intel_pm.c 225.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
113
	struct drm_i915_private *dev_priv = to_i915(dev);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

178
	dev_priv->ips.r_t = dev_priv->mem_freq;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
210
		dev_priv->ips.c_m = 0;
211
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
212
		dev_priv->ips.c_m = 1;
213
	} else {
214
		dev_priv->ips.c_m = 2;
215 216 217
	}
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

256 257
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

321
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
322
{
323
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
330
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332
	} else if (IS_PINEVIEW(dev_priv)) {
333 334 335
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338 339 340
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342
	} else if (IS_I915GM(dev_priv)) {
343 344 345 346 347
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
348 349 350
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
351
		POSTING_READ(INSTPM);
352 353 354
	} else {
		return;
	}
355

356 357
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
358 359
}

360

361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
375
static const int pessimal_latency_ns = 5000;
376

377 378 379 380 381 382
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
383
	struct drm_i915_private *dev_priv = to_i915(dev);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

432
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433
{
434
	struct drm_i915_private *dev_priv = to_i915(dev);
435 436 437 438 439 440 441 442 443 444 445 446 447
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

448
static int i830_get_fifo_size(struct drm_device *dev, int plane)
449
{
450
	struct drm_i915_private *dev_priv = to_i915(dev);
451 452 453 454 455 456 457 458 459 460 461 462 463 464
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

465
static int i845_get_fifo_size(struct drm_device *dev, int plane)
466
{
467
	struct drm_i915_private *dev_priv = to_i915(dev);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
483 484 485 486 487
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 489
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
490 491 492 493 494
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 496
};
static const struct intel_watermark_params pineview_cursor_wm = {
497 498 499 500 501
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 503
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504 505 506 507 508
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 510
};
static const struct intel_watermark_params g4x_wm_info = {
511 512 513 514 515
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
516 517
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
518 519 520 521 522
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
523 524
};
static const struct intel_watermark_params i965_cursor_wm_info = {
525 526 527 528 529
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
530 531
};
static const struct intel_watermark_params i945_wm_info = {
532 533 534 535 536
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
537 538
};
static const struct intel_watermark_params i915_wm_info = {
539 540 541 542 543
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
544
};
545
static const struct intel_watermark_params i830_a_wm_info = {
546 547 548 549 550
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
551
};
552 553 554 555 556 557 558
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
559
static const struct intel_watermark_params i845_wm_info = {
560 561 562 563 564
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
565 566 567 568 569 570
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
571
 * @cpp: bytes per pixel
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
587
					int fifo_size, int cpp,
588 589 590 591 592 593 594 595 596 597
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
598
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599 600 601 602 603 604 605 606 607 608 609 610 611 612
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
613 614 615 616 617 618 619 620 621 622 623

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

624 625 626
	return wm_size;
}

627
static struct intel_crtc *single_enabled_crtc(struct drm_device *dev)
628
{
629
	struct intel_crtc *crtc, *enabled = NULL;
630

631 632
	for_each_intel_crtc(dev, crtc) {
		if (intel_crtc_active(crtc)) {
633 634 635 636 637 638 639 640 641
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

642
static void pineview_update_wm(struct intel_crtc *unused_crtc)
643
{
644
	struct drm_device *dev = unused_crtc->base.dev;
645
	struct drm_i915_private *dev_priv = to_i915(dev);
646
	struct intel_crtc *crtc;
647 648 649 650
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

651 652 653 654
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
655 656
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
657
		intel_set_memory_cxsr(dev_priv, false);
658 659 660 661 662
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
663 664 665 666 667
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
668
		int clock = adjusted_mode->crtc_clock;
669 670 671 672

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
673
					cpp, latency->display_sr);
674 675
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
676
		reg |= FW_WM(wm, SR);
677 678 679 680 681 682
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
683
					cpp, latency->cursor_sr);
684 685
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
686
		reg |= FW_WM(wm, CURSOR_SR);
687 688 689 690 691
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
692
					cpp, latency->display_hpll_disable);
693 694
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
695
		reg |= FW_WM(wm, HPLL_SR);
696 697 698 699 700
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
701
					cpp, latency->cursor_hpll_disable);
702 703
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
704
		reg |= FW_WM(wm, HPLL_CURSOR);
705 706 707
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

708
		intel_set_memory_cxsr(dev_priv, true);
709
	} else {
710
		intel_set_memory_cxsr(dev_priv, false);
711 712 713
	}
}

714
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
715 716 717 718 719 720 721 722
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
723
	struct intel_crtc *crtc;
724
	const struct drm_display_mode *adjusted_mode;
725
	const struct drm_framebuffer *fb;
726
	int htotal, hdisplay, clock, cpp;
727 728 729
	int line_time_us, line_count;
	int entries, tlb_miss;

730
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
731
	if (!intel_crtc_active(crtc)) {
732 733 734 735 736
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

737 738
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
739
	clock = adjusted_mode->crtc_clock;
740
	htotal = adjusted_mode->crtc_htotal;
741 742
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
743 744

	/* Use the small buffer method to calculate plane watermark */
745
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
746 747 748 749 750 751 752 753 754
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
755
	line_time_us = max(htotal * 1000 / clock, 1);
756
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
757
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
776
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
777 778 779 780 781 782 783 784
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
785
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
786 787 788 789 790
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
791
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
792 793 794 795 796 797 798 799 800 801 802 803
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

804
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
805 806 807 808 809 810
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
811
	struct intel_crtc *crtc;
812
	const struct drm_display_mode *adjusted_mode;
813
	const struct drm_framebuffer *fb;
814
	int hdisplay, htotal, cpp, clock;
815 816 817 818 819 820 821 822 823 824
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

825
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
826 827
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
828
	clock = adjusted_mode->crtc_clock;
829
	htotal = adjusted_mode->crtc_htotal;
830 831
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
832

833
	line_time_us = max(htotal * 1000 / clock, 1);
834
	line_count = (latency_ns / line_time_us + 1000) / 1000;
835
	line_size = hdisplay * cpp;
836 837

	/* Use the minimum of the small and large buffer method for primary */
838
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
839 840 841 842 843 844
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
845
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
846 847 848
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

849
	return g4x_check_srwm(dev_priv,
850 851 852 853
			      *display_wm, *cursor_wm,
			      display, cursor);
}

854 855 856
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

857 858 859 860 861 862 863 864 865 866 867 868
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

