intel_pm.c 225.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	bool was_enabled;
318
	u32 val;
319

320
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
321
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
322
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323
		POSTING_READ(FW_BLC_SELF_VLV);
324
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
325
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
326
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327
		POSTING_READ(FW_BLC_SELF);
328
	} else if (IS_PINEVIEW(dev_priv)) {
329 330 331 332 333 334
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
335
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
350 351 352
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
353
		POSTING_READ(INSTPM);
354
	} else {
355
		return false;
356
	}
357

358 359 360 361 362
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
363 364
}

365
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
366
{
367 368
	bool ret;

369
	mutex_lock(&dev_priv->wm.wm_mutex);
370
	ret = _intel_set_memory_cxsr(dev_priv, enable);
371 372
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
373 374

	return ret;
375
}
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
391
static const int pessimal_latency_ns = 5000;
392

393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

396
static int vlv_get_fifo_size(struct intel_plane *plane)
397
{
398
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
399 400
	int sprite0_start, sprite1_start, size;

401 402 403 404
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

428 429
	switch (plane->id) {
	case PLANE_PRIMARY:
430 431
		size = sprite0_start;
		break;
432
	case PLANE_SPRITE0:
433 434
		size = sprite1_start - sprite0_start;
		break;
435
	case PLANE_SPRITE1:
436 437 438 439 440 441
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

442
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
443 444 445 446

	return size;
}

447
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
448 449 450 451 452 453 454 455 456 457 458 459 460 461
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

462
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
502 503 504 505 506
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params pineview_cursor_wm = {
509 510 511 512 513
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516 517 518 519 520
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params g4x_wm_info = {
523 524 525 526 527
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
530 531 532 533 534
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
535 536
};
static const struct intel_watermark_params i965_cursor_wm_info = {
537 538 539 540 541
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
542 543
};
static const struct intel_watermark_params i945_wm_info = {
544 545 546 547 548
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
549 550
};
static const struct intel_watermark_params i915_wm_info = {
551 552 553 554 555
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
556
};
557
static const struct intel_watermark_params i830_a_wm_info = {
558 559 560 561 562
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
563
};
564 565 566 567 568 569 570
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
571
static const struct intel_watermark_params i845_wm_info = {
572 573 574 575 576
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
577 578 579 580 581 582
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
583
 * @cpp: bytes per pixel
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
599
					int fifo_size, int cpp,
600 601 602 603 604 605 606 607 608 609
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
610
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
611 612 613 614 615 616 617 618 619 620 621 622 623 624
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
625 626 627 628 629 630 631 632 633 634 635

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

636 637 638
	return wm_size;
}

639
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
640
{
641
	struct intel_crtc *crtc, *enabled = NULL;
642

643
	for_each_intel_crtc(&dev_priv->drm, crtc) {
644
		if (intel_crtc_active(crtc)) {
645 646 647 648 649 650 651 652 653
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

654
static void pineview_update_wm(struct intel_crtc *unused_crtc)
655
{
656
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
657
	struct intel_crtc *crtc;
658 659 660 661
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

662 663 664 665
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
666 667
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668
		intel_set_memory_cxsr(dev_priv, false);
669 670 671
		return;
	}

672
	crtc = single_enabled_crtc(dev_priv);
673
	if (crtc) {
674 675 676 677 678
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
679
		int clock = adjusted_mode->crtc_clock;
680 681 682 683

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
684
					cpp, latency->display_sr);
685 686
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
687
		reg |= FW_WM(wm, SR);
688 689 690 691 692 693
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
694
					cpp, latency->cursor_sr);
695 696
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
697
		reg |= FW_WM(wm, CURSOR_SR);
698 699 700 701 702
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
703
					cpp, latency->display_hpll_disable);
704 705
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
706
		reg |= FW_WM(wm, HPLL_SR);
707 708 709 710 711
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
712
					cpp, latency->cursor_hpll_disable);
713 714
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
715
		reg |= FW_WM(wm, HPLL_CURSOR);
716 717 718
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

719
		intel_set_memory_cxsr(dev_priv, true);
720
	} else {
721
		intel_set_memory_cxsr(dev_priv, false);
722 723 724
	}
}

725
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
726 727 728 729 730 731 732 733
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
734
	struct intel_crtc *crtc;
735
	const struct drm_display_mode *adjusted_mode;
736
	const struct drm_framebuffer *fb;
737
	int htotal, hdisplay, clock, cpp;
738 739 740
	int line_time_us, line_count;
	int entries, tlb_miss;

741
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
742
	if (!intel_crtc_active(crtc)) {
743 744 745 746 747
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

748 749
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
750
	clock = adjusted_mode->crtc_clock;
751
	htotal = adjusted_mode->crtc_htotal;
752 753
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
754 755

	/* Use the small buffer method to calculate plane watermark */
756
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
757 758 759 760 761 762 763 764 765
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
766
	line_time_us = max(htotal * 1000 / clock, 1);
767
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
768
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
787
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
788 789 790 791 792 793 794 795
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
796
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797 798 799 800 801
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
802
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803 804 805 806 807 808 809 810 811 812 813 814
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

815
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
816 817 818 819 820 821
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
822
	struct intel_crtc *crtc;
823
	const struct drm_display_mode *adjusted_mode;
824
	const struct drm_framebuffer *fb;
825
	int hdisplay, htotal, cpp, clock;
826 827 828 829 830 831 832 833 834 835
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

836
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
837 838
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
839
	clock = adjusted_mode->crtc_clock;
840
	htotal = adjusted_mode->crtc_htotal;
841 842
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
843

844
	line_time_us = max(htotal * 1000 / clock, 1);
845
	line_count = (latency_ns / line_time_us + 1000) / 1000;
846
	line_size = hdisplay * cpp;
847 848

	/* Use the minimum of the small and large buffer method for primary */
849
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
850 851 852 853 854 855
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
856
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
857 858 859
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

860
	return g4x_check_srwm(dev_priv,
861 862 863 864
			      *display_wm, *cursor_wm,
			      display, cursor);
}

865 866 867
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

868
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
869 870
				const struct vlv_wm_values *wm)
{
871 872 873 874 875 876 877 878 879
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
880

881 882 883 884 885 886 887 888 889 890 891
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

892
	I915_WRITE(DSPFW1,
893
		   FW_WM(wm->sr.plane, SR) |
894 895 896
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
897
	I915_WRITE(DSPFW2,
898 899 900
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
901
	I915_WRITE(DSPFW3,
902
		   FW_WM(wm->sr.cursor, CURSOR_SR));
903 904 905

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
906 907
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
908
		I915_WRITE(DSPFW8_CHV,
909 910
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
911
		I915_WRITE(DSPFW9_CHV,
912 913
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
914
		I915_WRITE(DSPHOWM,
915
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
916 917 918 919 920 921 922 923 924
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
925 926
	} else {
		I915_WRITE(DSPFW7,
927 928
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929
		I915_WRITE(DSPHOWM,
930
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
931 932 933 934 935 936
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
937 938 939
	}

	POSTING_READ(DSPFW1);
940 941
}

942 943
#undef FW_WM_VLV

944 945 946 947 948 949
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

950 951 952 953
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
954
				   unsigned int cpp,
955 956 957 958 959
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
960
	ret = (ret + 1) * horiz_pixels * cpp;
961 962 963 964 965
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

966
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
967 968 969 970
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

971 972
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

973 974 975
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
976 977

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
978 979 980
	}
}

981 982
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
983 984
				     int level)
{
985
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
986
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
987 988
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
989
	int clock, htotal, cpp, width, wm;
990 991 992 993

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

994
	if (!plane_state->base.visible)
995 996
		return 0;

997 998 999 1000
	cpp = drm_format_plane_cpp(plane_state->base.fb->pixel_format, 0);
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1013
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1014 1015 1016 1017 1018 1019
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1036
		if (state->base.visible) {
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1052
		if (!state->base.visible) {
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1087 1088 1089 1090 1091 1092 1093 1094
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1095 1096 1097 1098 1099 1100
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1101
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102
		const int sr_fifo_size =
1103
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1104 1105
		struct intel_plane *plane;

1106 1107 1108 1109 1110 1111
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1112

1113
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1114 1115 1116
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1117 1118 1119 1120
		}
	}
}

1121
static void vlv_compute_wm(struct intel_crtc *crtc)
1122
{
1123
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1124 1125 1126 1127 1128 1129
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1130
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1131
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1132 1133 1134

	wm_state->num_active_planes = 0;

1135
	vlv_compute_fifo(crtc);
1136 1137 1138 1139

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1140
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1141 1142
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1143
		int level;
1144

1145
		if (!state->base.visible)
1146 1147 1148 1149
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
1150
			int wm = vlv_compute_wm_level(crtc->config, state, level);
1151
			int max_wm = plane->wm.fifo_size;
1152 1153 1154 1155 1156

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1157
			if (wm > max_wm)
1158 1159
				break;

1160
			wm_state->wm[level].plane[plane->id] = wm;
1161 1162 1163 1164 1165 1166 1167 1168
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1169
		if (plane->id == PLANE_CURSOR) {
1170 1171
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1172 1173
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1174 1175
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1176
					max(wm_state->sr[level].plane,
1177
					    wm_state->wm[level].plane[plane->id]);
1178 1179 1180 1181
		}
	}

	/* clear any (partially) filled invalid levels */
1182
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1183 1184 1185 1186 1187 1188 1189
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1201 1202
		switch (plane->id) {
		case PLANE_PRIMARY:
1203
			sprite0_start = plane->wm.fifo_size;
1204 1205
			break;
		case PLANE_SPRITE0:
1206
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1207 1208
			break;
		case PLANE_SPRITE1:
1209
			fifo_size = sprite1_start + plane->wm.fifo_size;
1210 1211 1212 1213 1214 1215 1216 1217
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1218 1219 1220 1221 1222 1223 1224 1225
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

1226 1227
	spin_lock(&dev_priv->wm.dsparb_lock);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1284 1285 1286 1287

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1288 1289 1290 1291
}

#undef VLV_FIFO

1292
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1293 1294 1295 1296 1297
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1298
	wm->level = dev_priv->wm.max_level;
1299 1300
	wm->cxsr = true;

1301
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1317 1318 1319
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1320
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1331 1332 1333 1334
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1335 1336 1337
	}
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1348
static void vlv_update_wm(struct intel_crtc *crtc)
1349
{
1350
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1351
	enum pipe pipe = crtc->pipe;
1352 1353
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1354

1355
	vlv_compute_wm(crtc);
1356
	vlv_merge_wm(dev_priv, &new_wm);
1357

1358
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1359
		/* FIXME should be part of crtc atomic commit */
1360
		vlv_pipe_set_fifo_size(crtc);
1361

1362
		return;
1363
	}
1364

1365
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1366 1367
		chv_set_memory_dvfs(dev_priv, false);

1368
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1369 1370
		chv_set_memory_pm5(dev_priv, false);

1371
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1372
		_intel_set_memory_cxsr(dev_priv, false);
1373

1374
	/* FIXME should be part of crtc atomic commit */
1375
	vlv_pipe_set_fifo_size(crtc);
1376

1377
	vlv_write_wm_values(dev_priv, &new_wm);
1378 1379 1380

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1381 1382 1383
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1384

1385
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1386
		_intel_set_memory_cxsr(dev_priv, true);
1387

1388
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1389 1390
		chv_set_memory_pm5(dev_priv, true);

1391
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1392 1393
		chv_set_memory_dvfs(dev_priv, true);

