intel_pm.c 224.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
		dev_priv->wm.vlv.cxsr = enable;
323
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325
		POSTING_READ(FW_BLC_SELF);
326
	} else if (IS_PINEVIEW(dev_priv)) {
327 328 329
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
330
		POSTING_READ(DSPFW3);
331
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 333 334
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
335
		POSTING_READ(FW_BLC_SELF);
336
	} else if (IS_I915GM(dev_priv)) {
337 338 339 340 341
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
342 343 344
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
345
		POSTING_READ(INSTPM);
346 347 348
	} else {
		return;
	}
349

350 351
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
352 353
}

354

355 356 357 358 359 360 361 362 363 364 365 366 367 368
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
369
static const int pessimal_latency_ns = 5000;
370

371 372 373
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

374
static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
			      enum pipe pipe, int plane)
{
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

425
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
426 427 428 429 430 431 432 433 434 435 436 437 438 439
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

440
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

456
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
473 474 475 476 477
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
478 479
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
480 481 482 483 484
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
485 486
};
static const struct intel_watermark_params pineview_cursor_wm = {
487 488 489 490 491
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
492 493
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
494 495 496 497 498
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
499 500
};
static const struct intel_watermark_params g4x_wm_info = {
501 502 503 504 505
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
506 507
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
508 509 510 511 512
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
513 514
};
static const struct intel_watermark_params i965_cursor_wm_info = {
515 516 517 518 519
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
520 521
};
static const struct intel_watermark_params i945_wm_info = {
522 523 524 525 526
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
527 528
};
static const struct intel_watermark_params i915_wm_info = {
529 530 531 532 533
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
534
};
535
static const struct intel_watermark_params i830_a_wm_info = {
536 537 538 539 540
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
541
};
542 543 544 545 546 547 548
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
549
static const struct intel_watermark_params i845_wm_info = {
550 551 552 553 554
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
555 556 557 558 559 560
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
561
 * @cpp: bytes per pixel
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
577
					int fifo_size, int cpp,
578 579 580 581 582 583 584 585 586 587
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
588
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
589 590 591 592 593 594 595 596 597 598 599 600 601 602
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
603 604 605 606 607 608 609 610 611 612 613

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

614 615 616
	return wm_size;
}

617
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
618
{
619
	struct intel_crtc *crtc, *enabled = NULL;
620

621
	for_each_intel_crtc(&dev_priv->drm, crtc) {
622
		if (intel_crtc_active(crtc)) {
623 624 625 626 627 628 629 630 631
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

632
static void pineview_update_wm(struct intel_crtc *unused_crtc)
633
{
634
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
635
	struct intel_crtc *crtc;
636 637 638 639
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

640 641 642 643
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
644 645
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
646
		intel_set_memory_cxsr(dev_priv, false);
647 648 649
		return;
	}

650
	crtc = single_enabled_crtc(dev_priv);
651
	if (crtc) {
652 653 654 655 656
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
657
		int clock = adjusted_mode->crtc_clock;
658 659 660 661

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
662
					cpp, latency->display_sr);
663 664
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
665
		reg |= FW_WM(wm, SR);
666 667 668 669 670 671
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
672
					cpp, latency->cursor_sr);
673 674
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
675
		reg |= FW_WM(wm, CURSOR_SR);
676 677 678 679 680
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
681
					cpp, latency->display_hpll_disable);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
684
		reg |= FW_WM(wm, HPLL_SR);
685 686 687 688 689
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
690
					cpp, latency->cursor_hpll_disable);
691 692
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
693
		reg |= FW_WM(wm, HPLL_CURSOR);
694 695 696
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

697
		intel_set_memory_cxsr(dev_priv, true);
698
	} else {
699
		intel_set_memory_cxsr(dev_priv, false);
700 701 702
	}
}

703
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
704 705 706 707 708 709 710 711
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
712
	struct intel_crtc *crtc;
713
	const struct drm_display_mode *adjusted_mode;
714
	const struct drm_framebuffer *fb;
715
	int htotal, hdisplay, clock, cpp;
716 717 718
	int line_time_us, line_count;
	int entries, tlb_miss;

719
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
720
	if (!intel_crtc_active(crtc)) {
721 722 723 724 725
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

726 727
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
728
	clock = adjusted_mode->crtc_clock;
729
	htotal = adjusted_mode->crtc_htotal;
730 731
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
732 733

	/* Use the small buffer method to calculate plane watermark */
734
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
735 736 737 738 739 740 741 742 743
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
744
	line_time_us = max(htotal * 1000 / clock, 1);
745
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
765
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
766 767 768 769 770 771 772 773
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
774
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
775 776 777 778 779
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
780
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
781 782 783 784 785 786 787 788 789 790 791 792
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

793
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
794 795 796 797 798 799
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
800
	struct intel_crtc *crtc;
801
	const struct drm_display_mode *adjusted_mode;
802
	const struct drm_framebuffer *fb;
803
	int hdisplay, htotal, cpp, clock;
804 805 806 807 808 809 810 811 812 813
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

814
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
815 816
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
817
	clock = adjusted_mode->crtc_clock;
818
	htotal = adjusted_mode->crtc_htotal;
819 820
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
821

822
	line_time_us = max(htotal * 1000 / clock, 1);
823
	line_count = (latency_ns / line_time_us + 1000) / 1000;
824
	line_size = hdisplay * cpp;
825 826

	/* Use the minimum of the small and large buffer method for primary */
827
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
828 829 830 831 832 833
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
834
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
835 836 837
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

838
	return g4x_check_srwm(dev_priv,
839 840 841 842
			      *display_wm, *cursor_wm,
			      display, cursor);
}

843 844 845
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

846 847 848 849 850 851 852 853 854 855 856 857
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

858
	I915_WRITE(DSPFW1,
859 860 861 862
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
863
	I915_WRITE(DSPFW2,
864 865 866
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
867
	I915_WRITE(DSPFW3,
868
		   FW_WM(wm->sr.cursor, CURSOR_SR));
869 870 871

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
872 873
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
874
		I915_WRITE(DSPFW8_CHV,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
877
		I915_WRITE(DSPFW9_CHV,
878 879
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
880
		I915_WRITE(DSPHOWM,
881 882 883 884 885 886 887 888 889 890
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
891 892
	} else {
		I915_WRITE(DSPFW7,
893 894
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
895
		I915_WRITE(DSPHOWM,
896 897 898 899 900 901 902
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
903 904
	}

905 906 907 908 909 910
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

911
	POSTING_READ(DSPFW1);
912 913
}

914 915
#undef FW_WM_VLV

916 917 918 919 920 921
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

922 923 924 925
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
926
				   unsigned int cpp,
927 928 929 930 931
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
932
	ret = (ret + 1) * horiz_pixels * cpp;
933 934 935 936 937
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

938
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
939 940 941 942
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

943 944
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

945 946 947
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
948 949

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
950 951 952 953 954 955 956 957 958
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
959
	int clock, htotal, cpp, width, wm;
960 961 962 963

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

964
	if (!state->base.visible)
965 966
		return 0;

967
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
983
		wm = vlv_wm_method2(clock, htotal, width, cpp,
984 985 986 987 988 989
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1006
		if (state->base.visible) {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1022
		if (!state->base.visible) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1057 1058 1059 1060 1061 1062 1063
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
1064 1065
		const int sr_fifo_size =
			INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1092
static void vlv_compute_wm(struct intel_crtc *crtc)
1093 1094
{
	struct drm_device *dev = crtc->base.dev;
1095
	struct drm_i915_private *dev_priv = to_i915(dev);
1096 1097
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
1098
	int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1099 1100 1101 1102
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1103
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1104
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1105 1106 1107

	wm_state->num_active_planes = 0;

1108
	vlv_compute_fifo(crtc);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1124
		if (!state->base.visible)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1165
					wm_state->wm[level].cursor;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1184
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1185 1186 1187 1188 1189 1190 1191
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1282 1283 1284 1285 1286 1287
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1288
	wm->level = to_i915(dev)->wm.max_level;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1307 1308 1309
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1328
static void vlv_update_wm(struct intel_crtc *crtc)
1329
{
1330
	struct drm_device *dev = crtc->base.dev;
1331
	struct drm_i915_private *dev_priv = to_i915(dev);
1332
	enum pipe pipe = crtc->pipe;
1333 1334
	struct vlv_wm_values wm = {};

1335
	vlv_compute_wm(crtc);
1336 1337
	vlv_merge_wm(dev, &wm);

1338 1339
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1340
		vlv_pipe_set_fifo_size(crtc);
1341
		return;
1342
	}
1343 1344 1345 1346 1347 1348 1349 1350 1351

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1352
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1353 1354
		intel_set_memory_cxsr(dev_priv, false);

1355
	/* FIXME should be part of crtc atomic commit */
1356
	vlv_pipe_set_fifo_size(crtc);
1357

1358
	vlv_write_wm_values(crtc, &wm);
1359 1360 1361 1362 1363 1364 1365

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1366
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1378 1379
}

1380 1381
#define single_plane_enabled(mask) is_power_of_2(mask)

1382
static void g4x_update_wm(struct intel_crtc *crtc)
1383
{
1384
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1385 1386 1387 1388
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1389
	bool cxsr_enabled;
1390

1391
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1392 1393
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1394
			    &planea_wm, &cursora_wm))
1395
		enabled |= 1 << PIPE_A;
1396

1397
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1398 1399
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1400
			    &planeb_wm, &cursorb_wm))
1401
		enabled |= 1 << PIPE_B;
1402 1403

	if (single_plane_enabled(enabled) &&
1404
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1405 1406 1407
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1408
			     &plane_sr, &cursor_sr)) {
1409
		cxsr_enabled = true;
1410
	} else {
1411
		cxsr_enabled = false;
1412
		intel_set_memory_cxsr(dev_priv, false);
1413 1414
		plane_sr = cursor_sr = 0;
	}
1415

1416 1417
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1418 1419 1420 1421 1422
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1423 1424 1425 1426
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1427
	I915_WRITE(DSPFW2,
1428
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1429
		   FW_WM(cursora_wm, CURSORA));
1430 1431
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1432
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1433
		   FW_WM(cursor_sr, CURSOR_SR));
1434 1435 1436

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1437 1438
}

1439
static void i965_update_wm(struct intel_crtc *unused_crtc)
1440
{
1441
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1442
	struct intel_crtc *crtc;
1443 1444
	int srwm = 1;
	int cursor_sr = 16;
1445
	bool cxsr_enabled;
1446 1447

	/* Calc sr entries for one plane configs */
1448
	crtc = single_enabled_crtc(dev_priv);
1449 1450 1451
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1452 1453 1454 1455
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1456
		int clock = adjusted_mode->crtc_clock;
1457
		int htotal = adjusted_mode->crtc_htotal;
1458 1459
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1460 1461 1462
		unsigned long line_time_us;
		int entries;

