intel_pm.c 191.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
}
63

64
static void skl_init_clock_gating(struct drm_device *dev)
65
{
66
	struct drm_i915_private *dev_priv = dev->dev_private;
67

68 69
	gen9_init_clock_gating(dev);

70
	if (INTEL_REVID(dev) <= SKL_REVID_B0) {
71 72
		/*
		 * WaDisableSDEUnitClockGating:skl
73
		 * WaSetGAPSunitClckGateDisable:skl
74 75
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78 79 80 81

		/* WaDisableVFUnitClockGating:skl */
		I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
			   GEN6_VFUNIT_CLOCK_GATE_DISABLE);
82
	}
83

84
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
85 86 87 88
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

89 90
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
91
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
92
	}
93

94 95 96 97
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
98 99
}

100 101
static void bxt_init_clock_gating(struct drm_device *dev)
{
102 103
	struct drm_i915_private *dev_priv = dev->dev_private;

104
	gen9_init_clock_gating(dev);
105 106 107 108

	/*
	 * FIXME:
	 * GEN8_SDEUNIT_CLOCK_GATE_DISABLE applies on A0 only.
109
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
110 111 112
	 */
	 /* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
113 114
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE |
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115

116 117
	/* FIXME: apply on A0 only */
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
118 119
}

120 121
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
122
	struct drm_i915_private *dev_priv = dev->dev_private;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
161
	struct drm_i915_private *dev_priv = dev->dev_private;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

187
	dev_priv->ips.r_t = dev_priv->mem_freq;
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
219
		dev_priv->ips.c_m = 0;
220
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
221
		dev_priv->ips.c_m = 1;
222
	} else {
223
		dev_priv->ips.c_m = 2;
224 225 226
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

265
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

327 328 329
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

330
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
331
{
332 333
	struct drm_device *dev = dev_priv->dev;
	u32 val;
334

335 336
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
337 338
		if (IS_CHERRYVIEW(dev))
			chv_set_memory_pm5(dev_priv, enable);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
356

357 358
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
359 360
}

361

362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
376
static const int pessimal_latency_ns = 5000;
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

433
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

449
static int i830_get_fifo_size(struct drm_device *dev, int plane)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

466
static int i845_get_fifo_size(struct drm_device *dev, int plane)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
484 485 486 487 488
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
491 492 493 494 495
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params pineview_cursor_wm = {
498 499 500 501 502
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
505 506 507 508 509
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params g4x_wm_info = {
512 513 514 515 516
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
519 520 521 522 523
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params valleyview_wm_info = {
526 527 528 529 530
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
533 534 535 536 537
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
538 539
};
static const struct intel_watermark_params i965_cursor_wm_info = {
540 541 542 543 544
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
545 546
};
static const struct intel_watermark_params i945_wm_info = {
547 548 549 550 551
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
552 553
};
static const struct intel_watermark_params i915_wm_info = {
554 555 556 557 558
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
559
};
560
static const struct intel_watermark_params i830_a_wm_info = {
561 562 563 564 565
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
566
};
567 568 569 570 571 572 573
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
574
static const struct intel_watermark_params i845_wm_info = {
575 576 577 578 579
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
629 630 631 632 633 634 635 636 637 638 639

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

640 641 642 643 644 645 646
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

647
	for_each_crtc(dev, crtc) {
648
		if (intel_crtc_active(crtc)) {
649 650 651 652 653 654 655 656 657
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

658
static void pineview_update_wm(struct drm_crtc *unused_crtc)
659
{
660
	struct drm_device *dev = unused_crtc->dev;
661 662 663 664 665 666 667 668 669 670
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
671
		intel_set_memory_cxsr(dev_priv, false);
672 673 674 675 676
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
677
		const struct drm_display_mode *adjusted_mode;
678
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
679 680
		int clock;

681
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
682
		clock = adjusted_mode->crtc_clock;
683 684 685 686 687 688 689

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
690
		reg |= FW_WM(wm, SR);
691 692 693 694 695 696 697 698 699
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
700
		reg |= FW_WM(wm, CURSOR_SR);
701 702 703 704 705 706 707 708
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
709
		reg |= FW_WM(wm, HPLL_SR);
710 711 712 713 714 715 716 717
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
718
		reg |= FW_WM(wm, HPLL_CURSOR);
719 720 721
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

722
		intel_set_memory_cxsr(dev_priv, true);
723
	} else {
724
		intel_set_memory_cxsr(dev_priv, false);
725 726 727 728 729 730 731 732 733 734 735 736 737
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
738
	const struct drm_display_mode *adjusted_mode;
739 740 741 742 743
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
744
	if (!intel_crtc_active(crtc)) {
745 746 747 748 749
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

750
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
751
	clock = adjusted_mode->crtc_clock;
752
	htotal = adjusted_mode->crtc_htotal;
753
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
754
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
755 756 757 758 759 760 761 762 763 764 765 766

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
767
	line_time_us = max(htotal * 1000 / clock, 1);
768
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
769
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
824
	const struct drm_display_mode *adjusted_mode;
825 826 827 828 829 830 831 832 833 834 835 836
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
837
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
838
	clock = adjusted_mode->crtc_clock;
839
	htotal = adjusted_mode->crtc_htotal;
840
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
841
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
842

843
	line_time_us = max(htotal * 1000 / clock, 1);
844 845 846 847 848 849 850 851 852 853 854
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
855
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
856 857 858 859 860 861 862 863
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

864 865 866
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

867 868 869 870 871 872 873 874 875 876 877 878
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

879
	I915_WRITE(DSPFW1,
880 881 882 883
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
884
	I915_WRITE(DSPFW2,
885 886 887
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
888
	I915_WRITE(DSPFW3,
889
		   FW_WM(wm->sr.cursor, CURSOR_SR));
890 891 892

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
893 894
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
895
		I915_WRITE(DSPFW8_CHV,
896 897
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
898
		I915_WRITE(DSPFW9_CHV,
899 900
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
901
		I915_WRITE(DSPHOWM,
902 903 904 905 906 907 908 909 910 911
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
912 913
	} else {
		I915_WRITE(DSPFW7,
914 915
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
916
		I915_WRITE(DSPHOWM,
917 918 919 920 921 922 923
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
924 925 926 927
	}

	POSTING_READ(DSPFW1);

928 929 930
	dev_priv->wm.vlv = *wm;
}

931 932
#undef FW_WM_VLV

933
static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
934
					 struct drm_plane *plane)
935
{
936
	struct drm_device *dev = crtc->dev;
937 938 939
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int entries, prec_mult, drain_latency, pixel_size;
	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
940
	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
941

942 943 944 945 946 947 948
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!intel_crtc->active || !plane->state->fb)
		return 0;

949
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
950
		return 0;
951

952 953
	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);

954
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
955
		return 0;
956

957
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
958

959 960
	prec_mult = high_precision;
	drain_latency = 64 * prec_mult * 4 / entries;
961

962 963 964
	if (drain_latency > DRAIN_LATENCY_MASK) {
		prec_mult /= 2;
		drain_latency = 64 * prec_mult * 4 / entries;
965 966
	}

967 968
	if (drain_latency > DRAIN_LATENCY_MASK)
		drain_latency = DRAIN_LATENCY_MASK;
969

970 971
	return drain_latency | (prec_mult == high_precision ?
				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
972 973
}

974 975 976
static int vlv_compute_wm(struct intel_crtc *crtc,
			  struct intel_plane *plane,
			  int fifo_size)
977
{
978
	int clock, entries, pixel_size;
979

980 981 982 983 984 985
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!crtc->active || !plane->base.state->fb)
		return 0;
986

987 988
	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
989

990
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	/*
	 * Set up the watermark such that we don't start issuing memory
	 * requests until we are within PND's max deadline value (256us).
	 * Idea being to be idle as long as possible while still taking
	 * advatange of PND's deadline scheduling. The limit of 8
	 * cachelines (used when the FIFO will anyway drain in less time
	 * than 256us) should match what we would be done if trickle
	 * feed were enabled.
	 */
	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
}

static bool vlv_compute_sr_wm(struct drm_device *dev,
			      struct vlv_wm_values *wm)
1006
{
1007 1008 1009 1010 1011 1012
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct drm_crtc *crtc;
	enum pipe pipe = INVALID_PIPE;
	int num_planes = 0;
	int fifo_size = 0;
	struct intel_plane *plane;
1013

1014
	wm->sr.cursor = wm->sr.plane = 0;
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
	crtc = single_enabled_crtc(dev);
	/* maxfifo not supported on pipe C */
	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
		pipe = to_intel_crtc(crtc)->pipe;
		num_planes = !!wm->pipe[pipe].primary +
			!!wm->pipe[pipe].sprite[0] +
			!!wm->pipe[pipe].sprite[1];
		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
	}
1025

1026 1027
	if (fifo_size == 0 || num_planes > 1)
		return false;
1028

1029 1030
	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
				       to_intel_plane(crtc->cursor), 0x3f);
1031

