intel_pm.c 226.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
86
	struct drm_i915_private *dev_priv = to_i915(dev);
87 88 89

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = to_i915(dev);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = to_i915(dev);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255 256
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322
	struct drm_device *dev = &dev_priv->drm;
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
330
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338 339 340
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342
	} else if (IS_I915GM(dev_priv)) {
343 344 345 346 347
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
348 349 350
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
351
		POSTING_READ(INSTPM);
352 353 354
	} else {
		return;
	}
355

356 357
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
358 359
}

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
375
static const int pessimal_latency_ns = 5000;
376

377 378 379 380 381 382
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
383
	struct drm_i915_private *dev_priv = to_i915(dev);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

432
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433
{
434
	struct drm_i915_private *dev_priv = to_i915(dev);
435 436 437 438 439 440 441 442 443 444 445 446 447
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

448
static int i830_get_fifo_size(struct drm_device *dev, int plane)
449
{
450
	struct drm_i915_private *dev_priv = to_i915(dev);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

465
static int i845_get_fifo_size(struct drm_device *dev, int plane)
466
{
467
	struct drm_i915_private *dev_priv = to_i915(dev);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
483 484 485 486 487
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 489
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 491 492 493 494
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 496
};
static const struct intel_watermark_params pineview_cursor_wm = {
497 498 499 500 501
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 503
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 505 506 507 508
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 510
};
static const struct intel_watermark_params g4x_wm_info = {
511 512 513 514 515
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
518 519 520 521 522
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params i965_cursor_wm_info = {
525 526 527 528 529
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params i945_wm_info = {
532 533 534 535 536
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params i915_wm_info = {
539 540 541 542 543
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
544
};
545
static const struct intel_watermark_params i830_a_wm_info = {
546 547 548 549 550
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
551
};
552 553 554 555 556 557 558
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
559
static const struct intel_watermark_params i845_wm_info = {
560 561 562 563 564
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
565 566 567 568 569 570
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
571
 * @cpp: bytes per pixel
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
587
					int fifo_size, int cpp,
588 589 590 591 592 593 594 595 596 597
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
598
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
613 614 615 616 617 618 619 620 621 622 623

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

624 625 626 627 628 629 630
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

631
	for_each_crtc(dev, crtc) {
632
		if (intel_crtc_active(crtc)) {
633 634 635 636 637 638 639 640 641
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

642
static void pineview_update_wm(struct drm_crtc *unused_crtc)
643
{
644
	struct drm_device *dev = unused_crtc->dev;
645
	struct drm_i915_private *dev_priv = to_i915(dev);
646 647 648 649 650
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

651 652 653 654
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
655 656
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
657
		intel_set_memory_cxsr(dev_priv, false);
658 659 660 661 662
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
663
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
664
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
665
		int clock = adjusted_mode->crtc_clock;
666 667 668 669

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
670
					cpp, latency->display_sr);
671 672
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
673
		reg |= FW_WM(wm, SR);
674 675 676 677 678 679
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
680
					cpp, latency->cursor_sr);
681 682
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
683
		reg |= FW_WM(wm, CURSOR_SR);
684 685 686 687 688
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
689
					cpp, latency->display_hpll_disable);
690 691
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
692
		reg |= FW_WM(wm, HPLL_SR);
693 694 695 696 697
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
698
					cpp, latency->cursor_hpll_disable);
699 700
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
701
		reg |= FW_WM(wm, HPLL_CURSOR);
702 703 704
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

705
		intel_set_memory_cxsr(dev_priv, true);
706
	} else {
707
		intel_set_memory_cxsr(dev_priv, false);
708 709 710 711 712 713 714 715 716 717 718 719 720
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
721
	const struct drm_display_mode *adjusted_mode;
722
	int htotal, hdisplay, clock, cpp;
723 724 725 726
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
727
	if (!intel_crtc_active(crtc)) {
728 729 730 731 732
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

733
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
734
	clock = adjusted_mode->crtc_clock;
735
	htotal = adjusted_mode->crtc_htotal;
736
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
737
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
738 739

	/* Use the small buffer method to calculate plane watermark */
740
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
741 742 743 744 745 746 747 748 749
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
750
	line_time_us = max(htotal * 1000 / clock, 1);
751
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
752
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
780
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
781 782 783 784 785
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
786
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
807
	const struct drm_display_mode *adjusted_mode;
808
	int hdisplay, htotal, cpp, clock;
809 810 811 812 813 814 815 816 817 818 819
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
820
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
821
	clock = adjusted_mode->crtc_clock;
822
	htotal = adjusted_mode->crtc_htotal;
823
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
824
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
825

826
	line_time_us = max(htotal * 1000 / clock, 1);
827
	line_count = (latency_ns / line_time_us + 1000) / 1000;
828
	line_size = hdisplay * cpp;
829 830

	/* Use the minimum of the small and large buffer method for primary */
831
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
832 833 834 835 836 837
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
838
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
839 840 841 842 843 844 845 846
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

847 848 849
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

850 851 852 853 854 855 856 857 858 859 860 861
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

862
	I915_WRITE(DSPFW1,
863 864 865 866
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
867
	I915_WRITE(DSPFW2,
868 869 870
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
871
	I915_WRITE(DSPFW3,
872
		   FW_WM(wm->sr.cursor, CURSOR_SR));
873 874 875

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
876 877
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
878
		I915_WRITE(DSPFW8_CHV,
879 880
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
881
		I915_WRITE(DSPFW9_CHV,
882 883
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
884
		I915_WRITE(DSPHOWM,
885 886 887 888 889 890 891 892 893 894
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
895 896
	} else {
		I915_WRITE(DSPFW7,
897 898
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
899
		I915_WRITE(DSPHOWM,
900 901 902 903 904 905 906
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
907 908
	}

909 910 911 912 913 914
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

915
	POSTING_READ(DSPFW1);
916 917
}

918 919
#undef FW_WM_VLV

920 921 922 923 924 925
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

926 927 928 929
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
930
				   unsigned int cpp,
931 932 933 934 935
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
936
	ret = (ret + 1) * horiz_pixels * cpp;
937 938 939 940 941 942 943
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
944
	struct drm_i915_private *dev_priv = to_i915(dev);
945 946 947 948

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

949 950
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

951 952 953
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
954 955

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
956 957 958 959 960 961 962 963 964
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
965
	int clock, htotal, cpp, width, wm;
966 967 968 969

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

970
	if (!state->base.visible)
971 972
		return 0;

973
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
989
		wm = vlv_wm_method2(clock, htotal, width, cpp,
990 991 992 993 994 995
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1012
		if (state->base.visible) {
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1028
		if (!state->base.visible) {
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1097
static void vlv_compute_wm(struct intel_crtc *crtc)
1098 1099 1100 1101 1102 1103 1104 1105 1106
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1107
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1108
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1109 1110 1111

	wm_state->num_active_planes = 0;

1112
	vlv_compute_fifo(crtc);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1128
		if (!state->base.visible)
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1169
					wm_state->wm[level].cursor;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1188
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1189 1190 1191 1192 1193 1194 1195
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1286 1287 1288 1289 1290 1291
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1292
	wm->level = to_i915(dev)->wm.max_level;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1311 1312 1313
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1335
	struct drm_i915_private *dev_priv = to_i915(dev);
1336 1337 1338 1339
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1340
	vlv_compute_wm(intel_crtc);
1341 1342
	vlv_merge_wm(dev, &wm);

1343 1344 1345
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1346
		return;
1347
	}
1348 1349 1350 1351 1352 1353 1354 1355 1356

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1357
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1358 1359
		intel_set_memory_cxsr(dev_priv, false);

1360 1361 1362
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1363 1364 1365 1366 1367 1368 1369 1370
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1371
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1383 1384
}

1385 1386
#define single_plane_enabled(mask) is_power_of_2(mask)

1387
static void g4x_update_wm(struct drm_crtc *crtc)
1388
{
1389
	struct drm_device *dev = crtc->dev;
1390
	static const int sr_latency_ns = 12000;
1391
	struct drm_i915_private *dev_priv = to_i915(dev);
1392 1393 1394
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1395
	bool cxsr_enabled;
1396

1397
	if (g4x_compute_wm0(dev, PIPE_A,
1398 1399
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1400
			    &planea_wm, &cursora_wm))
1401
		enabled |= 1 << PIPE_A;
1402

1403
	if (g4x_compute_wm0(dev, PIPE_B,
1404 1405
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1406
			    &planeb_wm, &cursorb_wm))
1407
		enabled |= 1 << PIPE_B;
1408 1409 1410 1411 1412 1413

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1414
			     &plane_sr, &cursor_sr)) {
1415
		cxsr_enabled = true;
1416
	} else {
1417
		cxsr_enabled = false;
1418
		intel_set_memory_cxsr(dev_priv, false);
1419 1420
		plane_sr = cursor_sr = 0;
	}
1421

1422 1423
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1424 1425 1426 1427 1428
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1429 1430 1431 1432
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1433
	I915_WRITE(DSPFW2,
1434
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1435
		   FW_WM(cursora_wm, CURSORA));
1436 1437
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1438
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1439
		   FW_WM(cursor_sr, CURSOR_SR));
1440 1441 1442

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1443 1444
}

1445
static void i965_update_wm(struct drm_crtc *unused_crtc)
1446
{
1447
	struct drm_device *dev = unused_crtc->dev;
1448
	struct drm_i915_private *dev_priv = to_i915(dev);
1449 1450 1451
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1452
	bool cxsr_enabled;
1453 1454 1455 1456 1457 1458

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1459
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1460
		int clock = adjusted_mode->crtc_clock;
1461
		int htotal = adjusted_mode->crtc_htotal;
1462
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1463
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1464 1465 1466
		unsigned long line_time_us;
		int entries;

1467
		line_time_us = max(htotal * 1000 / clock, 1);
1468 1469 1470

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1471
			cpp * hdisplay;
1472 1473 1474 1475 1476 1477 1478 1479 1480
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1481
			cpp * crtc->cursor->state->crtc_w;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1493
		cxsr_enabled = true;
1494
	} else {
1495
		cxsr_enabled = false;
1496
		/* Turn off self refresh if both pipes are enabled */
1497
		intel_set_memory_cxsr(dev_priv, false);
1498 1499 1500 1501 1502 1503
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1504 1505 1506 1507 1508 1509
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1510
	/* update cursor SR watermark */
1511
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1512 1513 1514

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1515 1516
}

1517 1518
#undef FW_WM

1519
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1520
{
1521
	struct drm_device *dev = unused_crtc->dev;
1522
	struct drm_i915_private *dev_priv = to_i915(dev);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1536
		wm_info = &i830_a_wm_info;
1537 1538 1539

