idle(dev_priv);
5358
		else
5359
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5360
		dev_priv->rps.last_adj = 0;
5361 5362
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5363
	}
5364
	mutex_unlock(&dev_priv->rps.hw_lock);
5365

5366
	spin_lock(&dev_priv->rps.client_lock);
5367 5368
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5369
	spin_unlock(&dev_priv->rps.client_lock);
5370 5371
}

5372
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5373 5374
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5375
{
5376 5377 5378
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5379
	if (!(dev_priv->gt.awake &&
5380
	      dev_priv->rps.enabled &&
5381
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5382
		return;
5383

5384 5385 5386
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5387
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5388 5389
		rps = NULL;

5390 5391 5392 5393 5394
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5395
			schedule_work(&dev_priv->rps.work);
5396 5397
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5398

5399 5400 5401
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5402 5403
		} else
			dev_priv->rps.boosts++;
5404
	}
5405
	spin_unlock(&dev_priv->rps.client_lock);
5406 5407
}

5408
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5409
{
5410 5411
	int err;

5412 5413 5414 5415
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5416 5417 5418 5419 5420
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5421
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5422
		err = valleyview_set_rps(dev_priv, val);
5423
	else
5424 5425 5426
		err = gen6_set_rps(dev_priv, val);

	return err;
5427 5428
}

5429
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5430 5431
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5432
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5433 5434
}

5435
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5436 5437 5438 5439
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5440
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5441 5442
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5443
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5444
	I915_WRITE(GEN6_RP_CONTROL, 0);
5445 5446
}

5447
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5448 5449 5450 5451
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5452
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5453
{
5454 5455
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5456
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5457

5458
	I915_WRITE(GEN6_RC_CONTROL, 0);
5459

5460
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5461 5462
}

5463
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5464
{
5465
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5466 5467 5468 5469 5470
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5471
	if (HAS_RC6p(dev_priv))
5472 5473 5474 5475 5476
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5477 5478

	else
5479 5480
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5481 5482
}

5483
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5484
{
5485
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5486 5487
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5499 5500

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5501
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5502 5503 5504 5505 5506 5507 5508 5509
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5510 5511 5512
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5513
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5514 5515 5516 5517 5518 5519 5520
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5521
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5522 5523 5524
		enable_rc6 = false;
	}

5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5539 5540 5541 5542 5543 5544
		enable_rc6 = false;
	}

	return enable_rc6;
}

5545
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5546
{
5547
	/* No RC6 before Ironlake and code is gone for ilk. */
5548
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5549 5550
		return 0;

5551 5552 5553
	if (!enable_rc6)
		return 0;

5554
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5555 5556 5557 5558
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5559
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5560 5561 5562
	if (enable_rc6 >= 0) {
		int mask;

5563
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5564 5565 5566 5567 5568 5569
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5570 5571 5572
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5573 5574 5575

		return enable_rc6 & mask;
	}
5576

5577
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5578
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5579 5580

	return INTEL_RC6_ENABLE;
5581 5582
}

5583
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5584 5585
{
	/* All of these values are in units of 50MHz */
5586

5587
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5588
	if (IS_GEN9_LP(dev_priv)) {
5589
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5590 5591 5592 5593
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5594
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5595 5596 5597 5598
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5599
	/* hw_max = RP0 until we check for overclocking */
5600
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5601

5602
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5603
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5604
	    IS_GEN9_BC(dev_priv)) {
5605 5606 5607 5608 5609
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5610
			dev_priv->rps.efficient_freq =
5611 5612 5613 5614
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5615 5616
	}

5617
	if (IS_GEN9_BC(dev_priv)) {
5618
		/* Store the frequency values in 16.66 MHZ units, which is
5619 5620
		 * the natural hardware unit for SKL
		 */
5621 5622 5623 5624 5625 5626
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5627 5628
}

5629
static void reset_rps(struct drm_i915_private *dev_priv,
5630
		      int (*set)(struct drm_i915_private *, u8))
5631 5632 5633 5634 5635 5636 5637
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5638 5639
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5640 5641
}

J
Jesse Barnes 已提交
5642
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5643
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5644 5645 5646
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5647 5648 5649 5650 5651 5652 5653 5654
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5655 5656
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5657 5658 5659
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5660
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5661 5662 5663 5664

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5665
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5666
{
5667
	struct intel_engine_cs *engine;
5668
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5669 5670 5671 5672 5673 5674 5675
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5676
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5677 5678 5679 5680 5681