1032 1033 1034
	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;
1035

1036 1037
		if (plane->pipe != pipe)
			continue;
1038

1039 1040 1041 1042 1043 1044 1045
		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
					      plane, fifo_size);
		if (wm->sr.plane != 0)
			break;
	}

	return true;
1046 1047
}

1048
static void valleyview_update_wm(struct drm_crtc *crtc)
1049 1050 1051
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1052 1053
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1054
	bool cxsr_enabled;
1055
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1056

1057 1058 1059 1060
	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
					       to_intel_plane(crtc->primary),
					       vlv_get_fifo_size(dev, pipe, 0));
1061

1062 1063 1064 1065
	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
					      to_intel_plane(crtc->cursor),
					      0x3f);
1066

1067
	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1068

1069 1070
	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;
1071

1072 1073 1074 1075
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.sr.plane, wm.sr.cursor);
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	/*
	 * FIXME DDR DVFS introduces massive memory latencies which
	 * are not known to system agent so any deadline specified
	 * by the display may not be respected. To support DDR DVFS
	 * the watermark code needs to be rewritten to essentially
	 * bypass deadline mechanism and rely solely on the
	 * watermarks. For now disable DDR DVFS.
	 */
	if (IS_CHERRYVIEW(dev_priv))
		chv_set_memory_dvfs(dev_priv, false);

1088 1089
	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1090

1091
	vlv_write_wm_values(intel_crtc, &wm);
1092 1093 1094 1095 1096

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1097 1098 1099 1100 1101 1102 1103 1104 1105
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1106 1107
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1108
	int sprite = to_intel_plane(plane)->plane;
1109
	bool cxsr_enabled;
1110
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1111

1112
	if (enabled) {
1113
		wm.ddl[pipe].sprite[sprite] =
1114
			vlv_compute_drain_latency(crtc, plane);
1115 1116 1117 1118 1119 1120

		wm.pipe[pipe].sprite[sprite] =
			vlv_compute_wm(intel_crtc,
				       to_intel_plane(plane),
				       vlv_get_fifo_size(dev, pipe, sprite+1));
	} else {
1121
		wm.ddl[pipe].sprite[sprite] = 0;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		wm.pipe[pipe].sprite[sprite] = 0;
	}

	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);

	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
		return;

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
		      sprite_name(pipe, sprite),
		      wm.pipe[pipe].sprite[sprite],
		      wm.sr.plane, wm.sr.cursor);

	if (!cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, false);
1138

1139
	vlv_write_wm_values(intel_crtc, &wm);
1140 1141 1142

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1143 1144
}

1145 1146
#define single_plane_enabled(mask) is_power_of_2(mask)

1147
static void g4x_update_wm(struct drm_crtc *crtc)
1148
{
1149
	struct drm_device *dev = crtc->dev;
1150 1151 1152 1153 1154
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1155
	bool cxsr_enabled;
1156

1157
	if (g4x_compute_wm0(dev, PIPE_A,
1158 1159
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1160
			    &planea_wm, &cursora_wm))
1161
		enabled |= 1 << PIPE_A;
1162

1163
	if (g4x_compute_wm0(dev, PIPE_B,
1164 1165
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1166
			    &planeb_wm, &cursorb_wm))
1167
		enabled |= 1 << PIPE_B;
1168 1169 1170 1171 1172 1173

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1174
			     &plane_sr, &cursor_sr)) {
1175
		cxsr_enabled = true;
1176
	} else {
1177
		cxsr_enabled = false;
1178
		intel_set_memory_cxsr(dev_priv, false);
1179 1180
		plane_sr = cursor_sr = 0;
	}
1181

1182 1183
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1184 1185 1186 1187 1188
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1189 1190 1191 1192
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1193
	I915_WRITE(DSPFW2,
1194
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1195
		   FW_WM(cursora_wm, CURSORA));
1196 1197
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1198
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1199
		   FW_WM(cursor_sr, CURSOR_SR));
1200 1201 1202

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1203 1204
}

1205
static void i965_update_wm(struct drm_crtc *unused_crtc)
1206
{
1207
	struct drm_device *dev = unused_crtc->dev;
1208 1209 1210 1211
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1212
	bool cxsr_enabled;
1213 1214 1215 1216 1217 1218

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1219
		const struct drm_display_mode *adjusted_mode =
1220
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1221
		int clock = adjusted_mode->crtc_clock;
1222
		int htotal = adjusted_mode->crtc_htotal;
1223
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1224
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1225 1226 1227
		unsigned long line_time_us;
		int entries;

1228
		line_time_us = max(htotal * 1000 / clock, 1);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1242
			pixel_size * crtc->cursor->state->crtc_w;
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1254
		cxsr_enabled = true;
1255
	} else {
1256
		cxsr_enabled = false;
1257
		/* Turn off self refresh if both pipes are enabled */
1258
		intel_set_memory_cxsr(dev_priv, false);
1259 1260 1261 1262 1263 1264
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1265 1266 1267 1268 1269 1270
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1271
	/* update cursor SR watermark */
1272
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1273 1274 1275

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1276 1277
}

1278 1279
#undef FW_WM

1280
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1281
{
1282
	struct drm_device *dev = unused_crtc->dev;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1297
		wm_info = &i830_a_wm_info;
1298 1299 1300

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1301
	if (intel_crtc_active(crtc)) {
1302
		const struct drm_display_mode *adjusted_mode;
1303
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1304 1305 1306
		if (IS_GEN2(dev))
			cpp = 4;

1307
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1308
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1309
					       wm_info, fifo_size, cpp,
1310
					       pessimal_latency_ns);
1311
		enabled = crtc;
1312
	} else {
1313
		planea_wm = fifo_size - wm_info->guard_size;
1314 1315 1316 1317 1318 1319
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1320 1321 1322

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1323
	if (intel_crtc_active(crtc)) {
1324
		const struct drm_display_mode *adjusted_mode;
1325
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1326 1327 1328
		if (IS_GEN2(dev))
			cpp = 4;

1329
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1330
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1331
					       wm_info, fifo_size, cpp,
1332
					       pessimal_latency_ns);
1333 1334 1335 1336
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1337
	} else {
1338
		planeb_wm = fifo_size - wm_info->guard_size;
1339 1340 1341
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1342 1343 1344

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1345
	if (IS_I915GM(dev) && enabled) {
1346
		struct drm_i915_gem_object *obj;
1347

1348
		obj = intel_fb_obj(enabled->primary->state->fb);
1349 1350

		/* self-refresh seems busted with untiled */
1351
		if (obj->tiling_mode == I915_TILING_NONE)
1352 1353 1354
			enabled = NULL;
	}

1355 1356 1357 1358 1359 1360
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1361
	intel_set_memory_cxsr(dev_priv, false);
1362 1363 1364 1365 1366

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1367
		const struct drm_display_mode *adjusted_mode =
1368
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1369
		int clock = adjusted_mode->crtc_clock;
1370
		int htotal = adjusted_mode->crtc_htotal;
1371
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1372
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1373 1374 1375
		unsigned long line_time_us;
		int entries;

1376
		line_time_us = max(htotal * 1000 / clock, 1);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1407 1408
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1409 1410
}

1411
static void i845_update_wm(struct drm_crtc *unused_crtc)
1412
{
1413
	struct drm_device *dev = unused_crtc->dev;
1414 1415
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1416
	const struct drm_display_mode *adjusted_mode;
1417 1418 1419 1420 1421 1422 1423
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1424
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1425
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1426
				       &i845_wm_info,
1427
				       dev_priv->display.get_fifo_size(dev, 0),
1428
				       4, pessimal_latency_ns);
1429 1430 1431 1432 1433 1434 1435 1436
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1437 1438
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1439 1440
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1441
	uint32_t pixel_rate;
1442

1443
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1444 1445 1446 1447

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1448
	if (intel_crtc->config->pch_pfit.enabled) {
1449
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1450
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1451

1452 1453
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1468
/* latency must be in 0.1us units. */
1469
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1470 1471 1472 1473
			       uint32_t latency)
{
	uint64_t ret;

1474 1475 1476
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1477 1478 1479 1480 1481 1482
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1483
/* latency must be in 0.1us units. */
1484
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1485 1486 1487 1488 1489
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1490 1491 1492
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1493 1494 1495 1496 1497 1498
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1499
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1500 1501 1502 1503 1504
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1505 1506 1507 1508 1509 1510 1511 1512
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1513
struct ilk_pipe_wm_parameters {
1514 1515 1516
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1517 1518 1519
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1520 1521
};

1522
struct ilk_wm_maximums {
1523 1524 1525 1526 1527 1528
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1529 1530 1531 1532 1533 1534 1535
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1536 1537 1538 1539
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1540
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1541 1542
				   uint32_t mem_value,
				   bool is_lp)
1543
{
1544 1545
	uint32_t method1, method2;