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1540
	if (intel_crtc_active(crtc)) {
1541
		const struct drm_display_mode *adjusted_mode;
1542
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543 1544 1545
		if (IS_GEN2(dev))
			cpp = 4;

1546
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548
					       wm_info, fifo_size, cpp,
1549
					       pessimal_latency_ns);
1550
		enabled = crtc;
1551
	} else {
1552
		planea_wm = fifo_size - wm_info->guard_size;
1553 1554 1555 1556 1557 1558
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1559 1560 1561

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1562
	if (intel_crtc_active(crtc)) {
1563
		const struct drm_display_mode *adjusted_mode;
1564
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1565 1566 1567
		if (IS_GEN2(dev))
			cpp = 4;

1568
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1569
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1570
					       wm_info, fifo_size, cpp,
1571
					       pessimal_latency_ns);
1572 1573 1574 1575
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1576
	} else {
1577
		planeb_wm = fifo_size - wm_info->guard_size;
1578 1579 1580
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1581 1582 1583

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1584
	if (IS_I915GM(dev_priv) && enabled) {
1585
		struct drm_i915_gem_object *obj;
1586

1587
		obj = intel_fb_obj(enabled->primary->state->fb);
1588 1589

		/* self-refresh seems busted with untiled */
1590
		if (!i915_gem_object_is_tiled(obj))
1591 1592 1593
			enabled = NULL;
	}

1594 1595 1596 1597 1598 1599
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1600
	intel_set_memory_cxsr(dev_priv, false);
1601 1602 1603 1604 1605

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1606
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1607
		int clock = adjusted_mode->crtc_clock;
1608
		int htotal = adjusted_mode->crtc_htotal;
1609
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1610
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1611 1612 1613
		unsigned long line_time_us;
		int entries;

1614
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1615 1616
			cpp = 4;

1617
		line_time_us = max(htotal * 1000 / clock, 1);
1618 1619 1620

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1621
			cpp * hdisplay;
1622 1623 1624 1625 1626 1627
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1628
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1629 1630
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1631
		else
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1648 1649
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1650 1651
}

1652
static void i845_update_wm(struct drm_crtc *unused_crtc)
1653
{
1654
	struct drm_device *dev = unused_crtc->dev;
1655
	struct drm_i915_private *dev_priv = to_i915(dev);
1656
	struct drm_crtc *crtc;
1657
	const struct drm_display_mode *adjusted_mode;
1658 1659 1660 1661 1662 1663 1664
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1665
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1666
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1667
				       &i845_wm_info,
1668
				       dev_priv->display.get_fifo_size(dev, 0),
1669
				       4, pessimal_latency_ns);
1670 1671 1672 1673 1674 1675 1676 1677
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1678
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1679
{
1680
	uint32_t pixel_rate;
1681

1682
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1683 1684 1685 1686

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1687
	if (pipe_config->pch_pfit.enabled) {
1688
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1689 1690 1691 1692
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1693 1694 1695 1696 1697 1698 1699 1700

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1701 1702 1703
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1704 1705 1706 1707 1708 1709 1710
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1711
/* latency must be in 0.1us units. */
1712
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1713 1714 1715
{
	uint64_t ret;

1716 1717 1718
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1719
	ret = (uint64_t) pixel_rate * cpp * latency;
1720 1721 1722 1723 1724
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1725
/* latency must be in 0.1us units. */
1726
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1727
			       uint32_t horiz_pixels, uint8_t cpp,
1728 1729 1730 1731
			       uint32_t latency)
{
	uint32_t ret;

1732 1733
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1734 1735
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1736

1737
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1738
	ret = (ret + 1) * horiz_pixels * cpp;
1739 1740 1741 1742
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1743
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1744
			   uint8_t cpp)
1745
{
1746 1747 1748 1749 1750 1751
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1752
	if (WARN_ON(!cpp))
1753 1754 1755 1756
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1757
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1758 1759
}

1760
struct ilk_wm_maximums {
1761 1762 1763 1764 1765 1766
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1767 1768 1769 1770
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1771
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1772
				   const struct intel_plane_state *pstate,
1773 1774
				   uint32_t mem_value,
				   bool is_lp)
1775
{
1776 1777
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1778 1779
	uint32_t method1, method2;

1780
	if (!cstate->base.active || !pstate->base.visible)
1781 1782
		return 0;

1783
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1784 1785 1786 1787

	if (!is_lp)
		return method1;

1788 1789
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1790
				 drm_rect_width(&pstate->base.dst),
1791
				 cpp, mem_value);
1792 1793

	return min(method1, method2);
1794 1795
}

1796 1797 1798 1799
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1800
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1801
				   const struct intel_plane_state *pstate,
1802 1803
				   uint32_t mem_value)
{
1804 1805
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1806 1807
	uint32_t method1, method2;

1808
	if (!cstate->base.active || !pstate->base.visible)
1809 1810
		return 0;

1811
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1812 1813
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1814
				 drm_rect_width(&pstate->base.dst),
1815
				 cpp, mem_value);
1816 1817 1818
	return min(method1, method2);
}

1819 1820 1821 1822
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1823
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1824
				   const struct intel_plane_state *pstate,
1825 1826
				   uint32_t mem_value)
{
1827 1828 1829 1830 1831 1832
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1833
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1834

1835
	if (!cstate->base.active)
1836 1837
		return 0;

1838 1839
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1840
			      width, cpp, mem_value);
1841 1842
}

1843
/* Only for WM_LP. */
1844
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1845
				   const struct intel_plane_state *pstate,
1846
				   uint32_t pri_val)
1847
{
1848 1849
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1850

1851
	if (!cstate->base.active || !pstate->base.visible)
1852 1853
		return 0;

1854
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1855 1856
}

1857 1858
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1859 1860 1861
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1862 1863 1864 1865 1866
		return 768;
	else
		return 512;
}

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1901 1902 1903
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1904
				     const struct intel_wm_config *config,
1905 1906 1907 1908 1909 1910
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1911
	if (is_sprite && !config->sprites_enabled)
1912 1913 1914
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1915
	if (level == 0 || config->num_pipes_active > 1) {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1927
	if (config->sprites_enabled) {
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1939
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1940 1941 1942 1943
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1944 1945
				      int level,
				      const struct intel_wm_config *config)
1946 1947
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1948
	if (level > 0 && config->num_pipes_active > 1)
1949 1950 1951
		return 64;

	/* otherwise just report max that registers can hold */
1952
	return ilk_cursor_wm_reg_max(dev, level);
1953 1954
}

1955
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1956 1957 1958
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1959
				    struct ilk_wm_maximums *max)
1960
{
1961 1962 1963
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1964
	max->fbc = ilk_fbc_wm_reg_max(dev);
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1977
static bool ilk_validate_wm_level(int level,
1978
				  const struct ilk_wm_maximums *max,
1979
				  struct intel_wm_level *result)
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2018
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2019
				 const struct intel_crtc *intel_crtc,
2020
				 int level,
2021
				 struct intel_crtc_state *cstate,
2022 2023 2024
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2025
				 struct intel_wm_level *result)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2050 2051 2052
	result->enable = true;
}

2053
static uint32_t
2054
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2055
{
2056 2057
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2058 2059
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2060
	u32 linetime, ips_linetime;
2061

2062 2063 2064 2065
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2066
	if (WARN_ON(intel_state->cdclk == 0))
2067
		return 0;
2068

2069 2070 2071
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2072 2073 2074
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2075
					 intel_state->cdclk);
2076

2077 2078
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2079 2080
}

2081
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2082
{
2083
	struct drm_i915_private *dev_priv = to_i915(dev);
2084

2085 2086
	if (IS_GEN9(dev)) {
		uint32_t val;
2087
		int ret, i;
2088
		int level, max_level = ilk_wm_max_level(dev);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2144
		/*
2145 2146
		 * WaWmMemoryReadLatency:skl
		 *
2147
		 * punit doesn't take into account the read latency so we need
2148 2149
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2150
		 */
2151 2152 2153 2154 2155
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2156
				wm[level] += 2;
2157
			}
2158 2159
		}

2160
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2161 2162 2163 2164 2165
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2166 2167 2168 2169
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2170 2171 2172 2173 2174 2175 2176
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2177 2178 2179 2180 2181 2182 2183
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2184 2185 2186
	}
}

2187 2188 2189
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2190
	if (IS_GEN5(dev))
2191 2192 2193
		wm[0] = 13;
}

2194 2195
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2196 2197
{
	/* ILK cursor LP0 latency is 1300 ns */
2198
	if (IS_GEN5(dev_priv))
2199 2200 2201
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2202
	if (IS_IVYBRIDGE(dev_priv))
2203 2204 2205
		wm[3] *= 2;
}

2206
int ilk_wm_max_level(const struct drm_device *dev)
2207
{
2208 2209
	struct drm_i915_private *dev_priv = to_i915(dev);

2210
	/* how many WM levels are we expecting */
2211
	if (INTEL_GEN(dev_priv) >= 9)
2212
		return 7;
2213
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2214
		return 4;
2215
	else if (INTEL_GEN(dev_priv) >= 6)
2216
		return 3;
2217
	else
2218 2219
		return 2;
}
2220

2221 2222
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2223
				   const uint16_t wm[8])
2224 2225
{
	int level, max_level = ilk_wm_max_level(dev);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2236 2237 2238 2239 2240 2241 2242
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2243 2244 2245 2246 2247 2248 2249 2250
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2251 2252 2253
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2254
	int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2268
	struct drm_i915_private *dev_priv = to_i915(dev);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2288
static void ilk_setup_wm_latency(struct drm_device *dev)
2289
{
2290
	struct drm_i915_private *dev_priv = to_i915(dev);
2291 2292 2293 2294 2295 2296 2297 2298 2299

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2300
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2301 2302 2303 2304

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2305 2306 2307

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2308 2309
}

2310 2311
static void skl_setup_wm_latency(struct drm_device *dev)
{
2312
	struct drm_i915_private *dev_priv = to_i915(dev);
2313 2314 2315 2316 2317

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2341
/* Compute new watermarks for the pipe */
2342
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2343
{
2344 2345
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2346
	struct intel_pipe_wm *pipe_wm;
2347
	struct drm_device *dev = state->dev;
2348
	const struct drm_i915_private *dev_priv = to_i915(dev);
2349
	struct intel_plane *intel_plane;
2350
	struct intel_plane_state *pristate = NULL;
2351
	struct intel_plane_state *sprstate = NULL;
2352
	struct intel_plane_state *curstate = NULL;
2353
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2354
	struct ilk_wm_maximums max;
2355

2356
	pipe_wm = &cstate->wm.ilk.optimal;
2357

2358
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2359 2360 2361 2362 2363 2364
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2365 2366

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2367
			pristate = ps;
2368
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2369
			sprstate = ps;
2370
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2371
			curstate = ps;
2372 2373
	}