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5682 5683

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5684
	if (IS_SKYLAKE(dev_priv))
5685 5686 5687
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5688 5689
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5690
	for_each_engine(engine, dev_priv, id)
5691
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5692

5693
	if (HAS_GUC(dev_priv))
5694 5695
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5696 5697
	I915_WRITE(GEN6_RC_SLEEP, 0);

5698 5699 5700 5701
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5702
	/* 3a: Enable RC6 */
5703
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5704
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5705
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5706 5707 5708
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5709

5710 5711
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5712
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5713
	 */
5714
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5715 5716 5717 5718
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5719

5720
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5721 5722
}

5723
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5724
{
5725
	struct intel_engine_cs *engine;
5726
	enum intel_engine_id id;
5727
	uint32_t rc6_mask = 0;
5728 5729 5730 5731 5732 5733

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5734
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5735 5736 5737 5738 5739 5740 5741 5742

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5743
	for_each_engine(engine, dev_priv, id)
5744
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5745
	I915_WRITE(GEN6_RC_SLEEP, 0);
5746
	if (IS_BROADWELL(dev_priv))
5747 5748 5749
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5750 5751

	/* 3: Enable RC6 */
5752
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5753
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5754 5755
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5756 5757 5758 5759 5760 5761 5762
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5763 5764

	/* 4 Program defaults and thresholds for RPS*/
5765 5766 5767 5768
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5783 5784

	/* 5: Enable RPS */
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5795
	reset_rps(dev_priv, gen6_set_rps);
5796

5797
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5798 5799
}

5800
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5801
{
5802
	struct intel_engine_cs *engine;
5803
	enum intel_engine_id id;
5804
	u32 rc6vids, rc6_mask = 0;
5805 5806
	u32 gtfifodbg;
	int rc6_mode;
5807
	int ret;
5808

5809
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5810

5811 5812 5813 5814 5815 5816 5817 5818 5819
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5820 5821
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5822 5823 5824 5825
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5826
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5837
	for_each_engine(engine, dev_priv, id)
5838
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5839 5840 5841

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5842
	if (IS_IVYBRIDGE(dev_priv))
5843 5844 5845
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5846
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5847 5848
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5849
	/* Check if we are enabling RC6 */
5850
	rc6_mode = intel_enable_rc6();
5851 5852 5853
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5854
	/* We don't use those on Haswell */
5855
	if (!IS_HASWELL(dev_priv)) {
5856 5857
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5858

5859 5860 5861
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5862

5863
	intel_print_rc6_info(dev_priv, rc6_mask);
5864 5865 5866 5867 5868 5869

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5870 5871
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5872 5873
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5874
	reset_rps(dev_priv, gen6_set_rps);
5875

5876 5877
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5878
	if (IS_GEN6(dev_priv) && ret) {
5879
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5880
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5881 5882 5883 5884 5885 5886 5887 5888 5889
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5890
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5891 5892
}

5893
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5894 5895
{
	int min_freq = 15;
5896 5897
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5898
	unsigned int max_gpu_freq, min_gpu_freq;
5899
	int scaling_factor = 180;
5900
	struct cpufreq_policy *policy;
5901

5902
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5903

5904 5905 5906 5907 5908 5909 5910 5911 5912
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5913
		max_ia_freq = tsc_khz;
5914
	}
5915 5916 5917 5918

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5919
	min_ring_freq = I915_READ(DCLK) & 0xf;
5920 5921
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5922

5923
	if (IS_GEN9_BC(dev_priv)) {
5924 5925 5926 5927 5928 5929 5930 5931
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5932 5933 5934 5935 5936
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5937 5938
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5939 5940
		unsigned int ia_freq = 0, ring_freq = 0;

5941
		if (IS_GEN9_BC(dev_priv)) {
5942 5943 5944 5945 5946
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5947
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5948 5949
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5950
		} else if (IS_HASWELL(dev_priv)) {
5951
			ring_freq = mult_frac(gpu_freq, 5, 4);
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5968

B
Ben Widawsky 已提交
5969 5970
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5971 5972 5973
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5974 5975 5976
	}
}

5977
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5978 5979 5980
{
	u32 val, rp0;

5981
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5982

5983
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5998
	}
5999 6000 6001

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

6015 6016 6017 6018
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

6019 6020 6021
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

6022 6023 6024
	return rp1;
}

6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6047
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6048 6049 6050
{
	u32 val, rp0;

6051
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6064
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6065
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6066
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6067 6068 6069 6070 6071
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6072
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6073
{
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6085 6086
}