1463
		line_time_us = max(htotal * 1000 / clock, 1);
1464 1465 1466

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1467
			cpp * hdisplay;
1468 1469 1470 1471 1472 1473 1474 1475 1476
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1477
			cpp * crtc->base.cursor->state->crtc_w;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1489
		cxsr_enabled = true;
1490
	} else {
1491
		cxsr_enabled = false;
1492
		/* Turn off self refresh if both pipes are enabled */
1493
		intel_set_memory_cxsr(dev_priv, false);
1494 1495 1496 1497 1498 1499
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1500 1501 1502 1503 1504 1505
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1506
	/* update cursor SR watermark */
1507
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1508 1509 1510

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1511 1512
}

1513 1514
#undef FW_WM

1515
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1516
{
1517
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1518 1519 1520 1521 1522 1523
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1524
	struct intel_crtc *crtc, *enabled = NULL;
1525

1526
	if (IS_I945GM(dev_priv))
1527
		wm_info = &i945_wm_info;
1528
	else if (!IS_GEN2(dev_priv))
1529 1530
		wm_info = &i915_wm_info;
	else
1531
		wm_info = &i830_a_wm_info;
1532

1533
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1534
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1535 1536 1537 1538 1539 1540 1541
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1542
		if (IS_GEN2(dev_priv))
1543
			cpp = 4;
1544 1545
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1546

1547
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548
					       wm_info, fifo_size, cpp,
1549
					       pessimal_latency_ns);
1550
		enabled = crtc;
1551
	} else {
1552
		planea_wm = fifo_size - wm_info->guard_size;
1553 1554 1555 1556
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1557
	if (IS_GEN2(dev_priv))
1558
		wm_info = &i830_bc_wm_info;
1559

1560
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1561
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1562 1563 1564 1565 1566 1567 1568
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1569
		if (IS_GEN2(dev_priv))
1570
			cpp = 4;
1571 1572
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1573

1574
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1575
					       wm_info, fifo_size, cpp,
1576
					       pessimal_latency_ns);
1577 1578 1579 1580
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1581
	} else {
1582
		planeb_wm = fifo_size - wm_info->guard_size;
1583 1584 1585
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1586 1587 1588

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1589
	if (IS_I915GM(dev_priv) && enabled) {
1590
		struct drm_i915_gem_object *obj;
1591

1592
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1593 1594

		/* self-refresh seems busted with untiled */
1595
		if (!i915_gem_object_is_tiled(obj))
1596 1597 1598
			enabled = NULL;
	}

1599 1600 1601 1602 1603 1604
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1605
	intel_set_memory_cxsr(dev_priv, false);
1606 1607

	/* Calc sr entries for one plane configs */
1608
	if (HAS_FW_BLC(dev_priv) && enabled) {
1609 1610
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1611 1612 1613 1614
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1615
		int clock = adjusted_mode->crtc_clock;
1616
		int htotal = adjusted_mode->crtc_htotal;
1617 1618
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1619 1620 1621
		unsigned long line_time_us;
		int entries;

1622
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1623
			cpp = 4;
1624 1625
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1626

1627
		line_time_us = max(htotal * 1000 / clock, 1);
1628 1629 1630

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1631
			cpp * hdisplay;
1632 1633 1634 1635 1636 1637
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1638
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1639 1640
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1641
		else
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1658 1659
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1660 1661
}

1662
static void i845_update_wm(struct intel_crtc *unused_crtc)
1663
{
1664
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1665
	struct intel_crtc *crtc;
1666
	const struct drm_display_mode *adjusted_mode;
1667 1668 1669
	uint32_t fwater_lo;
	int planea_wm;

1670
	crtc = single_enabled_crtc(dev_priv);
1671 1672 1673
	if (crtc == NULL)
		return;

1674
	adjusted_mode = &crtc->config->base.adjusted_mode;
1675
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1676
				       &i845_wm_info,
1677
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1678
				       4, pessimal_latency_ns);
1679 1680 1681 1682 1683 1684 1685 1686
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1687
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1688
{
1689
	uint32_t pixel_rate;
1690

1691
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1692 1693 1694 1695

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1696
	if (pipe_config->pch_pfit.enabled) {
1697
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1698 1699 1700 1701
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1702 1703 1704 1705 1706 1707 1708 1709

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1710 1711 1712
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1713 1714 1715 1716 1717 1718 1719
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1720
/* latency must be in 0.1us units. */
1721
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1722 1723 1724
{
	uint64_t ret;

1725 1726 1727
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1728
	ret = (uint64_t) pixel_rate * cpp * latency;
1729 1730 1731 1732 1733
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1734
/* latency must be in 0.1us units. */
1735
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1736
			       uint32_t horiz_pixels, uint8_t cpp,
1737 1738 1739 1740
			       uint32_t latency)
{
	uint32_t ret;

1741 1742
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1743 1744
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1745

1746
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1747
	ret = (ret + 1) * horiz_pixels * cpp;
1748 1749 1750 1751
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1752
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1753
			   uint8_t cpp)
1754
{
1755 1756 1757 1758 1759 1760
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1761
	if (WARN_ON(!cpp))
1762 1763 1764 1765
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1766
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1767 1768
}

1769
struct ilk_wm_maximums {
1770 1771 1772 1773 1774 1775
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1776 1777 1778 1779
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1780
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1781
				   const struct intel_plane_state *pstate,
1782 1783
				   uint32_t mem_value,
				   bool is_lp)
1784
{
1785 1786
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1787 1788
	uint32_t method1, method2;

1789
	if (!cstate->base.active || !pstate->base.visible)
1790 1791
		return 0;

1792
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1793 1794 1795 1796

	if (!is_lp)
		return method1;

1797 1798
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1799
				 drm_rect_width(&pstate->base.dst),
1800
				 cpp, mem_value);
1801 1802

	return min(method1, method2);
1803 1804
}

1805 1806 1807 1808
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1809
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1810
				   const struct intel_plane_state *pstate,
1811 1812
				   uint32_t mem_value)
{
1813 1814
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1815 1816
	uint32_t method1, method2;

1817
	if (!cstate->base.active || !pstate->base.visible)
1818 1819
		return 0;

1820
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1821 1822
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1823
				 drm_rect_width(&pstate->base.dst),
1824
				 cpp, mem_value);
1825 1826 1827
	return min(method1, method2);
}

1828 1829 1830 1831
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1832
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1833
				   const struct intel_plane_state *pstate,
1834 1835
				   uint32_t mem_value)
{
1836 1837 1838 1839 1840 1841
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1842
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1843

1844
	if (!cstate->base.active)
1845 1846
		return 0;

1847 1848
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1849
			      width, cpp, mem_value);
1850 1851
}

1852
/* Only for WM_LP. */
1853
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1854
				   const struct intel_plane_state *pstate,
1855
				   uint32_t pri_val)
1856
{
1857 1858
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1859

1860
	if (!cstate->base.active || !pstate->base.visible)
1861 1862
		return 0;

1863
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1864 1865
}

1866 1867
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1868 1869 1870
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1871 1872 1873 1874 1875
		return 768;
	else
		return 512;
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1910 1911 1912
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1913
				     const struct intel_wm_config *config,
1914 1915 1916 1917 1918 1919
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1920
	if (is_sprite && !config->sprites_enabled)
1921 1922 1923
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1924
	if (level == 0 || config->num_pipes_active > 1) {
1925
		fifo_size /= INTEL_INFO(to_i915(dev))->num_pipes;
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1936
	if (config->sprites_enabled) {
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1948
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1949 1950 1951 1952
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1953 1954
				      int level,
				      const struct intel_wm_config *config)
1955 1956
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1957
	if (level > 0 && config->num_pipes_active > 1)
1958 1959 1960
		return 64;

	/* otherwise just report max that registers can hold */
1961
	return ilk_cursor_wm_reg_max(dev, level);
1962 1963
}

1964
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1965 1966 1967
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1968
				    struct ilk_wm_maximums *max)
1969
{
1970 1971 1972
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1973
	max->fbc = ilk_fbc_wm_reg_max(dev);
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1986
static bool ilk_validate_wm_level(int level,
1987
				  const struct ilk_wm_maximums *max,
1988
				  struct intel_wm_level *result)
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2027
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2028
				 const struct intel_crtc *intel_crtc,
2029
				 int level,
2030
				 struct intel_crtc_state *cstate,
2031 2032 2033
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2034
				 struct intel_wm_level *result)
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2059 2060 2061
	result->enable = true;
}

2062
static uint32_t
2063
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2064
{
2065 2066
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2067 2068
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2069
	u32 linetime, ips_linetime;
2070

2071 2072 2073 2074
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2075
	if (WARN_ON(intel_state->cdclk == 0))
2076
		return 0;
2077

2078 2079 2080
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2081 2082 2083
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2084
					 intel_state->cdclk);
2085

2086 2087
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2088 2089
}

2090 2091
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2092
{
2093
	if (IS_GEN9(dev_priv)) {
2094
		uint32_t val;
2095
		int ret, i;
2096
		int level, max_level = ilk_wm_max_level(dev_priv);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2152
		/*
2153 2154
		 * WaWmMemoryReadLatency:skl
		 *
2155
		 * punit doesn't take into account the read latency so we need
2156 2157
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2158
		 */
2159 2160 2161 2162 2163
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2164
				wm[level] += 2;
2165
			}
2166 2167
		}

2168
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2169 2170 2171 2172 2173
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2174 2175 2176 2177
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2178
	} else if (INTEL_GEN(dev_priv) >= 6) {
2179 2180 2181 2182 2183 2184
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2185
	} else if (INTEL_GEN(dev_priv) >= 5) {
2186 2187 2188 2189 2190 2191
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2192 2193 2194
	}
}

2195 2196
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2197 2198
{
	/* ILK sprite LP0 latency is 1300 ns */
2199
	if (IS_GEN5(dev_priv))
2200 2201 2202
		wm[0] = 13;
}

2203 2204
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2205 2206
{
	/* ILK cursor LP0 latency is 1300 ns */
2207
	if (IS_GEN5(dev_priv))
2208 2209 2210
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2211
	if (IS_IVYBRIDGE(dev_priv))
2212 2213 2214
		wm[3] *= 2;
}

2215
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2216 2217
{
	/* how many WM levels are we expecting */
2218
	if (INTEL_GEN(dev_priv) >= 9)
2219
		return 7;
2220
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2221
		return 4;
2222
	else if (INTEL_GEN(dev_priv) >= 6)
2223
		return 3;
2224
	else
2225 2226
		return 2;
}
2227