2374
	pipe_wm->pipe_enabled = cstate->base.active;
2375
	if (sprstate) {
2376 2377 2378 2379
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2380 2381
	}

2382 2383
	usable_level = max_level;

2384
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2385
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2386
		usable_level = 1;
2387 2388

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2389
	if (pipe_wm->sprites_scaled)
2390
		usable_level = 0;
2391

2392
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2393 2394 2395 2396
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2397

2398
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2399
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2400

2401
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2402
		return -EINVAL;
2403 2404 2405 2406

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2407
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2408

2409
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2410
				     pristate, sprstate, curstate, wm);
2411 2412 2413 2414 2415 2416

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2417 2418 2419 2420 2421 2422
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2423
			usable_level = level;
2424 2425
	}

2426
	return 0;
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2438
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2439 2440 2441 2442 2443 2444 2445 2446
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2447
	*a = newstate->wm.ilk.optimal;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2476
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2477 2478 2479 2480 2481
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2491 2492
	ret_wm->enable = true;

2493
	for_each_intel_crtc(dev, intel_crtc) {
2494
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2495 2496 2497 2498
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2499

2500 2501 2502 2503 2504
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2505
		if (!wm->enable)
2506
			ret_wm->enable = false;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2519
			 const struct intel_wm_config *config,
2520
			 const struct ilk_wm_maximums *max,
2521 2522
			 struct intel_pipe_wm *merged)
{
2523
	struct drm_i915_private *dev_priv = to_i915(dev);
2524
	int level, max_level = ilk_wm_max_level(dev);
2525
	int last_enabled_level = max_level;
2526

2527
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2528
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2529
	    config->num_pipes_active > 1)
2530
		last_enabled_level = 0;
2531

2532 2533
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2534 2535 2536 2537 2538 2539 2540

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2541 2542 2543 2544 2545
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2546 2547 2548 2549 2550 2551

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2552 2553
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2554 2555 2556
			wm->fbc_val = 0;
		}
	}
2557 2558 2559 2560 2561 2562 2563

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2564
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2565
	    intel_fbc_is_active(dev_priv)) {
2566 2567 2568 2569 2570 2571
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2572 2573
}

2574 2575 2576 2577 2578 2579
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2580 2581 2582
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2583
	struct drm_i915_private *dev_priv = to_i915(dev);
2584

2585
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2586 2587 2588 2589 2590
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2591
static void ilk_compute_wm_results(struct drm_device *dev,
2592
				   const struct intel_pipe_wm *merged,
2593
				   enum intel_ddb_partitioning partitioning,
2594
				   struct ilk_wm_values *results)
2595
{
2596 2597
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2598

2599
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2600
	results->partitioning = partitioning;
2601

2602
	/* LP1+ register values */
2603
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604
		const struct intel_wm_level *r;
2605

2606
		level = ilk_wm_lp_to_level(wm_lp, merged);
2607

2608
		r = &merged->wm[level];
2609

2610 2611 2612 2613 2614
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2615
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616 2617 2618
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2619 2620 2621
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2622 2623 2624 2625 2626 2627 2628
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2629 2630 2631 2632
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2633 2634 2635 2636 2637
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638
	}
2639

2640
	/* LP0 register values */
2641
	for_each_intel_crtc(dev, intel_crtc) {
2642
		enum pipe pipe = intel_crtc->pipe;
2643 2644
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2645 2646 2647 2648

		if (WARN_ON(!r->enable))
			continue;

2649
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2650

2651 2652 2653 2654
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2655 2656 2657
	}
}

2658 2659
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2660
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661 2662
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2663
{
2664 2665
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2666

2667 2668 2669 2670 2671
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2672 2673
	}

2674 2675
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676 2677 2678
			return r2;
		else
			return r1;
2679
	} else if (level1 > level2) {
2680 2681 2682 2683 2684 2685
		return r1;
	} else {
		return r2;
	}
}

2686 2687 2688 2689 2690 2691 2692 2693
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2694
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695 2696
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2697 2698 2699 2700 2701
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2702
	for_each_pipe(dev_priv, pipe) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2746 2747
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2748
{
2749
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750
	bool changed = false;
2751

2752 2753 2754
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760
		changed = true;
2761 2762 2763 2764
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765
		changed = true;
2766
	}
2767

2768 2769 2770 2771
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2772

2773 2774 2775 2776 2777 2778 2779
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2780 2781
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2782
{
2783
	struct drm_device *dev = &dev_priv->drm;
2784
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785 2786 2787
	unsigned int dirty;
	uint32_t val;

2788
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2789 2790 2791 2792 2793
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2794
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2795
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2796
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2797
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2798
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2799 2800
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2801
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2802
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2803
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2804
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2806 2807
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2808
	if (dirty & WM_DIRTY_DDB) {
2809
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2824 2825
	}

2826
	if (dirty & WM_DIRTY_FBC) {
2827 2828 2829 2830 2831 2832 2833 2834
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2835 2836 2837 2838 2839
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2840 2841 2842 2843 2844
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2845

2846
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2847
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2849
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2851
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2852 2853

	dev_priv->wm.hw = *results;
2854 2855
}

2856
bool ilk_disable_lp_wm(struct drm_device *dev)
2857
{
2858
	struct drm_i915_private *dev_priv = to_i915(dev);
2859 2860 2861 2862

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2863
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2887 2888 2889
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2890 2891 2892 2893 2894 2895 2896 2897
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2912
intel_enable_sagv(struct drm_i915_private *dev_priv)
2913 2914 2915
{
	int ret;

2916 2917 2918 2919
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2935
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2936
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2937
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2938 2939 2940 2941 2942 2943
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2944
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2945 2946 2947 2948
	return 0;
}

static int
2949
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2963
intel_disable_sagv(struct drm_i915_private *dev_priv)
2964 2965 2966
{
	int ret, result;

2967 2968 2969 2970
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2971 2972 2973 2974 2975 2976
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2977
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2989
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2990
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2991
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2992 2993 2994 2995 2996 2997
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2998
	dev_priv->sagv_status = I915_SAGV_DISABLED;
2999 3000 3001
	return 0;
}

3002
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3003 3004 3005 3006 3007 3008 3009 3010
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_crtc *crtc;
	enum pipe pipe;
	int level, plane;

3011 3012 3013
	if (!intel_has_sagv(dev_priv))
		return false;

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
	crtc = dev_priv->pipe_to_crtc_mapping[pipe];

	if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
		return false;

	for_each_plane(dev_priv, pipe, plane) {
		/* Skip this plane if it's not enabled */
		if (intel_state->wm_results.plane[pipe][plane][0] == 0)
			continue;

		/* Find the highest enabled wm level for this plane */
		for (level = ilk_wm_max_level(dev);
		     intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
		     { }

		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
		if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
			return false;
	}

	return true;
}

3054 3055
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3056
				   const struct intel_crtc_state *cstate,
3057 3058
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3059
{
3060 3061 3062
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3063
	struct drm_crtc *for_crtc = cstate->base.crtc;
3064 3065
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3066 3067
	int pipe = to_intel_crtc(for_crtc)->pipe;

3068
	if (WARN_ON(!state) || !cstate->base.active) {
3069 3070
		alloc->start = 0;
		alloc->end = 0;
3071
		*num_active = hweight32(dev_priv->active_crtcs);
3072 3073 3074
		return;
	}

3075 3076 3077 3078 3079
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3080 3081
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3082 3083 3084

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3085
	/*
3086 3087 3088 3089 3090 3091
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3092
	 */
3093 3094 3095
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
3096
	}
3097 3098 3099 3100 3101 3102

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3103 3104
}

3105
static unsigned int skl_cursor_allocation(int num_active)
3106
{
3107
	if (num_active == 1)
3108 3109 3110 3111 3112
		return 32;

	return 8;
}

3113 3114 3115 3116
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3117 3118
	if (entry->end)
		entry->end += 1;
3119 3120
}

3121 3122
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3123 3124 3125 3126 3127
{
	enum pipe pipe;
	int plane;
	u32 val;

3128 3129
	memset(ddb, 0, sizeof(*ddb));

3130
	for_each_pipe(dev_priv, pipe) {
3131 3132 3133 3134
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3135 3136
			continue;

3137
		for_each_plane(dev_priv, pipe, plane) {
3138 3139 3140 3141 3142 3143
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3144 3145
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3146 3147

		intel_display_power_put(dev_priv, power_domain);
3148 3149 3150
	}
}

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3173
	if (WARN_ON(!pstate->base.visible))
3174 3175 3176
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3177 3178 3179 3180
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3191
static unsigned int
3192 3193 3194
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3195
{
3196
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3197
	struct drm_framebuffer *fb = pstate->fb;
3198
	uint32_t down_scale_amount, data_rate;
3199
	uint32_t width = 0, height = 0;
3200 3201
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3202
	if (!intel_pstate->base.visible)
3203 3204 3205 3206 3207
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3208

3209 3210
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3211 3212 3213

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3214 3215

	/* for planar format */
3216
	if (format == DRM_FORMAT_NV12) {
3217
		if (y)  /* y-plane data rate */
3218
			data_rate = width * height *
3219
				drm_format_plane_cpp(format, 0);
3220
		else    /* uv-plane data rate */
3221
			data_rate = (width / 2) * (height / 2) *
3222
				drm_format_plane_cpp(format, 1);
3223 3224 3225
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3226 3227
	}

3228 3229 3230
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3231 3232 3233 3234 3235 3236 3237 3238
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3239
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3240
{
3241 3242 3243 3244 3245
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3246
	const struct drm_plane *plane;
3247
	const struct intel_plane *intel_plane;
3248
	struct drm_plane_state *pstate;
3249
	unsigned int rate, total_data_rate = 0;
3250
	int id;
3251 3252 3253 3254
	int i;

	if (WARN_ON(!state))
		return 0;
3255

3256
	/* Calculate and cache data rate for each plane */
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3273
	}
3274

3275 3276 3277
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3278

3279
		/* packed/uv */
3280 3281
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3282 3283 3284 3285 3286
	}

	return total_data_rate;
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3309 3310
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3350
static int
3351
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3352 3353
		      struct skl_ddb_allocation *ddb /* out */)
{
3354
	struct drm_atomic_state *state = cstate->base.state;
3355
	struct drm_crtc *crtc = cstate->base.crtc;
3356 3357
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3358
	struct intel_plane *intel_plane;
3359 3360
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3361
	enum pipe pipe = intel_crtc->pipe;
3362
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3363
	uint16_t alloc_size, start, cursor_blocks;
3364 3365
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3366
	unsigned int total_data_rate;
3367 3368
	int num_active;
	int id, i;
3369

3370 3371 3372 3373
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3374 3375 3376
	if (WARN_ON(!state))
		return 0;

3377 3378 3379 3380 3381
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		return 0;
	}