869
	I915_WRITE(DSPFW1,
870 871 872 873
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
874
	I915_WRITE(DSPFW2,
875 876 877
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
878
	I915_WRITE(DSPFW3,
879
		   FW_WM(wm->sr.cursor, CURSOR_SR));
880 881 882

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
883 884
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
885
		I915_WRITE(DSPFW8_CHV,
886 887
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
888
		I915_WRITE(DSPFW9_CHV,
889 890
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
891
		I915_WRITE(DSPHOWM,
892 893 894 895 896 897 898 899 900 901
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
902 903
	} else {
		I915_WRITE(DSPFW7,
904 905
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
906
		I915_WRITE(DSPHOWM,
907 908 909 910 911 912 913
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
914 915
	}

916 917 918 919 920 921
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

922
	POSTING_READ(DSPFW1);
923 924
}

925 926
#undef FW_WM_VLV

927 928 929 930 931 932
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

933 934 935 936
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
937
				   unsigned int cpp,
938 939 940 941 942
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
943
	ret = (ret + 1) * horiz_pixels * cpp;
944 945 946 947 948 949 950
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
951
	struct drm_i915_private *dev_priv = to_i915(dev);
952 953 954 955

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

956 957
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

958 959 960
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
961 962

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
963 964 965 966 967 968 969 970 971
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
972
	int clock, htotal, cpp, width, wm;
973 974 975 976

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

977
	if (!state->base.visible)
978 979
		return 0;

980
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
996
		wm = vlv_wm_method2(clock, htotal, width, cpp,
997 998 999 1000 1001 1002
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1019
		if (state->base.visible) {
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1035
		if (!state->base.visible) {
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1104
static void vlv_compute_wm(struct intel_crtc *crtc)
1105 1106 1107 1108 1109 1110 1111 1112 1113
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1114
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1115
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1116 1117 1118

	wm_state->num_active_planes = 0;

1119
	vlv_compute_fifo(crtc);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1135
		if (!state->base.visible)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1176
					wm_state->wm[level].cursor;
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1195
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1196 1197 1198 1199 1200 1201 1202
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1293 1294 1295 1296 1297 1298
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1299
	wm->level = to_i915(dev)->wm.max_level;
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1318 1319 1320
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1339
static void vlv_update_wm(struct intel_crtc *crtc)
1340
{
1341
	struct drm_device *dev = crtc->base.dev;
1342
	struct drm_i915_private *dev_priv = to_i915(dev);
1343
	enum pipe pipe = crtc->pipe;
1344 1345
	struct vlv_wm_values wm = {};

1346
	vlv_compute_wm(crtc);
1347 1348
	vlv_merge_wm(dev, &wm);

1349 1350
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1351
		vlv_pipe_set_fifo_size(crtc);
1352
		return;
1353
	}
1354 1355 1356 1357 1358 1359 1360 1361 1362

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1363
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1364 1365
		intel_set_memory_cxsr(dev_priv, false);

1366
	/* FIXME should be part of crtc atomic commit */
1367
	vlv_pipe_set_fifo_size(crtc);
1368

1369
	vlv_write_wm_values(crtc, &wm);
1370 1371 1372 1373 1374 1375 1376

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1377
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1389 1390
}

1391 1392
#define single_plane_enabled(mask) is_power_of_2(mask)

1393
static void g4x_update_wm(struct intel_crtc *crtc)
1394
{
1395
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1396 1397 1398 1399
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1400
	bool cxsr_enabled;
1401

1402
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1403 1404
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1405
			    &planea_wm, &cursora_wm))
1406
		enabled |= 1 << PIPE_A;
1407

1408
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1409 1410
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1411
			    &planeb_wm, &cursorb_wm))
1412
		enabled |= 1 << PIPE_B;
1413 1414

	if (single_plane_enabled(enabled) &&
1415
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1416 1417 1418
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1419
			     &plane_sr, &cursor_sr)) {
1420
		cxsr_enabled = true;
1421
	} else {
1422
		cxsr_enabled = false;
1423
		intel_set_memory_cxsr(dev_priv, false);
1424 1425
		plane_sr = cursor_sr = 0;
	}
1426

1427 1428
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1429 1430 1431 1432 1433
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1434 1435 1436 1437
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1438
	I915_WRITE(DSPFW2,
1439
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1440
		   FW_WM(cursora_wm, CURSORA));
1441 1442
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1443
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1444
		   FW_WM(cursor_sr, CURSOR_SR));
1445 1446 1447

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1448 1449
}

1450
static void i965_update_wm(struct intel_crtc *unused_crtc)
1451
{
1452
	struct drm_device *dev = unused_crtc->base.dev;
1453
	struct drm_i915_private *dev_priv = to_i915(dev);
1454
	struct intel_crtc *crtc;
1455 1456
	int srwm = 1;
	int cursor_sr = 16;
1457
	bool cxsr_enabled;
1458 1459 1460 1461 1462 1463

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1464 1465 1466 1467
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1468
		int clock = adjusted_mode->crtc_clock;
1469
		int htotal = adjusted_mode->crtc_htotal;
1470 1471
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1472 1473 1474
		unsigned long line_time_us;
		int entries;

1475
		line_time_us = max(htotal * 1000 / clock, 1);
1476 1477 1478

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479
			cpp * hdisplay;
1480 1481 1482 1483 1484 1485 1486 1487 1488
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489
			cpp * crtc->base.cursor->state->crtc_w;
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1501
		cxsr_enabled = true;
1502
	} else {
1503
		cxsr_enabled = false;
1504
		/* Turn off self refresh if both pipes are enabled */
1505
		intel_set_memory_cxsr(dev_priv, false);
1506 1507 1508 1509 1510 1511
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1512 1513 1514 1515 1516 1517
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1518
	/* update cursor SR watermark */
1519
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1520 1521 1522

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1523 1524
}

1525 1526
#undef FW_WM

1527
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1528
{
1529
	struct drm_device *dev = unused_crtc->base.dev;
1530
	struct drm_i915_private *dev_priv = to_i915(dev);
1531 1532 1533 1534 1535 1536
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1537
	struct intel_crtc *crtc, *enabled = NULL;
1538 1539 1540

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1541
	else if (!IS_GEN2(dev_priv))
1542 1543
		wm_info = &i915_wm_info;
	else
1544
		wm_info = &i830_a_wm_info;
1545 1546