1394
	*old_wm = new_wm;
1395 1396
}

1397 1398
#define single_plane_enabled(mask) is_power_of_2(mask)

1399
static void g4x_update_wm(struct intel_crtc *crtc)
1400
{
1401
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 1403 1404 1405
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1406
	bool cxsr_enabled;
1407

1408
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1409 1410
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1411
			    &planea_wm, &cursora_wm))
1412
		enabled |= 1 << PIPE_A;
1413

1414
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1415 1416
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1417
			    &planeb_wm, &cursorb_wm))
1418
		enabled |= 1 << PIPE_B;
1419 1420

	if (single_plane_enabled(enabled) &&
1421
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1422 1423 1424
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1425
			     &plane_sr, &cursor_sr)) {
1426
		cxsr_enabled = true;
1427
	} else {
1428
		cxsr_enabled = false;
1429
		intel_set_memory_cxsr(dev_priv, false);
1430 1431
		plane_sr = cursor_sr = 0;
	}
1432

1433 1434
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1435 1436 1437 1438 1439
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1440 1441 1442 1443
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1444
	I915_WRITE(DSPFW2,
1445
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1446
		   FW_WM(cursora_wm, CURSORA));
1447 1448
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1449
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1450
		   FW_WM(cursor_sr, CURSOR_SR));
1451 1452 1453

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1454 1455
}

1456
static void i965_update_wm(struct intel_crtc *unused_crtc)
1457
{
1458
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1459
	struct intel_crtc *crtc;
1460 1461
	int srwm = 1;
	int cursor_sr = 16;
1462
	bool cxsr_enabled;
1463 1464

	/* Calc sr entries for one plane configs */
1465
	crtc = single_enabled_crtc(dev_priv);
1466 1467 1468
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1469 1470 1471 1472
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1473
		int clock = adjusted_mode->crtc_clock;
1474
		int htotal = adjusted_mode->crtc_htotal;
1475 1476
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1477 1478 1479
		unsigned long line_time_us;
		int entries;

1480
		line_time_us = max(htotal * 1000 / clock, 1);
1481 1482 1483

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1484
			cpp * hdisplay;
1485 1486 1487 1488 1489 1490 1491 1492 1493
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1494
			cpp * crtc->base.cursor->state->crtc_w;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1506
		cxsr_enabled = true;
1507
	} else {
1508
		cxsr_enabled = false;
1509
		/* Turn off self refresh if both pipes are enabled */
1510
		intel_set_memory_cxsr(dev_priv, false);
1511 1512 1513 1514 1515 1516
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1517 1518 1519 1520 1521 1522
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1523
	/* update cursor SR watermark */
1524
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1525 1526 1527

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1528 1529
}

1530 1531
#undef FW_WM

1532
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1533
{
1534
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1535 1536 1537 1538 1539 1540
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1541
	struct intel_crtc *crtc, *enabled = NULL;
1542

1543
	if (IS_I945GM(dev_priv))
1544
		wm_info = &i945_wm_info;
1545
	else if (!IS_GEN2(dev_priv))
1546 1547
		wm_info = &i915_wm_info;
	else
1548
		wm_info = &i830_a_wm_info;
1549

1550
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1551
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1552 1553 1554 1555 1556 1557 1558
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1559
		if (IS_GEN2(dev_priv))
1560
			cpp = 4;
1561 1562
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1563

1564
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1565
					       wm_info, fifo_size, cpp,
1566
					       pessimal_latency_ns);
1567
		enabled = crtc;
1568
	} else {
1569
		planea_wm = fifo_size - wm_info->guard_size;
1570 1571 1572 1573
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1574
	if (IS_GEN2(dev_priv))
1575
		wm_info = &i830_bc_wm_info;
1576

1577
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1578
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1579 1580 1581 1582 1583 1584 1585
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1586
		if (IS_GEN2(dev_priv))
1587
			cpp = 4;
1588 1589
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1590

1591
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1592
					       wm_info, fifo_size, cpp,
1593
					       pessimal_latency_ns);
1594 1595 1596 1597
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1598
	} else {
1599
		planeb_wm = fifo_size - wm_info->guard_size;
1600 1601 1602
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1603 1604 1605

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1606
	if (IS_I915GM(dev_priv) && enabled) {
1607
		struct drm_i915_gem_object *obj;
1608

1609
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1610 1611

		/* self-refresh seems busted with untiled */
1612
		if (!i915_gem_object_is_tiled(obj))
1613 1614 1615
			enabled = NULL;
	}

1616 1617 1618 1619 1620 1621
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1622
	intel_set_memory_cxsr(dev_priv, false);
1623 1624

	/* Calc sr entries for one plane configs */
1625
	if (HAS_FW_BLC(dev_priv) && enabled) {
1626 1627
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1628 1629 1630 1631
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1632
		int clock = adjusted_mode->crtc_clock;
1633
		int htotal = adjusted_mode->crtc_htotal;
1634 1635
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1636 1637 1638
		unsigned long line_time_us;
		int entries;

1639
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1640
			cpp = 4;
1641 1642
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1643

1644
		line_time_us = max(htotal * 1000 / clock, 1);
1645 1646 1647

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1648
			cpp * hdisplay;
1649 1650 1651 1652 1653 1654
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1655
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1656 1657
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1658
		else
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1675 1676
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1677 1678
}

1679
static void i845_update_wm(struct intel_crtc *unused_crtc)
1680
{
1681
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1682
	struct intel_crtc *crtc;
1683
	const struct drm_display_mode *adjusted_mode;
1684 1685 1686
	uint32_t fwater_lo;
	int planea_wm;

1687
	crtc = single_enabled_crtc(dev_priv);
1688 1689 1690
	if (crtc == NULL)
		return;

1691
	adjusted_mode = &crtc->config->base.adjusted_mode;
1692
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1693
				       &i845_wm_info,
1694
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1695
				       4, pessimal_latency_ns);
1696 1697 1698 1699 1700 1701 1702 1703
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1704
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1705
{
1706
	uint32_t pixel_rate;
1707

1708
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1709 1710 1711 1712

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1713
	if (pipe_config->pch_pfit.enabled) {
1714
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1715 1716 1717 1718
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1719 1720 1721 1722 1723 1724 1725 1726

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1727 1728 1729
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1730 1731 1732 1733 1734 1735 1736
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1737
/* latency must be in 0.1us units. */
1738
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1739 1740 1741
{
	uint64_t ret;

1742 1743 1744
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1745
	ret = (uint64_t) pixel_rate * cpp * latency;
1746 1747 1748 1749 1750
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1751
/* latency must be in 0.1us units. */
1752
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1753
			       uint32_t horiz_pixels, uint8_t cpp,
1754 1755 1756 1757
			       uint32_t latency)
{
	uint32_t ret;

1758 1759
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1760 1761
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1762

1763
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1764
	ret = (ret + 1) * horiz_pixels * cpp;
1765 1766 1767 1768
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1769
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1770
			   uint8_t cpp)
1771
{
1772 1773 1774 1775 1776 1777
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1778
	if (WARN_ON(!cpp))
1779 1780 1781 1782
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1783
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1784 1785
}

1786
struct ilk_wm_maximums {
1787 1788 1789 1790 1791 1792
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1793 1794 1795 1796
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1797
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1798
				   const struct intel_plane_state *pstate,
1799 1800
				   uint32_t mem_value,
				   bool is_lp)
1801
{
1802 1803
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804 1805
	uint32_t method1, method2;

1806
	if (!cstate->base.active || !pstate->base.visible)
1807 1808
		return 0;

1809
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810 1811 1812 1813

	if (!is_lp)
		return method1;

1814 1815
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1816
				 drm_rect_width(&pstate->base.dst),
1817
				 cpp, mem_value);
1818 1819

	return min(method1, method2);
1820 1821
}

1822 1823 1824 1825
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1826
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1827
				   const struct intel_plane_state *pstate,
1828 1829
				   uint32_t mem_value)
{
1830 1831
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1832 1833
	uint32_t method1, method2;

1834
	if (!cstate->base.active || !pstate->base.visible)
1835 1836
		return 0;

1837
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1838 1839
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1840
				 drm_rect_width(&pstate->base.dst),
1841
				 cpp, mem_value);
1842 1843 1844
	return min(method1, method2);
}

1845 1846 1847 1848
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1849
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1850
				   const struct intel_plane_state *pstate,
1851 1852
				   uint32_t mem_value)
{
1853 1854 1855 1856 1857 1858
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1859
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1860

1861
	if (!cstate->base.active)
1862 1863
		return 0;

1864 1865
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1866
			      width, cpp, mem_value);
1867 1868
}

1869
/* Only for WM_LP. */
1870
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1871
				   const struct intel_plane_state *pstate,
1872
				   uint32_t pri_val)
1873
{
1874 1875
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1876

1877
	if (!cstate->base.active || !pstate->base.visible)
1878 1879
		return 0;

1880
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1881 1882
}

1883 1884
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1885
{
1886
	if (INTEL_GEN(dev_priv) >= 8)
1887
		return 3072;
1888
	else if (INTEL_GEN(dev_priv) >= 7)
1889 1890 1891 1892 1893
		return 768;
	else
		return 512;
}

1894 1895 1896
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1897
{
1898
	if (INTEL_GEN(dev_priv) >= 8)
1899 1900
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1901
	else if (INTEL_GEN(dev_priv) >= 7)
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1912 1913
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1914
{
1915
	if (INTEL_GEN(dev_priv) >= 7)
1916 1917 1918 1919 1920
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1921
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1922
{
1923
	if (INTEL_GEN(dev_priv) >= 8)
1924 1925 1926 1927 1928
		return 31;
	else
		return 15;
}

1929 1930 1931
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1932
				     const struct intel_wm_config *config,
1933 1934 1935
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1936 1937
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1938 1939

	/* if sprites aren't enabled, sprites get nothing */
1940
	if (is_sprite && !config->sprites_enabled)
1941 1942 1943
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1944
	if (level == 0 || config->num_pipes_active > 1) {
1945
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1946 1947 1948 1949 1950 1951

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1952
		if (INTEL_GEN(dev_priv) <= 6)
1953 1954 1955
			fifo_size /= 2;
	}

1956
	if (config->sprites_enabled) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1968
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1969 1970 1971 1972
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1973 1974
				      int level,
				      const struct intel_wm_config *config)
1975 1976
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1977
	if (level > 0 && config->num_pipes_active > 1)
1978 1979 1980
		return 64;

	/* otherwise just report max that registers can hold */
1981
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1982 1983
}

1984
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1985 1986 1987
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1988
				    struct ilk_wm_maximums *max)
1989
{
1990 1991 1992
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1993
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1994 1995
}

1996
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1997 1998 1999
					int level,
					struct ilk_wm_maximums *max)
{
2000 2001 2002 2003
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2004 2005
}

2006
static bool ilk_validate_wm_level(int level,
2007
				  const struct ilk_wm_maximums *max,
2008
				  struct intel_wm_level *result)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2047
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2048
				 const struct intel_crtc *intel_crtc,
2049
				 int level,
2050
				 struct intel_crtc_state *cstate,
2051 2052 2053
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2054
				 struct intel_wm_level *result)
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2079 2080 2081
	result->enable = true;
}

2082
static uint32_t
2083
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2084
{
2085 2086
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2087 2088
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2089
	u32 linetime, ips_linetime;
2090

2091 2092 2093 2094
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2095
	if (WARN_ON(intel_state->cdclk == 0))
2096
		return 0;
2097