3382
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3383
	alloc_size = skl_ddb_entry_size(alloc);
3384 3385
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3386
		return 0;
3387 3388
	}

3389
	cursor_blocks = skl_cursor_allocation(num_active);
3390 3391
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3392 3393 3394

	alloc_size -= cursor_blocks;

3395
	/* 1. Allocate the mininum required blocks for each active plane */
3396 3397 3398
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3399

3400 3401
		if (intel_plane->pipe != pipe)
			continue;
3402

3403
		if (!to_intel_plane_state(pstate)->base.visible) {
3404 3405 3406 3407 3408 3409 3410 3411
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3412
		}
3413

3414 3415
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3416
	}
3417

3418 3419 3420
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3421 3422
	}

3423
	/*
3424 3425
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3426 3427 3428
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3429
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3430
	if (total_data_rate == 0)
3431
		return 0;
3432

3433
	start = alloc->start;
3434
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3435 3436
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3437
		int id = skl_wm_plane_id(intel_plane);
3438

3439
		data_rate = cstate->wm.skl.plane_data_rate[id];
3440 3441

		/*
3442
		 * allocation for (packed formats) or (uv-plane part of planar format):
3443 3444 3445
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3446
		plane_blocks = minimum[id];
3447 3448
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3449

3450 3451 3452 3453 3454
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3455 3456

		start += plane_blocks;
3457 3458 3459 3460

		/*
		 * allocation for y_plane part of planar format:
		 */
3461 3462 3463 3464 3465
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3466

3467 3468 3469 3470
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3471 3472

		start += y_plane_blocks;
3473 3474
	}

3475
	return 0;
3476 3477
}

3478
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3479 3480
{
	/* TODO: Take into account the scalers once we support them */
3481
	return config->base.adjusted_mode.crtc_clock;
3482 3483 3484 3485
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3486
 * for the read latency) and cpp should always be <= 8, so that
3487 3488 3489
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3490
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3491 3492 3493 3494 3495 3496
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3497
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3498 3499 3500 3501 3502 3503
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3504
			       uint32_t latency, uint32_t plane_blocks_per_line)
3505
{
3506 3507
	uint32_t ret;
	uint32_t wm_intermediate_val;
3508 3509 3510 3511 3512 3513

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3514
				plane_blocks_per_line;
3515 3516 3517 3518

	return ret;
}

3519 3520 3521 3522 3523 3524 3525 3526
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3527
	if (WARN_ON(!pstate->base.visible))
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3543 3544 3545 3546 3547 3548 3549 3550
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3551
{
3552 3553
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3554 3555 3556 3557 3558
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3559
	uint8_t cpp;
3560
	uint32_t width = 0, height = 0;
3561
	uint32_t plane_pixel_rate;
3562
	uint32_t y_tile_minimum, y_min_scanlines;
3563

3564
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3565 3566 3567
		*enabled = false;
		return 0;
	}
3568

3569 3570
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3571

3572
	if (intel_rotation_90_or_270(pstate->rotation))
3573 3574
		swap(width, height);

3575
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3576 3577
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
	if (intel_rotation_90_or_270(pstate->rotation)) {
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3593 3594 3595
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3596 3597 3598 3599 3600
		}
	} else {
		y_min_scanlines = 4;
	}

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3614 3615
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3616
				 cstate->base.adjusted_mode.crtc_htotal,
3617
				 latency,
3618
				 plane_blocks_per_line);
3619

3620 3621
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

3622 3623
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3624 3625
		selected_result = max(method2, y_tile_minimum);
	} else {
3626 3627 3628 3629
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3630 3631 3632 3633
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3634

3635 3636
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3637

3638
	if (level >= 1 && level <= 7) {
3639
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3640 3641
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3642
			res_lines += y_min_scanlines;
3643
		} else {
3644
			res_blocks++;
3645
		}
3646
	}
3647

3648 3649
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3666
	}
3667 3668 3669

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3670
	*enabled = true;
3671

3672
	return 0;
3673 3674
}

3675 3676 3677 3678 3679 3680
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3681
{
3682
	struct drm_atomic_state *state = cstate->base.state;
3683
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3684
	struct drm_plane *plane;
3685
	struct intel_plane *intel_plane;
3686
	struct intel_plane_state *intel_pstate;
3687
	uint16_t ddb_blocks;
3688
	enum pipe pipe = intel_crtc->pipe;
3689
	int ret;
3690

3691 3692 3693 3694 3695 3696
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

3697 3698 3699
	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3700
		int i = skl_wm_plane_id(intel_plane);
3701

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3727 3728
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3739
	}
3740 3741

	return 0;
3742 3743
}

3744
static uint32_t
3745
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3746
{
3747
	if (!cstate->base.active)
3748 3749
		return 0;

3750
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3751
		return 0;
3752

3753 3754
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3755 3756
}

3757
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3758
				      struct skl_wm_level *trans_wm /* out */)
3759
{
3760
	struct drm_crtc *crtc = cstate->base.crtc;
3761
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3762
	struct intel_plane *intel_plane;
3763

3764
	if (!cstate->base.active)
3765
		return;
3766 3767

	/* Until we know more, just disable transition WMs */
3768 3769 3770
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3771
		trans_wm->plane_en[i] = false;
3772
	}
3773 3774
}

3775 3776 3777
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3778
{
3779
	struct drm_device *dev = cstate->base.crtc->dev;
3780
	const struct drm_i915_private *dev_priv = to_i915(dev);
3781
	int level, max_level = ilk_wm_max_level(dev);
3782
	int ret;
3783 3784

	for (level = 0; level <= max_level; level++) {
3785 3786 3787 3788
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3789
	}
3790
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3791

3792
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3793 3794

	return 0;
3795 3796 3797 3798 3799 3800 3801 3802 3803
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3804 3805
	uint32_t temp;
	int i;
3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3822 3823
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3824

3825
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3826 3827
			temp |= PLANE_WM_EN;

3828
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3829 3830 3831

	}

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3844 3845 3846
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3847 3848
		temp |= PLANE_WM_EN;

3849
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3850

3851 3852 3853
	r->wm_linetime[pipe] = p_wm->linetime;
}

3854 3855
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3856 3857 3858 3859 3860 3861 3862 3863
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			const struct skl_wm_values *wm,
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(PLANE_WM(pipe, plane, level),
			   wm->plane[pipe][plane][level]);
	}
	I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3879 3880 3881 3882 3883

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
			    &wm->ddb.plane[pipe][plane]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
			    &wm->ddb.y_plane[pipe][plane]);
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
			 const struct skl_wm_values *wm)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		I915_WRITE(CUR_WM(pipe, level),
			   wm->plane[pipe][PLANE_CURSOR][level]);
	}
	I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3900

3901 3902
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
			    &wm->ddb.plane[pipe][PLANE_CURSOR]);
3903 3904
}

3905 3906 3907
bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
			       const struct skl_ddb_allocation *new,
			       enum pipe pipe)
3908
{
3909 3910
	return new->pipe[pipe].start == old->pipe[pipe].start &&
	       new->pipe[pipe].end == old->pipe[pipe].end;
3911 3912
}

3913 3914
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3915
{
3916
	return a->start < b->end && b->start < a->end;
3917 3918
}

3919 3920 3921 3922
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
				 const struct skl_ddb_allocation *old,
				 const struct skl_ddb_allocation *new,
				 enum pipe pipe)
3923
{
3924 3925 3926
	struct drm_device *dev = state->dev;
	struct intel_crtc *intel_crtc;
	enum pipe otherp;
3927

3928 3929
	for_each_intel_crtc(dev, intel_crtc) {
		otherp = intel_crtc->pipe;
3930

3931
		if (otherp == pipe)
3932 3933
			continue;

3934 3935 3936
		if (skl_ddb_entries_overlap(&new->pipe[pipe],
					    &old->pipe[otherp]))
			return true;
3937 3938
	}

3939
	return false;
3940 3941
}

3942 3943 3944 3945
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3946
{
3947 3948
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3949
	int ret;
3950

3951 3952 3953
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3954

3955
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3956 3957 3958
		*changed = false;
	else
		*changed = true;
3959

3960
	return 0;
3961 3962
}

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3976
static int
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4011 4012 4013 4014 4015 4016 4017
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4018
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4019
	uint32_t realloc_pipes = pipes_modified(state);
4020 4021 4022 4023 4024 4025 4026 4027
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4028 4029 4030 4031 4032 4033
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4034 4035
		intel_state->active_pipe_changes = ~0;

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4059
	if (intel_state->active_pipe_changes) {
4060
		realloc_pipes = ~0;
4061 4062
		intel_state->wm_results.dirty_pipes = ~0;
	}
4063

4064 4065 4066 4067 4068 4069
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4070 4071 4072 4073 4074 4075 4076
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4077
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4078 4079
		if (ret)
			return ret;
4080

4081
		ret = skl_ddb_add_affected_planes(cstate);
4082 4083
		if (ret)
			return ret;
4084 4085 4086 4087 4088
	}

	return 0;
}

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	dst->wm_linetime[pipe] = src->wm_linetime[pipe];
	memcpy(dst->plane[pipe], src->plane[pipe],
	       sizeof(dst->plane[pipe]));
	memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
	       sizeof(dst->plane_trans[pipe]));

	dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4107 4108 4109 4110 4111
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4112 4113 4114
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4115
	bool changed = false;
4116
	int ret, i;
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4131 4132 4133
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4134 4135 4136 4137
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4170 4171 4172
	return 0;
}

4173 4174 4175 4176
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4177
	struct drm_i915_private *dev_priv = to_i915(dev);
4178
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4179
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4180
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4181
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4182
	enum pipe pipe = intel_crtc->pipe;
4183

4184
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4185 4186
		return;

4187 4188 4189
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4190

4191
	/*
4192 4193 4194 4195
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4196
	 */
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	if (crtc->state->active_changed) {
		int plane;

		for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
			skl_write_plane_wm(intel_crtc, results, plane);

		skl_write_cursor_wm(intel_crtc, results);
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4207 4208

	mutex_unlock(&dev_priv->wm.wm_mutex);
4209 4210
}

4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4229
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4230
{
4231
	struct drm_device *dev = &dev_priv->drm;
4232
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4233
	struct ilk_wm_maximums max;
4234
	struct intel_wm_config config = {};
4235
	struct ilk_wm_values results = {};
4236
	enum intel_ddb_partitioning partitioning;
4237

4238 4239 4240 4241
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4242 4243

	/* 5/6 split only in single pipe config on IVB+ */
4244
	if (INTEL_INFO(dev)->gen >= 7 &&
4245 4246 4247
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4248

4249
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4250
	} else {
4251
		best_lp_wm = &lp_wm_1_2;
4252 4253
	}

4254
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4255
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4256