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1547
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1548 1549 1550 1551 1552 1553 1554
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1555
		if (IS_GEN2(dev_priv))
1556
			cpp = 4;
1557 1558
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1559

1560
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1561
					       wm_info, fifo_size, cpp,
1562
					       pessimal_latency_ns);
1563
		enabled = crtc;
1564
	} else {
1565
		planea_wm = fifo_size - wm_info->guard_size;
1566 1567 1568 1569
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1570
	if (IS_GEN2(dev_priv))
1571
		wm_info = &i830_bc_wm_info;
1572 1573

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1574
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1575 1576 1577 1578 1579 1580 1581
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1582
		if (IS_GEN2(dev_priv))
1583
			cpp = 4;
1584 1585
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1586

1587
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1588
					       wm_info, fifo_size, cpp,
1589
					       pessimal_latency_ns);
1590 1591 1592 1593
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1594
	} else {
1595
		planeb_wm = fifo_size - wm_info->guard_size;
1596 1597 1598
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1599 1600 1601

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1602
	if (IS_I915GM(dev_priv) && enabled) {
1603
		struct drm_i915_gem_object *obj;
1604

1605
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1606 1607

		/* self-refresh seems busted with untiled */
1608
		if (!i915_gem_object_is_tiled(obj))
1609 1610 1611
			enabled = NULL;
	}

1612 1613 1614 1615 1616 1617
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1618
	intel_set_memory_cxsr(dev_priv, false);
1619 1620 1621 1622 1623

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1624 1625 1626 1627
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1628
		int clock = adjusted_mode->crtc_clock;
1629
		int htotal = adjusted_mode->crtc_htotal;
1630 1631
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1632 1633 1634
		unsigned long line_time_us;
		int entries;

1635
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1636
			cpp = 4;
1637 1638
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1639

1640
		line_time_us = max(htotal * 1000 / clock, 1);
1641 1642 1643

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1644
			cpp * hdisplay;
1645 1646 1647 1648 1649 1650
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1651
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1652 1653
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1654
		else
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1671 1672
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1673 1674
}

1675
static void i845_update_wm(struct intel_crtc *unused_crtc)
1676
{
1677
	struct drm_device *dev = unused_crtc->base.dev;
1678
	struct drm_i915_private *dev_priv = to_i915(dev);
1679
	struct intel_crtc *crtc;
1680
	const struct drm_display_mode *adjusted_mode;
1681 1682 1683 1684 1685 1686 1687
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1688
	adjusted_mode = &crtc->config->base.adjusted_mode;
1689
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1690
				       &i845_wm_info,
1691
				       dev_priv->display.get_fifo_size(dev, 0),
1692
				       4, pessimal_latency_ns);
1693 1694 1695 1696 1697 1698 1699 1700
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1701
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1702
{
1703
	uint32_t pixel_rate;
1704

1705
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1706 1707 1708 1709

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1710
	if (pipe_config->pch_pfit.enabled) {
1711
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1712 1713 1714 1715
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1716 1717 1718 1719 1720 1721 1722 1723

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1724 1725 1726
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1727 1728 1729 1730 1731 1732 1733
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1734
/* latency must be in 0.1us units. */
1735
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1736 1737 1738
{
	uint64_t ret;

1739 1740 1741
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1742
	ret = (uint64_t) pixel_rate * cpp * latency;
1743 1744 1745 1746 1747
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1748
/* latency must be in 0.1us units. */
1749
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1750
			       uint32_t horiz_pixels, uint8_t cpp,
1751 1752 1753 1754
			       uint32_t latency)
{
	uint32_t ret;

1755 1756
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1757 1758
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1759

1760
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1761
	ret = (ret + 1) * horiz_pixels * cpp;
1762 1763 1764 1765
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1766
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1767
			   uint8_t cpp)
1768
{
1769 1770 1771 1772 1773 1774
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1775
	if (WARN_ON(!cpp))
1776 1777 1778 1779
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1780
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1781 1782
}

1783
struct ilk_wm_maximums {
1784 1785 1786 1787 1788 1789
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1790 1791 1792 1793
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1794
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1795
				   const struct intel_plane_state *pstate,
1796 1797
				   uint32_t mem_value,
				   bool is_lp)
1798
{
1799 1800
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1801 1802
	uint32_t method1, method2;

1803
	if (!cstate->base.active || !pstate->base.visible)
1804 1805
		return 0;

1806
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1807 1808 1809 1810

	if (!is_lp)
		return method1;

1811 1812
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1813
				 drm_rect_width(&pstate->base.dst),
1814
				 cpp, mem_value);
1815 1816

	return min(method1, method2);
1817 1818
}

1819 1820 1821 1822
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1823
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1824
				   const struct intel_plane_state *pstate,
1825 1826
				   uint32_t mem_value)
{
1827 1828
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1829 1830
	uint32_t method1, method2;

1831
	if (!cstate->base.active || !pstate->base.visible)
1832 1833
		return 0;

1834
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1835 1836
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1837
				 drm_rect_width(&pstate->base.dst),
1838
				 cpp, mem_value);
1839 1840 1841
	return min(method1, method2);
}

1842 1843 1844 1845
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1846
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1847
				   const struct intel_plane_state *pstate,
1848 1849
				   uint32_t mem_value)
{
1850 1851 1852 1853 1854 1855
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1856
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1857

1858
	if (!cstate->base.active)
1859 1860
		return 0;

1861 1862
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1863
			      width, cpp, mem_value);
1864 1865
}

1866
/* Only for WM_LP. */
1867
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1868
				   const struct intel_plane_state *pstate,
1869
				   uint32_t pri_val)
1870
{
1871 1872
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1873

1874
	if (!cstate->base.active || !pstate->base.visible)
1875 1876
		return 0;

1877
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1878 1879
}

1880 1881
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1882 1883 1884
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1885 1886 1887 1888 1889
		return 768;
	else
		return 512;
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1924 1925 1926
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1927
				     const struct intel_wm_config *config,
1928 1929 1930 1931 1932 1933
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1934
	if (is_sprite && !config->sprites_enabled)
1935 1936 1937
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1938
	if (level == 0 || config->num_pipes_active > 1) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1950
	if (config->sprites_enabled) {
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1962
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1963 1964 1965 1966
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1967 1968
				      int level,
				      const struct intel_wm_config *config)
1969 1970
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1971
	if (level > 0 && config->num_pipes_active > 1)
1972 1973 1974
		return 64;