1546
	if (!params->active || !params->pri.enabled)
1547 1548
		return 0;

1549
	method1 = ilk_wm_method1(params->pixel_rate,
1550
				 params->pri.bytes_per_pixel,
1551 1552 1553 1554 1555
				 mem_value);

	if (!is_lp)
		return method1;

1556
	method2 = ilk_wm_method2(params->pixel_rate,
1557
				 params->pipe_htotal,
1558 1559
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1560 1561 1562
				 mem_value);

	return min(method1, method2);
1563 1564
}

1565 1566 1567 1568
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1569
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1570 1571 1572 1573
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1574
	if (!params->active || !params->spr.enabled)
1575 1576
		return 0;

1577
	method1 = ilk_wm_method1(params->pixel_rate,
1578
				 params->spr.bytes_per_pixel,
1579
				 mem_value);
1580
	method2 = ilk_wm_method2(params->pixel_rate,
1581
				 params->pipe_htotal,
1582 1583
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1584 1585 1586 1587
				 mem_value);
	return min(method1, method2);
}

1588 1589 1590 1591
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1592
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1593 1594
				   uint32_t mem_value)
{
1595
	if (!params->active || !params->cur.enabled)
1596 1597
		return 0;

1598
	return ilk_wm_method2(params->pixel_rate,
1599
			      params->pipe_htotal,
1600 1601
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1602 1603 1604
			      mem_value);
}

1605
/* Only for WM_LP. */
1606
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1607
				   uint32_t pri_val)
1608
{
1609
	if (!params->active || !params->pri.enabled)
1610 1611
		return 0;

1612
	return ilk_wm_fbc(pri_val,
1613 1614
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1615 1616
}

1617 1618
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1619 1620 1621
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1622 1623 1624 1625 1626
		return 768;
	else
		return 512;
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1661 1662 1663
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1664
				     const struct intel_wm_config *config,
1665 1666 1667 1668 1669 1670
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1671
	if (is_sprite && !config->sprites_enabled)
1672 1673 1674
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1675
	if (level == 0 || config->num_pipes_active > 1) {
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1687
	if (config->sprites_enabled) {
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1699
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1700 1701 1702 1703
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1704 1705
				      int level,
				      const struct intel_wm_config *config)
1706 1707
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1708
	if (level > 0 && config->num_pipes_active > 1)
1709 1710 1711
		return 64;

	/* otherwise just report max that registers can hold */
1712
	return ilk_cursor_wm_reg_max(dev, level);
1713 1714
}

1715
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1716 1717 1718
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1719
				    struct ilk_wm_maximums *max)
1720
{
1721 1722 1723
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1724
	max->fbc = ilk_fbc_wm_reg_max(dev);
1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1737
static bool ilk_validate_wm_level(int level,
1738
				  const struct ilk_wm_maximums *max,
1739
				  struct intel_wm_level *result)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1778
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1779
				 int level,
1780
				 const struct ilk_pipe_wm_parameters *p,
1781
				 struct intel_wm_level *result)
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1801 1802
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1803 1804
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1805
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1806
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1807
	u32 linetime, ips_linetime;
1808

1809
	if (!intel_crtc->active)
1810
		return 0;
1811

1812 1813 1814
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1815 1816 1817
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1818
					 dev_priv->display.get_display_clock_speed(dev_priv->dev));
1819

1820 1821
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1822 1823
}

1824
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1825 1826 1827
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1828 1829
	if (IS_GEN9(dev)) {
		uint32_t val;
1830
		int ret, i;
1831
		int level, max_level = ilk_wm_max_level(dev);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1874
		/*
1875 1876
		 * WaWmMemoryReadLatency:skl
		 *
1877 1878 1879 1880 1881 1882 1883 1884
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1885 1886 1887 1888 1889
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1890 1891 1892 1893 1894
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1895 1896 1897
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1898

1899 1900
				break;
			}
1901
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1902 1903 1904 1905 1906
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1907 1908 1909 1910
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1911 1912 1913 1914 1915 1916 1917
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1918 1919 1920 1921 1922 1923 1924
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1925 1926 1927
	}
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1946
int ilk_wm_max_level(const struct drm_device *dev)
1947 1948
{
	/* how many WM levels are we expecting */
1949 1950 1951
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1952
		return 4;
1953
	else if (INTEL_INFO(dev)->gen >= 6)
1954
		return 3;
1955
	else
1956 1957
		return 2;
}
1958

1959 1960
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1961
				   const uint16_t wm[8])
1962 1963
{
	int level, max_level = ilk_wm_max_level(dev);
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1974 1975 1976 1977 1978 1979 1980
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1981 1982 1983 1984 1985 1986 1987 1988
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2026
static void ilk_setup_wm_latency(struct drm_device *dev)
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2039 2040 2041 2042

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2043 2044 2045

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2046 2047
}

2048 2049 2050 2051 2052 2053 2054 2055
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2056
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2057
				      struct ilk_pipe_wm_parameters *p)
2058
{
2059 2060 2061 2062
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2063

2064
	if (!intel_crtc->active)
2065
		return;
2066

2067
	p->active = true;
2068
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2069
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

	if (crtc->primary->state->fb) {
		p->pri.enabled = true;
		p->pri.bytes_per_pixel =
			crtc->primary->state->fb->bits_per_pixel / 8;
	} else {
		p->pri.enabled = false;
		p->pri.bytes_per_pixel = 0;
	}

	if (crtc->cursor->state->fb) {
		p->cur.enabled = true;
		p->cur.bytes_per_pixel = 4;
	} else {
		p->cur.enabled = false;
		p->cur.bytes_per_pixel = 0;
	}
2087
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2088
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2089

2090
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2091 2092
		struct intel_plane *intel_plane = to_intel_plane(plane);

2093
		if (intel_plane->pipe == pipe) {
2094
			p->spr = intel_plane->wm;
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2106
	for_each_intel_crtc(dev, intel_crtc) {
2107
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2108

2109 2110
		if (!wm->pipe_enabled)
			continue;
2111

2112 2113 2114
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2115
	}
2116 2117
}

2118 2119
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2120
				  const struct ilk_pipe_wm_parameters *params,
2121 2122 2123
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2124
	const struct drm_i915_private *dev_priv = dev->dev_private;
2125 2126 2127 2128 2129 2130 2131
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2132
	struct ilk_wm_maximums max;
2133

2134 2135 2136 2137
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2138 2139 2140 2141 2142 2143 2144 2145
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2146
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2147

2148
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2149
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2150

2151 2152 2153
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2154
	/* At least LP0 must be valid */
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2188 2189
	ret_wm->enable = true;

2190
	for_each_intel_crtc(dev, intel_crtc) {
2191 2192 2193 2194 2195
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2196

2197 2198 2199 2200 2201
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2202
		if (!wm->enable)
2203
			ret_wm->enable = false;
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2216
			 const struct intel_wm_config *config,
2217
			 const struct ilk_wm_maximums *max,
2218 2219 2220
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2221
	int last_enabled_level = max_level;
2222

2223 2224 2225 2226 2227
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2228 2229
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2230 2231 2232 2233 2234 2235 2236

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2237 2238 2239 2240 2241
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2242 2243 2244 2245 2246 2247

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2248 2249
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2250 2251 2252
			wm->fbc_val = 0;
		}
	}
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2267 2268
}

2269 2270 2271 2272 2273 2274
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2275 2276 2277 2278 2279
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2280
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2281 2282 2283 2284 2285
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2286
static void ilk_compute_wm_results(struct drm_device *dev,
2287
				   const struct intel_pipe_wm *merged,
2288
				   enum intel_ddb_partitioning partitioning,
2289
				   struct ilk_wm_values *results)
2290
{
2291 2292
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2293

2294
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2295
	results->partitioning = partitioning;
2296

2297
	/* LP1+ register values */
2298
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2299
		const struct intel_wm_level *r;
2300

2301
		level = ilk_wm_lp_to_level(wm_lp, merged);
2302

2303
		r = &merged->wm[level];
2304

2305 2306 2307 2308 2309
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2310
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2311 2312 2313
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2314 2315 2316
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2317 2318 2319 2320 2321 2322 2323
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2324 2325 2326 2327
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2328 2329 2330 2331 2332
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2333
	}
2334

2335
	/* LP0 register values */
2336
	for_each_intel_crtc(dev, intel_crtc) {
2337 2338 2339 2340 2341 2342 2343 2344
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2345

2346 2347 2348 2349
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2350 2351 2352
	}
}

2353 2354
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2355
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2356 2357
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2358
{
2359 2360
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2361

2362 2363 2364 2365 2366
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2367 2368
	}

2369 2370
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2371 2372 2373
			return r2;
		else
			return r1;
2374
	} else if (level1 > level2) {
2375 2376 2377 2378 2379 2380
		return r1;
	} else {
		return r2;
	}
}