2098 2099 2100
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2101 2102 2103
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2104
					 intel_state->cdclk);
2105

2106 2107
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2108 2109
}

2110 2111
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2112
{
2113
	if (IS_GEN9(dev_priv)) {
2114
		uint32_t val;
2115
		int ret, i;
2116
		int level, max_level = ilk_wm_max_level(dev_priv);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2172
		/*
2173 2174
		 * WaWmMemoryReadLatency:skl
		 *
2175
		 * punit doesn't take into account the read latency so we need
2176 2177
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2178
		 */
2179 2180 2181 2182 2183
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2184
				wm[level] += 2;
2185
			}
2186 2187
		}

2188
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2189 2190 2191 2192 2193
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2194 2195 2196 2197
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2198
	} else if (INTEL_GEN(dev_priv) >= 6) {
2199 2200 2201 2202 2203 2204
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2205
	} else if (INTEL_GEN(dev_priv) >= 5) {
2206 2207 2208 2209 2210 2211
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2212 2213 2214
	}
}

2215 2216
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2217 2218
{
	/* ILK sprite LP0 latency is 1300 ns */
2219
	if (IS_GEN5(dev_priv))
2220 2221 2222
		wm[0] = 13;
}

2223 2224
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2225 2226
{
	/* ILK cursor LP0 latency is 1300 ns */
2227
	if (IS_GEN5(dev_priv))
2228 2229 2230
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2231
	if (IS_IVYBRIDGE(dev_priv))
2232 2233 2234
		wm[3] *= 2;
}

2235
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2236 2237
{
	/* how many WM levels are we expecting */
2238
	if (INTEL_GEN(dev_priv) >= 9)
2239
		return 7;
2240
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2241
		return 4;
2242
	else if (INTEL_GEN(dev_priv) >= 6)
2243
		return 3;
2244
	else
2245 2246
		return 2;
}
2247

2248
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2249
				   const char *name,
2250
				   const uint16_t wm[8])
2251
{
2252
	int level, max_level = ilk_wm_max_level(dev_priv);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2263 2264 2265 2266
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2267
		if (IS_GEN9(dev_priv))
2268 2269
			latency *= 10;
		else if (level > 0)
2270 2271 2272 2273 2274 2275 2276 2277
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2278 2279 2280
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2281
	int level, max_level = ilk_wm_max_level(dev_priv);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2293
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2309 2310 2311
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2312 2313
}

2314
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2315
{
2316
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2317 2318 2319 2320 2321 2322

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2323
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2324
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2325

2326 2327 2328
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2329

2330
	if (IS_GEN6(dev_priv))
2331
		snb_wm_latency_quirk(dev_priv);
2332 2333
}

2334
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2335
{
2336
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2337
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2338 2339
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2363
/* Compute new watermarks for the pipe */
2364
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2365
{
2366 2367
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2368
	struct intel_pipe_wm *pipe_wm;
2369
	struct drm_device *dev = state->dev;
2370
	const struct drm_i915_private *dev_priv = to_i915(dev);
2371
	struct intel_plane *intel_plane;
2372
	struct intel_plane_state *pristate = NULL;
2373
	struct intel_plane_state *sprstate = NULL;
2374
	struct intel_plane_state *curstate = NULL;
2375
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2376
	struct ilk_wm_maximums max;
2377

2378
	pipe_wm = &cstate->wm.ilk.optimal;
2379

2380
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2381 2382 2383 2384 2385 2386
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2387 2388

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2389
			pristate = ps;
2390
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2391
			sprstate = ps;
2392
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2393
			curstate = ps;
2394 2395
	}

2396
	pipe_wm->pipe_enabled = cstate->base.active;
2397
	if (sprstate) {
2398 2399 2400 2401
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2402 2403
	}

2404 2405
	usable_level = max_level;

2406
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2407
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2408
		usable_level = 1;
2409 2410

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2411
	if (pipe_wm->sprites_scaled)
2412
		usable_level = 0;
2413

2414
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2415 2416 2417 2418
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2419

2420
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2421
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2422

2423
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2424
		return -EINVAL;
2425

2426
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2427 2428

	for (level = 1; level <= max_level; level++) {
2429
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2430

2431
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2432
				     pristate, sprstate, curstate, wm);
2433 2434 2435 2436 2437 2438

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2439 2440 2441 2442 2443 2444
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2445
			usable_level = level;
2446 2447
	}

2448
	return 0;
2449 2450
}

2451 2452 2453 2454 2455 2456 2457 2458 2459
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2460
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2461
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2462
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2463 2464 2465 2466 2467 2468

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2469
	*a = newstate->wm.ilk.optimal;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2498
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2499 2500 2501 2502 2503
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2513 2514
	ret_wm->enable = true;

2515
	for_each_intel_crtc(dev, intel_crtc) {
2516
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2517 2518 2519 2520
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2521

2522 2523 2524 2525 2526
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2527
		if (!wm->enable)
2528
			ret_wm->enable = false;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2541
			 const struct intel_wm_config *config,
2542
			 const struct ilk_wm_maximums *max,
2543 2544
			 struct intel_pipe_wm *merged)
{
2545
	struct drm_i915_private *dev_priv = to_i915(dev);
2546
	int level, max_level = ilk_wm_max_level(dev_priv);
2547
	int last_enabled_level = max_level;
2548

2549
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2550
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2551
	    config->num_pipes_active > 1)
2552
		last_enabled_level = 0;
2553

2554
	/* ILK: FBC WM must be disabled always */
2555
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2556 2557 2558 2559 2560 2561 2562

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2563 2564 2565 2566 2567
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2568 2569 2570 2571 2572 2573

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2574 2575
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2576 2577 2578
			wm->fbc_val = 0;
		}
	}
2579 2580 2581 2582 2583 2584 2585

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2586
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2587
	    intel_fbc_is_active(dev_priv)) {
2588 2589 2590 2591 2592 2593
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2594 2595
}

2596 2597 2598 2599 2600 2601
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2602 2603 2604
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2605
	struct drm_i915_private *dev_priv = to_i915(dev);
2606

2607
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2608 2609 2610 2611 2612
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2613
static void ilk_compute_wm_results(struct drm_device *dev,
2614
				   const struct intel_pipe_wm *merged,
2615
				   enum intel_ddb_partitioning partitioning,
2616
				   struct ilk_wm_values *results)
2617
{
2618
	struct drm_i915_private *dev_priv = to_i915(dev);
2619 2620
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2621

2622
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2623
	results->partitioning = partitioning;
2624

2625
	/* LP1+ register values */
2626
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2627
		const struct intel_wm_level *r;
2628

2629
		level = ilk_wm_lp_to_level(wm_lp, merged);
2630

2631
		r = &merged->wm[level];
2632

2633 2634 2635 2636 2637
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2638
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2639 2640 2641
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2642 2643 2644
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2645
		if (INTEL_GEN(dev_priv) >= 8)
2646 2647 2648 2649 2650 2651
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2652 2653 2654 2655
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2656
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2657 2658 2659 2660
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2661
	}
2662

2663
	/* LP0 register values */
2664
	for_each_intel_crtc(dev, intel_crtc) {
2665
		enum pipe pipe = intel_crtc->pipe;
2666 2667
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2668 2669 2670 2671

		if (WARN_ON(!r->enable))
			continue;

2672
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2673

2674 2675 2676 2677
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2678 2679 2680
	}
}

2681 2682
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2683
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2684 2685
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2686
{
2687
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2688
	int level1 = 0, level2 = 0;
2689

2690 2691 2692 2693 2694
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2695 2696
	}

2697 2698
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2699 2700 2701
			return r2;
		else
			return r1;
2702
	} else if (level1 > level2) {
2703 2704 2705 2706 2707 2708
		return r1;
	} else {
		return r2;
	}
}

2709 2710 2711 2712 2713 2714 2715 2716
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2717
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2718 2719
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2720 2721 2722 2723 2724
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2725
	for_each_pipe(dev_priv, pipe) {
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2769 2770
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2771
{
2772
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2773
	bool changed = false;
2774

2775 2776 2777
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2778
		changed = true;
2779 2780 2781 2782
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2783
		changed = true;
2784 2785 2786 2787
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2788
		changed = true;
2789
	}
2790

2791 2792 2793 2794
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2795

2796 2797 2798 2799 2800 2801 2802
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2803 2804
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2805
{
2806
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2807 2808 2809
	unsigned int dirty;
	uint32_t val;

2810
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2811 2812 2813 2814 2815
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2816
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2817
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2818
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2819
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2820
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2821 2822
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2823
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2824
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2825
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2826
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2827
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2828 2829
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2830
	if (dirty & WM_DIRTY_DDB) {
2831
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2846 2847
	}

2848
	if (dirty & WM_DIRTY_FBC) {
2849 2850 2851 2852 2853 2854 2855 2856
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2857 2858 2859 2860
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2861
	if (INTEL_GEN(dev_priv) >= 7) {
2862 2863 2864 2865 2866
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2867

2868
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2869
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2870
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2871
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2872
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2873
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2874 2875

	dev_priv->wm.hw = *results;
2876 2877
}

2878
bool ilk_disable_lp_wm(struct drm_device *dev)
2879
{
2880
	struct drm_i915_private *dev_priv = to_i915(dev);
2881 2882 2883 2884

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2885
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2902 2903 2904
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2905 2906 2907 2908 2909 2910 2911 2912
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2913 2914
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2927
intel_enable_sagv(struct drm_i915_private *dev_priv)
2928 2929 2930
{
	int ret;

2931 2932 2933 2934
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2950
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2951
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2952
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2953 2954 2955 2956 2957 2958
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2959
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2960 2961 2962 2963
	return 0;
}

static int
2964
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2978
intel_disable_sagv(struct drm_i915_private *dev_priv)
2979 2980 2981
{
	int ret, result;

2982 2983 2984 2985
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2986 2987 2988 2989 2990 2991
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2992
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3004
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3005
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3006
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3007 3008 3009 3010 3011 3012
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3013
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3014 3015 3016
	return 0;
}

3017
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3018 3019 3020 3021
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3022 3023
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3024
	struct intel_crtc_state *cstate;
3025
	enum pipe pipe;
3026
	int level, latency;
3027

3028 3029 3030
	if (!intel_has_sagv(dev_priv))
		return false;

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3044
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3045
	cstate = to_intel_crtc_state(crtc->base.state);
3046

3047
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3048 3049
		return false;

3050
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3051 3052
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3053

3054
		/* Skip this plane if it's not enabled */
3055
		if (!wm->wm[0].plane_en)
3056 3057 3058
			continue;

		/* Find the highest enabled wm level for this plane */
3059
		for (level = ilk_wm_max_level(dev_priv);
3060
		     !wm->wm[level].plane_en; --level)
3061 3062
		     { }

3063 3064 3065
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3066
		    plane->base.state->fb->modifier ==
3067 3068 3069
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3070 3071 3072 3073 3074
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3075
		if (latency < SKL_SAGV_BLOCK_TIME)
3076 3077 3078 3079 3080 3081
			return false;
	}

	return true;
}

3082 3083
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3084
				   const struct intel_crtc_state *cstate,
3085 3086
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3087
{
3088 3089 3090
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3091
	struct drm_crtc *for_crtc = cstate->base.crtc;
3092 3093
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3094

3095
	if (WARN_ON(!state) || !cstate->base.active) {
3096 3097
		alloc->start = 0;
		alloc->end = 0;
3098
		*num_active = hweight32(dev_priv->active_crtcs);
3099 3100 3101
		return;
	}