2228
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2229
				   const char *name,
2230
				   const uint16_t wm[8])
2231
{
2232
	int level, max_level = ilk_wm_max_level(dev_priv);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2243 2244 2245 2246
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2247
		if (IS_GEN9(dev_priv))
2248 2249
			latency *= 10;
		else if (level > 0)
2250 2251 2252 2253 2254 2255 2256 2257
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2258 2259 2260
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2261
	int level, max_level = ilk_wm_max_level(dev_priv);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2273
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2289 2290 2291
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2292 2293
}

2294
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2295
{
2296
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2297 2298 2299 2300 2301 2302

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2303
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2304
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2305

2306 2307 2308
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2309

2310
	if (IS_GEN6(dev_priv))
2311
		snb_wm_latency_quirk(dev_priv);
2312 2313
}

2314
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2315
{
2316
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2317
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2318 2319
}

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2343
/* Compute new watermarks for the pipe */
2344
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2345
{
2346 2347
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2348
	struct intel_pipe_wm *pipe_wm;
2349
	struct drm_device *dev = state->dev;
2350
	const struct drm_i915_private *dev_priv = to_i915(dev);
2351
	struct intel_plane *intel_plane;
2352
	struct intel_plane_state *pristate = NULL;
2353
	struct intel_plane_state *sprstate = NULL;
2354
	struct intel_plane_state *curstate = NULL;
2355
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2356
	struct ilk_wm_maximums max;
2357

2358
	pipe_wm = &cstate->wm.ilk.optimal;
2359

2360
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2361 2362 2363 2364 2365 2366
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2367 2368

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2369
			pristate = ps;
2370
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2371
			sprstate = ps;
2372
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2373
			curstate = ps;
2374 2375
	}

2376
	pipe_wm->pipe_enabled = cstate->base.active;
2377
	if (sprstate) {
2378 2379 2380 2381
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2382 2383
	}

2384 2385
	usable_level = max_level;

2386
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2387
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2388
		usable_level = 1;
2389 2390

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2391
	if (pipe_wm->sprites_scaled)
2392
		usable_level = 0;
2393

2394
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2395 2396 2397 2398
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2399

2400
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2401
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2402

2403
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2404
		return -EINVAL;
2405 2406 2407 2408

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2409
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2410

2411
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2412
				     pristate, sprstate, curstate, wm);
2413 2414 2415 2416 2417 2418

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2419 2420 2421 2422 2423 2424
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2425
			usable_level = level;
2426 2427
	}

2428
	return 0;
2429 2430
}

2431 2432 2433 2434 2435 2436 2437 2438 2439
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2440
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2441
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2442
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2443 2444 2445 2446 2447 2448

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2449
	*a = newstate->wm.ilk.optimal;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2478
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2479 2480 2481 2482 2483
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2493 2494
	ret_wm->enable = true;

2495
	for_each_intel_crtc(dev, intel_crtc) {
2496
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2497 2498 2499 2500
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2501

2502 2503 2504 2505 2506
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2507
		if (!wm->enable)
2508
			ret_wm->enable = false;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2521
			 const struct intel_wm_config *config,
2522
			 const struct ilk_wm_maximums *max,
2523 2524
			 struct intel_pipe_wm *merged)
{
2525
	struct drm_i915_private *dev_priv = to_i915(dev);
2526
	int level, max_level = ilk_wm_max_level(dev_priv);
2527
	int last_enabled_level = max_level;
2528

2529
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2530
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2531
	    config->num_pipes_active > 1)
2532
		last_enabled_level = 0;
2533

2534 2535
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2536 2537 2538 2539 2540 2541 2542

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2543 2544 2545 2546 2547
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2548 2549 2550 2551 2552 2553

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2554 2555
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2556 2557 2558
			wm->fbc_val = 0;
		}
	}
2559 2560 2561 2562 2563 2564 2565

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2566
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2567
	    intel_fbc_is_active(dev_priv)) {
2568 2569 2570 2571 2572 2573
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2574 2575
}

2576 2577 2578 2579 2580 2581
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2582 2583 2584
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2585
	struct drm_i915_private *dev_priv = to_i915(dev);
2586

2587
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2588 2589 2590 2591 2592
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2593
static void ilk_compute_wm_results(struct drm_device *dev,
2594
				   const struct intel_pipe_wm *merged,
2595
				   enum intel_ddb_partitioning partitioning,
2596
				   struct ilk_wm_values *results)
2597
{
2598 2599
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2600

2601
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2602
	results->partitioning = partitioning;
2603

2604
	/* LP1+ register values */
2605
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2606
		const struct intel_wm_level *r;
2607

2608
		level = ilk_wm_lp_to_level(wm_lp, merged);
2609

2610
		r = &merged->wm[level];
2611

2612 2613 2614 2615 2616
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2617
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2618 2619 2620
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2621 2622 2623
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2624 2625 2626 2627 2628 2629 2630
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2631 2632 2633 2634
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2635 2636 2637 2638 2639
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2640
	}
2641

2642
	/* LP0 register values */
2643
	for_each_intel_crtc(dev, intel_crtc) {
2644
		enum pipe pipe = intel_crtc->pipe;
2645 2646
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2647 2648 2649 2650

		if (WARN_ON(!r->enable))
			continue;

2651
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2652

2653 2654 2655 2656
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2657 2658 2659
	}
}

2660 2661
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2662
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2663 2664
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2665
{
2666
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2667
	int level1 = 0, level2 = 0;
2668

2669 2670 2671 2672 2673
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2674 2675
	}

2676 2677
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2678 2679 2680
			return r2;
		else
			return r1;
2681
	} else if (level1 > level2) {
2682 2683 2684 2685 2686 2687
		return r1;
	} else {
		return r2;
	}
}

2688 2689 2690 2691 2692 2693 2694 2695
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2696
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2697 2698
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2699 2700 2701 2702 2703
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2704
	for_each_pipe(dev_priv, pipe) {
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2748 2749
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2750
{
2751
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2752
	bool changed = false;
2753

2754 2755 2756
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2757
		changed = true;
2758 2759 2760 2761
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2762
		changed = true;
2763 2764 2765 2766
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2767
		changed = true;
2768
	}
2769

2770 2771 2772 2773
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2774

2775 2776 2777 2778 2779 2780 2781
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2782 2783
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2784
{
2785
	struct drm_device *dev = &dev_priv->drm;
2786
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2787 2788 2789
	unsigned int dirty;
	uint32_t val;

2790
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2791 2792 2793 2794 2795
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2796
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2797
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2798
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2799
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2800
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2801 2802
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2803
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2804
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2806
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2807
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2808 2809
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2810
	if (dirty & WM_DIRTY_DDB) {
2811
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2826 2827
	}

2828
	if (dirty & WM_DIRTY_FBC) {
2829 2830 2831 2832 2833 2834 2835 2836
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2837 2838 2839 2840 2841
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2842 2843 2844 2845 2846
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2847

2848
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2849
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2850
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2851
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2852
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2853
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2854 2855

	dev_priv->wm.hw = *results;
2856 2857
}

2858
bool ilk_disable_lp_wm(struct drm_device *dev)
2859
{
2860
	struct drm_i915_private *dev_priv = to_i915(dev);
2861 2862 2863 2864

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2865
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2904 2905 2906
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2907 2908 2909 2910 2911 2912 2913 2914
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2915 2916
}

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2929
intel_enable_sagv(struct drm_i915_private *dev_priv)
2930 2931 2932
{
	int ret;

2933 2934 2935 2936
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2952
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2953
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2954
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2955 2956 2957 2958 2959 2960
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2961
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2962 2963 2964 2965
	return 0;
}

static int
2966
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2980
intel_disable_sagv(struct drm_i915_private *dev_priv)
2981 2982 2983
{
	int ret, result;

2984 2985 2986 2987
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2988 2989 2990 2991 2992 2993
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2994
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3006
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3007
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3008
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3009 3010 3011 3012 3013 3014
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3015
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3016 3017 3018
	return 0;
}

3019
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3020 3021 3022 3023
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3024 3025
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3026 3027
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3028
	enum pipe pipe;
3029
	int level, latency;
3030

3031 3032 3033
	if (!intel_has_sagv(dev_priv))
		return false;

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3047
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3048
	cstate = to_intel_crtc_state(crtc->base.state);
3049

3050
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3051 3052
		return false;

3053
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3054
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3055

3056
		/* Skip this plane if it's not enabled */
3057
		if (!wm->wm[0].plane_en)
3058 3059 3060
			continue;

		/* Find the highest enabled wm level for this plane */
3061
		for (level = ilk_wm_max_level(dev_priv);
3062
		     !wm->wm[level].plane_en; --level)
3063 3064
		     { }

3065 3066 3067 3068 3069 3070 3071
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3072 3073 3074 3075 3076
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3077
		if (latency < SKL_SAGV_BLOCK_TIME)
3078 3079 3080 3081 3082 3083
			return false;
	}

	return true;
}

3084 3085
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3086
				   const struct intel_crtc_state *cstate,
3087 3088
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3089
{
3090 3091 3092
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3093
	struct drm_crtc *for_crtc = cstate->base.crtc;
3094 3095
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3096

3097
	if (WARN_ON(!state) || !cstate->base.active) {
3098 3099
		alloc->start = 0;
		alloc->end = 0;
3100
		*num_active = hweight32(dev_priv->active_crtcs);
3101 3102 3103
		return;
	}

3104 3105 3106 3107 3108
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3109 3110
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3111 3112 3113

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3114
	/*
3115 3116 3117 3118 3119 3120
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3121
	 */
3122
	if (!intel_state->active_pipe_changes) {
3123
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3124
		return;
3125
	}
3126 3127 3128 3129 3130 3131

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3132 3133
}

3134
static unsigned int skl_cursor_allocation(int num_active)
3135
{
3136
	if (num_active == 1)
3137 3138 3139 3140 3141
		return 32;

	return 8;
}

3142 3143 3144 3145
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3146 3147
	if (entry->end)
		entry->end += 1;
3148 3149
}

3150 3151
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3152 3153 3154 3155 3156
{
	enum pipe pipe;
	int plane;
	u32 val;

3157 3158
	memset(ddb, 0, sizeof(*ddb));

3159
	for_each_pipe(dev_priv, pipe) {
3160 3161 3162 3163
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3164 3165
			continue;

3166
		for_each_universal_plane(dev_priv, pipe, plane) {
3167 3168 3169 3170 3171 3172
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3173 3174
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3175 3176

		intel_display_power_put(dev_priv, power_domain);
3177 3178 3179
	}
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3202
	if (WARN_ON(!pstate->base.visible))
3203 3204 3205
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3206 3207 3208 3209
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3210
	if (drm_rotation_90_or_270(pstate->base.rotation))
3211 3212 3213 3214 3215 3216 3217 3218 3219
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3220
static unsigned int
3221 3222 3223
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3224
{
3225
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3226
	struct drm_framebuffer *fb = pstate->fb;
3227
	uint32_t down_scale_amount, data_rate;
3228
	uint32_t width = 0, height = 0;
3229 3230
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3231
	if (!intel_pstate->base.visible)
3232 3233 3234 3235 3236
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3237