2381 2382 2383 2384 2385 2386 2387 2388
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2389
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2390 2391
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2392 2393 2394 2395 2396
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2397
	for_each_pipe(dev_priv, pipe) {
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2441 2442
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2443
{
2444
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2445
	bool changed = false;
2446

2447 2448 2449
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2450
		changed = true;
2451 2452 2453 2454
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2455
		changed = true;
2456 2457 2458 2459
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2460
		changed = true;
2461
	}
2462

2463 2464 2465 2466
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2467

2468 2469 2470 2471 2472 2473 2474
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2475 2476
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2477 2478
{
	struct drm_device *dev = dev_priv->dev;
2479
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2480 2481 2482
	unsigned int dirty;
	uint32_t val;

2483
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2484 2485 2486 2487 2488
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2489
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2490
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2491
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2492
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2493
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2494 2495
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2496
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2497
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2498
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2499
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2500
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2501 2502
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2503
	if (dirty & WM_DIRTY_DDB) {
2504
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2519 2520
	}

2521
	if (dirty & WM_DIRTY_FBC) {
2522 2523 2524 2525 2526 2527 2528 2529
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2530 2531 2532 2533 2534
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2535 2536 2537 2538 2539
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2540

2541
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2542
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2543
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2544
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2545
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2546
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2547 2548

	dev_priv->wm.hw = *results;
2549 2550
}

2551 2552 2553 2554 2555 2556 2557
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2558 2559 2560 2561 2562 2563
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2564
#define BXT_DDB_SIZE		512
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2583 2584 2585 2586
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2587 2588 2589 2590 2591

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2592
		if (!to_intel_crtc(crtc)->active)
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2603
	alloc->end = alloc->start + pipe_size;
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2614 2615 2616 2617
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2618 2619
	if (entry->end)
		entry->end += 1;
2620 2621
}

2622 2623
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2624 2625 2626 2627 2628 2629
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2630
		for_each_plane(dev_priv, pipe, plane) {
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2679
	struct drm_i915_private *dev_priv = dev->dev_private;
2680 2681
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2682
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2683
	uint16_t alloc_size, start, cursor_blocks;
2684
	uint16_t minimum[I915_MAX_PLANES];
2685 2686 2687
	unsigned int total_data_rate;
	int plane;

2688 2689
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2690 2691 2692 2693 2694 2695 2696
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2697 2698
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2699 2700

	alloc_size -= cursor_blocks;
2701
	alloc->end -= cursor_blocks;
2702

2703
	/* 1. Allocate the mininum required blocks for each active plane */
2704
	for_each_plane(dev_priv, pipe, plane) {
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
	}

2715
	/*
2716 2717
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2718 2719 2720 2721 2722
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2723
	start = alloc->start;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2739 2740 2741
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2742 2743

		ddb->plane[pipe][plane].start = start;
2744
		ddb->plane[pipe][plane].end = start + plane_blocks;
2745 2746 2747 2748 2749 2750

		start += plane_blocks;
	}

}

2751
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2752 2753
{
	/* TODO: Take into account the scalers once we support them */
2754
	return config->base.adjusted_mode.crtc_clock;
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2771
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2772 2773 2774 2775 2776 2777 2778
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2779
			       uint64_t tiling, uint32_t latency)
2780
{
2781 2782 2783
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
2784 2785 2786 2787 2788

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

2799 2800
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2801
				plane_blocks_per_line;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2832
		config->num_pipes_active += to_intel_crtc(crtc)->active;
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2850
	struct drm_framebuffer *fb;
2851 2852
	int i = 1; /* Index for sprite planes start */

2853
	p->active = intel_crtc->active;
2854
	if (p->active) {
2855 2856
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2857

2858
		fb = crtc->primary->state->fb;
2859 2860 2861
		if (fb) {
			p->plane[0].enabled = true;
			p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2862
			p->plane[0].tiling = fb->modifier[0];
2863 2864 2865 2866 2867 2868 2869
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2870
		p->plane[0].rotation = crtc->primary->state->rotation;
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
		fb = crtc->cursor->state->fb;
		if (fb) {
			p->cursor.enabled = true;
			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->cursor.enabled = false;
			p->cursor.bytes_per_pixel = 0;
			p->cursor.horiz_pixels = 64;
			p->cursor.vert_pixels = 64;
		}
2884 2885 2886 2887 2888
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2889 2890
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2891 2892 2893 2894
			p->plane[i++] = intel_plane->wm;
	}
}

2895 2896
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
2897 2898
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
2899
				 int level,
2900 2901
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2902
{
2903 2904 2905 2906 2907
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
2908

2909
	if (latency == 0 || !p->active || !p_params->enabled)
2910 2911 2912 2913
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
2914
				 latency);
2915 2916 2917 2918
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
2919
				 p_params->tiling,
2920
				 latency);
2921 2922 2923

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;
2924
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2925

2926 2927
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
2940
			}
2941 2942
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
2943 2944 2945 2946 2947 2948 2949
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
2950

2951 2952
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2953

2954 2955 2956 2957 2958 2959 2960
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
2961

2962
	if (res_blocks >= ddb_allocation || res_lines > 31)
2963 2964 2965 2966
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

2985 2986
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
2987
						ddb_blocks,
2988
						level,
2989 2990 2991 2992 2993
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2994 2995 2996
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
2997 2998 2999
						 &result->cursor_res_l);
}

3000 3001 3002
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
3003
	if (!to_intel_crtc(crtc)->active)
3004 3005 3006 3007 3008 3009 3010 3011
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
3012
				      struct skl_wm_level *trans_wm /* out */)
3013
{
3014 3015 3016
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

3017 3018
	if (!params->active)
		return;
3019 3020 3021 3022 3023

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
3024 3025
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

3043
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3054 3055
	uint32_t temp;
	int i;
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

3101 3102 3103
	r->wm_linetime[pipe] = p_wm->linetime;
}

3104 3105 3106 3107 3108 3109 3110 3111 3112
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3123 3124
		if (!new->dirty[pipe])
			continue;
3125

3126
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3127

3128 3129 3130 3131 3132 3133
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
3134
		}
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3147 3148 3149
	}
}

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3174 3175
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3176 3177 3178
{
	int plane;

3179 3180
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3181
	for_each_plane(dev_priv, pipe, plane) {
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3208
	bool reallocated[I915_MAX_PIPES] = {};
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3231
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3256
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3257
			intel_wait_for_vblank(dev, pipe);
3258
			reallocated[pipe] = true;
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3281
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3282 3283 3284
	}
}

3285 3286 3287 3288 3289 3290 3291 3292 3293
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3294
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3376
	skl_flush_wm_values(dev_priv, results);
3377 3378 3379

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3380 3381 3382 3383 3384 3385 3386 3387
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3388
	struct drm_framebuffer *fb = plane->state->fb;
3389 3390 3391 3392 3393 3394

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;
3395 3396 3397 3398 3399 3400 3401
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3402
	intel_plane->wm.rotation = plane->state->rotation;
3403 3404 3405 3406

	skl_update_wm(crtc);
}

3407
static void ilk_update_wm(struct drm_crtc *crtc)
3408
{
3409
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3410
	struct drm_device *dev = crtc->dev;
3411
	struct drm_i915_private *dev_priv = dev->dev_private;
3412 3413 3414
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3415
	enum intel_ddb_partitioning partitioning;
3416
	struct intel_pipe_wm pipe_wm = {};
3417
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3418
	struct intel_wm_config config = {};
3419

3420
	ilk_compute_wm_parameters(crtc, &params);
3421 3422 3423 3424 3425

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3426

3427
	intel_crtc->wm.active = pipe_wm;
3428

3429 3430
	ilk_compute_wm_config(dev, &config);

3431
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3432
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3433 3434

	/* 5/6 split only in single pipe config on IVB+ */
3435 3436
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3437
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3438
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3439

3440
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3441
	} else {
3442
		best_lp_wm = &lp_wm_1_2;
3443 3444
	}

3445
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3446
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3447

3448
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3449

3450
	ilk_write_wm_values(dev_priv, &results);
3451 3452
}

3453 3454 3455 3456 3457
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3458
{
3459
	struct drm_device *dev = plane->dev;
3460
	struct intel_plane *intel_plane = to_intel_plane(plane);
3461

3462 3463 3464
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3465
	intel_plane->wm.vert_pixels = sprite_width;
3466
	intel_plane->wm.bytes_per_pixel = pixel_size;
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3478
	ilk_update_wm(crtc);
3479 3480
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3551
	if (!intel_crtc->active)
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3579 3580
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3581 3582
	struct drm_crtc *crtc;

3583
	skl_ddb_get_hw_state(dev_priv, ddb);
3584 3585 3586 3587
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3588 3589 3590 3591
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3592
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3603
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3604
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3605

3606
	active->pipe_enabled = intel_crtc->active;
3607 3608

	if (active->pipe_enabled) {
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3638
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3639 3640
	struct drm_crtc *crtc;