6087 6088 6089 6090 6091 6092 6093 6094 6095
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6096 6097 6098 6099 6100 6101 6102 6103 6104

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6105
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6106
{
6107
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6108
	unsigned long pctx_paddr, paddr;
6109 6110 6111 6112 6113
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6114
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6115
		paddr = (dev_priv->mm.stolen_base +
6116
			 (ggtt->stolen_size - pctx_size));
6117 6118 6119 6120

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6121 6122

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6123 6124
}

6125
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6138
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6139
								      pcbr_offset,
6140
								      I915_GTT_OFFSET_NONE,
6141 6142 6143 6144
								      pctx_size);
		goto out;
	}

6145 6146
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6147 6148 6149 6150 6151 6152 6153 6154
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6155
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6156 6157
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6158
		goto out;
6159 6160 6161 6162 6163 6164
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6165
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6166 6167 6168
	dev_priv->vlv_pctx = pctx;
}

6169
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6170 6171 6172 6173
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6174
	i915_gem_object_put(dev_priv->vlv_pctx);
6175 6176 6177
	dev_priv->vlv_pctx = NULL;
}

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6189
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6190
{
6191
	u32 val;
6192

6193
	valleyview_setup_pctx(dev_priv);
6194

6195 6196
	vlv_init_gpll_ref_freq(dev_priv);

6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6210
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6211

6212 6213 6214
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6215
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6216 6217 6218 6219
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6220
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6221 6222
			 dev_priv->rps.efficient_freq);

6223 6224
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6225
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6226 6227
			 dev_priv->rps.rp1_freq);

6228 6229
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6230
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6231 6232 6233
			 dev_priv->rps.min_freq);
}

6234
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6235
{
6236
	u32 val;
6237

6238
	cherryview_setup_pctx(dev_priv);
6239

6240 6241
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6242
	mutex_lock(&dev_priv->sb_lock);
6243
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6244
	mutex_unlock(&dev_priv->sb_lock);
6245

6246 6247 6248 6249
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6250
	default:
6251 6252 6253
		dev_priv->mem_freq = 1600;
		break;
	}
6254
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6255

6256 6257 6258
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6259
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6260 6261 6262 6263
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6264
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6265 6266
			 dev_priv->rps.efficient_freq);

6267 6268
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6269
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6270 6271
			 dev_priv->rps.rp1_freq);

6272
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6273
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6274
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6275 6276
			 dev_priv->rps.min_freq);

6277 6278 6279 6280 6281
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6282 6283
}

6284
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6285
{
6286
	valleyview_cleanup_pctx(dev_priv);
6287 6288
}

6289
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6290
{
6291
	struct intel_engine_cs *engine;
6292
	enum intel_engine_id id;
6293
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6294 6295 6296

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6297 6298
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6309
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6310

6311 6312 6313
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6314 6315 6316 6317 6318
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6319
	for_each_engine(engine, dev_priv, id)
6320
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6321 6322
	I915_WRITE(GEN6_RC_SLEEP, 0);

6323 6324
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6336 6337
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6338
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6339 6340 6341

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6342
	/* 4 Program defaults and thresholds for RPS*/
6343
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6354
		   GEN6_RP_MEDIA_IS_GFX |
6355 6356 6357 6358
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6359 6360 6361 6362 6363 6364
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6365 6366
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6367 6368 6369
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6370
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6371 6372
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6373
	reset_rps(dev_priv, valleyview_set_rps);
6374

6375
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6376 6377
}

6378
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6379
{
6380
	struct intel_engine_cs *engine;
6381
	enum intel_engine_id id;
6382
	u32 gtfifodbg, val, rc6_mode = 0;
6383 6384 6385

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6386 6387
	valleyview_check_pctx(dev_priv);

6388 6389
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6390 6391
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6392 6393 6394
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6395
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6396
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6397

6398 6399 6400
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6401
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6421
	for_each_engine(engine, dev_priv, id)
6422
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6423

6424
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6425 6426

	/* allows RC6 residency counter to work */
6427
	I915_WRITE(VLV_COUNTER_CONTROL,
6428 6429
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
6430
				      VLV_RENDER_RC0_COUNT_EN |
6431 6432
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6433

6434
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6435
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6436

6437
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6438

6439
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6440

D
Deepak S 已提交
6441 6442 6443 6444 6445 6446
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6447
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6448

6449 6450 6451
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6452
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6453 6454
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6455
	reset_rps(dev_priv, valleyview_set_rps);
6456