	/* otherwise just report max that registers can hold */
1975
	return ilk_cursor_wm_reg_max(dev, level);
1976 1977
}

1978
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1979 1980 1981
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1982
				    struct ilk_wm_maximums *max)
1983
{
1984 1985 1986
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1987
	max->fbc = ilk_fbc_wm_reg_max(dev);
1988 1989
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2000
static bool ilk_validate_wm_level(int level,
2001
				  const struct ilk_wm_maximums *max,
2002
				  struct intel_wm_level *result)
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2041
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2042
				 const struct intel_crtc *intel_crtc,
2043
				 int level,
2044
				 struct intel_crtc_state *cstate,
2045 2046 2047
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2048
				 struct intel_wm_level *result)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2073 2074 2075
	result->enable = true;
}

2076
static uint32_t
2077
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2078
{
2079 2080
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2081 2082
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2083
	u32 linetime, ips_linetime;
2084

2085 2086 2087 2088
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2089
	if (WARN_ON(intel_state->cdclk == 0))
2090
		return 0;
2091

2092 2093 2094
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2095 2096 2097
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2098
					 intel_state->cdclk);
2099

2100 2101
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2102 2103
}

2104
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2105
{
2106
	struct drm_i915_private *dev_priv = to_i915(dev);
2107

2108
	if (IS_GEN9(dev_priv)) {
2109
		uint32_t val;
2110
		int ret, i;
2111
		int level, max_level = ilk_wm_max_level(dev_priv);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2167
		/*
2168 2169
		 * WaWmMemoryReadLatency:skl
		 *
2170
		 * punit doesn't take into account the read latency so we need
2171 2172
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2173
		 */
2174 2175 2176 2177 2178
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2179
				wm[level] += 2;
2180
			}
2181 2182
		}

2183
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2184 2185 2186 2187 2188
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2189 2190 2191 2192
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2193 2194 2195 2196 2197 2198 2199
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2200 2201 2202 2203 2204 2205 2206
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2207 2208 2209
	}
}

2210 2211
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2212 2213
{
	/* ILK sprite LP0 latency is 1300 ns */
2214
	if (IS_GEN5(dev_priv))
2215 2216 2217
		wm[0] = 13;
}

2218 2219
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2220 2221
{
	/* ILK cursor LP0 latency is 1300 ns */
2222
	if (IS_GEN5(dev_priv))
2223 2224 2225
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2226
	if (IS_IVYBRIDGE(dev_priv))
2227 2228 2229
		wm[3] *= 2;
}

2230
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2231 2232
{
	/* how many WM levels are we expecting */
2233
	if (INTEL_GEN(dev_priv) >= 9)
2234
		return 7;
2235
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2236
		return 4;
2237
	else if (INTEL_GEN(dev_priv) >= 6)
2238
		return 3;
2239
	else
2240 2241
		return 2;
}
2242

2243
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2244
				   const char *name,
2245
				   const uint16_t wm[8])
2246
{
2247
	int level, max_level = ilk_wm_max_level(dev_priv);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2258 2259 2260 2261
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2262
		if (IS_GEN9(dev_priv))
2263 2264
			latency *= 10;
		else if (level > 0)
2265 2266 2267 2268 2269 2270 2271 2272
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2273 2274 2275
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2276
	int level, max_level = ilk_wm_max_level(dev_priv);
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2290
	struct drm_i915_private *dev_priv = to_i915(dev);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2305 2306 2307
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2308 2309
}

2310
static void ilk_setup_wm_latency(struct drm_device *dev)
2311
{
2312
	struct drm_i915_private *dev_priv = to_i915(dev);
2313 2314 2315 2316 2317 2318 2319 2320

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2321
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2322
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2323

2324 2325 2326
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2327

2328
	if (IS_GEN6(dev_priv))
2329
		snb_wm_latency_quirk(dev);
2330 2331
}

2332 2333
static void skl_setup_wm_latency(struct drm_device *dev)
{
2334
	struct drm_i915_private *dev_priv = to_i915(dev);
2335 2336

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2337
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2338 2339
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2363
/* Compute new watermarks for the pipe */
2364
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2365
{
2366 2367
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2368
	struct intel_pipe_wm *pipe_wm;
2369
	struct drm_device *dev = state->dev;
2370
	const struct drm_i915_private *dev_priv = to_i915(dev);
2371
	struct intel_plane *intel_plane;
2372
	struct intel_plane_state *pristate = NULL;
2373
	struct intel_plane_state *sprstate = NULL;
2374
	struct intel_plane_state *curstate = NULL;
2375
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2376
	struct ilk_wm_maximums max;
2377

2378
	pipe_wm = &cstate->wm.ilk.optimal;
2379

2380
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2381 2382 2383 2384 2385 2386
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2387 2388

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2389
			pristate = ps;
2390
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2391
			sprstate = ps;
2392
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2393
			curstate = ps;
2394 2395
	}

2396
	pipe_wm->pipe_enabled = cstate->base.active;
2397
	if (sprstate) {
2398 2399 2400 2401
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2402 2403
	}

2404 2405
	usable_level = max_level;

2406
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2407
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2408
		usable_level = 1;
2409 2410

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2411
	if (pipe_wm->sprites_scaled)
2412
		usable_level = 0;
2413

2414
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2415 2416 2417 2418
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2419

2420
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2421
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2422

2423
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2424
		return -EINVAL;
2425 2426 2427 2428

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2429
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2430

2431
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2432
				     pristate, sprstate, curstate, wm);
2433 2434 2435 2436 2437 2438

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2439 2440 2441 2442 2443 2444
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2445
			usable_level = level;
2446 2447
	}

2448
	return 0;
2449 2450
}

2451 2452 2453 2454 2455 2456 2457 2458 2459
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2460
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2461
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2462
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2463 2464 2465 2466 2467 2468

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2469
	*a = newstate->wm.ilk.optimal;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2498
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2499 2500 2501 2502 2503
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2513 2514
	ret_wm->enable = true;

2515
	for_each_intel_crtc(dev, intel_crtc) {
2516
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2517 2518 2519 2520
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2521

2522 2523 2524 2525 2526
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2527
		if (!wm->enable)
2528
			ret_wm->enable = false;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2541
			 const struct intel_wm_config *config,
2542
			 const struct ilk_wm_maximums *max,
2543 2544
			 struct intel_pipe_wm *merged)
{
2545
	struct drm_i915_private *dev_priv = to_i915(dev);
2546
	int level, max_level = ilk_wm_max_level(dev_priv);
2547
	int last_enabled_level = max_level;
2548