3238 3239
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3240

3241
	if (drm_rotation_90_or_270(pstate->rotation))
3242
		swap(width, height);
3243 3244

	/* for planar format */
3245
	if (format == DRM_FORMAT_NV12) {
3246
		if (y)  /* y-plane data rate */
3247
			data_rate = width * height *
3248
				drm_format_plane_cpp(format, 0);
3249
		else    /* uv-plane data rate */
3250
			data_rate = (width / 2) * (height / 2) *
3251
				drm_format_plane_cpp(format, 1);
3252 3253 3254
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3255 3256
	}

3257 3258 3259
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3260 3261 3262 3263 3264 3265 3266 3267
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3268 3269 3270
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3271
{
3272 3273
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3274
	struct drm_plane *plane;
3275
	const struct intel_plane *intel_plane;
3276
	const struct drm_plane_state *pstate;
3277
	unsigned int rate, total_data_rate = 0;
3278
	int id;
3279 3280 3281

	if (WARN_ON(!state))
		return 0;
3282

3283
	/* Calculate and cache data rate for each plane */
3284
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3285 3286 3287 3288 3289 3290
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3291 3292 3293
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3294 3295 3296 3297

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3298
		plane_y_data_rate[id] = rate;
3299

3300
		total_data_rate += rate;
3301 3302 3303 3304 3305
	}

	return total_data_rate;
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3328 3329
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3330

3331
	if (drm_rotation_90_or_270(pstate->rotation))
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3345
	if (drm_rotation_90_or_270(pstate->rotation)) {
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3393
static int
3394
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3395 3396
		      struct skl_ddb_allocation *ddb /* out */)
{
3397
	struct drm_atomic_state *state = cstate->base.state;
3398
	struct drm_crtc *crtc = cstate->base.crtc;
3399 3400 3401
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3402
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3403
	uint16_t alloc_size, start;
3404 3405
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3406
	unsigned int total_data_rate;
3407 3408
	int num_active;
	int id, i;
3409 3410
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3411

3412 3413 3414 3415
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3416 3417 3418
	if (WARN_ON(!state))
		return 0;

3419
	if (!cstate->base.active) {
3420
		alloc->start = alloc->end = 0;
3421 3422 3423
		return 0;
	}

3424
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3425
	alloc_size = skl_ddb_entry_size(alloc);
3426 3427
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3428
		return 0;
3429 3430
	}

3431
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3432

3433 3434 3435 3436 3437
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3438

3439
	for (i = 0; i < I915_MAX_PLANES; i++) {
3440 3441
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3442 3443
	}

3444 3445 3446
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3447
	/*
3448 3449
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3450 3451 3452
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3453 3454 3455
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3456
	if (total_data_rate == 0)
3457
		return 0;
3458

3459
	start = alloc->start;
3460
	for (id = 0; id < I915_MAX_PLANES; id++) {
3461 3462
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3463

3464 3465 3466
		if (id == PLANE_CURSOR)
			continue;

3467
		data_rate = plane_data_rate[id];
3468 3469

		/*
3470
		 * allocation for (packed formats) or (uv-plane part of planar format):
3471 3472 3473
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3474
		plane_blocks = minimum[id];
3475 3476
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3477

3478 3479 3480 3481 3482
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3483 3484

		start += plane_blocks;
3485 3486 3487 3488

		/*
		 * allocation for y_plane part of planar format:
		 */
3489
		y_data_rate = plane_y_data_rate[id];
3490 3491 3492 3493

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3494

3495 3496 3497 3498
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3499 3500

		start += y_plane_blocks;
3501 3502
	}

3503
	return 0;
3504 3505
}

3506 3507
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3508
 * for the read latency) and cpp should always be <= 8, so that
3509 3510 3511
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3512
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3513 3514 3515 3516 3517 3518
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3519
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3520 3521 3522 3523 3524 3525
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3526
			       uint32_t latency, uint32_t plane_blocks_per_line)
3527
{
3528 3529
	uint32_t ret;
	uint32_t wm_intermediate_val;
3530 3531 3532 3533 3534 3535

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3536
				plane_blocks_per_line;
3537 3538 3539 3540

	return ret;
}

3541 3542 3543 3544 3545 3546 3547 3548
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3549
	if (WARN_ON(!pstate->base.visible))
3550 3551 3552 3553 3554 3555
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3556
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3557 3558 3559 3560 3561 3562 3563 3564
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3565 3566 3567 3568 3569 3570 3571 3572
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3573
{
3574 3575
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3576 3577 3578 3579 3580
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3581
	uint8_t cpp;
3582
	uint32_t width = 0, height = 0;
3583
	uint32_t plane_pixel_rate;
3584
	uint32_t y_tile_minimum, y_min_scanlines;
3585 3586 3587
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3588

3589
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3590 3591 3592
		*enabled = false;
		return 0;
	}
3593

3594 3595 3596
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3597 3598
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3599

3600
	if (drm_rotation_90_or_270(pstate->rotation))
3601 3602
		swap(width, height);

3603
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3604 3605
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3606
	if (drm_rotation_90_or_270(pstate->rotation)) {
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3621 3622 3623
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3624 3625 3626 3627 3628
		}
	} else {
		y_min_scanlines = 4;
	}

3629 3630 3631
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3645 3646
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3647
				 cstate->base.adjusted_mode.crtc_htotal,
3648
				 latency,
3649
				 plane_blocks_per_line);
3650

3651 3652
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3653 3654
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3655 3656
		selected_result = max(method2, y_tile_minimum);
	} else {
3657 3658 3659 3660
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3661 3662 3663 3664
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3665

3666 3667
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3668

3669
	if (level >= 1 && level <= 7) {
3670
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3671 3672
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3673
			res_lines += y_min_scanlines;
3674
		} else {
3675
			res_blocks++;
3676
		}
3677
	}
3678

3679 3680
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3697
	}
3698 3699 3700

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3701
	*enabled = true;
3702

3703
	return 0;
3704 3705
}

3706 3707 3708 3709
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3710
		     struct intel_plane *intel_plane,
3711 3712
		     int level,
		     struct skl_wm_level *result)
3713
{
3714
	struct drm_atomic_state *state = cstate->base.state;
3715
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3716 3717
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3718
	uint16_t ddb_blocks;
3719
	enum pipe pipe = intel_crtc->pipe;
3720
	int ret;
L
Lyude 已提交
3721 3722 3723 3724 3725 3726
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3727

3728
	/*
L
Lyude 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3738
	 */
L
Lyude 已提交
3739 3740
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3741

L
Lyude 已提交
3742
	WARN_ON(!intel_pstate->base.fb);
3743

L
Lyude 已提交
3744
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3745

L
Lyude 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3756 3757

	return 0;
3758 3759
}

3760
static uint32_t
3761
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3762
{
3763 3764
	uint32_t pixel_rate;

3765
	if (!cstate->base.active)
3766 3767
		return 0;

3768 3769 3770
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3771
		return 0;
3772

3773
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3774
			    pixel_rate);
3775 3776
}

3777
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3778
				      struct skl_wm_level *trans_wm /* out */)
3779
{
3780
	if (!cstate->base.active)
3781
		return;
3782 3783

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3784
	trans_wm->plane_en = false;
3785 3786
}

3787 3788 3789
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3790
{
3791
	struct drm_device *dev = cstate->base.crtc->dev;
3792
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3793 3794
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3795
	int level, max_level = ilk_wm_max_level(dev_priv);
3796
	int ret;
3797

L
Lyude 已提交
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3817
	}
3818
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3819

3820
	return 0;
3821 3822
}

3823 3824
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3825 3826 3827 3828 3829 3830 3831 3832
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3848
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3849 3850
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3851 3852 3853 3854 3855
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3856
	int level, max_level = ilk_wm_max_level(dev_priv);
3857 3858 3859
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3860 3861
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3862
	}
3863 3864
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3865 3866

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3867
			    &ddb->plane[pipe][plane]);
3868
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3869
			    &ddb->y_plane[pipe][plane]);
3870 3871 3872
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3873 3874
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3875 3876 3877 3878
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3879
	int level, max_level = ilk_wm_max_level(dev_priv);
3880 3881 3882
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3883 3884
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3885
	}
3886
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3887

3888
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3889
			    &ddb->plane[pipe][PLANE_CURSOR]);
3890 3891
}

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3906 3907
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3908
{
3909
	return a->start < b->end && b->start < a->end;
3910 3911
}

3912
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3913
				 struct intel_crtc *intel_crtc)
3914
{
3915 3916 3917 3918 3919 3920
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3921

3922 3923
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3924

3925
		if (other_intel_crtc == intel_crtc)
3926 3927
			continue;

3928
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3929
			return true;
3930 3931
	}

3932
	return false;
3933 3934
}

3935
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3936
			      const struct skl_pipe_wm *old_pipe_wm,
3937
			      struct skl_pipe_wm *pipe_wm, /* out */
3938
			      struct skl_ddb_allocation *ddb, /* out */
3939
			      bool *changed /* out */)
3940
{
3941
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3942
	int ret;
3943

3944 3945 3946
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3947

3948
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3949 3950 3951
		*changed = false;
	else
		*changed = true;
3952

3953
	return 0;
3954 3955
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3969
static int
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3987
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4004 4005 4006 4007 4008 4009 4010
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4011
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4012
	uint32_t realloc_pipes = pipes_modified(state);
4013 4014 4015 4016 4017 4018 4019 4020
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4021 4022 4023 4024 4025 4026
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4027 4028
		intel_state->active_pipe_changes = ~0;

4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4052
	if (intel_state->active_pipe_changes) {
4053
		realloc_pipes = ~0;
4054 4055
		intel_state->wm_results.dirty_pipes = ~0;
	}
4056

4057 4058 4059 4060 4061 4062
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4063 4064 4065 4066 4067 4068 4069
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4070
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4071 4072
		if (ret)
			return ret;
4073

4074
		ret = skl_ddb_add_affected_planes(cstate);
4075 4076
		if (ret)
			return ret;
4077 4078 4079 4080 4081
	}

	return 0;
}

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4106
	int i;
4107 4108

	for_each_crtc_in_state(state, crtc, cstate, i) {
4109 4110
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4111

4112
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4113 4114 4115 4116 4117 4118 4119 4120 4121
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4122 4123 4124 4125 4126
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4127 4128 4129 4130
		}
	}
}

4131 4132 4133 4134 4135
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4136 4137 4138
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4139
	bool changed = false;
4140
	int ret, i;
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4155 4156 4157
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4158 4159 4160 4161
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4175 4176
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4177 4178

		pipe_wm = &intel_cstate->wm.skl.optimal;
4179 4180
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4194 4195
	skl_print_wm_changes(state);