3102 3103 3104 3105 3106
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3107 3108
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3109 3110 3111

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3112
	/*
3113 3114 3115 3116 3117 3118
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3119
	 */
3120
	if (!intel_state->active_pipe_changes) {
3121 3122 3123 3124 3125
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3126
		return;
3127
	}
3128 3129 3130 3131 3132 3133

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3134 3135
}

3136
static unsigned int skl_cursor_allocation(int num_active)
3137
{
3138
	if (num_active == 1)
3139 3140 3141 3142 3143
		return 32;

	return 8;
}

3144 3145 3146 3147
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3148 3149
	if (entry->end)
		entry->end += 1;
3150 3151
}

3152 3153
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3154
{
3155
	struct intel_crtc *crtc;
3156

3157 3158
	memset(ddb, 0, sizeof(*ddb));

3159
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3160
		enum intel_display_power_domain power_domain;
3161 3162
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3163 3164 3165

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3166 3167
			continue;

3168 3169 3170 3171 3172 3173 3174
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3175

3176 3177
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3178 3179

		intel_display_power_put(dev_priv, power_domain);
3180 3181 3182
	}
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3205
	if (WARN_ON(!pstate->base.visible))
3206 3207 3208
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3209 3210 3211 3212
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3213
	if (drm_rotation_90_or_270(pstate->base.rotation))
3214 3215 3216 3217 3218 3219 3220 3221 3222
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3223
static unsigned int
3224 3225 3226
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3227
{
3228
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3229
	struct drm_framebuffer *fb = pstate->fb;
3230
	uint32_t down_scale_amount, data_rate;
3231
	uint32_t width = 0, height = 0;
3232 3233
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3234
	if (!intel_pstate->base.visible)
3235 3236 3237 3238 3239
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3240

3241 3242
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3243

3244
	if (drm_rotation_90_or_270(pstate->rotation))
3245
		swap(width, height);
3246 3247

	/* for planar format */
3248
	if (format == DRM_FORMAT_NV12) {
3249
		if (y)  /* y-plane data rate */
3250
			data_rate = width * height *
3251
				drm_format_plane_cpp(format, 0);
3252
		else    /* uv-plane data rate */
3253
			data_rate = (width / 2) * (height / 2) *
3254
				drm_format_plane_cpp(format, 1);
3255 3256 3257
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3258 3259
	}

3260 3261 3262
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3263 3264 3265 3266 3267 3268 3269 3270
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3271 3272 3273
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3274
{
3275 3276
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3277 3278
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3279
	unsigned int total_data_rate = 0;
3280 3281 3282

	if (WARN_ON(!state))
		return 0;
3283

3284
	/* Calculate and cache data rate for each plane */
3285
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3286 3287
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3288 3289 3290 3291

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3292
		plane_data_rate[plane_id] = rate;
3293 3294

		total_data_rate += rate;
3295 3296 3297 3298

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3299
		plane_y_data_rate[plane_id] = rate;
3300

3301
		total_data_rate += rate;
3302 3303 3304 3305 3306
	}

	return total_data_rate;
}

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3325 3326
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3327 3328
		return 8;

3329 3330
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3331

3332
	if (drm_rotation_90_or_270(pstate->rotation))
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3346
	if (drm_rotation_90_or_270(pstate->rotation)) {
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3370 3371 3372 3373 3374 3375 3376 3377
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3378
		enum plane_id plane_id = to_intel_plane(plane)->id;
3379

3380
		if (plane_id == PLANE_CURSOR)
3381 3382 3383 3384 3385
			continue;

		if (!pstate->visible)
			continue;

3386 3387
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3388 3389 3390 3391 3392
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3393
static int
3394
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3395 3396
		      struct skl_ddb_allocation *ddb /* out */)
{
3397
	struct drm_atomic_state *state = cstate->base.state;
3398
	struct drm_crtc *crtc = cstate->base.crtc;
3399 3400 3401
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3402
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3403
	uint16_t alloc_size, start;
3404 3405
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3406
	unsigned int total_data_rate;
3407
	enum plane_id plane_id;
3408
	int num_active;
3409 3410
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3411

3412 3413 3414 3415
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3416 3417 3418
	if (WARN_ON(!state))
		return 0;

3419
	if (!cstate->base.active) {
3420
		alloc->start = alloc->end = 0;
3421 3422 3423
		return 0;
	}

3424
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3425
	alloc_size = skl_ddb_entry_size(alloc);
3426 3427
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3428
		return 0;
3429 3430
	}

3431
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3432

3433 3434 3435 3436 3437
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3438

3439 3440 3441
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3442 3443
	}

3444 3445 3446
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3447
	/*
3448 3449
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3450 3451 3452
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3453 3454 3455
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3456
	if (total_data_rate == 0)
3457
		return 0;
3458

3459
	start = alloc->start;
3460
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3461 3462
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3463

3464
		if (plane_id == PLANE_CURSOR)
3465 3466
			continue;

3467
		data_rate = plane_data_rate[plane_id];
3468 3469

		/*
3470
		 * allocation for (packed formats) or (uv-plane part of planar format):
3471 3472 3473
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3474
		plane_blocks = minimum[plane_id];
3475 3476
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3477

3478 3479
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3480 3481
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3482
		}
3483 3484

		start += plane_blocks;
3485 3486 3487 3488

		/*
		 * allocation for y_plane part of planar format:
		 */
3489
		y_data_rate = plane_y_data_rate[plane_id];
3490

3491
		y_plane_blocks = y_minimum[plane_id];
3492 3493
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3494

3495
		if (y_data_rate) {
3496 3497
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3498
		}
3499 3500

		start += y_plane_blocks;
3501 3502
	}

3503
	return 0;
3504 3505
}

3506 3507
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3508
 * for the read latency) and cpp should always be <= 8, so that
3509 3510 3511
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3512
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3513 3514 3515 3516 3517 3518
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3519
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3520 3521 3522 3523 3524 3525
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3526
			       uint32_t latency, uint32_t plane_blocks_per_line)
3527
{
3528 3529
	uint32_t ret;
	uint32_t wm_intermediate_val;
3530 3531 3532 3533 3534 3535

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3536
				plane_blocks_per_line;
3537 3538 3539 3540

	return ret;
}

3541 3542 3543 3544 3545 3546 3547 3548
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3549
	if (WARN_ON(!pstate->base.visible))
3550 3551 3552 3553 3554 3555
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3556
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3557 3558 3559 3560 3561 3562 3563 3564
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3565 3566 3567 3568 3569 3570 3571 3572
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3573
{
3574 3575
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3576 3577 3578 3579 3580
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3581
	uint8_t cpp;
3582
	uint32_t width = 0, height = 0;
3583
	uint32_t plane_pixel_rate;
3584
	uint32_t y_tile_minimum, y_min_scanlines;
3585 3586 3587
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3588
	bool y_tiled, x_tiled;
3589

3590
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3591 3592 3593
		*enabled = false;
		return 0;
	}
3594

3595 3596 3597 3598
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3599 3600 3601 3602
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3603
	if (apply_memory_bw_wa && x_tiled)
3604 3605
		latency += 15;

3606 3607
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3608

3609
	if (drm_rotation_90_or_270(pstate->rotation))
3610 3611
		swap(width, height);

3612
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3613 3614
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3615
	if (drm_rotation_90_or_270(pstate->rotation)) {
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3630 3631 3632
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3633 3634 3635 3636 3637
		}
	} else {
		y_min_scanlines = 4;
	}

3638 3639 3640
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3641
	plane_bytes_per_line = width * cpp;
3642
	if (y_tiled) {
3643 3644 3645
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
3646 3647 3648
	} else if (x_tiled) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	} else {
3649 3650 3651 3652
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	}

3653 3654
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3655
				 cstate->base.adjusted_mode.crtc_htotal,
3656
				 latency,
3657
				 plane_blocks_per_line);
3658

3659 3660
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3661
	if (y_tiled) {
3662 3663
		selected_result = max(method2, y_tile_minimum);
	} else {
3664 3665 3666 3667
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3668 3669 3670 3671
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3672

3673 3674
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3675

3676
	if (level >= 1 && level <= 7) {
3677
		if (y_tiled) {
3678
			res_blocks += y_tile_minimum;
3679
			res_lines += y_min_scanlines;
3680
		} else {
3681
			res_blocks++;
3682
		}
3683
	}
3684

3685 3686
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3687 3688 3689 3690 3691 3692 3693 3694

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3695 3696
			struct drm_plane *plane = pstate->plane;

3697
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3698 3699
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3700 3701 3702
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3703
	}
3704 3705 3706

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3707
	*enabled = true;
3708

3709
	return 0;
3710 3711
}

3712 3713 3714 3715
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3716
		     struct intel_plane *intel_plane,
3717 3718
		     int level,
		     struct skl_wm_level *result)
3719
{
3720
	struct drm_atomic_state *state = cstate->base.state;
3721
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3722 3723
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3724
	uint16_t ddb_blocks;
3725
	enum pipe pipe = intel_crtc->pipe;
3726
	int ret;
L
Lyude 已提交
3727 3728 3729 3730 3731

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3732

3733
	/*
L
Lyude 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3743
	 */
L
Lyude 已提交
3744 3745
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3746

L
Lyude 已提交
3747
	WARN_ON(!intel_pstate->base.fb);
3748

3749
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3750

L
Lyude 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3761 3762

	return 0;
3763 3764
}

3765
static uint32_t
3766
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3767
{
M
Mahesh Kumar 已提交
3768 3769
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3770
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3771
	uint32_t linetime_wm;
3772

3773
	if (!cstate->base.active)
3774 3775
		return 0;

3776 3777 3778
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3779
		return 0;
3780

M
Mahesh Kumar 已提交
3781 3782 3783 3784 3785 3786 3787 3788
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3789 3790
}

3791
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3792
				      struct skl_wm_level *trans_wm /* out */)
3793
{
3794
	if (!cstate->base.active)
3795
		return;
3796 3797

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3798
	trans_wm->plane_en = false;
3799 3800
}

3801 3802 3803
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3804
{
3805
	struct drm_device *dev = cstate->base.crtc->dev;
3806
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3807 3808
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3809
	int level, max_level = ilk_wm_max_level(dev_priv);
3810
	int ret;
3811

L
Lyude 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3821
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3831
	}
3832
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3833

3834
	return 0;
3835 3836
}

3837 3838
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3839 3840 3841 3842 3843 3844 3845 3846
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3862 3863 3864
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3865
			       enum plane_id plane_id)
3866 3867 3868 3869
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3870
	int level, max_level = ilk_wm_max_level(dev_priv);
3871 3872 3873
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3874
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3875
				   &wm->wm[level]);
3876
	}
3877
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3878
			   &wm->trans_wm);
3879

3880 3881 3882 3883
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3884 3885
}

3886 3887 3888
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3889 3890 3891 3892
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3893
	int level, max_level = ilk_wm_max_level(dev_priv);
3894 3895 3896
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3897 3898
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3899
	}
3900
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3901

3902
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3903
			    &ddb->plane[pipe][PLANE_CURSOR]);
3904 3905
}

3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3920 3921
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3922
{
3923
	return a->start < b->end && b->start < a->end;
3924 3925
}

3926 3927 3928
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3929
{
3930
	int i;
3931

3932 3933 3934
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3935
			return true;
3936