2549
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2550
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2551
	    config->num_pipes_active > 1)
2552
		last_enabled_level = 0;
2553

2554 2555
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2556 2557 2558 2559 2560 2561 2562

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2563 2564 2565 2566 2567
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2568 2569 2570 2571 2572 2573

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2574 2575
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2576 2577 2578
			wm->fbc_val = 0;
		}
	}
2579 2580 2581 2582 2583 2584 2585

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2586
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2587
	    intel_fbc_is_active(dev_priv)) {
2588 2589 2590 2591 2592 2593
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2594 2595
}

2596 2597 2598 2599 2600 2601
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2602 2603 2604
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2605
	struct drm_i915_private *dev_priv = to_i915(dev);
2606

2607
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2608 2609 2610 2611 2612
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2613
static void ilk_compute_wm_results(struct drm_device *dev,
2614
				   const struct intel_pipe_wm *merged,
2615
				   enum intel_ddb_partitioning partitioning,
2616
				   struct ilk_wm_values *results)
2617
{
2618 2619
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2620

2621
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2622
	results->partitioning = partitioning;
2623

2624
	/* LP1+ register values */
2625
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2626
		const struct intel_wm_level *r;
2627

2628
		level = ilk_wm_lp_to_level(wm_lp, merged);
2629

2630
		r = &merged->wm[level];
2631

2632 2633 2634 2635 2636
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2637
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2638 2639 2640
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2641 2642 2643
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2644 2645 2646 2647 2648 2649 2650
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2651 2652 2653 2654
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2655 2656 2657 2658 2659
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2660
	}
2661

2662
	/* LP0 register values */
2663
	for_each_intel_crtc(dev, intel_crtc) {
2664
		enum pipe pipe = intel_crtc->pipe;
2665 2666
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2667 2668 2669 2670

		if (WARN_ON(!r->enable))
			continue;

2671
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2672

2673 2674 2675 2676
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2677 2678 2679
	}
}

2680 2681
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2682
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2683 2684
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2685
{
2686
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2687
	int level1 = 0, level2 = 0;
2688

2689 2690 2691 2692 2693
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2694 2695
	}

2696 2697
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2698 2699 2700
			return r2;
		else
			return r1;
2701
	} else if (level1 > level2) {
2702 2703 2704 2705 2706 2707
		return r1;
	} else {
		return r2;
	}
}

2708 2709 2710 2711 2712 2713 2714 2715
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2716
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2717 2718
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2719 2720 2721 2722 2723
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2724
	for_each_pipe(dev_priv, pipe) {
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2768 2769
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2770
{
2771
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2772
	bool changed = false;
2773

2774 2775 2776
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2777
		changed = true;
2778 2779 2780 2781
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2782
		changed = true;
2783 2784 2785 2786
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2787
		changed = true;
2788
	}
2789

2790 2791 2792 2793
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2794

2795 2796 2797 2798 2799 2800 2801
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2802 2803
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2804
{
2805
	struct drm_device *dev = &dev_priv->drm;
2806
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2807 2808 2809
	unsigned int dirty;
	uint32_t val;

2810
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2811 2812 2813 2814 2815
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2816
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2817
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2818
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2819
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2820
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2821 2822
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2823
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2824
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2825
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2826
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2827
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2828 2829
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2830
	if (dirty & WM_DIRTY_DDB) {
2831
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2846 2847
	}

2848
	if (dirty & WM_DIRTY_FBC) {
2849 2850 2851 2852 2853 2854 2855 2856
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2857 2858 2859 2860 2861
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2862 2863 2864 2865 2866
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2867

2868
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2869
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2870
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2871
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2872
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2873
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2874 2875

	dev_priv->wm.hw = *results;
2876 2877
}

2878
bool ilk_disable_lp_wm(struct drm_device *dev)
2879
{
2880
	struct drm_i915_private *dev_priv = to_i915(dev);
2881 2882 2883 2884

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2885
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2886

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2924 2925 2926
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2927 2928 2929 2930 2931 2932 2933 2934
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2935 2936
}

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2949
intel_enable_sagv(struct drm_i915_private *dev_priv)
2950 2951 2952
{
	int ret;

2953 2954 2955 2956
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2972
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2973
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2974
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2975 2976 2977 2978 2979 2980
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2981
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2982 2983 2984 2985
	return 0;
}

static int
2986
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
3000
intel_disable_sagv(struct drm_i915_private *dev_priv)
3001 3002 3003
{
	int ret, result;

3004 3005 3006 3007
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3008 3009 3010 3011 3012 3013
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3014
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3026
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3027
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3028
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3029 3030 3031 3032 3033 3034
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3035
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3036 3037 3038
	return 0;
}

3039
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3040 3041 3042 3043
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3044 3045
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3046 3047
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3048
	enum pipe pipe;
3049
	int level, latency;
3050

3051 3052 3053
	if (!intel_has_sagv(dev_priv))
		return false;

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3067
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3068
	cstate = to_intel_crtc_state(crtc->base.state);
3069

3070
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3071 3072
		return false;

3073
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3074
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3075

3076
		/* Skip this plane if it's not enabled */
3077
		if (!wm->wm[0].plane_en)
3078 3079 3080
			continue;

		/* Find the highest enabled wm level for this plane */
3081
		for (level = ilk_wm_max_level(dev_priv);
3082
		     !wm->wm[level].plane_en; --level)
3083 3084
		     { }

3085 3086 3087 3088 3089 3090 3091
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3092 3093 3094 3095 3096
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3097
		if (latency < SKL_SAGV_BLOCK_TIME)
3098 3099 3100 3101 3102 3103
			return false;
	}

	return true;
}

3104 3105
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3106
				   const struct intel_crtc_state *cstate,
3107 3108
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3109
{
3110 3111 3112
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3113
	struct drm_crtc *for_crtc = cstate->base.crtc;
3114 3115
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3116

3117
	if (WARN_ON(!state) || !cstate->base.active) {
3118 3119
		alloc->start = 0;
		alloc->end = 0;
3120
		*num_active = hweight32(dev_priv->active_crtcs);
3121 3122 3123
		return;
	}

3124 3125 3126 3127 3128
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3129 3130
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3131 3132 3133

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3134
	/*
3135 3136 3137 3138 3139 3140
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3141
	 */
3142
	if (!intel_state->active_pipe_changes) {
3143
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3144
		return;
3145
	}
3146 3147 3148 3149 3150 3151