4196 4197 4198
	return 0;
}

4199
static void skl_update_wm(struct intel_crtc *intel_crtc)
4200
{
4201
	struct drm_device *dev = intel_crtc->base.dev;
4202
	struct drm_i915_private *dev_priv = to_i915(dev);
4203
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4204
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4205
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4206
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4207
	enum pipe pipe = intel_crtc->pipe;
4208

4209
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4210 4211
		return;

4212
	mutex_lock(&dev_priv->wm.wm_mutex);
4213

4214
	/*
4215 4216 4217 4218
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4219
	 */
4220
	if (intel_crtc->base.state->active_changed) {
4221 4222
		int plane;

4223
		for_each_universal_plane(dev_priv, pipe, plane)
4224 4225
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4226

4227 4228
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4229 4230 4231
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4232

4233 4234
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4235
	mutex_unlock(&dev_priv->wm.wm_mutex);
4236 4237
}

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4256
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4257
{
4258
	struct drm_device *dev = &dev_priv->drm;
4259
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4260
	struct ilk_wm_maximums max;
4261
	struct intel_wm_config config = {};
4262
	struct ilk_wm_values results = {};
4263
	enum intel_ddb_partitioning partitioning;
4264

4265 4266 4267 4268
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4269 4270

	/* 5/6 split only in single pipe config on IVB+ */
4271
	if (INTEL_INFO(dev)->gen >= 7 &&
4272 4273 4274
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4275

4276
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4277
	} else {
4278
		best_lp_wm = &lp_wm_1_2;
4279 4280
	}

4281
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4282
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4283

4284
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4285

4286
	ilk_write_wm_values(dev_priv, &results);
4287 4288
}

4289
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4290
{
4291 4292
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4293

4294
	mutex_lock(&dev_priv->wm.wm_mutex);
4295
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4296 4297 4298
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4299

4300 4301 4302 4303
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4304

4305 4306
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4307
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4308 4309 4310
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4311 4312
}

4313 4314
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4315
{
4316 4317 4318 4319
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4320 4321
}

4322 4323
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4324 4325
{
	struct drm_device *dev = crtc->dev;
4326
	struct drm_i915_private *dev_priv = to_i915(dev);
4327
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4328 4329
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4330
	enum pipe pipe = intel_crtc->pipe;
4331 4332
	int level, id, max_level;
	uint32_t val;
4333

4334
	max_level = ilk_wm_max_level(dev_priv);
4335

4336 4337
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4338
		wm = &out->planes[id];
4339

4340 4341 4342 4343 4344
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4345

4346
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4347 4348
		}

4349 4350 4351 4352 4353 4354
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4355 4356
	}

4357 4358
	if (!intel_crtc->active)
		return;
4359

4360
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4361 4362 4363 4364
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4365
	struct drm_i915_private *dev_priv = to_i915(dev);
4366
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4367
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4368
	struct drm_crtc *crtc;
4369 4370
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4371

4372
	skl_ddb_get_hw_state(dev_priv, ddb);
4373 4374 4375 4376 4377 4378
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4379
		if (intel_crtc->active)
4380 4381
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4382

4383 4384 4385 4386 4387 4388 4389
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4390 4391
}

4392 4393 4394
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4395
	struct drm_i915_private *dev_priv = to_i915(dev);
4396
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4397
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4398
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4399
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4400
	enum pipe pipe = intel_crtc->pipe;
4401
	static const i915_reg_t wm0_pipe_reg[] = {
4402 4403 4404 4405 4406 4407
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4408
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4409
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4410

4411 4412
	memset(active, 0, sizeof(*active));

4413
	active->pipe_enabled = intel_crtc->active;
4414 4415

	if (active->pipe_enabled) {
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4430
		int level, max_level = ilk_wm_max_level(dev_priv);
4431 4432 4433 4434 4435 4436 4437 4438 4439

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4440 4441

	intel_crtc->wm.active.ilk = *active;
4442 4443
}

4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
4542
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4543 4544 4545
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
4546
			plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4561 4562 4563 4564 4565 4566 4567 4568 4569
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4570
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4597 4598
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4599
	struct drm_i915_private *dev_priv = to_i915(dev);
4600
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4601 4602
	struct drm_crtc *crtc;

4603
	for_each_crtc(dev, crtc)
4604 4605 4606 4607 4608 4609 4610
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4611 4612 4613 4614
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4615

4616
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4617 4618
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4619
	else if (IS_IVYBRIDGE(dev_priv))
4620 4621
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4622 4623 4624 4625 4626

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4659
void intel_update_watermarks(struct intel_crtc *crtc)
4660
{
4661
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4662 4663

	if (dev_priv->display.update_wm)
4664
		dev_priv->display.update_wm(crtc);
4665 4666
}

4667
/*
4668 4669 4670 4671 4672 4673 4674 4675
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4676
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4677 4678 4679
{
	u16 rgvswctl;

4680 4681
	assert_spin_locked(&mchdev_lock);

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4699
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4700
{
4701
	u32 rgvmodectl;
4702 4703
	u8 fmax, fmin, fstart, vstart;

4704 4705
	spin_lock_irq(&mchdev_lock);

4706 4707
	rgvmodectl = I915_READ(MEMMODECTL);

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4728
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4729 4730
		PXVFREQ_PX_SHIFT;

4731 4732
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4733

4734 4735 4736
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4753
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4754
		DRM_ERROR("stuck trying to change perf mode\n");
4755
	mdelay(1);
4756

4757
	ironlake_set_drps(dev_priv, fstart);
4758

4759 4760
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4761
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4762
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4763
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4764 4765

	spin_unlock_irq(&mchdev_lock);
4766 4767
}

4768
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4769
{
4770 4771 4772 4773 4774
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4775 4776 4777 4778 4779 4780 4781 4782 4783

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4784
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4785
	mdelay(1);
4786 4787
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4788
	mdelay(1);
4789

4790
	spin_unlock_irq(&mchdev_lock);
4791 4792
}

4793 4794 4795 4796 4797
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4798
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4799
{
4800
	u32 limits;
4801

4802 4803 4804 4805 4806 4807
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4808
	if (IS_GEN9(dev_priv)) {
4809 4810 4811 4812 4813 4814 4815 4816
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4817 4818 4819 4820

	return limits;
}

4821 4822 4823
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4824 4825
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4826 4827 4828 4829

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4830 4831
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4832 4833 4834 4835
			new_power = BETWEEN;
		break;

	case BETWEEN:
4836 4837
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4838
			new_power = LOW_POWER;
4839 4840
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4841 4842 4843 4844
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4845 4846
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4847 4848 4849 4850
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4851
	if (val <= dev_priv->rps.min_freq_softlimit)
4852
		new_power = LOW_POWER;
4853
	if (val >= dev_priv->rps.max_freq_softlimit)
4854 4855 4856 4857 4858 4859 4860 4861
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4862 4863
		ei_up = 16000;
		threshold_up = 95;
4864 4865

		/* Downclock if less than 85% busy over 32ms */
4866 4867
		ei_down = 32000;
		threshold_down = 85;
4868 4869 4870 4871
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4872 4873
		ei_up = 13000;
		threshold_up = 90;
4874 4875

		/* Downclock if less than 75% busy over 32ms */
4876 4877
		ei_down = 32000;
		threshold_down = 75;
4878 4879 4880 4881
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4882 4883
		ei_up = 10000;
		threshold_up = 85;
4884 4885

		/* Downclock if less than 60% busy over 32ms */
4886 4887
		ei_down = 32000;
		threshold_down = 60;
4888 4889 4890
		break;
	}

4891
	I915_WRITE(GEN6_RP_UP_EI,
4892
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4893
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4894 4895
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4896 4897

	I915_WRITE(GEN6_RP_DOWN_EI,
4898
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4899
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4910

4911
	dev_priv->rps.power = new_power;
4912 4913
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4914 4915 4916
	dev_priv->rps.last_adj = 0;
}

4917 4918 4919 4920 4921
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4922
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4923
	if (val < dev_priv->rps.max_freq_softlimit)
4924
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4925

4926 4927
	mask &= dev_priv->pm_rps_events;

4928
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4929 4930
}

4931 4932 4933
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4934
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4935
{
4936
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4937
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4938 4939
		return;

4940
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4941 4942
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4943

C
Chris Wilson 已提交
4944 4945 4946 4947 4948
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4949

4950
		if (IS_GEN9(dev_priv))
4951 4952
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4953
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4954 4955 4956 4957 4958 4959 4960
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4961
	}
4962 4963 4964 4965

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4966
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4967
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4968

4969 4970
	POSTING_READ(GEN6_RPNSWREQ);

4971
	dev_priv->rps.cur_freq = val;
4972
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4973 4974
}

4975
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4976 4977
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4978 4979
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4980

4981
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4982 4983 4984
		      "Odd GPU freq value\n"))
		val &= ~1;

4985 4986
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4987
	if (val != dev_priv->rps.cur_freq) {
4988
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4989 4990 4991
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4992 4993 4994 4995 4996

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4997
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4998 4999
 *
 * * If Gfx is Idle, then
5000 5001 5002
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5003 5004 5005
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5006
	u32 val = dev_priv->rps.idle_freq;
5007

5008
	if (dev_priv->rps.cur_freq <= val)
5009 5010
		return;

5011 5012 5013
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5014
	valleyview_set_rps(dev_priv, val);
5015
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5016 5017
}

5018 5019 5020 5021 5022 5023 5024 5025
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5026

5027 5028
		gen6_enable_rps_interrupts(dev_priv);

5029 5030 5031 5032 5033
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5034 5035 5036 5037
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5038 5039
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5040 5041 5042 5043 5044 5045 5046
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5047
	mutex_lock(&dev_priv->rps.hw_lock);
5048
	if (dev_priv->rps.enabled) {
5049
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5050
			vlv_set_rps_idle(dev_priv);
5051
		else
5052
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5053
		dev_priv->rps.last_adj = 0;
5054 5055
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5056
	}
5057
	mutex_unlock(&dev_priv->rps.hw_lock);
5058

5059
	spin_lock(&dev_priv->rps.client_lock);
5060 5061
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5062
	spin_unlock(&dev_priv->rps.client_lock);
5063 5064
}

5065
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5066 5067
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5068
{
5069 5070 5071
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5072
	if (!(dev_priv->gt.awake &&
5073
	      dev_priv->rps.enabled &&
5074
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5075
		return;
5076

5077 5078 5079
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5080
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5081 5082
		rps = NULL;

5083 5084 5085 5086 5087
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5088
			schedule_work(&dev_priv->rps.work);
5089 5090
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5091

5092 5093 5094
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5095 5096
		} else
			dev_priv->rps.boosts++;
5097
	}
5098
	spin_unlock(&dev_priv->rps.client_lock);
5099 5100
}