3641
	for_each_crtc(dev, crtc)
3642 3643 3644 3645 3646 3647 3648
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3649 3650 3651 3652
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3653

3654
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3655 3656 3657 3658 3659
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3660 3661 3662 3663 3664

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3697
void intel_update_watermarks(struct drm_crtc *crtc)
3698
{
3699
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3700 3701

	if (dev_priv->display.update_wm)
3702
		dev_priv->display.update_wm(crtc);
3703 3704
}

3705 3706
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3707 3708 3709
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3710
				    bool enabled, bool scaled)
3711
{
3712
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3713 3714

	if (dev_priv->display.update_sprite_wm)
3715 3716
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3717
						   pixel_size, enabled, scaled);
3718 3719
}

3720 3721 3722 3723 3724 3725 3726 3727 3728
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3729 3730 3731 3732 3733
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3734 3735
	assert_spin_locked(&mchdev_lock);

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3753
static void ironlake_enable_drps(struct drm_device *dev)
3754 3755 3756 3757 3758
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3759 3760
	spin_lock_irq(&mchdev_lock);

3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3784 3785
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3786

3787 3788 3789
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3806
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3807
		DRM_ERROR("stuck trying to change perf mode\n");
3808
	mdelay(1);
3809 3810 3811

	ironlake_set_drps(dev, fstart);

3812
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3813
		I915_READ(0x112e0);
3814 3815
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3816
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3817 3818

	spin_unlock_irq(&mchdev_lock);
3819 3820
}

3821
static void ironlake_disable_drps(struct drm_device *dev)
3822 3823
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3824 3825 3826 3827 3828
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3829 3830 3831 3832 3833 3834 3835 3836 3837

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3838
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3839
	mdelay(1);
3840 3841
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3842
	mdelay(1);
3843

3844
	spin_unlock_irq(&mchdev_lock);
3845 3846
}

3847 3848 3849 3850 3851
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3852
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3853
{
3854
	u32 limits;
3855

3856 3857 3858 3859 3860 3861
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3862 3863 3864 3865 3866 3867 3868 3869 3870
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
3871 3872 3873 3874

	return limits;
}

3875 3876 3877
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
3878 3879
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
3880 3881 3882 3883

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3884
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3885 3886 3887 3888
			new_power = BETWEEN;
		break;

	case BETWEEN:
3889
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3890
			new_power = LOW_POWER;
3891
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3892 3893 3894 3895
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3896
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3897 3898 3899 3900
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3901
	if (val <= dev_priv->rps.min_freq_softlimit)
3902
		new_power = LOW_POWER;
3903
	if (val >= dev_priv->rps.max_freq_softlimit)
3904 3905 3906 3907 3908 3909 3910 3911
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
3912 3913
		ei_up = 16000;
		threshold_up = 95;
3914 3915

		/* Downclock if less than 85% busy over 32ms */
3916 3917
		ei_down = 32000;
		threshold_down = 85;
3918 3919 3920 3921
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
3922 3923
		ei_up = 13000;
		threshold_up = 90;
3924 3925

		/* Downclock if less than 75% busy over 32ms */
3926 3927
		ei_down = 32000;
		threshold_down = 75;
3928 3929 3930 3931
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
3932 3933
		ei_up = 10000;
		threshold_up = 85;
3934 3935

		/* Downclock if less than 60% busy over 32ms */
3936 3937
		ei_down = 32000;
		threshold_down = 60;
3938 3939 3940
		break;
	}

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

3959
	dev_priv->rps.power = new_power;
3960 3961
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
3962 3963 3964
	dev_priv->rps.last_adj = 0;
}

3965 3966 3967 3968 3969
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
3970
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3971
	if (val < dev_priv->rps.max_freq_softlimit)
3972
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3973

3974 3975
	mask &= dev_priv->pm_rps_events;

3976
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3977 3978
}

3979 3980 3981
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3982
static void gen6_set_rps(struct drm_device *dev, u8 val)
3983 3984
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3985

3986
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3987 3988
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
3989

C
Chris Wilson 已提交
3990 3991 3992 3993 3994
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3995

3996 3997 3998 3999
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4000 4001 4002 4003 4004 4005 4006
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4007
	}
4008 4009 4010 4011

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4012
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4013
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4014

4015 4016
	POSTING_READ(GEN6_RPNSWREQ);

4017
	dev_priv->rps.cur_freq = val;
4018
	trace_intel_gpu_freq_change(val * 50);
4019 4020
}

4021 4022 4023 4024 4025
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4026 4027
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4028 4029 4030 4031 4032

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4033
	if (val != dev_priv->rps.cur_freq) {
4034
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4035 4036 4037
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4038 4039 4040 4041 4042 4043 4044

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4056
	struct drm_device *dev = dev_priv->dev;
4057
	u32 val = dev_priv->rps.idle_freq;
4058

4059 4060
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4061
		valleyview_set_rps(dev_priv->dev, val);
4062 4063 4064
		return;
	}

4065 4066 4067 4068
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

4069
	if (dev_priv->rps.cur_freq <= val)
4070 4071 4072
		return;

	/* Mask turbo interrupt so that they will not come in between */
4073 4074
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4075

4076
	vlv_force_gfx_clock(dev_priv, true);
4077

4078
	dev_priv->rps.cur_freq = val;
4079

4080
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4081 4082

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4083
				& GENFREQSTATUS) == 0, 100))
4084 4085
		DRM_ERROR("timed out waiting for Punit\n");

4086
	gen6_set_rps_thresholds(dev_priv, val);
4087
	vlv_force_gfx_clock(dev_priv, false);
4088

4089
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4090 4091
}

4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4104 4105
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4106 4107
	struct drm_device *dev = dev_priv->dev;

4108
	mutex_lock(&dev_priv->rps.hw_lock);
4109
	if (dev_priv->rps.enabled) {
4110
		if (IS_VALLEYVIEW(dev))
4111
			vlv_set_rps_idle(dev_priv);
4112
		else
4113
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4114
		dev_priv->rps.last_adj = 0;
4115
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4116
	}
4117 4118 4119

	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4120 4121 4122
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4123 4124
void gen6_rps_boost(struct drm_i915_private *dev_priv,
		    struct drm_i915_file_private *file_priv)
4125
{
4126 4127
	u32 val;

4128
	mutex_lock(&dev_priv->rps.hw_lock);
4129 4130 4131
	val = dev_priv->rps.max_freq_softlimit;
	if (dev_priv->rps.enabled &&
	    dev_priv->mm.busy &&
4132 4133
	    dev_priv->rps.cur_freq < val &&
	    (file_priv == NULL || list_empty(&file_priv->rps_boost))) {
4134
		intel_set_rps(dev_priv->dev, val);
4135
		dev_priv->rps.last_adj = 0;
4136 4137 4138 4139 4140 4141

		if (file_priv != NULL) {
			list_add(&file_priv->rps_boost, &dev_priv->rps.clients);
			file_priv->rps_boosts++;
		} else
			dev_priv->rps.boosts++;
4142
	}
4143 4144 4145
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4146
void intel_set_rps(struct drm_device *dev, u8 val)
4147
{
4148 4149 4150 4151
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4152 4153
}

Z
Zhe Wang 已提交
4154 4155 4156 4157 4158
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4159
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4160 4161
}

4162
static void gen6_disable_rps(struct drm_device *dev)
4163 4164 4165 4166
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4167 4168 4169
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4170 4171 4172 4173 4174 4175 4176
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4177 4178 4179 4180
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4181 4182
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4183
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4184

4185
	I915_WRITE(GEN6_RC_CONTROL, 0);
4186

4187
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4188 4189
}

B
Ben Widawsky 已提交
4190 4191
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4192 4193 4194 4195 4196 4197
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4198 4199 4200 4201 4202 4203 4204 4205 4206
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4207 4208
}

I
Imre Deak 已提交
4209
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4210
{
4211 4212 4213 4214
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4215 4216 4217 4218
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4219
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4220 4221 4222
	if (enable_rc6 >= 0) {
		int mask;

4223
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4224 4225 4226 4227 4228 4229
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4230 4231
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4232 4233 4234

		return enable_rc6 & mask;
	}
4235

4236 4237 4238
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4239

4240
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4241
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4242 4243

	return INTEL_RC6_ENABLE;
4244 4245
}

I
Imre Deak 已提交
4246 4247 4248 4249 4250
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4251
static void gen6_init_rps_frequencies(struct drm_device *dev)
4252
{
4253 4254 4255 4256 4257 4258
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4259 4260
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4261
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4262
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4263
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4264
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
4265 4266 4267 4268 4269 4270 4271
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
	}
4272 4273 4274
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4275 4276 4277 4278 4279 4280 4281
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4282 4283 4284 4285
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4286 4287
	}

4288 4289
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4290 4291 4292 4293
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4294 4295 4296
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4297 4298
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4299 4300 4301 4302
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4303 4304
}