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3152 3153
}

3154
static unsigned int skl_cursor_allocation(int num_active)
3155
{
3156
	if (num_active == 1)
3157 3158 3159 3160 3161
		return 32;

	return 8;
}

3162 3163 3164 3165
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3166 3167
	if (entry->end)
		entry->end += 1;
3168 3169
}

3170 3171
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3172 3173 3174 3175 3176
{
	enum pipe pipe;
	int plane;
	u32 val;

3177 3178
	memset(ddb, 0, sizeof(*ddb));

3179
	for_each_pipe(dev_priv, pipe) {
3180 3181 3182 3183
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3184 3185
			continue;

3186
		for_each_universal_plane(dev_priv, pipe, plane) {
3187 3188 3189 3190 3191 3192
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3193 3194
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3195 3196

		intel_display_power_put(dev_priv, power_domain);
3197 3198 3199
	}
}

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3222
	if (WARN_ON(!pstate->base.visible))
3223 3224 3225
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3226 3227 3228 3229
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3230
	if (drm_rotation_90_or_270(pstate->base.rotation))
3231 3232 3233 3234 3235 3236 3237 3238 3239
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3240
static unsigned int
3241 3242 3243
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3244
{
3245
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3246
	struct drm_framebuffer *fb = pstate->fb;
3247
	uint32_t down_scale_amount, data_rate;
3248
	uint32_t width = 0, height = 0;
3249 3250
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3251
	if (!intel_pstate->base.visible)
3252 3253 3254 3255 3256
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3257

3258 3259
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3260

3261
	if (drm_rotation_90_or_270(pstate->rotation))
3262
		swap(width, height);
3263 3264

	/* for planar format */
3265
	if (format == DRM_FORMAT_NV12) {
3266
		if (y)  /* y-plane data rate */
3267
			data_rate = width * height *
3268
				drm_format_plane_cpp(format, 0);
3269
		else    /* uv-plane data rate */
3270
			data_rate = (width / 2) * (height / 2) *
3271
				drm_format_plane_cpp(format, 1);
3272 3273 3274
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3275 3276
	}

3277 3278 3279
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3280 3281 3282 3283 3284 3285 3286 3287
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3288 3289 3290
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3291
{
3292 3293
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3294
	struct drm_plane *plane;
3295
	const struct intel_plane *intel_plane;
3296
	const struct drm_plane_state *pstate;
3297
	unsigned int rate, total_data_rate = 0;
3298
	int id;
3299 3300 3301

	if (WARN_ON(!state))
		return 0;
3302

3303
	/* Calculate and cache data rate for each plane */
3304
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3305 3306 3307 3308 3309 3310
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3311 3312 3313
		plane_data_rate[id] = rate;

		total_data_rate += rate;
3314 3315 3316 3317

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3318
		plane_y_data_rate[id] = rate;
3319

3320
		total_data_rate += rate;
3321 3322 3323 3324 3325
	}

	return total_data_rate;
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3348 3349
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3350

3351
	if (drm_rotation_90_or_270(pstate->rotation))
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3365
	if (drm_rotation_90_or_270(pstate->rotation)) {
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		int id = skl_wm_plane_id(intel_plane);

		if (id == PLANE_CURSOR)
			continue;

		if (!pstate->visible)
			continue;

		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3413
static int
3414
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3415 3416
		      struct skl_ddb_allocation *ddb /* out */)
{
3417
	struct drm_atomic_state *state = cstate->base.state;
3418
	struct drm_crtc *crtc = cstate->base.crtc;
3419 3420 3421
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3422
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3423
	uint16_t alloc_size, start;
3424 3425
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3426
	unsigned int total_data_rate;
3427 3428
	int num_active;
	int id, i;
3429 3430
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3431

3432 3433 3434 3435
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3436 3437 3438
	if (WARN_ON(!state))
		return 0;

3439
	if (!cstate->base.active) {
3440
		alloc->start = alloc->end = 0;
3441 3442 3443
		return 0;
	}

3444
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3445
	alloc_size = skl_ddb_entry_size(alloc);
3446 3447
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3448
		return 0;
3449 3450
	}

3451
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3452

3453 3454 3455 3456 3457
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3458

3459
	for (i = 0; i < I915_MAX_PLANES; i++) {
3460 3461
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3462 3463
	}

3464 3465 3466
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3467
	/*
3468 3469
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3470 3471 3472
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3473 3474 3475
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3476
	if (total_data_rate == 0)
3477
		return 0;
3478

3479
	start = alloc->start;
3480
	for (id = 0; id < I915_MAX_PLANES; id++) {
3481 3482
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3483

3484 3485 3486
		if (id == PLANE_CURSOR)
			continue;

3487
		data_rate = plane_data_rate[id];
3488 3489

		/*
3490
		 * allocation for (packed formats) or (uv-plane part of planar format):
3491 3492 3493
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3494
		plane_blocks = minimum[id];
3495 3496
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3497

3498 3499 3500 3501 3502
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3503 3504

		start += plane_blocks;
3505 3506 3507 3508

		/*
		 * allocation for y_plane part of planar format:
		 */
3509
		y_data_rate = plane_y_data_rate[id];
3510 3511 3512 3513

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3514

3515 3516 3517 3518
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3519 3520

		start += y_plane_blocks;
3521 3522
	}

3523
	return 0;
3524 3525
}

3526 3527
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3528
 * for the read latency) and cpp should always be <= 8, so that
3529 3530 3531
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3532
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3533 3534 3535 3536 3537 3538
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3539
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3540 3541 3542 3543 3544 3545
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3546
			       uint32_t latency, uint32_t plane_blocks_per_line)
3547
{
3548 3549
	uint32_t ret;
	uint32_t wm_intermediate_val;
3550 3551 3552 3553 3554 3555

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3556
				plane_blocks_per_line;
3557 3558 3559 3560

	return ret;
}

3561 3562 3563 3564 3565 3566 3567 3568
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3569
	if (WARN_ON(!pstate->base.visible))
3570 3571 3572 3573 3574 3575
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3576
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3577 3578 3579 3580 3581 3582 3583 3584
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3585 3586 3587 3588 3589 3590 3591 3592
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3593
{
3594 3595
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3596 3597 3598 3599 3600
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3601
	uint8_t cpp;
3602
	uint32_t width = 0, height = 0;
3603
	uint32_t plane_pixel_rate;
3604
	uint32_t y_tile_minimum, y_min_scanlines;
3605 3606 3607
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3608