5101
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5102
{
5103 5104
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5105
	else
5106
		gen6_set_rps(dev_priv, val);
5107 5108
}

5109
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5110 5111
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5112
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5113 5114
}

5115
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5116 5117 5118 5119
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5120
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5121 5122
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5123
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5124
	I915_WRITE(GEN6_RP_CONTROL, 0);
5125 5126
}

5127
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5128 5129 5130 5131
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5132
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5133
{
5134 5135
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5136
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5137

5138
	I915_WRITE(GEN6_RC_CONTROL, 0);
5139

5140
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5141 5142
}

5143
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5144
{
5145
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5146 5147 5148 5149 5150
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5151
	if (HAS_RC6p(dev_priv))
5152 5153 5154 5155 5156
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5157 5158

	else
5159 5160
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5161 5162
}

5163
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5164
{
5165
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5166 5167
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5179 5180

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5181
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5182 5183 5184 5185 5186 5187 5188 5189
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5190 5191 5192
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5193
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5194 5195 5196 5197 5198 5199 5200
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5201
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5202 5203 5204
		enable_rc6 = false;
	}

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5219 5220 5221 5222 5223 5224
		enable_rc6 = false;
	}

	return enable_rc6;
}

5225
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5226
{
5227
	/* No RC6 before Ironlake and code is gone for ilk. */
5228
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5229 5230
		return 0;

5231 5232 5233
	if (!enable_rc6)
		return 0;

5234
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5235 5236 5237 5238
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5239
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5240 5241 5242
	if (enable_rc6 >= 0) {
		int mask;

5243
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5244 5245 5246 5247 5248 5249
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5250 5251 5252
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5253 5254 5255

		return enable_rc6 & mask;
	}
5256

5257
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5258
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5259 5260

	return INTEL_RC6_ENABLE;
5261 5262
}

5263
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5264 5265
{
	/* All of these values are in units of 50MHz */
5266

5267
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5268
	if (IS_BROXTON(dev_priv)) {
5269
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5270 5271 5272 5273
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5274
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5275 5276 5277 5278
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5279
	/* hw_max = RP0 until we check for overclocking */
5280
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5281

5282
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5283 5284
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5285 5286 5287 5288 5289
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5290
			dev_priv->rps.efficient_freq =
5291 5292 5293 5294
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5295 5296
	}

5297
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5298
		/* Store the frequency values in 16.66 MHZ units, which is
5299 5300
		 * the natural hardware unit for SKL
		 */
5301 5302 5303 5304 5305 5306
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5307 5308
}

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5321
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5322
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5323 5324 5325
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5326
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5327
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5328 5329 5330 5331 5332 5333 5334 5335 5336
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5337
		gen9_disable_rps(dev_priv);
5338 5339 5340 5341
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5342 5343 5344 5345 5346 5347 5348 5349
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5350 5351
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5352 5353 5354
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5355
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5356 5357 5358 5359

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5360
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5361
{
5362
	struct intel_engine_cs *engine;
5363
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5364 5365 5366 5367 5368 5369 5370
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5371
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5372 5373 5374 5375 5376

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5377 5378

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5379
	if (IS_SKYLAKE(dev_priv))
5380 5381 5382
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5383 5384
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5385
	for_each_engine(engine, dev_priv, id)
5386
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5387

5388
	if (HAS_GUC(dev_priv))
5389 5390
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5391 5392
	I915_WRITE(GEN6_RC_SLEEP, 0);

5393 5394 5395 5396
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5397
	/* 3a: Enable RC6 */
5398
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5399
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5400
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5401
	/* WaRsUseTimeoutMode:bxt */
5402
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5403
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5404 5405 5406
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5407 5408
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5409 5410 5411
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5412
	}
Z
Zhe Wang 已提交
5413

5414 5415
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5416
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5417
	 */
5418
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5419 5420 5421 5422
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5423

5424
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5425 5426
}

5427
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5428
{
5429
	struct intel_engine_cs *engine;
5430
	enum intel_engine_id id;
5431
	uint32_t rc6_mask = 0;
5432 5433 5434 5435 5436 5437

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5438
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5439 5440 5441 5442 5443 5444 5445 5446

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5447
	for_each_engine(engine, dev_priv, id)
5448
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5449
	I915_WRITE(GEN6_RC_SLEEP, 0);
5450
	if (IS_BROADWELL(dev_priv))
5451 5452 5453
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5454 5455

	/* 3: Enable RC6 */
5456
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5457
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5458 5459
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5460 5461 5462 5463 5464 5465 5466
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5467 5468

	/* 4 Program defaults and thresholds for RPS*/
5469 5470 5471 5472
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5487 5488

	/* 5: Enable RPS */
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5499
	reset_rps(dev_priv, gen6_set_rps);
5500

5501
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5502 5503
}

5504
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5505
{
5506
	struct intel_engine_cs *engine;
5507
	enum intel_engine_id id;
5508
	u32 rc6vids, rc6_mask = 0;
5509 5510
	u32 gtfifodbg;
	int rc6_mode;
5511
	int ret;
5512

5513
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5514

5515 5516 5517 5518 5519 5520 5521 5522 5523
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5524 5525
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5526 5527 5528 5529
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5530
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5541
	for_each_engine(engine, dev_priv, id)
5542
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5543 5544 5545

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5546
	if (IS_IVYBRIDGE(dev_priv))
5547 5548 5549
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5550
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5551 5552
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5553
	/* Check if we are enabling RC6 */
5554
	rc6_mode = intel_enable_rc6();
5555 5556 5557
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5558
	/* We don't use those on Haswell */
5559
	if (!IS_HASWELL(dev_priv)) {
5560 5561
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5562

5563 5564 5565
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5566

5567
	intel_print_rc6_info(dev_priv, rc6_mask);
5568 5569 5570 5571 5572 5573

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5574 5575
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5576 5577
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5578
	reset_rps(dev_priv, gen6_set_rps);
5579

5580 5581
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5582
	if (IS_GEN6(dev_priv) && ret) {
5583
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5584
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5585 5586 5587 5588 5589 5590 5591 5592 5593
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5594
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5595 5596
}

5597
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5598 5599
{
	int min_freq = 15;
5600 5601
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5602
	unsigned int max_gpu_freq, min_gpu_freq;
5603
	int scaling_factor = 180;
5604
	struct cpufreq_policy *policy;
5605

5606
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5607

5608 5609 5610 5611 5612 5613 5614 5615 5616
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5617
		max_ia_freq = tsc_khz;
5618
	}
5619 5620 5621 5622

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5623
	min_ring_freq = I915_READ(DCLK) & 0xf;
5624 5625
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5626

5627
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5628 5629 5630 5631 5632 5633 5634 5635
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5636 5637 5638 5639 5640
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5641 5642
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5643 5644
		unsigned int ia_freq = 0, ring_freq = 0;

5645
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5646 5647 5648 5649 5650
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5651
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5652 5653
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5654
		} else if (IS_HASWELL(dev_priv)) {
5655
			ring_freq = mult_frac(gpu_freq, 5, 4);
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5672

B
Ben Widawsky 已提交
5673 5674
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5675 5676 5677
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5678 5679 5680
	}
}

5681
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5682 5683 5684
{
	u32 val, rp0;

5685
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5686

5687
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5702
	}
5703 5704 5705

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5719 5720 5721 5722
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5723 5724 5725
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5726 5727 5728
	return rp1;
}

5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5740
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5741 5742 5743
{
	u32 val, rp0;

5744
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5757
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5758
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5759
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5760 5761 5762 5763 5764
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5765
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5766
{
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5778 5779
}

5780 5781 5782 5783 5784 5785 5786 5787 5788
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5789 5790 5791 5792 5793 5794 5795 5796 5797

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5798
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5799
{
5800
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5801
	unsigned long pctx_paddr, paddr;
5802 5803 5804 5805 5806
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5807
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5808
		paddr = (dev_priv->mm.stolen_base +
5809
			 (ggtt->stolen_size - pctx_size));
5810 5811 5812 5813

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5814 5815

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5816 5817
}

5818
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5831
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5832
								      pcbr_offset,
5833
								      I915_GTT_OFFSET_NONE,
5834 5835 5836 5837
								      pctx_size);
		goto out;
	}

5838 5839
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5840 5841 5842 5843 5844 5845 5846 5847
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5848
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5849 5850
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5851
		goto out;
5852 5853 5854 5855 5856 5857
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5858
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5859 5860 5861
	dev_priv->vlv_pctx = pctx;
}

5862
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5863 5864 5865 5866
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5867
	i915_gem_object_put(dev_priv->vlv_pctx);
5868 5869 5870
	dev_priv->vlv_pctx = NULL;
}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5882
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5883
{
5884
	u32 val;
5885

5886
	valleyview_setup_pctx(dev_priv);
5887

5888 5889
	vlv_init_gpll_ref_freq(dev_priv);

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5903
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5904

5905 5906 5907
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5908
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5909 5910 5911 5912
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5913
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5914 5915
			 dev_priv->rps.efficient_freq);

5916 5917
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5918
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5919 5920
			 dev_priv->rps.rp1_freq);

5921 5922
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5923
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5924 5925 5926
			 dev_priv->rps.min_freq);
}

5927
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5928
{
5929
	u32 val;
5930

5931
	cherryview_setup_pctx(dev_priv);
5932

5933 5934
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5935
	mutex_lock(&dev_priv->sb_lock);
5936
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5937
	mutex_unlock(&dev_priv->sb_lock);
5938

5939 5940 5941 5942
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5943
	default:
5944 5945 5946
		dev_priv->mem_freq = 1600;
		break;
	}
5947
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5948

5949 5950 5951
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5952
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5953 5954 5955 5956
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5957
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5958 5959
			 dev_priv->rps.efficient_freq);

5960 5961
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5962
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5963 5964
			 dev_priv->rps.rp1_freq);

5965 5966
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5967
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5968
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5969 5970
			 dev_priv->rps.min_freq);

5971 5972 5973 5974 5975
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5976 5977
}

5978
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5979
{
5980
	valleyview_cleanup_pctx(dev_priv);
5981 5982
}

5983
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5984
{
5985
	struct intel_engine_cs *engine;
5986
	enum intel_engine_id id;
5987
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5988 5989 5990

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5991 5992
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6003
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6004

6005 6006 6007
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6008 6009 6010 6011 6012
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6013
	for_each_engine(engine, dev_priv, id)
6014
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6015 6016
	I915_WRITE(GEN6_RC_SLEEP, 0);

6017 6018
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6030 6031
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6032
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6033 6034 6035