6457
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6458 6459
}

6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6489
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6490 6491 6492 6493 6494 6495
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6496
	lockdep_assert_held(&mchdev_lock);
6497

6498
	diff1 = now - dev_priv->ips.last_time1;
6499 6500 6501 6502 6503 6504 6505

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6506
		return dev_priv->ips.chipset_power;
6507 6508 6509 6510 6511 6512 6513 6514

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6515 6516
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6517 6518
		diff += total_count;
	} else {
6519
		diff = total_count - dev_priv->ips.last_count1;
6520 6521 6522
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6523 6524
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6535 6536
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6537

6538
	dev_priv->ips.chipset_power = ret;
6539 6540 6541 6542

	return ret;
}

6543 6544 6545 6546
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6547
	if (INTEL_INFO(dev_priv)->gen != 5)
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6586
{
6587 6588 6589
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6590
	if (INTEL_INFO(dev_priv)->is_mobile)
6591 6592 6593
		return vm > 0 ? vm : 0;

	return vd;
6594 6595
}

6596
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6597
{
6598
	u64 now, diff, diffms;
6599 6600
	u32 count;

6601
	lockdep_assert_held(&mchdev_lock);
6602

6603 6604 6605
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6606 6607 6608 6609 6610 6611 6612

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6613 6614
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6615 6616
		diff += count;
	} else {
6617
		diff = count - dev_priv->ips.last_count2;
6618 6619
	}

6620 6621
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6622 6623 6624 6625

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6626
	dev_priv->ips.gfx_power = diff;
6627 6628
}

6629 6630
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6631
	if (INTEL_INFO(dev_priv)->gen != 5)
6632 6633
		return;

6634
	spin_lock_irq(&mchdev_lock);
6635 6636 6637

	__i915_update_gfx_val(dev_priv);

6638
	spin_unlock_irq(&mchdev_lock);
6639 6640
}

6641
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6642 6643 6644 6645
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6646
	lockdep_assert_held(&mchdev_lock);
6647

6648
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6668
	corr2 = (corr * dev_priv->ips.corr);
6669 6670 6671 6672

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6673
	__i915_update_gfx_val(dev_priv);
6674

6675
	return dev_priv->ips.gfx_power + state2;
6676 6677
}

6678 6679 6680 6681
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6682
	if (INTEL_INFO(dev_priv)->gen != 5)
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6705
	spin_lock_irq(&mchdev_lock);
6706 6707 6708 6709
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6710 6711
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6712 6713 6714 6715

	ret = chipset_val + graphics_val;

out_unlock:
6716
	spin_unlock_irq(&mchdev_lock);
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6732
	spin_lock_irq(&mchdev_lock);
6733 6734 6735 6736 6737 6738
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6739 6740
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6741 6742

out_unlock:
6743
	spin_unlock_irq(&mchdev_lock);
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6760
	spin_lock_irq(&mchdev_lock);
6761 6762 6763 6764 6765 6766
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6767 6768
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6769 6770

out_unlock:
6771
	spin_unlock_irq(&mchdev_lock);
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6786
	spin_lock_irq(&mchdev_lock);
6787 6788
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6789
	spin_unlock_irq(&mchdev_lock);
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6806
	spin_lock_irq(&mchdev_lock);
6807 6808 6809 6810 6811 6812
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6813
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6814

6815
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6816 6817 6818
		ret = false;

out_unlock:
6819
	spin_unlock_irq(&mchdev_lock);
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6847 6848
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6849
	spin_lock_irq(&mchdev_lock);
6850
	i915_mch_dev = dev_priv;
6851
	spin_unlock_irq(&mchdev_lock);
6852 6853 6854 6855 6856 6857

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6858
	spin_lock_irq(&mchdev_lock);
6859
	i915_mch_dev = NULL;
6860
	spin_unlock_irq(&mchdev_lock);
6861
}
6862

6863
static void intel_init_emon(struct drm_i915_private *dev_priv)
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6880
		I915_WRITE(PEW(i), 0);
6881
	for (i = 0; i < 3; i++)
6882
		I915_WRITE(DEW(i), 0);
6883 6884 6885

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6886
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6907
		I915_WRITE(PXW(i), val);
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6923
		I915_WRITE(PXWL(i), 0);
6924 6925 6926 6927 6928 6929

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6930
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6931 6932
}

6933
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6934
{
6935 6936 6937 6938 6939 6940 6941 6942
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6943