J
Jesse Barnes 已提交
4305
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4306
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4307 4308 4309 4310 4311
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4312 4313
	gen6_init_rps_frequencies(dev);

4314 4315 4316 4317 4318 4319 4320 4321
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4322 4323
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4324 4325 4326 4327 4328
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4329 4330 4331 4332 4333

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4345
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4359 4360 4361 4362
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4363 4364 4365 4366 4367 4368 4369 4370 4371
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4372 4373 4374 4375
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
	 * WaDisableRenderPowerGating:skl,bxt - Render PG need to be disabled with RC6.
	 */
4376
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4377
			GEN9_MEDIA_PG_ENABLE : 0);
4378

4379

4380
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4381 4382 4383

}

4384 4385 4386
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4387
	struct intel_engine_cs *ring;
4388
	uint32_t rc6_mask = 0;
4389 4390 4391 4392 4393 4394 4395
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4396
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4397 4398 4399 4400

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4401 4402
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4403 4404 4405 4406 4407 4408 4409 4410

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4411 4412 4413 4414
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4415 4416 4417 4418

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4419
	intel_print_rc6_info(dev, rc6_mask);
4420 4421 4422 4423 4424 4425 4426 4427
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4428 4429

	/* 4 Program defaults and thresholds for RPS*/
4430 4431 4432 4433
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4448 4449

	/* 5: Enable RPS */
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4460
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4461
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4462

4463
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4464 4465
}

4466
static void gen6_enable_rps(struct drm_device *dev)
4467
{
4468
	struct drm_i915_private *dev_priv = dev->dev_private;
4469
	struct intel_engine_cs *ring;
4470
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4471 4472
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4473
	int i, ret;
4474

4475
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4476

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4491
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4492

4493 4494
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4495

4496 4497 4498 4499 4500 4501 4502 4503 4504
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4505 4506
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4507 4508 4509

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4510
	if (IS_IVYBRIDGE(dev))
4511 4512 4513
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4514
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4515 4516
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4517
	/* Check if we are enabling RC6 */
4518 4519 4520 4521
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4522 4523 4524 4525
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4526

4527 4528 4529
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4530

B
Ben Widawsky 已提交
4531
	intel_print_rc6_info(dev, rc6_mask);
4532 4533 4534 4535 4536 4537

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4538 4539
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4540 4541
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4542
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4543
	if (ret)
B
Ben Widawsky 已提交
4544
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4545 4546 4547 4548

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4549
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4550
				 (pcu_mbox & 0xff) * 50);
4551
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4552 4553
	}

4554
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4555
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4556

4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4571
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4572 4573
}

4574
static void __gen6_update_ring_freq(struct drm_device *dev)
4575
{
4576
	struct drm_i915_private *dev_priv = dev->dev_private;
4577
	int min_freq = 15;
4578 4579
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4580
	int scaling_factor = 180;
4581
	struct cpufreq_policy *policy;
4582

4583
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4584

4585 4586 4587 4588 4589 4590 4591 4592 4593
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4594
		max_ia_freq = tsc_khz;
4595
	}
4596 4597 4598 4599

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4600
	min_ring_freq = I915_READ(DCLK) & 0xf;
4601 4602
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4603

4604 4605 4606 4607 4608
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4609
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4610
	     gpu_freq--) {
4611
		int diff = dev_priv->rps.max_freq - gpu_freq;
4612 4613
		unsigned int ia_freq = 0, ring_freq = 0;

4614 4615 4616 4617
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4618
			ring_freq = mult_frac(gpu_freq, 5, 4);
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4635

B
Ben Widawsky 已提交
4636 4637
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4638 4639 4640
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4641 4642 4643
	}
}

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4656
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4657
{
4658
	struct drm_device *dev = dev_priv->dev;
4659 4660
	u32 val, rp0;

4661 4662
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4663

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4700 4701
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4702
	struct drm_device *dev = dev_priv->dev;
4703 4704
	u32 val, rp1;

4705 4706 4707 4708 4709 4710 4711 4712 4713
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4714 4715 4716
	return rp1;
}

4717
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4718
{
4719
	struct drm_device *dev = dev_priv->dev;
4720 4721
	u32 val, rpn;

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4732 4733 4734
	return rpn;
}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4746
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4747 4748 4749
{
	u32 val, rp0;

4750
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4763
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4764
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4765
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4766 4767 4768 4769 4770
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4771
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4772
{
4773
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4774 4775
}

4776 4777 4778 4779 4780 4781 4782 4783 4784
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4806
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4807 4808 4809 4810 4811 4812
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4813 4814

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4815 4816
}

4817 4818 4819 4820 4821 4822 4823 4824
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4825 4826
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4827 4828 4829 4830 4831 4832 4833 4834
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4835
								      I915_GTT_OFFSET_NONE,
4836 4837 4838 4839
								      pctx_size);
		goto out;
	}

4840 4841
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4860
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4861 4862 4863
	dev_priv->vlv_pctx = pctx;
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4875 4876 4877
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4878
	u32 val;
4879 4880 4881 4882 4883

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4897
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4898

4899 4900 4901
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4902
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4903 4904 4905 4906
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4907
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4908 4909
			 dev_priv->rps.efficient_freq);

4910 4911
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4912
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4913 4914
			 dev_priv->rps.rp1_freq);

4915 4916
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4917
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4918 4919
			 dev_priv->rps.min_freq);

4920 4921
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4932 4933
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4934
	struct drm_i915_private *dev_priv = dev->dev_private;
4935
	u32 val;
4936

4937
	cherryview_setup_pctx(dev);
4938 4939 4940

	mutex_lock(&dev_priv->rps.hw_lock);

4941 4942 4943 4944
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4968
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4969

4970 4971 4972
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4973
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4974 4975 4976 4977
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4978
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4979 4980
			 dev_priv->rps.efficient_freq);

4981 4982
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4983
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4984 4985
			 dev_priv->rps.rp1_freq);

4986 4987
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4988
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4989 4990
			 dev_priv->rps.min_freq);

4991 4992 4993 4994 4995 4996
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4997 4998
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4999 5000 5001 5002 5003 5004 5005 5006
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5007 5008
}

5009 5010 5011 5012 5013
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5014 5015 5016 5017
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5018
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5034
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5035

5036 5037 5038
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5039 5040 5041 5042 5043 5044 5045 5046 5047
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5048 5049
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5063
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5064 5065 5066

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5067
	/* 4 Program defaults and thresholds for RPS*/
5068
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5079
		   GEN6_RP_MEDIA_IS_GFX |
5080 5081 5082 5083
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5084 5085 5086 5087 5088 5089
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5090 5091
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5092 5093 5094
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5095
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5096 5097 5098 5099
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5100
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5101 5102 5103
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5104
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5105 5106 5107 5108
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5109
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5110 5111
}

5112 5113 5114
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5115
	struct intel_engine_cs *ring;
5116
	u32 gtfifodbg, val, rc6_mode = 0;
5117 5118 5119 5120
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5121 5122
	valleyview_check_pctx(dev_priv);

5123
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5124 5125
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5126 5127 5128
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5129
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5130
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5131

5132 5133 5134
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5135
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5158
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5159 5160

	/* allows RC6 residency counter to work */
5161
	I915_WRITE(VLV_COUNTER_CONTROL,
5162 5163
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5164 5165
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5166

5167
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5168
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5169 5170 5171

	intel_print_rc6_info(dev, rc6_mode);

5172
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5173

D
Deepak S 已提交
5174 5175 5176 5177 5178 5179
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5180
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5181

5182 5183 5184
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5185
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5186 5187
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5188
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5189
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5190
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5191
			 dev_priv->rps.cur_freq);
5192

5193
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5194
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5195
			 dev_priv->rps.efficient_freq);
5196

5197
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5198

5199
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5200 5201
}

5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5231
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5232 5233 5234 5235 5236 5237
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5238 5239
	assert_spin_locked(&mchdev_lock);

5240
	diff1 = now - dev_priv->ips.last_time1;
5241 5242 5243 5244 5245 5246 5247

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5248
		return dev_priv->ips.chipset_power;
5249 5250 5251 5252 5253 5254 5255 5256

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5257 5258
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5259 5260
		diff += total_count;
	} else {
5261
		diff = total_count - dev_priv->ips.last_count1;
5262 5263 5264
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5265 5266
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5277 5278
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5279

5280
	dev_priv->ips.chipset_power = ret;
5281 5282 5283 5284

	return ret;
}

5285 5286
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5287
	struct drm_device *dev = dev_priv->dev;
5288 5289
	unsigned long val;

5290
	if (INTEL_INFO(dev)->gen != 5)
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5329
{
5330
	struct drm_device *dev = dev_priv->dev;
5331 5332 5333
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5334
	if (INTEL_INFO(dev)->is_mobile)
5335 5336 5337
		return vm > 0 ? vm : 0;

	return vd;
5338 5339
}

5340
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5341
{
5342
	u64 now, diff, diffms;
5343 5344
	u32 count;