3609
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3610 3611 3612
		*enabled = false;
		return 0;
	}
3613

3614 3615 3616
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3617 3618
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3619

3620
	if (drm_rotation_90_or_270(pstate->rotation))
3621 3622
		swap(width, height);

3623
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3624 3625
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3626
	if (drm_rotation_90_or_270(pstate->rotation)) {
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3641 3642 3643
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3644 3645 3646 3647 3648
		}
	} else {
		y_min_scanlines = 4;
	}

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3662 3663
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3664
				 cstate->base.adjusted_mode.crtc_htotal,
3665
				 latency,
3666
				 plane_blocks_per_line);
3667

3668
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3669 3670
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3671

3672 3673
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3674 3675
		selected_result = max(method2, y_tile_minimum);
	} else {
3676 3677 3678 3679
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3680 3681 3682 3683
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3684

3685 3686
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3687

3688
	if (level >= 1 && level <= 7) {
3689
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3690 3691
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3692
			res_lines += y_min_scanlines;
3693
		} else {
3694
			res_blocks++;
3695
		}
3696
	}
3697

3698 3699
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3716
	}
3717 3718 3719

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3720
	*enabled = true;
3721

3722
	return 0;
3723 3724
}

3725 3726 3727 3728
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3729
		     struct intel_plane *intel_plane,
3730 3731
		     int level,
		     struct skl_wm_level *result)
3732
{
3733
	struct drm_atomic_state *state = cstate->base.state;
3734
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3735 3736
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3737
	uint16_t ddb_blocks;
3738
	enum pipe pipe = intel_crtc->pipe;
3739
	int ret;
L
Lyude 已提交
3740 3741 3742 3743 3744 3745
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3746

3747
	/*
L
Lyude 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3757
	 */
L
Lyude 已提交
3758 3759
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3760

L
Lyude 已提交
3761
	WARN_ON(!intel_pstate->base.fb);
3762

L
Lyude 已提交
3763
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3764

L
Lyude 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3775 3776

	return 0;
3777 3778
}

3779
static uint32_t
3780
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3781
{
3782 3783
	uint32_t pixel_rate;

3784
	if (!cstate->base.active)
3785 3786
		return 0;

3787 3788 3789
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3790
		return 0;
3791

3792
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3793
			    pixel_rate);
3794 3795
}

3796
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3797
				      struct skl_wm_level *trans_wm /* out */)
3798
{
3799
	if (!cstate->base.active)
3800
		return;
3801 3802

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3803
	trans_wm->plane_en = false;
3804 3805
}

3806 3807 3808
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3809
{
3810
	struct drm_device *dev = cstate->base.crtc->dev;
3811
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3812 3813
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3814
	int level, max_level = ilk_wm_max_level(dev_priv);
3815
	int ret;
3816

L
Lyude 已提交
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3836
	}
3837
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3838

3839
	return 0;
3840 3841
}

3842 3843
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3844 3845 3846 3847 3848 3849 3850 3851
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3867
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3868 3869
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3870 3871 3872 3873 3874
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3875
	int level, max_level = ilk_wm_max_level(dev_priv);
3876 3877 3878
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3879 3880
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3881
	}
3882 3883
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3884 3885

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3886
			    &ddb->plane[pipe][plane]);
3887
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3888
			    &ddb->y_plane[pipe][plane]);
3889 3890 3891
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3892 3893
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3894 3895 3896 3897
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3898
	int level, max_level = ilk_wm_max_level(dev_priv);
3899 3900 3901
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3902 3903
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3904
	}
3905
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3906

3907
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3908
			    &ddb->plane[pipe][PLANE_CURSOR]);
3909 3910
}

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3925 3926
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3927
{
3928
	return a->start < b->end && b->start < a->end;
3929 3930
}

3931
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3932
				 struct intel_crtc *intel_crtc)
3933
{
3934 3935 3936 3937 3938 3939
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3940

3941 3942
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3943

3944
		if (other_intel_crtc == intel_crtc)
3945 3946
			continue;

3947
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3948
			return true;
3949 3950
	}

3951
	return false;
3952 3953
}

3954
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3955
			      const struct skl_pipe_wm *old_pipe_wm,
3956
			      struct skl_pipe_wm *pipe_wm, /* out */
3957
			      struct skl_ddb_allocation *ddb, /* out */
3958
			      bool *changed /* out */)
3959
{
3960
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3961
	int ret;
3962

3963 3964 3965
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3966

3967
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3968 3969 3970
		*changed = false;
	else
		*changed = true;
3971

3972
	return 0;
3973 3974
}

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3988
static int
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4006
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4023 4024 4025 4026 4027 4028 4029
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4030
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4031
	uint32_t realloc_pipes = pipes_modified(state);
4032 4033 4034 4035 4036 4037 4038 4039
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4040 4041 4042 4043 4044 4045
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4046 4047
		intel_state->active_pipe_changes = ~0;

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4071
	if (intel_state->active_pipe_changes) {
4072
		realloc_pipes = ~0;
4073 4074
		intel_state->wm_results.dirty_pipes = ~0;
	}
4075

4076 4077 4078 4079 4080 4081
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4082 4083 4084 4085 4086 4087 4088
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4089
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4090 4091
		if (ret)
			return ret;
4092

4093
		ret = skl_ddb_add_affected_planes(cstate);
4094 4095
		if (ret)
			return ret;
4096 4097 4098 4099 4100
	}

	return 0;
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	int id;
4125
	int i;
4126 4127

	for_each_crtc_in_state(state, crtc, cstate, i) {
4128 4129
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4130

4131
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4132 4133 4134 4135 4136 4137 4138 4139 4140
			const struct skl_ddb_entry *old, *new;

			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (skl_ddb_entry_equal(old, new))
				continue;

4141 4142 4143 4144 4145
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4146 4147 4148 4149
		}
	}
}

4150 4151 4152 4153 4154
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4155 4156 4157
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4158
	bool changed = false;
4159
	int ret, i;
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4174 4175 4176
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4177 4178 4179 4180
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4194 4195
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4196 4197

		pipe_wm = &intel_cstate->wm.skl.optimal;
4198 4199
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4213 4214
	skl_print_wm_changes(state);