4257
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4258

4259
	ilk_write_wm_values(dev_priv, &results);
4260 4261
}

4262
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4263
{
4264 4265
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4266

4267
	mutex_lock(&dev_priv->wm.wm_mutex);
4268
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4269 4270 4271
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4272

4273 4274 4275 4276
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4277

4278 4279
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4280
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4281 4282 4283
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4284 4285
}

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4304 4305
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4306
					val & PLANE_WM_BLOCKS_MASK;
4307
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4320 4321
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4322
					val & PLANE_WM_BLOCKS_MASK;
4323
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4324 4325 4326 4327 4328 4329 4330 4331 4332
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4333
	struct drm_i915_private *dev_priv = to_i915(dev);
4334 4335
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4336
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4337
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4350
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4351 4352 4353 4354
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4355
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4356

4357
	if (!intel_crtc->active)
4358 4359
		return;

4360
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4361 4362 4363 4364 4365 4366 4367 4368 4369

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4370
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4371 4372 4373 4374 4375 4376 4377 4378
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4379
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4380
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4381 4382

	intel_crtc->wm.active.skl = *active;
4383 4384 4385 4386
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4387
	struct drm_i915_private *dev_priv = to_i915(dev);
4388
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4389 4390
	struct drm_crtc *crtc;

4391
	skl_ddb_get_hw_state(dev_priv, ddb);
4392 4393
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4394

4395 4396 4397 4398 4399 4400 4401
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4402 4403
}

4404 4405 4406
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4407
	struct drm_i915_private *dev_priv = to_i915(dev);
4408
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4409
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4410
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4411
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4412
	enum pipe pipe = intel_crtc->pipe;
4413
	static const i915_reg_t wm0_pipe_reg[] = {
4414 4415 4416 4417 4418 4419
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4420
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4421
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4422

4423 4424
	memset(active, 0, sizeof(*active));

4425
	active->pipe_enabled = intel_crtc->active;
4426 4427

	if (active->pipe_enabled) {
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4452 4453

	intel_crtc->wm.active.ilk = *active;
4454 4455
}

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4573 4574 4575 4576 4577 4578 4579 4580 4581
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4582
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4609 4610
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4611
	struct drm_i915_private *dev_priv = to_i915(dev);
4612
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4613 4614
	struct drm_crtc *crtc;

4615
	for_each_crtc(dev, crtc)
4616 4617 4618 4619 4620 4621 4622
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4623 4624 4625 4626
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4627

4628
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4629 4630
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4631
	else if (IS_IVYBRIDGE(dev_priv))
4632 4633
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4634 4635 4636 4637 4638

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4671
void intel_update_watermarks(struct drm_crtc *crtc)
4672
{
4673
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4674 4675

	if (dev_priv->display.update_wm)
4676
		dev_priv->display.update_wm(crtc);
4677 4678
}

4679
/*
4680 4681 4682 4683 4684 4685 4686 4687
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4688
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4689 4690 4691
{
	u16 rgvswctl;

4692 4693
	assert_spin_locked(&mchdev_lock);

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4711
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4712
{
4713
	u32 rgvmodectl;
4714 4715
	u8 fmax, fmin, fstart, vstart;

4716 4717
	spin_lock_irq(&mchdev_lock);

4718 4719
	rgvmodectl = I915_READ(MEMMODECTL);

4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4740
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4741 4742
		PXVFREQ_PX_SHIFT;

4743 4744
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4745

4746 4747 4748
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4765
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4766
		DRM_ERROR("stuck trying to change perf mode\n");
4767
	mdelay(1);
4768

4769
	ironlake_set_drps(dev_priv, fstart);
4770

4771 4772
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4773
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4774
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4775
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4776 4777

	spin_unlock_irq(&mchdev_lock);
4778 4779
}

4780
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4781
{
4782 4783 4784 4785 4786
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4787 4788 4789 4790 4791 4792 4793 4794 4795

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4796
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4797
	mdelay(1);
4798 4799
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4800
	mdelay(1);
4801

4802
	spin_unlock_irq(&mchdev_lock);
4803 4804
}

4805 4806 4807 4808 4809
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4810
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4811
{
4812
	u32 limits;
4813

4814 4815 4816 4817 4818 4819
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4820
	if (IS_GEN9(dev_priv)) {
4821 4822 4823 4824 4825 4826 4827 4828
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4829 4830 4831 4832

	return limits;
}

4833 4834 4835
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4836 4837
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4838 4839 4840 4841

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4842 4843
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4844 4845 4846 4847
			new_power = BETWEEN;
		break;

	case BETWEEN:
4848 4849
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4850
			new_power = LOW_POWER;
4851 4852
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4853 4854 4855 4856
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4857 4858
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4859 4860 4861 4862
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4863
	if (val <= dev_priv->rps.min_freq_softlimit)
4864
		new_power = LOW_POWER;
4865
	if (val >= dev_priv->rps.max_freq_softlimit)
4866 4867 4868 4869 4870 4871 4872 4873
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4874 4875
		ei_up = 16000;
		threshold_up = 95;
4876 4877

		/* Downclock if less than 85% busy over 32ms */
4878 4879
		ei_down = 32000;
		threshold_down = 85;
4880 4881 4882 4883
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4884 4885
		ei_up = 13000;
		threshold_up = 90;
4886 4887

		/* Downclock if less than 75% busy over 32ms */
4888 4889
		ei_down = 32000;
		threshold_down = 75;
4890 4891 4892 4893
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4894 4895
		ei_up = 10000;
		threshold_up = 85;
4896 4897

		/* Downclock if less than 60% busy over 32ms */
4898 4899
		ei_down = 32000;
		threshold_down = 60;
4900 4901 4902
		break;
	}

4903
	I915_WRITE(GEN6_RP_UP_EI,
4904
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4905
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4906 4907
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4908 4909

	I915_WRITE(GEN6_RP_DOWN_EI,
4910
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4911
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4922

4923
	dev_priv->rps.power = new_power;
4924 4925
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4926 4927 4928
	dev_priv->rps.last_adj = 0;
}

4929 4930 4931 4932 4933
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4934
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4935
	if (val < dev_priv->rps.max_freq_softlimit)
4936
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4937

4938 4939
	mask &= dev_priv->pm_rps_events;

4940
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4941 4942
}

4943 4944 4945
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4946
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4947
{
4948
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4949
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4950 4951
		return;

4952
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4953 4954
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4955

C
Chris Wilson 已提交
4956 4957 4958 4959 4960
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4961

4962
		if (IS_GEN9(dev_priv))
4963 4964
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4965
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4966 4967 4968 4969 4970 4971 4972
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4973
	}
4974 4975 4976 4977

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4978
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4979
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4980

4981 4982
	POSTING_READ(GEN6_RPNSWREQ);

4983
	dev_priv->rps.cur_freq = val;
4984
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4985 4986
}

4987
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4988 4989
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4990 4991
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4992

4993
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4994 4995 4996
		      "Odd GPU freq value\n"))
		val &= ~1;

4997 4998
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4999
	if (val != dev_priv->rps.cur_freq) {
5000
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5001 5002 5003
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5004 5005 5006 5007 5008

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5009
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5010 5011
 *
 * * If Gfx is Idle, then
5012 5013 5014
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5015 5016 5017
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5018
	u32 val = dev_priv->rps.idle_freq;
5019

5020
	if (dev_priv->rps.cur_freq <= val)
5021 5022
		return;

5023 5024 5025
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5026
	valleyview_set_rps(dev_priv, val);
5027
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5028 5029
}

5030 5031 5032 5033 5034 5035 5036 5037
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5038

5039 5040
		gen6_enable_rps_interrupts(dev_priv);

5041 5042 5043 5044 5045
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5046 5047 5048 5049
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5050 5051
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5052 5053 5054 5055 5056 5057 5058
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5059
	mutex_lock(&dev_priv->rps.hw_lock);
5060
	if (dev_priv->rps.enabled) {
5061
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5062
			vlv_set_rps_idle(dev_priv);
5063
		else
5064
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5065
		dev_priv->rps.last_adj = 0;
5066 5067
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5068
	}
5069
	mutex_unlock(&dev_priv->rps.hw_lock);
5070

5071
	spin_lock(&dev_priv->rps.client_lock);
5072 5073
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5074
	spin_unlock(&dev_priv->rps.client_lock);
5075 5076
}

5077
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5078 5079
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5080
{
5081 5082 5083
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5084
	if (!(dev_priv->gt.awake &&
5085
	      dev_priv->rps.enabled &&
5086
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5087
		return;
5088

5089 5090 5091
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5092
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5093 5094
		rps = NULL;

5095 5096 5097 5098 5099
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5100
			schedule_work(&dev_priv->rps.work);
5101 5102
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5103

5104 5105 5106
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5107 5108
		} else
			dev_priv->rps.boosts++;
5109
	}
5110
	spin_unlock(&dev_priv->rps.client_lock);
5111 5112
}

5113
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5114
{
5115 5116
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5117
	else
5118
		gen6_set_rps(dev_priv, val);
5119 5120
}

5121
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5122 5123
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5124
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5125 5126
}

5127
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5128 5129 5130 5131
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5132
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5133 5134
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5135
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5136
	I915_WRITE(GEN6_RP_CONTROL, 0);
5137 5138
}

5139
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5140 5141 5142 5143
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5144
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5145
{
5146 5147
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5148
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5149

5150
	I915_WRITE(GEN6_RC_CONTROL, 0);
5151

5152
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5153 5154
}

5155
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5156
{
5157
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5158 5159 5160 5161 5162
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5163
	if (HAS_RC6p(dev_priv))
5164 5165 5166 5167 5168
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5169 5170

	else
5171 5172
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5173 5174
}

5175
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5176
{
5177
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5178 5179
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5191 5192

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5193
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5194 5195 5196 5197 5198 5199 5200 5201
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5202 5203 5204
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5205
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5206 5207 5208 5209 5210 5211 5212
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5213
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5214 5215 5216
		enable_rc6 = false;
	}

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5231 5232 5233 5234 5235 5236
		enable_rc6 = false;
	}

	return enable_rc6;
}

5237
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5238
{
5239
	/* No RC6 before Ironlake and code is gone for ilk. */
5240
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5241 5242
		return 0;

5243 5244 5245
	if (!enable_rc6)
		return 0;

5246
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5247 5248 5249 5250
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5251
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5252 5253 5254
	if (enable_rc6 >= 0) {
		int mask;

5255
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5256 5257 5258 5259 5260 5261
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5262 5263 5264
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5265 5266 5267

		return enable_rc6 & mask;
	}
5268

5269
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5270
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5271 5272

	return INTEL_RC6_ENABLE;
5273 5274
}

5275
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5276 5277
{
	/* All of these values are in units of 50MHz */
5278