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6036
	/* 4 Program defaults and thresholds for RPS*/
6037
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6048
		   GEN6_RP_MEDIA_IS_GFX |
6049 6050 6051 6052
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6053 6054 6055 6056 6057 6058
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6059 6060
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6061 6062 6063
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6064
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6065 6066
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6067
	reset_rps(dev_priv, valleyview_set_rps);
6068

6069
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6070 6071
}

6072
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6073
{
6074
	struct intel_engine_cs *engine;
6075
	enum intel_engine_id id;
6076
	u32 gtfifodbg, val, rc6_mode = 0;
6077 6078 6079

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6080 6081
	valleyview_check_pctx(dev_priv);

6082 6083
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6084 6085
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6086 6087 6088
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6089
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6090
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6091

6092 6093 6094
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6095
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6115
	for_each_engine(engine, dev_priv, id)
6116
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6117

6118
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6119 6120

	/* allows RC6 residency counter to work */
6121
	I915_WRITE(VLV_COUNTER_CONTROL,
6122 6123
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6124 6125
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6126

6127
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6128
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6129

6130
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6131

6132
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6133

D
Deepak S 已提交
6134 6135 6136 6137 6138 6139
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6140
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6141

6142 6143 6144
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6145
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6146 6147
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6148
	reset_rps(dev_priv, valleyview_set_rps);
6149

6150
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6151 6152
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6182
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6183 6184 6185 6186 6187 6188
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6189 6190
	assert_spin_locked(&mchdev_lock);

6191
	diff1 = now - dev_priv->ips.last_time1;
6192 6193 6194 6195 6196 6197 6198

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6199
		return dev_priv->ips.chipset_power;
6200 6201 6202 6203 6204 6205 6206 6207

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6208 6209
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6210 6211
		diff += total_count;
	} else {
6212
		diff = total_count - dev_priv->ips.last_count1;
6213 6214 6215
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6216 6217
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6228 6229
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6230

6231
	dev_priv->ips.chipset_power = ret;
6232 6233 6234 6235

	return ret;
}

6236 6237 6238 6239
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6240
	if (INTEL_INFO(dev_priv)->gen != 5)
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6279
{
6280 6281 6282
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6283
	if (INTEL_INFO(dev_priv)->is_mobile)
6284 6285 6286
		return vm > 0 ? vm : 0;

	return vd;
6287 6288
}

6289
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6290
{
6291
	u64 now, diff, diffms;
6292 6293
	u32 count;

6294
	assert_spin_locked(&mchdev_lock);
6295

6296 6297 6298
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6299 6300 6301 6302 6303 6304 6305

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6306 6307
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6308 6309
		diff += count;
	} else {
6310
		diff = count - dev_priv->ips.last_count2;
6311 6312
	}

6313 6314
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6315 6316 6317 6318

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6319
	dev_priv->ips.gfx_power = diff;
6320 6321
}

6322 6323
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6324
	if (INTEL_INFO(dev_priv)->gen != 5)
6325 6326
		return;

6327
	spin_lock_irq(&mchdev_lock);
6328 6329 6330

	__i915_update_gfx_val(dev_priv);

6331
	spin_unlock_irq(&mchdev_lock);
6332 6333
}

6334
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6335 6336 6337 6338
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6339 6340
	assert_spin_locked(&mchdev_lock);

6341
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6361
	corr2 = (corr * dev_priv->ips.corr);
6362 6363 6364 6365

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6366
	__i915_update_gfx_val(dev_priv);
6367

6368
	return dev_priv->ips.gfx_power + state2;
6369 6370
}

6371 6372 6373 6374
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6375
	if (INTEL_INFO(dev_priv)->gen != 5)
6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6398
	spin_lock_irq(&mchdev_lock);
6399 6400 6401 6402
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6403 6404
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6405 6406 6407 6408

	ret = chipset_val + graphics_val;

out_unlock:
6409
	spin_unlock_irq(&mchdev_lock);
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6425
	spin_lock_irq(&mchdev_lock);
6426 6427 6428 6429 6430 6431
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6432 6433
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6434 6435

out_unlock:
6436
	spin_unlock_irq(&mchdev_lock);
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6453
	spin_lock_irq(&mchdev_lock);
6454 6455 6456 6457 6458 6459
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6460 6461
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6462 6463

out_unlock:
6464
	spin_unlock_irq(&mchdev_lock);
6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6479
	spin_lock_irq(&mchdev_lock);
6480 6481
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6482
	spin_unlock_irq(&mchdev_lock);
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6499
	spin_lock_irq(&mchdev_lock);
6500 6501 6502 6503 6504 6505
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6506
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6507

6508
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6509 6510 6511
		ret = false;

out_unlock:
6512
	spin_unlock_irq(&mchdev_lock);
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6540 6541
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6542
	spin_lock_irq(&mchdev_lock);
6543
	i915_mch_dev = dev_priv;
6544
	spin_unlock_irq(&mchdev_lock);
6545 6546 6547 6548 6549 6550

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6551
	spin_lock_irq(&mchdev_lock);
6552
	i915_mch_dev = NULL;
6553
	spin_unlock_irq(&mchdev_lock);
6554
}
6555

6556
static void intel_init_emon(struct drm_i915_private *dev_priv)
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6573
		I915_WRITE(PEW(i), 0);
6574
	for (i = 0; i < 3; i++)
6575
		I915_WRITE(DEW(i), 0);
6576 6577 6578

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6579
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6600
		I915_WRITE(PXW(i), val);
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6616
		I915_WRITE(PXWL(i), 0);
6617 6618 6619 6620 6621 6622

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6623
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6624 6625
}

6626
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6627
{
6628 6629 6630 6631 6632 6633 6634 6635
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6636

6637
	mutex_lock(&dev_priv->drm.struct_mutex);
6638 6639 6640
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6641 6642 6643 6644
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6645
	else if (INTEL_GEN(dev_priv) >= 6)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6675 6676 6677
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6678
	mutex_unlock(&dev_priv->rps.hw_lock);
6679
	mutex_unlock(&dev_priv->drm.struct_mutex);
6680 6681

	intel_autoenable_gt_powersave(dev_priv);
6682 6683
}

6684
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6685
{
6686
	if (IS_VALLEYVIEW(dev_priv))
6687
		valleyview_cleanup_gt_powersave(dev_priv);
6688 6689 6690

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6691 6692
}

6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6712 6713 6714 6715
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6716 6717

	gen6_reset_rps_interrupts(dev_priv);
6718 6719
}

6720
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6721
{
6722 6723
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6724

6725
	mutex_lock(&dev_priv->rps.hw_lock);
6726

6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6738
	}
6739 6740 6741

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6742 6743
}

6744
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6745
{
6746 6747 6748
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6749 6750
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6751

6752 6753 6754
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6755

6756
	mutex_lock(&dev_priv->rps.hw_lock);
6757 6758 6759 6760 6761

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6762
	} else if (INTEL_GEN(dev_priv) >= 9) {
6763 6764 6765
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6766
			gen6_update_ring_freq(dev_priv);
6767 6768
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6769
		gen6_update_ring_freq(dev_priv);
6770
	} else if (INTEL_GEN(dev_priv) >= 6) {
6771
		gen6_enable_rps(dev_priv);
6772
		gen6_update_ring_freq(dev_priv);
6773 6774 6775
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6776
	}
6777 6778 6779 6780 6781 6782 6783

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6784
	dev_priv->rps.enabled = true;
6785 6786
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6787

6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6798
	rcs = dev_priv->engine[RCS];
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6851
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6852 6853 6854 6855 6856 6857 6858 6859 6860
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6861
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6862
{
6863
	enum pipe pipe;
6864

6865
	for_each_pipe(dev_priv, pipe) {
6866 6867 6868
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6869 6870 6871

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6872 6873 6874
	}
}

6875
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6887
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6888
{
6889
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6890

6891 6892 6893 6894
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6895 6896 6897
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6915
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6916 6917 6918
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6919

6920
	ilk_init_lp_watermarks(dev_priv);
6921 6922 6923 6924 6925 6926 6927 6928

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6929
	if (IS_IRONLAKE_M(dev_priv)) {
6930
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6931 6932 6933 6934 6935 6936 6937 6938
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6939 6940
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6941 6942 6943 6944 6945 6946
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6947

6948
	/* WaDisableRenderCachePipelinedFlush:ilk */
6949 6950
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6951

6952 6953 6954
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6955
	g4x_disable_trickle_feed(dev_priv);
6956

6957
	ibx_init_clock_gating(dev_priv);
6958 6959
}

6960
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6961 6962
{
	int pipe;
6963
	uint32_t val;
6964 6965 6966 6967 6968 6969

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6970 6971 6972
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6973 6974
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6975 6976 6977
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6978
	for_each_pipe(dev_priv, pipe) {
6979 6980 6981
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6982
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6983
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6984 6985 6986
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6987 6988
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6989
	/* WADP0ClockGatingDisable */
6990
	for_each_pipe(dev_priv, pipe) {
6991 6992 6993
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6994 6995
}

6996
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6997 6998 6999 7000
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7001 7002 7003
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7004 7005
}

7006
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7007
{
7008
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7009

7010
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7011 7012 7013 7014 7015

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7016
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7017 7018 7019
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7020 7021 7022
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7023 7024 7025
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7026 7027 7028 7029
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7030 7031
	 */
	I915_WRITE(GEN6_GT_MODE,
7032
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7033

7034
	ilk_init_lp_watermarks(dev_priv);
7035 7036

	I915_WRITE(CACHE_MODE_0,
7037
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7053
	 *
7054 7055
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7056 7057 7058 7059 7060
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7061
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7062 7063
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7064

7065 7066 7067 7068 7069 7070 7071 7072
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7073 7074 7075 7076 7077 7078 7079 7080
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7081 7082
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7083 7084 7085 7086 7087 7088 7089
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7090 7091 7092 7093
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7094

7095
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7096

7097
	cpt_init_clock_gating(dev_priv);
7098

7099
	gen6_check_mch_setup(dev_priv);
7100 7101 7102 7103 7104 7105
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7106
	/*
7107
	 * WaVSThreadDispatchOverride:ivb,vlv
7108 7109 7110 7111
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7112 7113 7114 7115 7116 7117 7118 7119
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7120
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7121 7122 7123 7124 7125
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7126
	if (HAS_PCH_LPT_LP(dev_priv))
7127 7128 7129
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7130 7131

	/* WADPOClockGatingDisable:hsw */
7132 7133
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7134
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7135 7136
}

7137
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7138
{
7139
	if (HAS_PCH_LPT_LP(dev_priv)) {
7140 7141 7142 7143 7144 7145 7146
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7170
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7171
{
7172
	gen9_init_clock_gating(dev_priv);
7173 7174 7175 7176 7177

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7178 7179 7180 7181 7182

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7183 7184 7185 7186

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7187 7188
}

7189
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7190
{
7191
	gen9_init_clock_gating(dev_priv);
7192 7193 7194 7195