3937
	return false;
3938 3939
}

3940
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3941
			      const struct skl_pipe_wm *old_pipe_wm,
3942
			      struct skl_pipe_wm *pipe_wm, /* out */
3943
			      struct skl_ddb_allocation *ddb, /* out */
3944
			      bool *changed /* out */)
3945
{
3946
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3947
	int ret;
3948

3949 3950 3951
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3952

3953
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3954 3955 3956
		*changed = false;
	else
		*changed = true;
3957

3958
	return 0;
3959 3960
}

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3974
static int
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3991
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3992
		enum plane_id plane_id = to_intel_plane(plane)->id;
3993

3994 3995 3996 3997
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4008 4009 4010 4011 4012 4013 4014
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4015
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4016
	uint32_t realloc_pipes = pipes_modified(state);
4017 4018 4019 4020 4021 4022 4023 4024
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4025 4026 4027 4028 4029 4030
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4031 4032
		intel_state->active_pipe_changes = ~0;

4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4056
	if (intel_state->active_pipe_changes) {
4057
		realloc_pipes = ~0;
4058 4059
		intel_state->wm_results.dirty_pipes = ~0;
	}
4060

4061 4062 4063 4064 4065 4066
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4067 4068 4069 4070 4071 4072 4073
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4074
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4075 4076
		if (ret)
			return ret;
4077

4078
		ret = skl_ddb_add_affected_planes(cstate);
4079 4080
		if (ret)
			return ret;
4081 4082 4083 4084 4085
	}

	return 0;
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4109
	int i;
4110 4111

	for_each_crtc_in_state(state, crtc, cstate, i) {
4112 4113
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4114

4115
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4116
			enum plane_id plane_id = intel_plane->id;
4117 4118
			const struct skl_ddb_entry *old, *new;

4119 4120
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4121 4122 4123 4124

			if (skl_ddb_entry_equal(old, new))
				continue;

4125 4126 4127 4128 4129
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4130 4131 4132 4133
		}
	}
}

4134 4135 4136 4137 4138
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4139 4140 4141
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4142
	bool changed = false;
4143
	int ret, i;
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4158 4159 4160
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4161 4162 4163 4164
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4178 4179
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4180 4181

		pipe_wm = &intel_cstate->wm.skl.optimal;
4182 4183
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4197 4198
	skl_print_wm_changes(state);

4199 4200 4201
	return 0;
}

4202 4203 4204 4205 4206 4207
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4208
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4209
	enum pipe pipe = crtc->pipe;
4210
	enum plane_id plane_id;
4211 4212 4213

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4214 4215

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4216

4217 4218 4219 4220 4221 4222 4223 4224
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4225 4226
}

4227 4228
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4229
{
4230
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4231
	struct drm_device *dev = intel_crtc->base.dev;
4232
	struct drm_i915_private *dev_priv = to_i915(dev);
4233
	struct skl_wm_values *results = &state->wm_results;
4234
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4235
	enum pipe pipe = intel_crtc->pipe;
4236

4237
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4238 4239
		return;

4240
	mutex_lock(&dev_priv->wm.wm_mutex);
4241

4242 4243
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4244 4245

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4246 4247

	mutex_unlock(&dev_priv->wm.wm_mutex);
4248 4249
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4268
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4269
{
4270
	struct drm_device *dev = &dev_priv->drm;
4271
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4272
	struct ilk_wm_maximums max;
4273
	struct intel_wm_config config = {};
4274
	struct ilk_wm_values results = {};
4275
	enum intel_ddb_partitioning partitioning;
4276

4277 4278 4279 4280
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4281 4282

	/* 5/6 split only in single pipe config on IVB+ */
4283
	if (INTEL_GEN(dev_priv) >= 7 &&
4284 4285 4286
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4287

4288
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4289
	} else {
4290
		best_lp_wm = &lp_wm_1_2;
4291 4292
	}

4293
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4294
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4295

4296
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4297

4298
	ilk_write_wm_values(dev_priv, &results);
4299 4300
}

4301 4302
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4303
{
4304 4305
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4306

4307
	mutex_lock(&dev_priv->wm.wm_mutex);
4308
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4309 4310 4311
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4312

4313 4314
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4315 4316 4317
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4318

4319 4320
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4321
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4322 4323 4324
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4325 4326
}

4327 4328
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4329
{
4330 4331 4332 4333
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4334 4335
}

4336 4337
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4338
{
4339
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4340 4341
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4342 4343
	int level, max_level;
	enum plane_id plane_id;
4344
	uint32_t val;
4345

4346
	max_level = ilk_wm_max_level(dev_priv);
4347

4348 4349
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4350

4351
		for (level = 0; level <= max_level; level++) {
4352 4353
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4354 4355
			else
				val = I915_READ(CUR_WM(pipe, level));
4356

4357
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4358 4359
		}

4360 4361
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4362 4363 4364 4365
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4366 4367
	}

4368 4369
	if (!intel_crtc->active)
		return;
4370

4371
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4372 4373 4374 4375
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4376
	struct drm_i915_private *dev_priv = to_i915(dev);
4377
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4378
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4379
	struct drm_crtc *crtc;
4380 4381
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4382

4383
	skl_ddb_get_hw_state(dev_priv, ddb);
4384 4385 4386 4387 4388 4389
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4390
		if (intel_crtc->active)
4391 4392
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4393

4394 4395 4396 4397 4398 4399 4400
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4401 4402
}

4403 4404 4405
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4406
	struct drm_i915_private *dev_priv = to_i915(dev);
4407
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4408
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4409
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4410
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4411
	enum pipe pipe = intel_crtc->pipe;
4412
	static const i915_reg_t wm0_pipe_reg[] = {
4413 4414 4415 4416 4417 4418
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4419
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4420
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4421

4422 4423
	memset(active, 0, sizeof(*active));

4424
	active->pipe_enabled = intel_crtc->active;
4425 4426

	if (active->pipe_enabled) {
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4441
		int level, max_level = ilk_wm_max_level(dev_priv);
4442 4443 4444 4445 4446 4447 4448 4449 4450

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4451 4452

	intel_crtc->wm.active.ilk = *active;
4453 4454
}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4469
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4470
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4471
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4472
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4473
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4474
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4475
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4476 4477 4478 4479 4480
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4481 4482 4483
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4484 4485

	tmp = I915_READ(DSPFW2);
4486 4487 4488
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4489 4490 4491 4492 4493 4494

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4495 4496
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4497 4498

		tmp = I915_READ(DSPFW8_CHV);
4499 4500
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4501 4502

		tmp = I915_READ(DSPFW9_CHV);
4503 4504
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4505 4506 4507

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4508 4509 4510 4511 4512 4513 4514 4515 4516
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4517 4518
	} else {
		tmp = I915_READ(DSPFW7);
4519 4520
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4521 4522 4523

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4524 4525 4526 4527 4528 4529
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4546 4547
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4559 4560 4561 4562 4563 4564 4565 4566 4567
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4568
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4582 4583 4584 4585 4586 4587

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4588 4589 4590 4591 4592
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4593 4594 4595 4596 4597

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4598 4599
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4600
	struct drm_i915_private *dev_priv = to_i915(dev);
4601
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4602 4603
	struct drm_crtc *crtc;

4604
	for_each_crtc(dev, crtc)
4605 4606 4607 4608 4609 4610 4611
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4612
	if (INTEL_GEN(dev_priv) >= 7) {
4613 4614 4615
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4616

4617
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4618 4619
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4620
	else if (IS_IVYBRIDGE(dev_priv))
4621 4622
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4623 4624 4625 4626 4627

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4660
void intel_update_watermarks(struct intel_crtc *crtc)
4661
{
4662
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4663 4664

	if (dev_priv->display.update_wm)
4665
		dev_priv->display.update_wm(crtc);
4666 4667
}

4668
/*
4669 4670 4671 4672 4673 4674 4675 4676
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4677
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4678 4679 4680
{
	u16 rgvswctl;

4681 4682
	assert_spin_locked(&mchdev_lock);

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4700
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4701
{
4702
	u32 rgvmodectl;
4703 4704
	u8 fmax, fmin, fstart, vstart;

4705 4706
	spin_lock_irq(&mchdev_lock);

4707 4708
	rgvmodectl = I915_READ(MEMMODECTL);

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4729
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4730 4731
		PXVFREQ_PX_SHIFT;

4732 4733
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4734

4735 4736 4737
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4754
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4755
		DRM_ERROR("stuck trying to change perf mode\n");
4756
	mdelay(1);
4757

4758
	ironlake_set_drps(dev_priv, fstart);
4759

4760 4761
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4762
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4763
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4764
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4765 4766

	spin_unlock_irq(&mchdev_lock);
4767 4768
}

4769
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4770
{
4771 4772 4773 4774 4775
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4776 4777 4778 4779 4780 4781 4782 4783 4784

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4785
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4786
	mdelay(1);
4787 4788
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4789
	mdelay(1);
4790

4791
	spin_unlock_irq(&mchdev_lock);
4792 4793
}

4794 4795 4796 4797 4798
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4799
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4800
{
4801
	u32 limits;
4802

4803 4804 4805 4806 4807 4808
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4809
	if (IS_GEN9(dev_priv)) {
4810 4811 4812 4813 4814 4815 4816 4817
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4818 4819 4820 4821

	return limits;
}

4822 4823 4824
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4825 4826
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4827 4828 4829 4830

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4831 4832
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4833 4834 4835 4836
			new_power = BETWEEN;
		break;

	case BETWEEN:
4837 4838
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4839
			new_power = LOW_POWER;
4840 4841
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4842 4843 4844 4845
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4846 4847
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4848 4849 4850 4851
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4852
	if (val <= dev_priv->rps.min_freq_softlimit)
4853
		new_power = LOW_POWER;
4854
	if (val >= dev_priv->rps.max_freq_softlimit)
4855 4856 4857 4858 4859 4860 4861 4862
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4863 4864
		ei_up = 16000;
		threshold_up = 95;
4865 4866

		/* Downclock if less than 85% busy over 32ms */
4867 4868
		ei_down = 32000;
		threshold_down = 85;
4869 4870 4871 4872
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4873 4874
		ei_up = 13000;
		threshold_up = 90;
4875 4876

		/* Downclock if less than 75% busy over 32ms */
4877 4878
		ei_down = 32000;
		threshold_down = 75;
4879 4880 4881 4882
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4883 4884
		ei_up = 10000;
		threshold_up = 85;
4885 4886

		/* Downclock if less than 60% busy over 32ms */
4887 4888
		ei_down = 32000;
		threshold_down = 60;
4889 4890 4891
		break;
	}

4892
	I915_WRITE(GEN6_RP_UP_EI,
4893
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4894
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4895 4896
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4897 4898

	I915_WRITE(GEN6_RP_DOWN_EI,
4899
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4900
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4911

4912
	dev_priv->rps.power = new_power;
4913 4914
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4915 4916 4917
	dev_priv->rps.last_adj = 0;
}

4918 4919 4920 4921 4922
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4923
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4924
	if (val < dev_priv->rps.max_freq_softlimit)
4925
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4926

4927 4928
	mask &= dev_priv->pm_rps_events;

4929
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4930 4931
}

4932 4933 4934
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4935
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4936
{
4937
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4938
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4939 4940
		return;

4941
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4942 4943
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4944

C
Chris Wilson 已提交
4945 4946 4947 4948 4949
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4950

4951
		if (IS_GEN9(dev_priv))
4952 4953
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4954
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4955 4956 4957 4958 4959 4960 4961
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4962
	}
4963 4964 4965 4966