5279
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5280
	if (IS_BROXTON(dev_priv)) {
5281
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5282 5283 5284 5285
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5286
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5287 5288 5289 5290
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5291
	/* hw_max = RP0 until we check for overclocking */
5292
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5293

5294
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5295 5296
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5297 5298 5299 5300 5301
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5302
			dev_priv->rps.efficient_freq =
5303 5304 5305 5306
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5307 5308
	}

5309
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5310
		/* Store the frequency values in 16.66 MHZ units, which is
5311 5312
		 * the natural hardware unit for SKL
		 */
5313 5314 5315 5316 5317 5318
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5319 5320
}

5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5333
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5334
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5335 5336 5337
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5338
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5339
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5340 5341 5342 5343 5344 5345 5346 5347 5348
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5349
		gen9_disable_rps(dev_priv);
5350 5351 5352 5353
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5354 5355 5356 5357 5358 5359 5360 5361
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5362 5363
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5364 5365 5366
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5367
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5368 5369 5370 5371

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5372
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5373
{
5374
	struct intel_engine_cs *engine;
5375
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5376 5377 5378 5379 5380 5381 5382
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5383
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5384 5385 5386 5387 5388

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5389 5390

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5391
	if (IS_SKYLAKE(dev_priv))
5392 5393 5394
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5395 5396
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5397
	for_each_engine(engine, dev_priv, id)
5398
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5399

5400
	if (HAS_GUC(dev_priv))
5401 5402
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5403 5404
	I915_WRITE(GEN6_RC_SLEEP, 0);

5405 5406 5407 5408
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5409
	/* 3a: Enable RC6 */
5410
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5411
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5412
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5413
	/* WaRsUseTimeoutMode:bxt */
5414
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5415
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5416 5417 5418
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5419 5420
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5421 5422 5423
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5424
	}
Z
Zhe Wang 已提交
5425

5426 5427
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5428
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5429
	 */
5430
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5431 5432 5433 5434
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5435

5436
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5437 5438
}

5439
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5440
{
5441
	struct intel_engine_cs *engine;
5442
	enum intel_engine_id id;
5443
	uint32_t rc6_mask = 0;
5444 5445 5446 5447 5448 5449

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5450
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5451 5452 5453 5454 5455 5456 5457 5458

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5459
	for_each_engine(engine, dev_priv, id)
5460
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5461
	I915_WRITE(GEN6_RC_SLEEP, 0);
5462
	if (IS_BROADWELL(dev_priv))
5463 5464 5465
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5466 5467

	/* 3: Enable RC6 */
5468
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5469
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5470 5471
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5472 5473 5474 5475 5476 5477 5478
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5479 5480

	/* 4 Program defaults and thresholds for RPS*/
5481 5482 5483 5484
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5499 5500

	/* 5: Enable RPS */
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5511
	reset_rps(dev_priv, gen6_set_rps);
5512

5513
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5514 5515
}

5516
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5517
{
5518
	struct intel_engine_cs *engine;
5519
	enum intel_engine_id id;
5520
	u32 rc6vids, rc6_mask = 0;
5521 5522
	u32 gtfifodbg;
	int rc6_mode;
5523
	int ret;
5524

5525
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5526

5527 5528 5529 5530 5531 5532 5533 5534 5535
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5536 5537
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5538 5539 5540 5541
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5542
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5553
	for_each_engine(engine, dev_priv, id)
5554
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5555 5556 5557

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5558
	if (IS_IVYBRIDGE(dev_priv))
5559 5560 5561
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5562
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5563 5564
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5565
	/* Check if we are enabling RC6 */
5566
	rc6_mode = intel_enable_rc6();
5567 5568 5569
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5570
	/* We don't use those on Haswell */
5571
	if (!IS_HASWELL(dev_priv)) {
5572 5573
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5574

5575 5576 5577
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5578

5579
	intel_print_rc6_info(dev_priv, rc6_mask);
5580 5581 5582 5583 5584 5585

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5586 5587
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5588 5589
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5590
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5591
	if (ret)
B
Ben Widawsky 已提交
5592
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5593

5594
	reset_rps(dev_priv, gen6_set_rps);
5595

5596 5597
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5598
	if (IS_GEN6(dev_priv) && ret) {
5599
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5600
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5601 5602 5603 5604 5605 5606 5607 5608 5609
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5610
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5611 5612
}

5613
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5614 5615
{
	int min_freq = 15;
5616 5617
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5618
	unsigned int max_gpu_freq, min_gpu_freq;
5619
	int scaling_factor = 180;
5620
	struct cpufreq_policy *policy;
5621

5622
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5623

5624 5625 5626 5627 5628 5629 5630 5631 5632
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5633
		max_ia_freq = tsc_khz;
5634
	}
5635 5636 5637 5638

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5639
	min_ring_freq = I915_READ(DCLK) & 0xf;
5640 5641
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5642

5643
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5644 5645 5646 5647 5648 5649 5650 5651
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5652 5653 5654 5655 5656
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5657 5658
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5659 5660
		unsigned int ia_freq = 0, ring_freq = 0;

5661
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5662 5663 5664 5665 5666
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5667
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5668 5669
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5670
		} else if (IS_HASWELL(dev_priv)) {
5671
			ring_freq = mult_frac(gpu_freq, 5, 4);
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5688

B
Ben Widawsky 已提交
5689 5690
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5691 5692 5693
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5694 5695 5696
	}
}

5697
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5698 5699 5700
{
	u32 val, rp0;

5701
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5702

5703
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5718
	}
5719 5720 5721

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5735 5736 5737 5738
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5739 5740 5741
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5742 5743 5744
	return rp1;
}

5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5756
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5757 5758 5759
{
	u32 val, rp0;

5760
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5773
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5774
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5775
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5776 5777 5778 5779 5780
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5781
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5782
{
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5794 5795
}

5796 5797 5798 5799 5800 5801 5802 5803 5804
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5805 5806 5807 5808 5809 5810 5811 5812 5813

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5814
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5815
{
5816
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5817
	unsigned long pctx_paddr, paddr;
5818 5819 5820 5821 5822
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5823
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5824
		paddr = (dev_priv->mm.stolen_base +
5825
			 (ggtt->stolen_size - pctx_size));
5826 5827 5828 5829

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5830 5831

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5832 5833
}

5834
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5847
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5848
								      pcbr_offset,
5849
								      I915_GTT_OFFSET_NONE,
5850 5851 5852 5853
								      pctx_size);
		goto out;
	}

5854 5855
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5856 5857 5858 5859 5860 5861 5862 5863
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5864
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5865 5866
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5867
		goto out;
5868 5869 5870 5871 5872 5873
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5874
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5875 5876 5877
	dev_priv->vlv_pctx = pctx;
}

5878
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5879 5880 5881 5882
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5883
	i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5884 5885 5886
	dev_priv->vlv_pctx = NULL;
}

5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5898
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5899
{
5900
	u32 val;
5901

5902
	valleyview_setup_pctx(dev_priv);
5903

5904 5905
	vlv_init_gpll_ref_freq(dev_priv);

5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5919
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5920

5921 5922 5923
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5924
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5925 5926 5927 5928
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5929
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5930 5931
			 dev_priv->rps.efficient_freq);

5932 5933
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5934
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5935 5936
			 dev_priv->rps.rp1_freq);

5937 5938
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5939
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5940 5941 5942
			 dev_priv->rps.min_freq);
}

5943
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5944
{
5945
	u32 val;
5946

5947
	cherryview_setup_pctx(dev_priv);
5948

5949 5950
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5951
	mutex_lock(&dev_priv->sb_lock);
5952
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5953
	mutex_unlock(&dev_priv->sb_lock);
5954

5955 5956 5957 5958
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5959
	default:
5960 5961 5962
		dev_priv->mem_freq = 1600;
		break;
	}
5963
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5964

5965 5966 5967
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5968
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5969 5970 5971 5972
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5973
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5974 5975
			 dev_priv->rps.efficient_freq);

5976 5977
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5978
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5979 5980
			 dev_priv->rps.rp1_freq);

5981 5982
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5983
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5984
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5985 5986
			 dev_priv->rps.min_freq);

5987 5988 5989 5990 5991
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5992 5993
}

5994
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5995
{
5996
	valleyview_cleanup_pctx(dev_priv);
5997 5998
}

5999
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6000
{
6001
	struct intel_engine_cs *engine;
6002
	enum intel_engine_id id;
6003
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6004 6005 6006

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6007 6008
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6019
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6020

6021 6022 6023
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6024 6025 6026 6027 6028
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6029
	for_each_engine(engine, dev_priv, id)
6030
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6031 6032
	I915_WRITE(GEN6_RC_SLEEP, 0);

6033 6034
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6046 6047
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6048
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6049 6050 6051

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6052
	/* 4 Program defaults and thresholds for RPS*/
6053
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6064
		   GEN6_RP_MEDIA_IS_GFX |
6065 6066 6067 6068
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6069 6070 6071 6072 6073 6074
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6075 6076
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6077 6078 6079
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6080
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6081 6082
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6083
	reset_rps(dev_priv, valleyview_set_rps);
6084

6085
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6086 6087
}

6088
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6089
{
6090
	struct intel_engine_cs *engine;
6091
	enum intel_engine_id id;
6092
	u32 gtfifodbg, val, rc6_mode = 0;
6093 6094 6095

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6096 6097
	valleyview_check_pctx(dev_priv);

6098 6099
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6100 6101
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6102 6103 6104
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6105
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6106
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6107

6108 6109 6110
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6111
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6131
	for_each_engine(engine, dev_priv, id)
6132
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6133

6134
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6135 6136

	/* allows RC6 residency counter to work */
6137
	I915_WRITE(VLV_COUNTER_CONTROL,
6138 6139
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6140 6141
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6142

6143
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6144
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6145

6146
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6147

6148
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6149

D
Deepak S 已提交
6150 6151 6152 6153 6154 6155
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6156
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6157

6158 6159 6160
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6161
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6162 6163
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6164
	reset_rps(dev_priv, valleyview_set_rps);
6165

6166
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6167 6168
}

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6198
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6199 6200 6201 6202 6203 6204
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6205 6206
	assert_spin_locked(&mchdev_lock);

6207
	diff1 = now - dev_priv->ips.last_time1;
6208 6209 6210 6211 6212 6213 6214

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6215
		return dev_priv->ips.chipset_power;
6216 6217 6218 6219 6220 6221 6222 6223

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6224 6225
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6226 6227
		diff += total_count;
	} else {
6228
		diff = total_count - dev_priv->ips.last_count1;
6229 6230 6231
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6232 6233
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6244 6245
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6246