5345
	assert_spin_locked(&mchdev_lock);
5346

5347 5348 5349
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5350 5351 5352 5353 5354 5355 5356

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5357 5358
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5359 5360
		diff += count;
	} else {
5361
		diff = count - dev_priv->ips.last_count2;
5362 5363
	}

5364 5365
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5366 5367 5368 5369

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5370
	dev_priv->ips.gfx_power = diff;
5371 5372
}

5373 5374
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5375 5376 5377
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5378 5379
		return;

5380
	spin_lock_irq(&mchdev_lock);
5381 5382 5383

	__i915_update_gfx_val(dev_priv);

5384
	spin_unlock_irq(&mchdev_lock);
5385 5386
}

5387
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5388 5389 5390 5391
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5392 5393
	assert_spin_locked(&mchdev_lock);

5394
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5414
	corr2 = (corr * dev_priv->ips.corr);
5415 5416 5417 5418

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5419
	__i915_update_gfx_val(dev_priv);
5420

5421
	return dev_priv->ips.gfx_power + state2;
5422 5423
}

5424 5425
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5426
	struct drm_device *dev = dev_priv->dev;
5427 5428
	unsigned long val;

5429
	if (INTEL_INFO(dev)->gen != 5)
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5452
	spin_lock_irq(&mchdev_lock);
5453 5454 5455 5456
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5457 5458
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5459 5460 5461 5462

	ret = chipset_val + graphics_val;

out_unlock:
5463
	spin_unlock_irq(&mchdev_lock);
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5479
	spin_lock_irq(&mchdev_lock);
5480 5481 5482 5483 5484 5485
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5486 5487
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5488 5489

out_unlock:
5490
	spin_unlock_irq(&mchdev_lock);
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5507
	spin_lock_irq(&mchdev_lock);
5508 5509 5510 5511 5512 5513
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5514 5515
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5516 5517

out_unlock:
5518
	spin_unlock_irq(&mchdev_lock);
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5532
	struct intel_engine_cs *ring;
5533
	bool ret = false;
5534
	int i;
5535

5536
	spin_lock_irq(&mchdev_lock);
5537 5538 5539 5540
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5541 5542
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5543 5544

out_unlock:
5545
	spin_unlock_irq(&mchdev_lock);
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5562
	spin_lock_irq(&mchdev_lock);
5563 5564 5565 5566 5567 5568
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5569
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5570

5571
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5572 5573 5574
		ret = false;

out_unlock:
5575
	spin_unlock_irq(&mchdev_lock);
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5603 5604
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5605
	spin_lock_irq(&mchdev_lock);
5606
	i915_mch_dev = dev_priv;
5607
	spin_unlock_irq(&mchdev_lock);
5608 5609 5610 5611 5612 5613

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5614
	spin_lock_irq(&mchdev_lock);
5615
	i915_mch_dev = NULL;
5616
	spin_unlock_irq(&mchdev_lock);
5617
}
5618

5619
static void intel_init_emon(struct drm_device *dev)
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5687
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5688 5689
}

5690 5691
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5692 5693
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5694 5695 5696
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5697
		valleyview_init_gt_powersave(dev);
5698 5699 5700 5701
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5702 5703 5704
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5705
		valleyview_cleanup_gt_powersave(dev);
5706 5707
}

5708 5709 5710 5711 5712 5713
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

5714
	gen6_disable_rps_interrupts(dev);
5715 5716
}

5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5729 5730 5731
	if (INTEL_INFO(dev)->gen < 6)
		return;

5732
	gen6_suspend_rps(dev);
5733 5734 5735

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5736 5737
}

5738 5739
void intel_disable_gt_powersave(struct drm_device *dev)
{
5740 5741
	struct drm_i915_private *dev_priv = dev->dev_private;

5742
	if (IS_IRONLAKE_M(dev)) {
5743
		ironlake_disable_drps(dev);
5744
	} else if (INTEL_INFO(dev)->gen >= 6) {
5745
		intel_suspend_gt_powersave(dev);
5746

5747
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5748 5749 5750
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5751 5752
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5753 5754 5755
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5756

5757
		dev_priv->rps.enabled = false;
5758
		mutex_unlock(&dev_priv->rps.hw_lock);
5759
	}
5760 5761
}

5762 5763 5764 5765 5766 5767 5768
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5769
	mutex_lock(&dev_priv->rps.hw_lock);
5770

5771
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
5772

5773 5774 5775
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5776
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5777
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5778
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5779
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5780
		__gen6_update_ring_freq(dev);
5781 5782
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5783
		__gen6_update_ring_freq(dev);
5784 5785
	} else {
		gen6_enable_rps(dev);
5786
		__gen6_update_ring_freq(dev);
5787
	}
5788 5789 5790 5791 5792 5793 5794

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

5795
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5796

5797
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
5798

5799
	mutex_unlock(&dev_priv->rps.hw_lock);
5800 5801

	intel_runtime_pm_put(dev_priv);
5802 5803
}

5804 5805
void intel_enable_gt_powersave(struct drm_device *dev)
{
5806 5807
	struct drm_i915_private *dev_priv = dev->dev_private;

5808 5809 5810 5811
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5812
	if (IS_IRONLAKE_M(dev)) {
5813
		mutex_lock(&dev->struct_mutex);
5814 5815
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
5816
		mutex_unlock(&dev->struct_mutex);
5817
	} else if (INTEL_INFO(dev)->gen >= 6) {
5818 5819 5820 5821
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5822 5823 5824 5825 5826 5827 5828
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5829
		 */
5830 5831 5832
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5833 5834 5835
	}
}

5836 5837 5838 5839
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5840 5841 5842 5843
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5844 5845 5846
	dev_priv->rps.enabled = false;
}

5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5859 5860 5861 5862 5863
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5864
	for_each_pipe(dev_priv, pipe) {
5865 5866 5867
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5868
		intel_flush_primary_plane(dev_priv, pipe);
5869 5870 5871
	}
}

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5886
static void ironlake_init_clock_gating(struct drm_device *dev)
5887 5888
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5889
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5890

5891 5892 5893 5894
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5895 5896 5897
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5915
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5916 5917 5918
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5919 5920

	ilk_init_lp_watermarks(dev);
5921 5922 5923 5924 5925 5926 5927 5928 5929

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5930
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5931 5932 5933 5934 5935 5936 5937 5938
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5939 5940
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5941 5942 5943 5944 5945 5946
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5947

5948
	/* WaDisableRenderCachePipelinedFlush:ilk */
5949 5950
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5951

5952 5953 5954
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5955
	g4x_disable_trickle_feed(dev);
5956

5957 5958 5959 5960 5961 5962 5963
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5964
	uint32_t val;
5965 5966 5967 5968 5969 5970

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5971 5972 5973
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5974 5975
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5976 5977 5978
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5979
	for_each_pipe(dev_priv, pipe) {
5980 5981 5982
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5983
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5984
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5985 5986 5987
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5988 5989
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5990
	/* WADP0ClockGatingDisable */
5991
	for_each_pipe(dev_priv, pipe) {
5992 5993 5994
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5995 5996
}

5997 5998 5999 6000 6001 6002
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6003 6004 6005
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6006 6007
}

6008
static void gen6_init_clock_gating(struct drm_device *dev)
6009 6010
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6011
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6012

6013
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6014 6015 6016 6017 6018

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6019
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6020 6021 6022
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6023 6024 6025
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6026 6027 6028
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6029 6030 6031 6032
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6033 6034
	 */
	I915_WRITE(GEN6_GT_MODE,
6035
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6036

6037
	ilk_init_lp_watermarks(dev);
6038 6039

	I915_WRITE(CACHE_MODE_0,
6040
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6056
	 *
6057 6058
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6059 6060 6061 6062 6063
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6064
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6065 6066
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6067

6068 6069 6070 6071 6072 6073 6074 6075
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6076 6077 6078 6079 6080 6081 6082 6083
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6084 6085
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6086 6087 6088 6089 6090 6091 6092
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6093 6094 6095 6096
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6097

6098
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6099

6100
	cpt_init_clock_gating(dev);
6101 6102

	gen6_check_mch_setup(dev);
6103 6104 6105 6106 6107 6108
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6109
	/*
6110
	 * WaVSThreadDispatchOverride:ivb,vlv
6111 6112 6113 6114
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6115 6116 6117 6118 6119 6120 6121 6122
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6135 6136 6137 6138 6139

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6140 6141
}

6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6154
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6155 6156
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6157
	enum pipe pipe;
B
Ben Widawsky 已提交
6158 6159 6160 6161

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
6162

6163
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6164
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6165

6166
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6167 6168 6169
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6170
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6171
	for_each_pipe(dev_priv, pipe) {
6172
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6173
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6174
			   BDW_DPRS_MASK_VBLANK_SRD);
6175
	}
6176