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4967
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4968
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4969

4970 4971
	POSTING_READ(GEN6_RPNSWREQ);

4972
	dev_priv->rps.cur_freq = val;
4973
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4974 4975
}

4976
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4977 4978
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4979 4980
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4981

4982
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4983 4984 4985
		      "Odd GPU freq value\n"))
		val &= ~1;

4986 4987
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4988
	if (val != dev_priv->rps.cur_freq) {
4989
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4990 4991 4992
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4993 4994 4995 4996 4997

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4998
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4999 5000
 *
 * * If Gfx is Idle, then
5001 5002 5003
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5004 5005 5006
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5007
	u32 val = dev_priv->rps.idle_freq;
5008

5009
	if (dev_priv->rps.cur_freq <= val)
5010 5011
		return;

5012 5013 5014
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5015
	valleyview_set_rps(dev_priv, val);
5016
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5017 5018
}

5019 5020 5021 5022 5023 5024 5025 5026
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5027

5028 5029
		gen6_enable_rps_interrupts(dev_priv);

5030 5031 5032 5033 5034
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5035 5036 5037 5038
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5039 5040
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5041 5042 5043 5044 5045 5046 5047
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5048
	mutex_lock(&dev_priv->rps.hw_lock);
5049
	if (dev_priv->rps.enabled) {
5050
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5051
			vlv_set_rps_idle(dev_priv);
5052
		else
5053
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5054
		dev_priv->rps.last_adj = 0;
5055 5056
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5057
	}
5058
	mutex_unlock(&dev_priv->rps.hw_lock);
5059

5060
	spin_lock(&dev_priv->rps.client_lock);
5061 5062
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5063
	spin_unlock(&dev_priv->rps.client_lock);
5064 5065
}

5066
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5067 5068
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5069
{
5070 5071 5072
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5073
	if (!(dev_priv->gt.awake &&
5074
	      dev_priv->rps.enabled &&
5075
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5076
		return;
5077

5078 5079 5080
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5081
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5082 5083
		rps = NULL;

5084 5085 5086 5087 5088
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5089
			schedule_work(&dev_priv->rps.work);
5090 5091
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5092

5093 5094 5095
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5096 5097
		} else
			dev_priv->rps.boosts++;
5098
	}
5099
	spin_unlock(&dev_priv->rps.client_lock);
5100 5101
}

5102
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5103
{
5104 5105
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5106
	else
5107
		gen6_set_rps(dev_priv, val);
5108 5109
}

5110
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5111 5112
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5113
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5114 5115
}

5116
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5117 5118 5119 5120
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5121
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5122 5123
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5124
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5125
	I915_WRITE(GEN6_RP_CONTROL, 0);
5126 5127
}

5128
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5129 5130 5131 5132
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5133
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5134
{
5135 5136
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5137
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5138

5139
	I915_WRITE(GEN6_RC_CONTROL, 0);
5140

5141
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5142 5143
}

5144
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5145
{
5146
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5147 5148 5149 5150 5151
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5152
	if (HAS_RC6p(dev_priv))
5153 5154 5155 5156 5157
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5158 5159

	else
5160 5161
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5162 5163
}

5164
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5165
{
5166
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5167 5168
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5180 5181

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5182
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5183 5184 5185 5186 5187 5188 5189 5190
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5191 5192 5193
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5194
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5195 5196 5197 5198 5199 5200 5201
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5202
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5203 5204 5205
		enable_rc6 = false;
	}

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5220 5221 5222 5223 5224 5225
		enable_rc6 = false;
	}

	return enable_rc6;
}

5226
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5227
{
5228
	/* No RC6 before Ironlake and code is gone for ilk. */
5229
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5230 5231
		return 0;

5232 5233 5234
	if (!enable_rc6)
		return 0;

5235
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5236 5237 5238 5239
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5240
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5241 5242 5243
	if (enable_rc6 >= 0) {
		int mask;

5244
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5245 5246 5247 5248 5249 5250
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5251 5252 5253
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5254 5255 5256

		return enable_rc6 & mask;
	}
5257

5258
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5259
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5260 5261

	return INTEL_RC6_ENABLE;
5262 5263
}

5264
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5265 5266
{
	/* All of these values are in units of 50MHz */
5267

5268
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5269
	if (IS_GEN9_LP(dev_priv)) {
5270
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5271 5272 5273 5274
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5275
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5276 5277 5278 5279
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5280
	/* hw_max = RP0 until we check for overclocking */
5281
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5282

5283
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5284 5285
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5286 5287 5288 5289 5290
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5291
			dev_priv->rps.efficient_freq =
5292 5293 5294 5295
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5296 5297
	}

5298
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5299
		/* Store the frequency values in 16.66 MHZ units, which is
5300 5301
		 * the natural hardware unit for SKL
		 */
5302 5303 5304 5305 5306 5307
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5308 5309
}

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5322
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5323
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5324 5325 5326
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5327
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5328
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5329 5330 5331 5332 5333 5334 5335 5336 5337
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5338
		gen9_disable_rps(dev_priv);
5339 5340 5341 5342
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5343 5344 5345 5346 5347 5348 5349 5350
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5351 5352
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5353 5354 5355
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5356
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5357 5358 5359 5360

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5361
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5362
{
5363
	struct intel_engine_cs *engine;
5364
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5365 5366 5367 5368 5369 5370 5371
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5372
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5373 5374 5375 5376 5377

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5378 5379

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5380
	if (IS_SKYLAKE(dev_priv))
5381 5382 5383
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5384 5385
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5386
	for_each_engine(engine, dev_priv, id)
5387
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5388

5389
	if (HAS_GUC(dev_priv))
5390 5391
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5392 5393
	I915_WRITE(GEN6_RC_SLEEP, 0);

5394 5395 5396 5397
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5398
	/* 3a: Enable RC6 */
5399
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5400
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5401
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5402
	/* WaRsUseTimeoutMode:bxt */
5403
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5404
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5405 5406 5407
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5408 5409
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5410 5411 5412
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5413
	}
Z
Zhe Wang 已提交
5414

5415 5416
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5417
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5418
	 */
5419
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5420 5421 5422 5423
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5424

5425
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5426 5427
}

5428
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5429
{
5430
	struct intel_engine_cs *engine;
5431
	enum intel_engine_id id;
5432
	uint32_t rc6_mask = 0;
5433 5434 5435 5436 5437 5438

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5439
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5440 5441 5442 5443 5444 5445 5446 5447

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5448
	for_each_engine(engine, dev_priv, id)
5449
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5450
	I915_WRITE(GEN6_RC_SLEEP, 0);
5451
	if (IS_BROADWELL(dev_priv))
5452 5453 5454
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5455 5456

	/* 3: Enable RC6 */
5457
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5458
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5459 5460
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5461 5462 5463 5464 5465 5466 5467
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5468 5469

	/* 4 Program defaults and thresholds for RPS*/
5470 5471 5472 5473
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5488 5489

	/* 5: Enable RPS */
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5500
	reset_rps(dev_priv, gen6_set_rps);
5501

5502
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5503 5504
}

5505
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5506
{
5507
	struct intel_engine_cs *engine;
5508
	enum intel_engine_id id;
5509
	u32 rc6vids, rc6_mask = 0;
5510 5511
	u32 gtfifodbg;
	int rc6_mode;
5512
	int ret;
5513

5514
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5515

5516 5517 5518 5519 5520 5521 5522 5523 5524
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5525 5526
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5527 5528 5529 5530
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5531
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5542
	for_each_engine(engine, dev_priv, id)
5543
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5544 5545 5546

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5547
	if (IS_IVYBRIDGE(dev_priv))
5548 5549 5550
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5551
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5552 5553
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5554
	/* Check if we are enabling RC6 */
5555
	rc6_mode = intel_enable_rc6();
5556 5557 5558
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5559
	/* We don't use those on Haswell */
5560
	if (!IS_HASWELL(dev_priv)) {
5561 5562
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5563

5564 5565 5566
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5567

5568
	intel_print_rc6_info(dev_priv, rc6_mask);
5569 5570 5571 5572 5573 5574

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5575 5576
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5577 5578
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5579
	reset_rps(dev_priv, gen6_set_rps);
5580

5581 5582
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5583
	if (IS_GEN6(dev_priv) && ret) {
5584
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5585
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5586 5587 5588 5589 5590 5591 5592 5593 5594
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5595
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5596 5597
}

5598
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5599 5600
{
	int min_freq = 15;
5601 5602
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5603
	unsigned int max_gpu_freq, min_gpu_freq;
5604
	int scaling_factor = 180;
5605
	struct cpufreq_policy *policy;
5606

5607
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5608

5609 5610 5611 5612 5613 5614 5615 5616 5617
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5618
		max_ia_freq = tsc_khz;
5619
	}
5620 5621 5622 5623

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5624
	min_ring_freq = I915_READ(DCLK) & 0xf;
5625 5626
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5627

5628
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5629 5630 5631 5632 5633 5634 5635 5636
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5637 5638 5639 5640 5641
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5642 5643
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5644 5645
		unsigned int ia_freq = 0, ring_freq = 0;

5646
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5647 5648 5649 5650 5651
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5652
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5653 5654
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5655
		} else if (IS_HASWELL(dev_priv)) {
5656
			ring_freq = mult_frac(gpu_freq, 5, 4);
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5673

B
Ben Widawsky 已提交
5674 5675
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5676 5677 5678
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5679 5680 5681
	}
}

5682
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5683 5684 5685
{
	u32 val, rp0;

5686
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5687

5688
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5703
	}
5704 5705 5706

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5720 5721 5722 5723
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5724 5725 5726
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5727 5728 5729
	return rp1;
}

5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5741
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5742 5743 5744
{
	u32 val, rp0;

5745
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5758
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5759
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5760
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5761 5762 5763 5764 5765
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5766
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5767
{
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5779 5780
}

5781 5782 5783 5784 5785 5786 5787 5788 5789
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5790 5791 5792 5793 5794 5795 5796 5797 5798

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5799
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5800
{
5801
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5802
	unsigned long pctx_paddr, paddr;
5803 5804 5805 5806 5807
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5808
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5809
		paddr = (dev_priv->mm.stolen_base +
5810
			 (ggtt->stolen_size - pctx_size));
5811 5812 5813 5814

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5815 5816

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5817 5818
}

5819
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5832
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5833
								      pcbr_offset,
5834
								      I915_GTT_OFFSET_NONE,
5835 5836 5837 5838
								      pctx_size);
		goto out;
	}

5839 5840
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5841 5842 5843 5844 5845 5846 5847 5848
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5849
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5850 5851
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5852
		goto out;
5853 5854 5855 5856 5857 5858
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5859
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5860 5861 5862
	dev_priv->vlv_pctx = pctx;
}

5863
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5864 5865 5866 5867
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5868
	i915_gem_object_put(dev_priv->vlv_pctx);
5869 5870 5871
	dev_priv->vlv_pctx = NULL;
}

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5883
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5884
{
5885
	u32 val;
5886

5887
	valleyview_setup_pctx(dev_priv);
5888

5889 5890
	vlv_init_gpll_ref_freq(dev_priv);

5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5904
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5905

5906 5907 5908
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5909
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5910 5911 5912 5913
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5914
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5915 5916
			 dev_priv->rps.efficient_freq);

5917 5918
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5919
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5920 5921
			 dev_priv->rps.rp1_freq);

5922 5923
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5924
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5925 5926 5927
			 dev_priv->rps.min_freq);
}