6247
	dev_priv->ips.chipset_power = ret;
6248 6249 6250 6251

	return ret;
}

6252 6253 6254 6255
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6256
	if (INTEL_INFO(dev_priv)->gen != 5)
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6295
{
6296 6297 6298
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6299
	if (INTEL_INFO(dev_priv)->is_mobile)
6300 6301 6302
		return vm > 0 ? vm : 0;

	return vd;
6303 6304
}

6305
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6306
{
6307
	u64 now, diff, diffms;
6308 6309
	u32 count;

6310
	assert_spin_locked(&mchdev_lock);
6311

6312 6313 6314
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6315 6316 6317 6318 6319 6320 6321

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6322 6323
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6324 6325
		diff += count;
	} else {
6326
		diff = count - dev_priv->ips.last_count2;
6327 6328
	}

6329 6330
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6331 6332 6333 6334

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6335
	dev_priv->ips.gfx_power = diff;
6336 6337
}

6338 6339
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6340
	if (INTEL_INFO(dev_priv)->gen != 5)
6341 6342
		return;

6343
	spin_lock_irq(&mchdev_lock);
6344 6345 6346

	__i915_update_gfx_val(dev_priv);

6347
	spin_unlock_irq(&mchdev_lock);
6348 6349
}

6350
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6351 6352 6353 6354
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6355 6356
	assert_spin_locked(&mchdev_lock);

6357
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6377
	corr2 = (corr * dev_priv->ips.corr);
6378 6379 6380 6381

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6382
	__i915_update_gfx_val(dev_priv);
6383

6384
	return dev_priv->ips.gfx_power + state2;
6385 6386
}

6387 6388 6389 6390
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6391
	if (INTEL_INFO(dev_priv)->gen != 5)
6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6414
	spin_lock_irq(&mchdev_lock);
6415 6416 6417 6418
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6419 6420
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6421 6422 6423 6424

	ret = chipset_val + graphics_val;

out_unlock:
6425
	spin_unlock_irq(&mchdev_lock);
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6441
	spin_lock_irq(&mchdev_lock);
6442 6443 6444 6445 6446 6447
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6448 6449
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6450 6451

out_unlock:
6452
	spin_unlock_irq(&mchdev_lock);
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6469
	spin_lock_irq(&mchdev_lock);
6470 6471 6472 6473 6474 6475
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6476 6477
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6478 6479

out_unlock:
6480
	spin_unlock_irq(&mchdev_lock);
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6495
	spin_lock_irq(&mchdev_lock);
6496 6497
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6498
	spin_unlock_irq(&mchdev_lock);
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6515
	spin_lock_irq(&mchdev_lock);
6516 6517 6518 6519 6520 6521
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6522
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6523

6524
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6525 6526 6527
		ret = false;

out_unlock:
6528
	spin_unlock_irq(&mchdev_lock);
6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6556 6557
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6558
	spin_lock_irq(&mchdev_lock);
6559
	i915_mch_dev = dev_priv;
6560
	spin_unlock_irq(&mchdev_lock);
6561 6562 6563 6564 6565 6566

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6567
	spin_lock_irq(&mchdev_lock);
6568
	i915_mch_dev = NULL;
6569
	spin_unlock_irq(&mchdev_lock);
6570
}
6571

6572
static void intel_init_emon(struct drm_i915_private *dev_priv)
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6589
		I915_WRITE(PEW(i), 0);
6590
	for (i = 0; i < 3; i++)
6591
		I915_WRITE(DEW(i), 0);
6592 6593 6594

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6595
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6616
		I915_WRITE(PXW(i), val);
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6632
		I915_WRITE(PXWL(i), 0);
6633 6634 6635 6636 6637 6638

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6639
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6640 6641
}

6642
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6643
{
6644 6645 6646 6647 6648 6649 6650 6651
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6652

6653
	mutex_lock(&dev_priv->drm.struct_mutex);
6654 6655 6656
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6657 6658 6659 6660
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6661
	else if (INTEL_GEN(dev_priv) >= 6)
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6691 6692 6693
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6694
	mutex_unlock(&dev_priv->rps.hw_lock);
6695
	mutex_unlock(&dev_priv->drm.struct_mutex);
6696 6697

	intel_autoenable_gt_powersave(dev_priv);
6698 6699
}

6700
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6701
{
6702
	if (IS_VALLEYVIEW(dev_priv))
6703
		valleyview_cleanup_gt_powersave(dev_priv);
6704 6705 6706

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6707 6708
}

6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6728 6729 6730 6731
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6732 6733

	gen6_reset_rps_interrupts(dev_priv);
6734 6735
}

6736
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6737
{
6738 6739
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6740

6741
	mutex_lock(&dev_priv->rps.hw_lock);
6742

6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6754
	}
6755 6756 6757

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6758 6759
}

6760
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6761
{
6762 6763 6764
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6765 6766
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6767

6768 6769 6770
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6771

6772
	mutex_lock(&dev_priv->rps.hw_lock);
6773 6774 6775 6776 6777

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6778
	} else if (INTEL_GEN(dev_priv) >= 9) {
6779 6780 6781
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6782
			gen6_update_ring_freq(dev_priv);
6783 6784
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6785
		gen6_update_ring_freq(dev_priv);
6786
	} else if (INTEL_GEN(dev_priv) >= 6) {
6787
		gen6_enable_rps(dev_priv);
6788
		gen6_update_ring_freq(dev_priv);
6789 6790 6791
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6792
	}
6793 6794 6795 6796 6797 6798 6799

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6800
	dev_priv->rps.enabled = true;
6801 6802
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6803

6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6814
	rcs = dev_priv->engine[RCS];
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6867 6868
static void ibx_init_clock_gating(struct drm_device *dev)
{
6869
	struct drm_i915_private *dev_priv = to_i915(dev);
6870 6871 6872 6873 6874 6875 6876 6877 6878

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6879 6880
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6881
	struct drm_i915_private *dev_priv = to_i915(dev);
6882
	enum pipe pipe;
6883

6884
	for_each_pipe(dev_priv, pipe) {
6885 6886 6887
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6888 6889 6890

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6891 6892 6893
	}
}

6894 6895
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6896
	struct drm_i915_private *dev_priv = to_i915(dev);
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6908
static void ironlake_init_clock_gating(struct drm_device *dev)
6909
{
6910
	struct drm_i915_private *dev_priv = to_i915(dev);
6911
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6912

6913 6914 6915 6916
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6917 6918 6919
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6937
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6938 6939 6940
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6941 6942

	ilk_init_lp_watermarks(dev);
6943 6944 6945 6946 6947 6948 6949 6950

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6951
	if (IS_IRONLAKE_M(dev_priv)) {
6952
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6953 6954 6955 6956 6957 6958 6959 6960
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6961 6962
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6963 6964 6965 6966 6967 6968
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6969

6970
	/* WaDisableRenderCachePipelinedFlush:ilk */
6971 6972
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6973

6974 6975 6976
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6977
	g4x_disable_trickle_feed(dev);
6978

6979 6980 6981 6982 6983
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6984
	struct drm_i915_private *dev_priv = to_i915(dev);
6985
	int pipe;
6986
	uint32_t val;
6987 6988 6989 6990 6991 6992

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6993 6994 6995
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6996 6997
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6998 6999 7000
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7001
	for_each_pipe(dev_priv, pipe) {
7002 7003 7004
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7005
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7006
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7007 7008 7009
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7010 7011
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7012
	/* WADP0ClockGatingDisable */
7013
	for_each_pipe(dev_priv, pipe) {
7014 7015 7016
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7017 7018
}

7019 7020
static void gen6_check_mch_setup(struct drm_device *dev)
{
7021
	struct drm_i915_private *dev_priv = to_i915(dev);
7022 7023 7024
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7025 7026 7027
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7028 7029
}

7030
static void gen6_init_clock_gating(struct drm_device *dev)
7031
{
7032
	struct drm_i915_private *dev_priv = to_i915(dev);
7033
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7034

7035
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7036 7037 7038 7039 7040

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7041
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7042 7043 7044
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7045 7046 7047
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7048 7049 7050
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7051 7052 7053 7054
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7055 7056
	 */
	I915_WRITE(GEN6_GT_MODE,
7057
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7058

7059
	ilk_init_lp_watermarks(dev);
7060 7061

	I915_WRITE(CACHE_MODE_0,
7062
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7078
	 *
7079 7080
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7081 7082 7083 7084 7085
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7086
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7087 7088
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7089

7090 7091 7092 7093 7094 7095 7096 7097
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7098 7099 7100 7101 7102 7103 7104 7105
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7106 7107
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7108 7109 7110 7111 7112 7113 7114
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7115 7116 7117 7118
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7119

7120
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7121

7122
	cpt_init_clock_gating(dev);
7123 7124

	gen6_check_mch_setup(dev);
7125 7126 7127 7128 7129 7130
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7131
	/*
7132
	 * WaVSThreadDispatchOverride:ivb,vlv
7133 7134 7135 7136
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7137 7138 7139 7140 7141 7142 7143 7144
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7145 7146
static void lpt_init_clock_gating(struct drm_device *dev)
{
7147
	struct drm_i915_private *dev_priv = to_i915(dev);
7148 7149 7150 7151 7152

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7153
	if (HAS_PCH_LPT_LP(dev_priv))
7154 7155 7156
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7157 7158

	/* WADPOClockGatingDisable:hsw */
7159 7160
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7161
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7162 7163
}

7164 7165
static void lpt_suspend_hw(struct drm_device *dev)
{
7166
	struct drm_i915_private *dev_priv = to_i915(dev);
7167

7168
	if (HAS_PCH_LPT_LP(dev_priv)) {
7169 7170 7171 7172 7173 7174 7175
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7199 7200
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7201
	struct drm_i915_private *dev_priv = dev->dev_private;
7202

7203
	gen9_init_clock_gating(dev);
7204 7205 7206 7207 7208

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7209 7210 7211 7212 7213

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7214 7215 7216 7217

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7218 7219
}

7220 7221
static void skylake_init_clock_gating(struct drm_device *dev)
{
7222
	struct drm_i915_private *dev_priv = dev->dev_private;
7223

7224
	gen9_init_clock_gating(dev);
7225 7226 7227 7228

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7229 7230 7231 7232

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7233 7234
}

7235
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7236
{
7237
	struct drm_i915_private *dev_priv = to_i915(dev);
7238
	enum pipe pipe;
B
Ben Widawsky 已提交
7239

7240
	ilk_init_lp_watermarks(dev);
7241

7242
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7243
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7244

7245
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7246 7247 7248
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7249
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7250
	for_each_pipe(dev_priv, pipe) {
7251
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7252
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7253
			   BDW_DPRS_MASK_VBLANK_SRD);
7254
	}
7255

7256 7257 7258 7259 7260
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7261

7262 7263
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7264 7265 7266 7267

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7268

7269 7270
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7271

7272 7273 7274 7275 7276 7277 7278
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7279 7280 7281 7282
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7283
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7284 7285
}