6944
	mutex_lock(&dev_priv->drm.struct_mutex);
6945 6946 6947
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6948 6949 6950 6951
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6952
	else if (INTEL_GEN(dev_priv) >= 6)
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6982 6983 6984
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6985
	mutex_unlock(&dev_priv->rps.hw_lock);
6986
	mutex_unlock(&dev_priv->drm.struct_mutex);
6987 6988

	intel_autoenable_gt_powersave(dev_priv);
6989 6990
}

6991
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6992
{
6993
	if (IS_VALLEYVIEW(dev_priv))
6994
		valleyview_cleanup_gt_powersave(dev_priv);
6995 6996 6997

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6998 6999
}

7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

7019 7020 7021 7022
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
7023 7024

	gen6_reset_rps_interrupts(dev_priv);
7025 7026
}

7027
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7028
{
7029 7030
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
7031

7032
	mutex_lock(&dev_priv->rps.hw_lock);
7033

7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7045
	}
7046 7047 7048

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7049 7050
}

7051
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7052
{
7053 7054 7055
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7056 7057
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7058

7059 7060 7061
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7062

7063
	mutex_lock(&dev_priv->rps.hw_lock);
7064 7065 7066 7067 7068

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7069
	} else if (INTEL_GEN(dev_priv) >= 9) {
7070 7071
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7072
		if (IS_GEN9_BC(dev_priv))
7073
			gen6_update_ring_freq(dev_priv);
7074 7075
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7076
		gen6_update_ring_freq(dev_priv);
7077
	} else if (INTEL_GEN(dev_priv) >= 6) {
7078
		gen6_enable_rps(dev_priv);
7079
		gen6_update_ring_freq(dev_priv);
7080 7081 7082
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7083
	}
7084 7085 7086 7087 7088 7089 7090

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7091
	dev_priv->rps.enabled = true;
7092 7093
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7094

7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7105
	rcs = dev_priv->engine[RCS];
7106
	if (rcs->last_retired_context)
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7122
	i915_add_request(req);
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7158
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7159 7160 7161 7162 7163 7164 7165 7166 7167
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7168
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7169
{
7170
	enum pipe pipe;
7171

7172
	for_each_pipe(dev_priv, pipe) {
7173 7174 7175
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7176 7177 7178

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7179 7180 7181
	}
}

7182
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7194
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7195
{
7196
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7197

7198 7199 7200 7201
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7202 7203 7204
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7222
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7223 7224 7225
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7226

7227
	ilk_init_lp_watermarks(dev_priv);
7228 7229 7230 7231 7232 7233 7234 7235

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7236
	if (IS_IRONLAKE_M(dev_priv)) {
7237
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7238 7239 7240 7241 7242 7243 7244 7245
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7246 7247
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7248 7249 7250 7251 7252 7253
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7254

7255
	/* WaDisableRenderCachePipelinedFlush:ilk */
7256 7257
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7258

7259 7260 7261
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7262
	g4x_disable_trickle_feed(dev_priv);
7263

7264
	ibx_init_clock_gating(dev_priv);
7265 7266
}

7267
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7268 7269
{
	int pipe;
7270
	uint32_t val;
7271 7272 7273 7274 7275 7276

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7277 7278 7279
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7280 7281
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7282 7283 7284
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7285
	for_each_pipe(dev_priv, pipe) {
7286 7287 7288
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7289
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7290
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7291 7292 7293
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7294 7295
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7296
	/* WADP0ClockGatingDisable */
7297
	for_each_pipe(dev_priv, pipe) {
7298 7299 7300
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7301 7302
}

7303
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7304 7305 7306 7307
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7308 7309 7310
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7311 7312
}

7313
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7314
{
7315
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7316

7317
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7318 7319 7320 7321 7322

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7323
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7324 7325 7326
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7327 7328 7329
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7330 7331 7332
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7333 7334 7335 7336
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7337 7338
	 */
	I915_WRITE(GEN6_GT_MODE,
7339
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7340

7341
	ilk_init_lp_watermarks(dev_priv);
7342 7343

	I915_WRITE(CACHE_MODE_0,
7344
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7360
	 *
7361 7362
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7363 7364 7365 7366 7367
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7368
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7369 7370
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7371

7372 7373 7374 7375 7376 7377 7378 7379
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7380 7381 7382 7383 7384 7385 7386 7387
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7388 7389
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7390 7391 7392 7393 7394 7395 7396
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7397 7398 7399 7400
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7401