5928
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5929
{
5930
	u32 val;
5931

5932
	cherryview_setup_pctx(dev_priv);
5933

5934 5935
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5936
	mutex_lock(&dev_priv->sb_lock);
5937
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5938
	mutex_unlock(&dev_priv->sb_lock);
5939

5940 5941 5942 5943
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5944
	default:
5945 5946 5947
		dev_priv->mem_freq = 1600;
		break;
	}
5948
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5949

5950 5951 5952
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5953
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5954 5955 5956 5957
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5958
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5959 5960
			 dev_priv->rps.efficient_freq);

5961 5962
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5963
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5964 5965
			 dev_priv->rps.rp1_freq);

5966 5967
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5968
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5969
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5970 5971
			 dev_priv->rps.min_freq);

5972 5973 5974 5975 5976
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5977 5978
}

5979
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5980
{
5981
	valleyview_cleanup_pctx(dev_priv);
5982 5983
}

5984
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5985
{
5986
	struct intel_engine_cs *engine;
5987
	enum intel_engine_id id;
5988
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5989 5990 5991

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5992 5993
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6004
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6005

6006 6007 6008
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6009 6010 6011 6012 6013
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6014
	for_each_engine(engine, dev_priv, id)
6015
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6016 6017
	I915_WRITE(GEN6_RC_SLEEP, 0);

6018 6019
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6031 6032
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6033
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6034 6035 6036

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6037
	/* 4 Program defaults and thresholds for RPS*/
6038
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6049
		   GEN6_RP_MEDIA_IS_GFX |
6050 6051 6052 6053
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6054 6055 6056 6057 6058 6059
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6060 6061
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6062 6063 6064
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6065
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6066 6067
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6068
	reset_rps(dev_priv, valleyview_set_rps);
6069

6070
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6071 6072
}

6073
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6074
{
6075
	struct intel_engine_cs *engine;
6076
	enum intel_engine_id id;
6077
	u32 gtfifodbg, val, rc6_mode = 0;
6078 6079 6080

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6081 6082
	valleyview_check_pctx(dev_priv);

6083 6084
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6085 6086
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6087 6088 6089
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6090
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6091
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6092

6093 6094 6095
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6096
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6116
	for_each_engine(engine, dev_priv, id)
6117
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6118

6119
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6120 6121

	/* allows RC6 residency counter to work */
6122
	I915_WRITE(VLV_COUNTER_CONTROL,
6123 6124
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6125 6126
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6127

6128
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6129
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6130

6131
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6132

6133
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6134

D
Deepak S 已提交
6135 6136 6137 6138 6139 6140
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6141
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6142

6143 6144 6145
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6146
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6147 6148
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6149
	reset_rps(dev_priv, valleyview_set_rps);
6150

6151
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6152 6153
}

6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6183
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6184 6185 6186 6187 6188 6189
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6190 6191
	assert_spin_locked(&mchdev_lock);

6192
	diff1 = now - dev_priv->ips.last_time1;
6193 6194 6195 6196 6197 6198 6199

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6200
		return dev_priv->ips.chipset_power;
6201 6202 6203 6204 6205 6206 6207 6208

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6209 6210
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6211 6212
		diff += total_count;
	} else {
6213
		diff = total_count - dev_priv->ips.last_count1;
6214 6215 6216
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6217 6218
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6229 6230
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6231

6232
	dev_priv->ips.chipset_power = ret;
6233 6234 6235 6236

	return ret;
}

6237 6238 6239 6240
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6241
	if (INTEL_INFO(dev_priv)->gen != 5)
6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6280
{
6281 6282 6283
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6284
	if (INTEL_INFO(dev_priv)->is_mobile)
6285 6286 6287
		return vm > 0 ? vm : 0;

	return vd;
6288 6289
}

6290
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6291
{
6292
	u64 now, diff, diffms;
6293 6294
	u32 count;

6295
	assert_spin_locked(&mchdev_lock);
6296

6297 6298 6299
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6300 6301 6302 6303 6304 6305 6306

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6307 6308
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6309 6310
		diff += count;
	} else {
6311
		diff = count - dev_priv->ips.last_count2;
6312 6313
	}

6314 6315
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6316 6317 6318 6319

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6320
	dev_priv->ips.gfx_power = diff;
6321 6322
}

6323 6324
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6325
	if (INTEL_INFO(dev_priv)->gen != 5)
6326 6327
		return;

6328
	spin_lock_irq(&mchdev_lock);
6329 6330 6331

	__i915_update_gfx_val(dev_priv);

6332
	spin_unlock_irq(&mchdev_lock);
6333 6334
}

6335
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6336 6337 6338 6339
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6340 6341
	assert_spin_locked(&mchdev_lock);

6342
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6362
	corr2 = (corr * dev_priv->ips.corr);
6363 6364 6365 6366

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6367
	__i915_update_gfx_val(dev_priv);
6368

6369
	return dev_priv->ips.gfx_power + state2;
6370 6371
}

6372 6373 6374 6375
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6376
	if (INTEL_INFO(dev_priv)->gen != 5)
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6399
	spin_lock_irq(&mchdev_lock);
6400 6401 6402 6403
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6404 6405
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6406 6407 6408 6409

	ret = chipset_val + graphics_val;

out_unlock:
6410
	spin_unlock_irq(&mchdev_lock);
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6426
	spin_lock_irq(&mchdev_lock);
6427 6428 6429 6430 6431 6432
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6433 6434
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6435 6436

out_unlock:
6437
	spin_unlock_irq(&mchdev_lock);
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6454
	spin_lock_irq(&mchdev_lock);
6455 6456 6457 6458 6459 6460
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6461 6462
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6463 6464

out_unlock:
6465
	spin_unlock_irq(&mchdev_lock);
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6480
	spin_lock_irq(&mchdev_lock);
6481 6482
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6483
	spin_unlock_irq(&mchdev_lock);
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6500
	spin_lock_irq(&mchdev_lock);
6501 6502 6503 6504 6505 6506
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6507
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6508

6509
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6510 6511 6512
		ret = false;

out_unlock:
6513
	spin_unlock_irq(&mchdev_lock);
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6541 6542
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6543
	spin_lock_irq(&mchdev_lock);
6544
	i915_mch_dev = dev_priv;
6545
	spin_unlock_irq(&mchdev_lock);
6546 6547 6548 6549 6550 6551

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6552
	spin_lock_irq(&mchdev_lock);
6553
	i915_mch_dev = NULL;
6554
	spin_unlock_irq(&mchdev_lock);
6555
}
6556

6557
static void intel_init_emon(struct drm_i915_private *dev_priv)
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6574
		I915_WRITE(PEW(i), 0);
6575
	for (i = 0; i < 3; i++)
6576
		I915_WRITE(DEW(i), 0);
6577 6578 6579

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6580
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6601
		I915_WRITE(PXW(i), val);
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6617
		I915_WRITE(PXWL(i), 0);
6618 6619 6620 6621 6622 6623

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6624
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6625 6626
}

6627
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6628
{
6629 6630 6631 6632 6633 6634 6635 6636
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6637

6638
	mutex_lock(&dev_priv->drm.struct_mutex);
6639 6640 6641
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6642 6643 6644 6645
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6646
	else if (INTEL_GEN(dev_priv) >= 6)
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6676 6677 6678
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6679
	mutex_unlock(&dev_priv->rps.hw_lock);
6680
	mutex_unlock(&dev_priv->drm.struct_mutex);
6681 6682

	intel_autoenable_gt_powersave(dev_priv);
6683 6684
}

6685
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6686
{
6687
	if (IS_VALLEYVIEW(dev_priv))
6688
		valleyview_cleanup_gt_powersave(dev_priv);
6689 6690 6691

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6692 6693
}

6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6713 6714 6715 6716
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6717 6718

	gen6_reset_rps_interrupts(dev_priv);
6719 6720
}

6721
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6722
{
6723 6724
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6725

6726
	mutex_lock(&dev_priv->rps.hw_lock);
6727

6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6739
	}
6740 6741 6742

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6743 6744
}

6745
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6746
{
6747 6748 6749
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6750 6751
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6752

6753 6754 6755
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6756

6757
	mutex_lock(&dev_priv->rps.hw_lock);
6758 6759 6760 6761 6762

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6763
	} else if (INTEL_GEN(dev_priv) >= 9) {
6764 6765 6766
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6767
			gen6_update_ring_freq(dev_priv);
6768 6769
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6770
		gen6_update_ring_freq(dev_priv);
6771
	} else if (INTEL_GEN(dev_priv) >= 6) {
6772
		gen6_enable_rps(dev_priv);
6773
		gen6_update_ring_freq(dev_priv);
6774 6775 6776
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6777
	}
6778 6779 6780 6781 6782 6783 6784

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6785
	dev_priv->rps.enabled = true;
6786 6787
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6788

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6799
	rcs = dev_priv->engine[RCS];
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6852
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6853 6854 6855 6856 6857 6858 6859 6860 6861
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6862
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6863
{
6864
	enum pipe pipe;
6865

6866
	for_each_pipe(dev_priv, pipe) {
6867 6868 6869
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6870 6871 6872

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6873 6874 6875
	}
}

6876
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6888
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6889
{
6890
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6891

6892 6893 6894 6895
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6896 6897 6898
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6916
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6917 6918 6919
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6920

6921
	ilk_init_lp_watermarks(dev_priv);
6922 6923 6924 6925 6926 6927 6928 6929

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6930
	if (IS_IRONLAKE_M(dev_priv)) {
6931
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6932 6933 6934 6935 6936 6937 6938 6939
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6940 6941
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6942 6943 6944 6945 6946 6947
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6948

6949
	/* WaDisableRenderCachePipelinedFlush:ilk */
6950 6951
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6952

6953 6954 6955
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6956
	g4x_disable_trickle_feed(dev_priv);
6957

6958
	ibx_init_clock_gating(dev_priv);
6959 6960
}

6961
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6962 6963
{
	int pipe;
6964
	uint32_t val;
6965 6966 6967 6968 6969 6970

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6971 6972 6973
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6974 6975
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6976 6977 6978
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6979
	for_each_pipe(dev_priv, pipe) {
6980 6981 6982
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6983
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6984
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6985 6986 6987
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6988 6989
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6990
	/* WADP0ClockGatingDisable */
6991
	for_each_pipe(dev_priv, pipe) {
6992 6993 6994
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6995 6996
}

6997
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6998 6999 7000 7001
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7002 7003 7004
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7005 7006
}

7007
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7008
{
7009
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7010

7011
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7012 7013 7014 7015 7016

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7017
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7018 7019 7020
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7021 7022 7023
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7024 7025 7026
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7027 7028 7029 7030
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7031 7032
	 */
	I915_WRITE(GEN6_GT_MODE,
7033
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7034

7035
	ilk_init_lp_watermarks(dev_priv);
7036 7037

	I915_WRITE(CACHE_MODE_0,
7038
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7054
	 *
7055 7056
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7057 7058 7059 7060 7061
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7062
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7063 7064
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7065

7066 7067 7068 7069 7070 7071 7072 7073
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7074 7075 7076 7077 7078 7079 7080 7081
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7082 7083
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7084 7085 7086 7087 7088 7089 7090
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7091 7092 7093 7094
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7095