6177 6178 6179 6180 6181
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6182

6183 6184
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6185 6186 6187 6188

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6189

6190
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6191 6192
}

6193 6194 6195 6196
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6197
	ilk_init_lp_watermarks(dev);
6198

6199 6200 6201 6202 6203
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6204
	/* This is required by WaCatErrorRejectionIssue:hsw */
6205 6206 6207 6208
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6209 6210 6211
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6212

6213 6214 6215
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6216 6217 6218 6219
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6220
	/* WaDisable4x2SubspanOptimization:hsw */
6221 6222
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6223

6224 6225 6226
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6227 6228 6229 6230
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6231 6232
	 */
	I915_WRITE(GEN7_GT_MODE,
6233
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6234

6235 6236 6237 6238
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6239
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6240 6241
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6242 6243 6244
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6245

6246
	lpt_init_clock_gating(dev);
6247 6248
}

6249
static void ivybridge_init_clock_gating(struct drm_device *dev)
6250 6251
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6252
	uint32_t snpcr;
6253

6254
	ilk_init_lp_watermarks(dev);
6255

6256
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6257

6258
	/* WaDisableEarlyCull:ivb */
6259 6260 6261
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6262
	/* WaDisableBackToBackFlipFix:ivb */
6263 6264 6265 6266
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6267
	/* WaDisablePSDDualDispatchEnable:ivb */
6268 6269 6270 6271
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6272 6273 6274
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6275
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6276 6277 6278
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6279
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6280 6281 6282
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6283 6284 6285 6286
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6287 6288 6289 6290
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6291 6292
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6293
	}
6294

6295
	/* WaForceL3Serialization:ivb */
6296 6297 6298
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6299
	/*
6300
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6301
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6302 6303
	 */
	I915_WRITE(GEN6_UCGCTL2,
6304
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6305

6306
	/* This is required by WaCatErrorRejectionIssue:ivb */
6307 6308 6309 6310
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6311
	g4x_disable_trickle_feed(dev);
6312 6313

	gen7_setup_fixed_func_scheduler(dev_priv);
6314

6315 6316 6317 6318 6319
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6320

6321
	/* WaDisable4x2SubspanOptimization:ivb */
6322 6323
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6324

6325 6326 6327
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6328 6329 6330 6331
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6332 6333
	 */
	I915_WRITE(GEN7_GT_MODE,
6334
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6335

6336 6337 6338 6339
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6340

6341 6342
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6343 6344

	gen6_check_mch_setup(dev);
6345 6346
}

6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6358
static void valleyview_init_clock_gating(struct drm_device *dev)
6359 6360 6361
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6362
	vlv_init_display_clock_gating(dev_priv);
6363

6364
	/* WaDisableEarlyCull:vlv */
6365 6366 6367
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6368
	/* WaDisableBackToBackFlipFix:vlv */
6369 6370 6371 6372
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6373
	/* WaPsdDispatchEnable:vlv */
6374
	/* WaDisablePSDDualDispatchEnable:vlv */
6375
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6376 6377
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6378

6379 6380 6381
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6382
	/* WaForceL3Serialization:vlv */
6383 6384 6385
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6386
	/* WaDisableDopClockGating:vlv */
6387 6388 6389
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6390
	/* This is required by WaCatErrorRejectionIssue:vlv */
6391 6392 6393 6394
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6395 6396
	gen7_setup_fixed_func_scheduler(dev_priv);

6397
	/*
6398
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6399
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6400 6401
	 */
	I915_WRITE(GEN6_UCGCTL2,
6402
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6403

6404 6405 6406 6407 6408
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6409

6410 6411 6412 6413
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6414 6415
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6416

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6428 6429 6430 6431 6432 6433
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6434
	/*
6435
	 * WaDisableVLVClockGating_VBIIssue:vlv
6436 6437 6438
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6439
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6440 6441
}

6442 6443 6444 6445
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6446
	vlv_init_display_clock_gating(dev_priv);
6447

6448 6449 6450 6451 6452
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6453 6454 6455 6456

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6457 6458 6459 6460

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6461 6462 6463 6464

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6465 6466
}

6467
static void g4x_init_clock_gating(struct drm_device *dev)
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6483 6484 6485 6486

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6487

6488 6489 6490
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6491
	g4x_disable_trickle_feed(dev);
6492 6493
}

6494
static void crestline_init_clock_gating(struct drm_device *dev)
6495 6496 6497 6498 6499 6500 6501 6502
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6503 6504
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6505 6506 6507

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6508 6509
}

6510
static void broadwater_init_clock_gating(struct drm_device *dev)
6511 6512 6513 6514 6515 6516 6517 6518 6519
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6520 6521
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6522 6523 6524

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6525 6526
}

6527
static void gen3_init_clock_gating(struct drm_device *dev)
6528 6529 6530 6531 6532 6533 6534
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6535 6536 6537

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6538 6539 6540

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6541 6542

	/* interrupts should cause a wake up from C3 */
6543
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6544 6545 6546

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6547 6548 6549

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6550 6551
}

6552
static void i85x_init_clock_gating(struct drm_device *dev)
6553 6554 6555 6556
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6557 6558 6559 6560

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6561 6562 6563

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6564 6565
}

6566
static void i830_init_clock_gating(struct drm_device *dev)
6567 6568 6569 6570
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6571 6572 6573 6574

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6575 6576 6577 6578 6579 6580
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6581 6582
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6583 6584
}

6585 6586 6587 6588 6589 6590
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6591 6592 6593 6594 6595
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6596
	intel_fbc_init(dev_priv);
6597

6598 6599 6600 6601 6602 6603
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6604
	/* For FIFO watermark updates */
6605
	if (INTEL_INFO(dev)->gen >= 9) {
6606 6607
		skl_setup_wm_latency(dev);

6608 6609 6610 6611 6612 6613
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
		else if (IS_SKYLAKE(dev))
			dev_priv->display.init_clock_gating =
				skl_init_clock_gating;
6614 6615
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6616
	} else if (HAS_PCH_SPLIT(dev)) {
6617
		ilk_setup_wm_latency(dev);
6618

6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6631
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6632
		else if (IS_GEN6(dev))
6633
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6634
		else if (IS_IVYBRIDGE(dev))
6635
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6636
		else if (IS_HASWELL(dev))
6637
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6638
		else if (INTEL_INFO(dev)->gen == 8)
6639
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6640
	} else if (IS_CHERRYVIEW(dev)) {
6641
		dev_priv->display.update_wm = valleyview_update_wm;
6642
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6643 6644
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6645 6646
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6647
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6661
			intel_set_memory_cxsr(dev_priv, false);
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6679 6680 6681
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6682
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6683 6684
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6685
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6686 6687 6688 6689 6690 6691 6692 6693
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6694 6695 6696
	}
}

6697
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6698
{
6699
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6700 6701 6702 6703 6704 6705 6706

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6707
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6722
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6723
{
6724
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6744

6745
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6746
{
6747 6748 6749 6750 6751 6752 6753 6754
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6755 6756
	case 400:
		return 20;
6757 6758 6759
	default:
		return -1;
	}
6760
}
6761

6762 6763 6764 6765 6766 6767 6768 6769 6770
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6771 6772
}

6773
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6774
{
6775
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6776

6777 6778 6779
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6780

6781
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6782 6783
}

6784
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6785
{
6786
	int div, czclk_freq = dev_priv->rps.cz_freq;
6787

6788 6789 6790
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6791

6792
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6793 6794
}

6795
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6796
{
6797
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6798

6799 6800 6801
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6802

6803
	/* CHV needs even values */
6804
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6805 6806
}

6807
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6808
{
6809 6810 6811
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6812
		return chv_gpu_freq(dev_priv, val);
6813
	else if (IS_VALLEYVIEW(dev_priv->dev))
6814 6815 6816
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6817 6818
}

6819 6820
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6821 6822 6823
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
6824
		return chv_freq_opcode(dev_priv, val);
6825
	else if (IS_VALLEYVIEW(dev_priv->dev))
6826 6827 6828 6829
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6830

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
struct request_boost {
	struct work_struct work;
	struct drm_i915_gem_request *rq;
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);

	if (!i915_gem_request_completed(boost->rq, true))
6841
		gen6_rps_boost(to_i915(boost->rq->ring->dev), NULL);
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865

	i915_gem_request_unreference__unlocked(boost->rq);
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
				       struct drm_i915_gem_request *rq)
{
	struct request_boost *boost;

	if (rq == NULL || INTEL_INFO(dev)->gen < 6)
		return;

	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

	i915_gem_request_reference(rq);
	boost->rq = rq;

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
6866
void intel_pm_setup(struct drm_device *dev)
6867 6868 6869
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6870 6871
	mutex_init(&dev_priv->rps.hw_lock);

6872 6873
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6874
	INIT_LIST_HEAD(&dev_priv->rps.clients);
6875

6876
	dev_priv->pm.suspended = false;
6877
}