7286 7287
static void haswell_init_clock_gating(struct drm_device *dev)
{
7288
	struct drm_i915_private *dev_priv = to_i915(dev);
7289

7290
	ilk_init_lp_watermarks(dev);
7291

7292 7293 7294 7295 7296
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7297
	/* This is required by WaCatErrorRejectionIssue:hsw */
7298 7299 7300 7301
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7302 7303 7304
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7305

7306 7307 7308
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7309 7310 7311 7312
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7313
	/* WaDisable4x2SubspanOptimization:hsw */
7314 7315
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7316

7317 7318 7319
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7320 7321 7322 7323
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7324 7325
	 */
	I915_WRITE(GEN7_GT_MODE,
7326
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7327

7328 7329 7330 7331
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7332
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7333 7334
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7335 7336 7337
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7338

7339
	lpt_init_clock_gating(dev);
7340 7341
}

7342
static void ivybridge_init_clock_gating(struct drm_device *dev)
7343
{
7344
	struct drm_i915_private *dev_priv = to_i915(dev);
7345
	uint32_t snpcr;
7346

7347
	ilk_init_lp_watermarks(dev);
7348

7349
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7350

7351
	/* WaDisableEarlyCull:ivb */
7352 7353 7354
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7355
	/* WaDisableBackToBackFlipFix:ivb */
7356 7357 7358 7359
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7360
	/* WaDisablePSDDualDispatchEnable:ivb */
7361
	if (IS_IVB_GT1(dev_priv))
7362 7363 7364
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7365 7366 7367
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7368
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7369 7370 7371
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7372
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7373 7374 7375
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7376
		   GEN7_WA_L3_CHICKEN_MODE);
7377
	if (IS_IVB_GT1(dev_priv))
7378 7379
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7380 7381 7382 7383
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7384 7385
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7386
	}
7387

7388
	/* WaForceL3Serialization:ivb */
7389 7390 7391
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7392
	/*
7393
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7394
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7395 7396
	 */
	I915_WRITE(GEN6_UCGCTL2,
7397
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7398

7399
	/* This is required by WaCatErrorRejectionIssue:ivb */
7400 7401 7402 7403
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7404
	g4x_disable_trickle_feed(dev);
7405 7406

	gen7_setup_fixed_func_scheduler(dev_priv);
7407

7408 7409 7410 7411 7412
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7413

7414
	/* WaDisable4x2SubspanOptimization:ivb */
7415 7416
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7417

7418 7419 7420
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7421 7422 7423 7424
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7425 7426
	 */
	I915_WRITE(GEN7_GT_MODE,
7427
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7428

7429 7430 7431 7432
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7433

7434
	if (!HAS_PCH_NOP(dev_priv))
7435
		cpt_init_clock_gating(dev);
7436 7437

	gen6_check_mch_setup(dev);
7438 7439
}

7440
static void valleyview_init_clock_gating(struct drm_device *dev)
7441
{
7442
	struct drm_i915_private *dev_priv = to_i915(dev);
7443

7444
	/* WaDisableEarlyCull:vlv */
7445 7446 7447
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7448
	/* WaDisableBackToBackFlipFix:vlv */
7449 7450 7451 7452
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7453
	/* WaPsdDispatchEnable:vlv */
7454
	/* WaDisablePSDDualDispatchEnable:vlv */
7455
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7456 7457
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7458

7459 7460 7461
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7462
	/* WaForceL3Serialization:vlv */
7463 7464 7465
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7466
	/* WaDisableDopClockGating:vlv */
7467 7468 7469
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7470
	/* This is required by WaCatErrorRejectionIssue:vlv */
7471 7472 7473 7474
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7475 7476
	gen7_setup_fixed_func_scheduler(dev_priv);

7477
	/*
7478
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7479
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7480 7481
	 */
	I915_WRITE(GEN6_UCGCTL2,
7482
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7483

7484 7485 7486 7487 7488
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7489

7490 7491 7492 7493
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7494 7495
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7496

7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7508 7509 7510 7511 7512 7513
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7514
	/*
7515
	 * WaDisableVLVClockGating_VBIIssue:vlv
7516 7517 7518
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7519
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7520 7521
}

7522 7523
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7524
	struct drm_i915_private *dev_priv = to_i915(dev);
7525

7526 7527 7528 7529 7530
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7531 7532 7533 7534

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7535 7536 7537 7538

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7539 7540 7541 7542

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7543

7544 7545 7546 7547 7548 7549 7550
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7551 7552 7553 7554 7555
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7556 7557
}

7558
static void g4x_init_clock_gating(struct drm_device *dev)
7559
{
7560
	struct drm_i915_private *dev_priv = to_i915(dev);
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7571
	if (IS_GM45(dev_priv))
7572 7573
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7574 7575 7576 7577

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7578

7579 7580 7581
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7582
	g4x_disable_trickle_feed(dev);
7583 7584
}

7585
static void crestline_init_clock_gating(struct drm_device *dev)
7586
{
7587
	struct drm_i915_private *dev_priv = to_i915(dev);
7588 7589 7590 7591 7592 7593

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7594 7595
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7596 7597 7598

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7599 7600
}

7601
static void broadwater_init_clock_gating(struct drm_device *dev)
7602
{
7603
	struct drm_i915_private *dev_priv = to_i915(dev);
7604 7605 7606 7607 7608 7609 7610

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7611 7612
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7613 7614 7615

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7616 7617
}

7618
static void gen3_init_clock_gating(struct drm_device *dev)
7619
{
7620
	struct drm_i915_private *dev_priv = to_i915(dev);
7621 7622 7623 7624 7625
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7626 7627 7628

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7629 7630 7631

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7632 7633

	/* interrupts should cause a wake up from C3 */
7634
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7635 7636 7637

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7638 7639 7640

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7641 7642
}

7643
static void i85x_init_clock_gating(struct drm_device *dev)
7644
{
7645
	struct drm_i915_private *dev_priv = to_i915(dev);
7646 7647

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7648 7649 7650 7651

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7652 7653 7654

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7655 7656
}

7657
static void i830_init_clock_gating(struct drm_device *dev)
7658
{
7659
	struct drm_i915_private *dev_priv = to_i915(dev);
7660 7661

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7662 7663 7664 7665

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7666 7667 7668 7669
}

void intel_init_clock_gating(struct drm_device *dev)
{
7670
	struct drm_i915_private *dev_priv = to_i915(dev);
7671

7672
	dev_priv->display.init_clock_gating(dev);
7673 7674
}

7675 7676
void intel_suspend_hw(struct drm_device *dev)
{
7677
	if (HAS_PCH_LPT(to_i915(dev)))
7678 7679 7680
		lpt_suspend_hw(dev);
}

7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7698
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7699
	else if (IS_KABYLAKE(dev_priv))
7700
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7735 7736 7737
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7738
	struct drm_i915_private *dev_priv = to_i915(dev);
7739

7740
	intel_fbc_init(dev_priv);
7741

7742 7743 7744 7745 7746 7747
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7748
	/* For FIFO watermark updates */
7749
	if (INTEL_INFO(dev)->gen >= 9) {
7750
		skl_setup_wm_latency(dev);
7751
		dev_priv->display.update_wm = skl_update_wm;
7752
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7753
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7754
		ilk_setup_wm_latency(dev);
7755

7756 7757 7758 7759
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7760
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7761 7762 7763 7764 7765 7766
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7767 7768 7769 7770
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7771
	} else if (IS_CHERRYVIEW(dev)) {
7772 7773
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7774
	} else if (IS_VALLEYVIEW(dev)) {
7775 7776
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7777
	} else if (IS_PINEVIEW(dev)) {
7778
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7779 7780 7781 7782 7783 7784 7785 7786 7787
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7788
			intel_set_memory_cxsr(dev_priv, false);
7789 7790 7791
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7792
	} else if (IS_G4X(dev_priv)) {
7793 7794 7795 7796 7797 7798
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7799 7800 7801
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7802
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7803 7804
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7805
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7806 7807 7808
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7809 7810 7811
	}
}

7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7824
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7856
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7857
{
7858 7859
	int status;

7860
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7861

7862 7863 7864 7865 7866 7867
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7868 7869 7870 7871
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7872 7873 7874
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7875

7876 7877 7878
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7879 7880 7881 7882
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7883 7884
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7885

7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7897 7898 7899
	return 0;
}

7900
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7901
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7902
{
7903 7904
	int status;

7905
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7906

7907 7908 7909 7910 7911 7912
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7913 7914 7915 7916
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7917 7918
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7919

7920 7921 7922
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7923 7924 7925 7926
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7927
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7928

7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7940 7941
	return 0;
}
7942

7943 7944
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7945 7946 7947 7948 7949
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7950 7951
}

7952
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7953
{
7954
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7955 7956
}

7957
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7958
{
7959 7960 7961 7962 7963
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7964 7965
}

7966
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7967
{
7968
	/* CHV needs even values */
7969
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7970 7971
}

7972
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7973
{
7974
	if (IS_GEN9(dev_priv))
7975 7976
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7977
	else if (IS_CHERRYVIEW(dev_priv))
7978
		return chv_gpu_freq(dev_priv, val);
7979
	else if (IS_VALLEYVIEW(dev_priv))
7980 7981 7982
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7983 7984
}

7985 7986
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7987
	if (IS_GEN9(dev_priv))
7988 7989
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7990
	else if (IS_CHERRYVIEW(dev_priv))
7991
		return chv_freq_opcode(dev_priv, val);
7992
	else if (IS_VALLEYVIEW(dev_priv))
7993 7994
		return byt_freq_opcode(dev_priv, val);
	else
7995
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7996
}
7997

7998 7999
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8000
	struct drm_i915_gem_request *req;
8001 8002 8003 8004 8005
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8006
	struct drm_i915_gem_request *req = boost->req;
8007

8008
	if (!i915_gem_request_completed(req))
8009
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8010

8011
	i915_gem_request_put(req);
8012 8013 8014
	kfree(boost);
}

8015
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8016 8017 8018
{
	struct request_boost *boost;

8019
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8020 8021
		return;

8022
	if (i915_gem_request_completed(req))
8023 8024
		return;

8025 8026 8027 8028
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8029
	boost->req = i915_gem_request_get(req);
8030 8031

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8032
	queue_work(req->i915->wq, &boost->work);
8033 8034
}

D
Daniel Vetter 已提交
8035
void intel_pm_setup(struct drm_device *dev)
8036
{
8037
	struct drm_i915_private *dev_priv = to_i915(dev);
8038

D
Daniel Vetter 已提交
8039
	mutex_init(&dev_priv->rps.hw_lock);
8040
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8041

8042 8043
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8044
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8045

8046
	dev_priv->pm.suspended = false;
8047
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8048
	atomic_set(&dev_priv->pm.atomic_seq, 0);
8049
}