7402
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7403

7404
	cpt_init_clock_gating(dev_priv);
7405

7406
	gen6_check_mch_setup(dev_priv);
7407 7408 7409 7410 7411 7412
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7413
	/*
7414
	 * WaVSThreadDispatchOverride:ivb,vlv
7415 7416 7417 7418
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7419 7420 7421 7422 7423 7424 7425 7426
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7427
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7428 7429 7430 7431 7432
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7433
	if (HAS_PCH_LPT_LP(dev_priv))
7434 7435 7436
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7437 7438

	/* WADPOClockGatingDisable:hsw */
7439 7440
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7441
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7442 7443
}

7444
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7445
{
7446
	if (HAS_PCH_LPT_LP(dev_priv)) {
7447 7448 7449 7450 7451 7452 7453
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7477
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7478
{
7479
	gen9_init_clock_gating(dev_priv);
7480 7481 7482 7483 7484

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7485 7486 7487 7488 7489

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7490 7491 7492 7493

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7494 7495
}

7496
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7497
{
7498
	gen9_init_clock_gating(dev_priv);
7499 7500 7501 7502

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7503 7504 7505 7506

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7507 7508
}

7509
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7510
{
7511
	enum pipe pipe;
B
Ben Widawsky 已提交
7512

7513
	ilk_init_lp_watermarks(dev_priv);
7514

7515
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7516
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7517

7518
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7519 7520 7521
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7522
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7523
	for_each_pipe(dev_priv, pipe) {
7524
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7525
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7526
			   BDW_DPRS_MASK_VBLANK_SRD);
7527
	}
7528

7529 7530 7531 7532 7533
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7534

7535 7536
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7537 7538 7539 7540

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7541

7542 7543
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7544

7545 7546 7547 7548 7549 7550 7551
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7552 7553 7554 7555
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7556
	lpt_init_clock_gating(dev_priv);
7557 7558 7559 7560 7561 7562 7563 7564

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7565 7566
}

7567
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7568
{
7569
	ilk_init_lp_watermarks(dev_priv);
7570

7571 7572 7573 7574 7575
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7576
	/* This is required by WaCatErrorRejectionIssue:hsw */
7577 7578 7579 7580
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7581 7582 7583
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7584

7585 7586 7587
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7588 7589 7590 7591
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7592
	/* WaDisable4x2SubspanOptimization:hsw */
7593 7594
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7595

7596 7597 7598
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7599 7600 7601 7602
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7603 7604
	 */
	I915_WRITE(GEN7_GT_MODE,
7605
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7606

7607 7608 7609 7610
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7611
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7612 7613
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7614 7615 7616
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7617

7618
	lpt_init_clock_gating(dev_priv);
7619 7620
}

7621
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7622
{
7623
	uint32_t snpcr;
7624

7625
	ilk_init_lp_watermarks(dev_priv);
7626

7627
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7628

7629
	/* WaDisableEarlyCull:ivb */
7630 7631 7632
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7633
	/* WaDisableBackToBackFlipFix:ivb */
7634 7635 7636 7637
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7638
	/* WaDisablePSDDualDispatchEnable:ivb */
7639
	if (IS_IVB_GT1(dev_priv))
7640 7641 7642
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7643 7644 7645
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7646
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7647 7648 7649
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7650
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7651 7652 7653
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7654
		   GEN7_WA_L3_CHICKEN_MODE);
7655
	if (IS_IVB_GT1(dev_priv))
7656 7657
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7658 7659 7660 7661
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7662 7663
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7664
	}
7665

7666
	/* WaForceL3Serialization:ivb */
7667 7668 7669
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7670
	/*
7671
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7672
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7673 7674
	 */
	I915_WRITE(GEN6_UCGCTL2,
7675
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7676

7677
	/* This is required by WaCatErrorRejectionIssue:ivb */
7678 7679 7680 7681
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7682
	g4x_disable_trickle_feed(dev_priv);
7683 7684

	gen7_setup_fixed_func_scheduler(dev_priv);
7685

7686 7687 7688 7689 7690
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7691

7692
	/* WaDisable4x2SubspanOptimization:ivb */
7693 7694
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7695

7696 7697 7698
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7699 7700 7701 7702
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7703 7704
	 */
	I915_WRITE(GEN7_GT_MODE,
7705
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7706

7707 7708 7709 7710
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7711

7712
	if (!HAS_PCH_NOP(dev_priv))
7713
		cpt_init_clock_gating(dev_priv);
7714

7715
	gen6_check_mch_setup(dev_priv);
7716 7717
}

7718
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7719
{
7720
	/* WaDisableEarlyCull:vlv */
7721 7722 7723
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7724
	/* WaDisableBackToBackFlipFix:vlv */
7725 7726 7727 7728
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7729
	/* WaPsdDispatchEnable:vlv */
7730
	/* WaDisablePSDDualDispatchEnable:vlv */
7731
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7732 7733
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7734