7096
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7097

7098
	cpt_init_clock_gating(dev_priv);
7099

7100
	gen6_check_mch_setup(dev_priv);
7101 7102 7103 7104 7105 7106
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7107
	/*
7108
	 * WaVSThreadDispatchOverride:ivb,vlv
7109 7110 7111 7112
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7113 7114 7115 7116 7117 7118 7119 7120
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7121
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7122 7123 7124 7125 7126
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7127
	if (HAS_PCH_LPT_LP(dev_priv))
7128 7129 7130
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7131 7132

	/* WADPOClockGatingDisable:hsw */
7133 7134
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7135
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7136 7137
}

7138
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7139
{
7140
	if (HAS_PCH_LPT_LP(dev_priv)) {
7141 7142 7143 7144 7145 7146 7147
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7171
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7172
{
7173
	gen9_init_clock_gating(dev_priv);
7174 7175 7176 7177 7178

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7179 7180 7181 7182 7183

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7184 7185 7186 7187

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7188 7189
}

7190
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7191
{
7192
	gen9_init_clock_gating(dev_priv);
7193 7194 7195 7196

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7197 7198 7199 7200

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7201 7202
}

7203
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7204
{
7205
	enum pipe pipe;
B
Ben Widawsky 已提交
7206

7207
	ilk_init_lp_watermarks(dev_priv);
7208

7209
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7210
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7211

7212
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7213 7214 7215
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7216
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7217
	for_each_pipe(dev_priv, pipe) {
7218
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7219
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7220
			   BDW_DPRS_MASK_VBLANK_SRD);
7221
	}
7222

7223 7224 7225 7226 7227
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7228

7229 7230
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7231 7232 7233 7234

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7235

7236 7237
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7238

7239 7240 7241 7242 7243 7244 7245
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7246 7247 7248 7249
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7250
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7251 7252
}

7253
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7254
{
7255
	ilk_init_lp_watermarks(dev_priv);
7256

7257 7258 7259 7260 7261
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7262
	/* This is required by WaCatErrorRejectionIssue:hsw */
7263 7264 7265 7266
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7267 7268 7269
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7270

7271 7272 7273
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7274 7275 7276 7277
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7278
	/* WaDisable4x2SubspanOptimization:hsw */
7279 7280
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7281

7282 7283 7284
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7285 7286 7287 7288
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7289 7290
	 */
	I915_WRITE(GEN7_GT_MODE,
7291
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7292

7293 7294 7295 7296
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7297
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7298 7299
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7300 7301 7302
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7303

7304
	lpt_init_clock_gating(dev_priv);
7305 7306
}

7307
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7308
{
7309
	uint32_t snpcr;
7310

7311
	ilk_init_lp_watermarks(dev_priv);
7312

7313
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7314

7315
	/* WaDisableEarlyCull:ivb */
7316 7317 7318
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7319
	/* WaDisableBackToBackFlipFix:ivb */
7320 7321 7322 7323
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7324
	/* WaDisablePSDDualDispatchEnable:ivb */
7325
	if (IS_IVB_GT1(dev_priv))
7326 7327 7328
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7329 7330 7331
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7332
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7333 7334 7335
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7336
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7337 7338 7339
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7340
		   GEN7_WA_L3_CHICKEN_MODE);
7341
	if (IS_IVB_GT1(dev_priv))
7342 7343
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7344 7345 7346 7347
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7348 7349
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7350
	}
7351

7352
	/* WaForceL3Serialization:ivb */
7353 7354 7355
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7356
	/*
7357
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7358
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7359 7360
	 */
	I915_WRITE(GEN6_UCGCTL2,
7361
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7362

7363
	/* This is required by WaCatErrorRejectionIssue:ivb */
7364 7365 7366 7367
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7368
	g4x_disable_trickle_feed(dev_priv);
7369 7370

	gen7_setup_fixed_func_scheduler(dev_priv);
7371

7372 7373 7374 7375 7376
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7377

7378
	/* WaDisable4x2SubspanOptimization:ivb */
7379 7380
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7381

7382 7383 7384
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7385 7386 7387 7388
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7389 7390
	 */
	I915_WRITE(GEN7_GT_MODE,
7391
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7392

7393 7394 7395 7396
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7397

7398
	if (!HAS_PCH_NOP(dev_priv))
7399
		cpt_init_clock_gating(dev_priv);
7400

7401
	gen6_check_mch_setup(dev_priv);
7402 7403
}

7404
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7405
{
7406
	/* WaDisableEarlyCull:vlv */
7407 7408 7409
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7410
	/* WaDisableBackToBackFlipFix:vlv */
7411 7412 7413 7414
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7415
	/* WaPsdDispatchEnable:vlv */
7416
	/* WaDisablePSDDualDispatchEnable:vlv */
7417
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7418 7419
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7420

7421 7422 7423
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7424
	/* WaForceL3Serialization:vlv */
7425 7426 7427
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7428
	/* WaDisableDopClockGating:vlv */
7429 7430 7431
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7432
	/* This is required by WaCatErrorRejectionIssue:vlv */
7433 7434 7435 7436
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7437 7438
	gen7_setup_fixed_func_scheduler(dev_priv);

7439
	/*
7440
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7441
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7442 7443
	 */
	I915_WRITE(GEN6_UCGCTL2,
7444
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7445

7446 7447 7448 7449 7450
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7451

7452 7453 7454 7455
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7456 7457
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7458

7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7470 7471 7472 7473 7474 7475
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7476
	/*
7477
	 * WaDisableVLVClockGating_VBIIssue:vlv
7478 7479 7480
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7481
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7482 7483
}

7484
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7485
{
7486 7487 7488 7489 7490
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7491 7492 7493 7494

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7495 7496 7497 7498

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7499 7500 7501 7502

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7503

7504 7505 7506 7507 7508 7509 7510
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7511 7512 7513 7514 7515
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7516 7517
}

7518
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7530
	if (IS_GM45(dev_priv))
7531 7532
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7533 7534 7535 7536

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7537

7538 7539 7540
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7541
	g4x_disable_trickle_feed(dev_priv);
7542 7543
}

7544
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7545 7546 7547 7548 7549 7550
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7551 7552
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7553 7554 7555

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7556 7557
}

7558
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7559 7560 7561 7562 7563 7564 7565
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7566 7567
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7568 7569 7570

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7571 7572
}

7573
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7574 7575 7576 7577 7578 7579
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7580

7581
	if (IS_PINEVIEW(dev_priv))
7582
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7583 7584 7585

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7586 7587

	/* interrupts should cause a wake up from C3 */
7588
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7589 7590 7591

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7592 7593 7594

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7595 7596
}

7597
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7598 7599
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7600 7601 7602 7603

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7604 7605 7606

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7607 7608
}

7609
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7610 7611
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7612 7613 7614 7615

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7616 7617
}

7618
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7619
{
7620
	dev_priv->display.init_clock_gating(dev_priv);
7621 7622
}

7623
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7624
{
7625 7626
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7627 7628
}

7629
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7646
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7647
	else if (IS_KABYLAKE(dev_priv))
7648
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7649
	else if (IS_GEN9_LP(dev_priv))
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7667
	else if (IS_I965GM(dev_priv))
7668
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7669
	else if (IS_I965G(dev_priv))
7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7683
/* Set up chip specific power management-related functions */
7684
void intel_init_pm(struct drm_i915_private *dev_priv)
7685
{
7686
	intel_fbc_init(dev_priv);
7687

7688
	/* For cxsr */
7689
	if (IS_PINEVIEW(dev_priv))
7690
		i915_pineview_get_mem_freq(dev_priv);
7691
	else if (IS_GEN5(dev_priv))
7692
		i915_ironlake_get_mem_freq(dev_priv);
7693

7694
	/* For FIFO watermark updates */
7695
	if (INTEL_GEN(dev_priv) >= 9) {
7696
		skl_setup_wm_latency(dev_priv);
7697
		dev_priv->display.initial_watermarks = skl_initial_wm;
7698
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7699
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7700
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7701
		ilk_setup_wm_latency(dev_priv);
7702

7703
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7704
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7705
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7706
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7707
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7708 7709 7710 7711 7712 7713
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7714 7715 7716 7717
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7718
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7719
		vlv_setup_wm_latency(dev_priv);
7720
		dev_priv->display.update_wm = vlv_update_wm;
7721
	} else if (IS_PINEVIEW(dev_priv)) {
7722
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7723 7724 7725 7726 7727 7728 7729 7730 7731
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7732
			intel_set_memory_cxsr(dev_priv, false);
7733 7734 7735
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7736
	} else if (IS_G4X(dev_priv)) {
7737
		dev_priv->display.update_wm = g4x_update_wm;
7738
	} else if (IS_GEN4(dev_priv)) {
7739
		dev_priv->display.update_wm = i965_update_wm;
7740
	} else if (IS_GEN3(dev_priv)) {
7741 7742
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7743
	} else if (IS_GEN2(dev_priv)) {
7744
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7745
			dev_priv->display.update_wm = i845_update_wm;
7746
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7747 7748
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7749
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7750 7751 7752
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7753 7754 7755
	}
}

7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7768
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7800
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7801
{
7802 7803
	int status;

7804
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7805

7806 7807 7808 7809 7810 7811
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7812 7813 7814 7815
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7816 7817 7818
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7819

7820 7821 7822
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7823 7824 7825 7826
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7827 7828
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7829

7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7841 7842 7843
	return 0;
}

7844
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7845
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7846
{
7847 7848
	int status;

7849
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7850

7851 7852 7853 7854 7855 7856
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7857 7858 7859 7860
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7861
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7862
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7863
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7864

7865 7866 7867
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7868 7869 7870 7871
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7872
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7873

7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7885 7886
	return 0;
}
7887

7888 7889
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7890 7891 7892 7893 7894
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7895 7896
}

7897
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7898
{
7899
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7900 7901
}

7902
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7903
{
7904 7905 7906 7907 7908
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7909 7910
}

7911
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7912
{
7913
	/* CHV needs even values */
7914
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7915 7916
}

7917
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7918
{
7919
	if (IS_GEN9(dev_priv))
7920 7921
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7922
	else if (IS_CHERRYVIEW(dev_priv))
7923
		return chv_gpu_freq(dev_priv, val);
7924
	else if (IS_VALLEYVIEW(dev_priv))
7925 7926 7927
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7928 7929
}

7930 7931
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7932
	if (IS_GEN9(dev_priv))
7933 7934
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7935
	else if (IS_CHERRYVIEW(dev_priv))
7936
		return chv_freq_opcode(dev_priv, val);
7937
	else if (IS_VALLEYVIEW(dev_priv))
7938 7939
		return byt_freq_opcode(dev_priv, val);
	else
7940
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7941
}
7942

7943 7944
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7945
	struct drm_i915_gem_request *req;
7946 7947 7948 7949 7950
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7951
	struct drm_i915_gem_request *req = boost->req;
7952

7953
	if (!i915_gem_request_completed(req))
7954
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7955

7956
	i915_gem_request_put(req);
7957 7958 7959
	kfree(boost);
}

7960
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7961 7962 7963
{
	struct request_boost *boost;

7964
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7965 7966
		return;

7967
	if (i915_gem_request_completed(req))
7968 7969
		return;

7970 7971 7972 7973
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7974
	boost->req = i915_gem_request_get(req);
7975 7976

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7977
	queue_work(req->i915->wq, &boost->work);
7978 7979
}

7980
void intel_pm_setup(struct drm_i915_private *dev_priv)
7981
{
D
Daniel Vetter 已提交
7982
	mutex_init(&dev_priv->rps.hw_lock);
7983
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7984

7985 7986
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7987
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7988

7989
	dev_priv->pm.suspended = false;
7990
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7991
}