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7196 7197 7198 7199

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7200 7201
}

7202
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7203
{
7204
	enum pipe pipe;
B
Ben Widawsky 已提交
7205

7206
	ilk_init_lp_watermarks(dev_priv);
7207

7208
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7209
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7210

7211
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7212 7213 7214
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7215
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7216
	for_each_pipe(dev_priv, pipe) {
7217
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7218
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7219
			   BDW_DPRS_MASK_VBLANK_SRD);
7220
	}
7221

7222 7223 7224 7225 7226
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7227

7228 7229
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7230 7231 7232 7233

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7234

7235 7236
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7237

7238 7239 7240 7241 7242 7243 7244
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7245 7246 7247 7248
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7249
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7250 7251
}

7252
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7253
{
7254
	ilk_init_lp_watermarks(dev_priv);
7255

7256 7257 7258 7259 7260
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7261
	/* This is required by WaCatErrorRejectionIssue:hsw */
7262 7263 7264 7265
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7266 7267 7268
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7269

7270 7271 7272
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7273 7274 7275 7276
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7277
	/* WaDisable4x2SubspanOptimization:hsw */
7278 7279
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7280

7281 7282 7283
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7284 7285 7286 7287
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7288 7289
	 */
	I915_WRITE(GEN7_GT_MODE,
7290
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7291

7292 7293 7294 7295
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7296
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7297 7298
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7299 7300 7301
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7302

7303
	lpt_init_clock_gating(dev_priv);
7304 7305
}

7306
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7307
{
7308
	uint32_t snpcr;
7309

7310
	ilk_init_lp_watermarks(dev_priv);
7311

7312
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7313

7314
	/* WaDisableEarlyCull:ivb */
7315 7316 7317
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7318
	/* WaDisableBackToBackFlipFix:ivb */
7319 7320 7321 7322
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7323
	/* WaDisablePSDDualDispatchEnable:ivb */
7324
	if (IS_IVB_GT1(dev_priv))
7325 7326 7327
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7328 7329 7330
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7331
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7332 7333 7334
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7335
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7336 7337 7338
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7339
		   GEN7_WA_L3_CHICKEN_MODE);
7340
	if (IS_IVB_GT1(dev_priv))
7341 7342
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7343 7344 7345 7346
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7347 7348
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7349
	}
7350

7351
	/* WaForceL3Serialization:ivb */
7352 7353 7354
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7355
	/*
7356
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7357
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7358 7359
	 */
	I915_WRITE(GEN6_UCGCTL2,
7360
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7361

7362
	/* This is required by WaCatErrorRejectionIssue:ivb */
7363 7364 7365 7366
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7367
	g4x_disable_trickle_feed(dev_priv);
7368 7369

	gen7_setup_fixed_func_scheduler(dev_priv);
7370

7371 7372 7373 7374 7375
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7376

7377
	/* WaDisable4x2SubspanOptimization:ivb */
7378 7379
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7380

7381 7382 7383
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7384 7385 7386 7387
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7388 7389
	 */
	I915_WRITE(GEN7_GT_MODE,
7390
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7391

7392 7393 7394 7395
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7396

7397
	if (!HAS_PCH_NOP(dev_priv))
7398
		cpt_init_clock_gating(dev_priv);
7399

7400
	gen6_check_mch_setup(dev_priv);
7401 7402
}

7403
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7404
{
7405
	/* WaDisableEarlyCull:vlv */
7406 7407 7408
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7409
	/* WaDisableBackToBackFlipFix:vlv */
7410 7411 7412 7413
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7414
	/* WaPsdDispatchEnable:vlv */
7415
	/* WaDisablePSDDualDispatchEnable:vlv */
7416
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7417 7418
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7419

7420 7421 7422
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7423
	/* WaForceL3Serialization:vlv */
7424 7425 7426
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7427
	/* WaDisableDopClockGating:vlv */
7428 7429 7430
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7431
	/* This is required by WaCatErrorRejectionIssue:vlv */
7432 7433 7434 7435
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7436 7437
	gen7_setup_fixed_func_scheduler(dev_priv);

7438
	/*
7439
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7440
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7441 7442
	 */
	I915_WRITE(GEN6_UCGCTL2,
7443
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7444

7445 7446 7447 7448 7449
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7450

7451 7452 7453 7454
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7455 7456
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7457

7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7469 7470 7471 7472 7473 7474
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7475
	/*
7476
	 * WaDisableVLVClockGating_VBIIssue:vlv
7477 7478 7479
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7480
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7481 7482
}

7483
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7484
{
7485 7486 7487 7488 7489
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7490 7491 7492 7493

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7494 7495 7496 7497

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7498 7499 7500 7501

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7502

7503 7504 7505 7506 7507 7508 7509
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7510 7511 7512 7513 7514
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7515 7516
}

7517
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7529
	if (IS_GM45(dev_priv))
7530 7531
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7532 7533 7534 7535

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7536

7537 7538 7539
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7540
	g4x_disable_trickle_feed(dev_priv);
7541 7542
}

7543
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7544 7545 7546 7547 7548 7549
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7550 7551
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7552 7553 7554

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7555 7556
}

7557
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7558 7559 7560 7561 7562 7563 7564
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7565 7566
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7567 7568 7569

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7570 7571
}

7572
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7573 7574 7575 7576 7577 7578
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7579

7580
	if (IS_PINEVIEW(dev_priv))
7581
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7582 7583 7584

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7585 7586

	/* interrupts should cause a wake up from C3 */
7587
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7588 7589 7590

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7591 7592 7593

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7594 7595
}

7596
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7597 7598
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7599 7600 7601 7602

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7603 7604 7605

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7606 7607
}

7608
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7609 7610
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7611 7612 7613 7614

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7615 7616
}

7617
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7618
{
7619
	dev_priv->display.init_clock_gating(dev_priv);
7620 7621
}

7622
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7623
{
7624 7625
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7626 7627
}

7628
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7645
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7646
	else if (IS_KABYLAKE(dev_priv))
7647
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7682
/* Set up chip specific power management-related functions */
7683
void intel_init_pm(struct drm_i915_private *dev_priv)
7684
{
7685
	intel_fbc_init(dev_priv);
7686

7687
	/* For cxsr */
7688
	if (IS_PINEVIEW(dev_priv))
7689
		i915_pineview_get_mem_freq(dev_priv);
7690
	else if (IS_GEN5(dev_priv))
7691
		i915_ironlake_get_mem_freq(dev_priv);
7692

7693
	/* For FIFO watermark updates */
7694
	if (INTEL_GEN(dev_priv) >= 9) {
7695
		skl_setup_wm_latency(dev_priv);
7696
		dev_priv->display.update_wm = skl_update_wm;
7697
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7698
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7699
		ilk_setup_wm_latency(dev_priv);
7700

7701
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7702
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7703
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7704
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7705
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7706 7707 7708 7709 7710 7711
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7712 7713 7714 7715
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7716
	} else if (IS_CHERRYVIEW(dev_priv)) {
7717
		vlv_setup_wm_latency(dev_priv);
7718
		dev_priv->display.update_wm = vlv_update_wm;
7719
	} else if (IS_VALLEYVIEW(dev_priv)) {
7720
		vlv_setup_wm_latency(dev_priv);
7721
		dev_priv->display.update_wm = vlv_update_wm;
7722
	} else if (IS_PINEVIEW(dev_priv)) {
7723
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7724 7725 7726 7727 7728 7729 7730 7731 7732
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7733
			intel_set_memory_cxsr(dev_priv, false);
7734 7735 7736
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7737
	} else if (IS_G4X(dev_priv)) {
7738
		dev_priv->display.update_wm = g4x_update_wm;
7739
	} else if (IS_GEN4(dev_priv)) {
7740
		dev_priv->display.update_wm = i965_update_wm;
7741
	} else if (IS_GEN3(dev_priv)) {
7742 7743
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7744
	} else if (IS_GEN2(dev_priv)) {
7745
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7746
			dev_priv->display.update_wm = i845_update_wm;
7747
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7748 7749
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7750
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7751 7752 7753
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7754 7755 7756
	}
}

7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7769
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7801
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7802
{
7803 7804
	int status;

7805
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7806

7807 7808 7809 7810 7811 7812
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7813 7814 7815 7816
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7817 7818 7819
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7820

7821 7822 7823
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7824 7825 7826 7827
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7828 7829
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7830

7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7842 7843 7844
	return 0;
}

7845
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7846
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7847
{
7848 7849
	int status;

7850
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7851

7852 7853 7854 7855 7856 7857
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7858 7859 7860 7861
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7862 7863
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7864

7865 7866 7867
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7868 7869 7870 7871
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7872
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7873

7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7885 7886
	return 0;
}
7887

7888 7889
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7890 7891 7892 7893 7894
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7895 7896
}

7897
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7898
{
7899
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7900 7901
}

7902
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7903
{
7904 7905 7906 7907 7908
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7909 7910
}

7911
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7912
{
7913
	/* CHV needs even values */
7914
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7915 7916
}

7917
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7918
{
7919
	if (IS_GEN9(dev_priv))
7920 7921
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7922
	else if (IS_CHERRYVIEW(dev_priv))
7923
		return chv_gpu_freq(dev_priv, val);
7924
	else if (IS_VALLEYVIEW(dev_priv))
7925 7926 7927
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7928 7929
}

7930 7931
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7932
	if (IS_GEN9(dev_priv))
7933 7934
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7935
	else if (IS_CHERRYVIEW(dev_priv))
7936
		return chv_freq_opcode(dev_priv, val);
7937
	else if (IS_VALLEYVIEW(dev_priv))
7938 7939
		return byt_freq_opcode(dev_priv, val);
	else
7940
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7941
}
7942

7943 7944
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7945
	struct drm_i915_gem_request *req;
7946 7947 7948 7949 7950
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7951
	struct drm_i915_gem_request *req = boost->req;
7952

7953
	if (!i915_gem_request_completed(req))
7954
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7955

7956
	i915_gem_request_put(req);
7957 7958 7959
	kfree(boost);
}

7960
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7961 7962 7963
{
	struct request_boost *boost;

7964
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7965 7966
		return;

7967
	if (i915_gem_request_completed(req))
7968 7969
		return;

7970 7971 7972 7973
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7974
	boost->req = i915_gem_request_get(req);
7975 7976

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7977
	queue_work(req->i915->wq, &boost->work);
7978 7979
}

D
Daniel Vetter 已提交
7980
void intel_pm_setup(struct drm_device *dev)
7981
{
7982
	struct drm_i915_private *dev_priv = to_i915(dev);
7983

D
Daniel Vetter 已提交
7984
	mutex_init(&dev_priv->rps.hw_lock);
7985
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7986

7987 7988
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7989
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7990

7991
	dev_priv->pm.suspended = false;
7992
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7993
}