7735 7736 7737
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7738
	/* WaForceL3Serialization:vlv */
7739 7740 7741
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7742
	/* WaDisableDopClockGating:vlv */
7743 7744 7745
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7746
	/* This is required by WaCatErrorRejectionIssue:vlv */
7747 7748 7749 7750
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7751 7752
	gen7_setup_fixed_func_scheduler(dev_priv);

7753
	/*
7754
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7755
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7756 7757
	 */
	I915_WRITE(GEN6_UCGCTL2,
7758
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7759

7760 7761 7762 7763 7764
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7765

7766 7767 7768 7769
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7770 7771
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7772

7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7784 7785 7786 7787 7788 7789
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7790
	/*
7791
	 * WaDisableVLVClockGating_VBIIssue:vlv
7792 7793 7794
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7795
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7796 7797
}

7798
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7799
{
7800 7801 7802 7803 7804
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7805 7806 7807 7808

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7809 7810 7811 7812

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7813 7814 7815 7816

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7817

7818 7819 7820 7821 7822 7823 7824
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7825 7826 7827 7828 7829
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7830 7831
}

7832
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7844
	if (IS_GM45(dev_priv))
7845 7846
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7847 7848 7849 7850

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7851

7852 7853 7854
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7855
	g4x_disable_trickle_feed(dev_priv);
7856 7857
}

7858
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7859 7860 7861 7862 7863 7864
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7865 7866
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7867 7868 7869

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7870 7871
}

7872
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7873 7874 7875 7876 7877 7878 7879
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7880 7881
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7882 7883 7884

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7885 7886
}

7887
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7888 7889 7890 7891 7892 7893
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7894

7895
	if (IS_PINEVIEW(dev_priv))
7896
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7897 7898 7899

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7900 7901

	/* interrupts should cause a wake up from C3 */
7902
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7903 7904 7905

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7906 7907 7908

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7909 7910
}

7911
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7912 7913
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7914 7915 7916 7917

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7918 7919 7920

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7921 7922
}

7923
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7924
{
7925 7926 7927
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7928 7929
}

7930
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7931
{
7932
	dev_priv->display.init_clock_gating(dev_priv);
7933 7934
}

7935
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7936
{
7937 7938
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7939 7940
}

7941
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7958
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7959
	else if (IS_KABYLAKE(dev_priv))
7960
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7961
	else if (IS_BROXTON(dev_priv))
7962
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7963 7964
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7981
	else if (IS_I965GM(dev_priv))
7982
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7983
	else if (IS_I965G(dev_priv))
7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7997
/* Set up chip specific power management-related functions */
7998
void intel_init_pm(struct drm_i915_private *dev_priv)
7999
{
8000
	intel_fbc_init(dev_priv);
8001

8002
	/* For cxsr */
8003
	if (IS_PINEVIEW(dev_priv))
8004
		i915_pineview_get_mem_freq(dev_priv);
8005
	else if (IS_GEN5(dev_priv))
8006
		i915_ironlake_get_mem_freq(dev_priv);
8007

8008
	/* For FIFO watermark updates */
8009
	if (INTEL_GEN(dev_priv) >= 9) {
8010
		skl_setup_wm_latency(dev_priv);
8011
		dev_priv->display.initial_watermarks = skl_initial_wm;
8012
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8013
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
8014
	} else if (HAS_PCH_SPLIT(dev_priv)) {
8015
		ilk_setup_wm_latency(dev_priv);
8016

8017
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8018
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8019
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8020
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8021
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8022 8023 8024 8025 8026 8027
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
8028 8029 8030 8031
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
8032
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8033
		vlv_setup_wm_latency(dev_priv);
8034
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8035
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8036
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8037
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8038
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8039
	} else if (IS_PINEVIEW(dev_priv)) {
8040
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8041 8042 8043 8044 8045 8046 8047 8048 8049
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8050
			intel_set_memory_cxsr(dev_priv, false);
8051 8052 8053
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8054
	} else if (IS_G4X(dev_priv)) {
8055
		dev_priv->display.update_wm = g4x_update_wm;
8056
	} else if (IS_GEN4(dev_priv)) {
8057
		dev_priv->display.update_wm = i965_update_wm;
8058
	} else if (IS_GEN3(dev_priv)) {
8059 8060
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8061
	} else if (IS_GEN2(dev_priv)) {
8062
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8063
			dev_priv->display.update_wm = i845_update_wm;
8064
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8065 8066
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8067
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8068 8069 8070
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8071 8072 8073
	}
}

8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8086
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8087 8088 8089 8090
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
8091
		MISSING_CASE(flags);
8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8118
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8119
{
8120 8121
	int status;

8122
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8123

8124 8125 8126 8127 8128 8129
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8130 8131 8132 8133
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8134 8135 8136
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8137

8138 8139 8140
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8141 8142 8143 8144
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8145 8146
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8147

8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8159 8160 8161
	return 0;
}

8162
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8163
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8164
{
8165 8166
	int status;

8167
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8168

8169 8170 8171 8172 8173 8174
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8175 8176 8177 8178
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8179
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8180
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8181
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8182

8183 8184 8185
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8186 8187 8188 8189
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8190
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8191

8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8203 8204
	return 0;
}
8205

8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8227
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8228 8229
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8230
 * for @timeout_base_ms and if this times out for another 50 ms with
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8266
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8267
	 * account for interrupts that could reduce the number of these
8268 8269
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8270 8271 8272 8273
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8274
	ret = wait_for_atomic(COND, 50);
8275 8276 8277 8278 8279 8280 8281
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8282 8283
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8284 8285 8286 8287 8288
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8289 8290
}

8291
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8292
{
8293
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8294 8295
}

8296
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8297
{
8298 8299 8300 8301 8302
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8303 8304
}

8305
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8306
{
8307
	/* CHV needs even values */
8308
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8309 8310
}

8311
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8312
{
8313
	if (IS_GEN9(dev_priv))
8314 8315
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8316
	else if (IS_CHERRYVIEW(dev_priv))
8317
		return chv_gpu_freq(dev_priv, val);
8318
	else if (IS_VALLEYVIEW(dev_priv))
8319 8320 8321
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8322 8323
}

8324 8325
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8326
	if (IS_GEN9(dev_priv))
8327 8328
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8329
	else if (IS_CHERRYVIEW(dev_priv))
8330
		return chv_freq_opcode(dev_priv, val);
8331
	else if (IS_VALLEYVIEW(dev_priv))
8332 8333
		return byt_freq_opcode(dev_priv, val);
	else
8334
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8335
}
8336

8337 8338
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8339
	struct drm_i915_gem_request *req;
8340 8341 8342 8343 8344
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8345
	struct drm_i915_gem_request *req = boost->req;
8346

8347
	if (!i915_gem_request_completed(req))
8348
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8349

8350
	i915_gem_request_put(req);
8351 8352 8353
	kfree(boost);
}

8354
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8355 8356 8357
{
	struct request_boost *boost;

8358
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8359 8360
		return;

8361
	if (i915_gem_request_completed(req))
8362 8363
		return;

8364 8365 8366 8367
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8368
	boost->req = i915_gem_request_get(req);
8369 8370

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8371
	queue_work(req->i915->wq, &boost->work);
8372 8373
}

8374
void intel_pm_setup(struct drm_i915_private *dev_priv)
8375
{
D
Daniel Vetter 已提交
8376
	mutex_init(&dev_priv->rps.hw_lock);
8377
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8378

8379 8380
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8381
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8382

8383
	dev_priv->pm.suspended = false;
8384
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8385
}
8386

8387 8388 8389
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
8390
	u32 lower, upper, tmp;
8391
	int loop = 2;
8392 8393 8394 8395 8396 8397 8398 8399 8400

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
8401 8402 8403 8404 8405
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
8406
	 */
8407 8408
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
8420
	} while (upper != tmp && --loop);
8421

8422 8423 8424 8425 8426
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

8427 8428 8429 8430 8431
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

8432 8433
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
8434
{
8435
	u64 time_hw, units, div;
8436 8437 8438 8439 8440 8441 8442 8443

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8444
		units = 1000;
8445 8446
		div = dev_priv->czclk_freq;

8447
		time_hw = vlv_residency_raw(dev_priv, reg);
8448
	} else if (IS_GEN9_LP(dev_priv)) {
8449
		units = 1000;
8450 8451
		div = 1200;		/* 833.33ns */

8452 8453 8454 8455 8456 8457 8458
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
8459 8460

	intel_runtime_pm_put(dev_priv);
8461
	return DIV_ROUND_UP_ULL(time_hw * units, div);
8462
}