4215 4216 4217
	return 0;
}

4218
static void skl_update_wm(struct intel_crtc *intel_crtc)
4219
{
4220
	struct drm_device *dev = intel_crtc->base.dev;
4221
	struct drm_i915_private *dev_priv = to_i915(dev);
4222
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4223
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4224
	struct intel_crtc_state *cstate = to_intel_crtc_state(intel_crtc->base.state);
4225
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4226
	enum pipe pipe = intel_crtc->pipe;
4227

4228
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4229 4230
		return;

4231
	mutex_lock(&dev_priv->wm.wm_mutex);
4232

4233
	/*
4234 4235 4236 4237
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4238
	 */
4239
	if (intel_crtc->base.state->active_changed) {
4240 4241
		int plane;

4242
		for_each_universal_plane(dev_priv, pipe, plane)
4243 4244
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4245

4246 4247
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4248 4249 4250
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4251

4252 4253
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4254
	mutex_unlock(&dev_priv->wm.wm_mutex);
4255 4256
}

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4275
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4276
{
4277
	struct drm_device *dev = &dev_priv->drm;
4278
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4279
	struct ilk_wm_maximums max;
4280
	struct intel_wm_config config = {};
4281
	struct ilk_wm_values results = {};
4282
	enum intel_ddb_partitioning partitioning;
4283

4284 4285 4286 4287
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4288 4289

	/* 5/6 split only in single pipe config on IVB+ */
4290
	if (INTEL_INFO(dev)->gen >= 7 &&
4291 4292 4293
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4294

4295
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4296
	} else {
4297
		best_lp_wm = &lp_wm_1_2;
4298 4299
	}

4300
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4301
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4302

4303
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4304

4305
	ilk_write_wm_values(dev_priv, &results);
4306 4307
}

4308
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4309
{
4310 4311
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4312

4313
	mutex_lock(&dev_priv->wm.wm_mutex);
4314
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4315 4316 4317
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4318

4319 4320 4321 4322
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4323

4324 4325
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4326
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4327 4328 4329
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4330 4331
}

4332 4333
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4334
{
4335 4336 4337 4338
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4339 4340
}

4341 4342
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4343 4344
{
	struct drm_device *dev = crtc->dev;
4345
	struct drm_i915_private *dev_priv = to_i915(dev);
4346
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4347 4348
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4349
	enum pipe pipe = intel_crtc->pipe;
4350 4351
	int level, id, max_level;
	uint32_t val;
4352

4353
	max_level = ilk_wm_max_level(dev_priv);
4354

4355 4356
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4357
		wm = &out->planes[id];
4358

4359 4360 4361 4362 4363
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4364

4365
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4366 4367
		}

4368 4369 4370 4371 4372 4373
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4374 4375
	}

4376 4377
	if (!intel_crtc->active)
		return;
4378

4379
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4380 4381 4382 4383
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4384
	struct drm_i915_private *dev_priv = to_i915(dev);
4385
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4386
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4387
	struct drm_crtc *crtc;
4388 4389
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4390

4391
	skl_ddb_get_hw_state(dev_priv, ddb);
4392 4393 4394 4395 4396 4397
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4398
		if (intel_crtc->active)
4399 4400
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4401

4402 4403 4404 4405 4406 4407 4408
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4409 4410
}

4411 4412 4413
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4414
	struct drm_i915_private *dev_priv = to_i915(dev);
4415
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4416
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4417
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4418
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4419
	enum pipe pipe = intel_crtc->pipe;
4420
	static const i915_reg_t wm0_pipe_reg[] = {
4421 4422 4423 4424 4425 4426
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4427
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4428
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4429

4430 4431
	memset(active, 0, sizeof(*active));

4432
	active->pipe_enabled = intel_crtc->active;
4433 4434

	if (active->pipe_enabled) {
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4449
		int level, max_level = ilk_wm_max_level(dev_priv);
4450 4451 4452 4453 4454 4455 4456 4457 4458

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4459 4460

	intel_crtc->wm.active.ilk = *active;
4461 4462
}

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4580 4581 4582 4583 4584 4585 4586 4587 4588
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4589
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4616 4617
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4618
	struct drm_i915_private *dev_priv = to_i915(dev);
4619
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4620 4621
	struct drm_crtc *crtc;

4622
	for_each_crtc(dev, crtc)
4623 4624 4625 4626 4627 4628 4629
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4630 4631 4632 4633
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4634

4635
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4636 4637
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4638
	else if (IS_IVYBRIDGE(dev_priv))
4639 4640
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4641 4642 4643 4644 4645

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4678
void intel_update_watermarks(struct intel_crtc *crtc)
4679
{
4680
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4681 4682

	if (dev_priv->display.update_wm)
4683
		dev_priv->display.update_wm(crtc);
4684 4685
}

4686
/*
4687 4688 4689 4690 4691 4692 4693 4694
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4695
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4696 4697 4698
{
	u16 rgvswctl;

4699 4700
	assert_spin_locked(&mchdev_lock);

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4718
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4719
{
4720
	u32 rgvmodectl;
4721 4722
	u8 fmax, fmin, fstart, vstart;

4723 4724
	spin_lock_irq(&mchdev_lock);

4725 4726
	rgvmodectl = I915_READ(MEMMODECTL);

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4747
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4748 4749
		PXVFREQ_PX_SHIFT;

4750 4751
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4752

4753 4754 4755
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4772
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4773
		DRM_ERROR("stuck trying to change perf mode\n");
4774
	mdelay(1);
4775

4776
	ironlake_set_drps(dev_priv, fstart);
4777

4778 4779
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4780
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4781
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4782
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4783 4784

	spin_unlock_irq(&mchdev_lock);
4785 4786
}

4787
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4788
{
4789 4790 4791 4792 4793
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4794 4795 4796 4797 4798 4799 4800 4801 4802

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4803
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4804
	mdelay(1);
4805 4806
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4807
	mdelay(1);
4808

4809
	spin_unlock_irq(&mchdev_lock);
4810 4811
}

4812 4813 4814 4815 4816
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4817
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4818
{
4819
	u32 limits;
4820

4821 4822 4823 4824 4825 4826
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4827
	if (IS_GEN9(dev_priv)) {
4828 4829 4830 4831 4832 4833 4834 4835
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4836 4837 4838 4839

	return limits;
}

4840 4841 4842
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4843 4844
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4845 4846 4847 4848

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4849 4850
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4851 4852 4853 4854
			new_power = BETWEEN;
		break;

	case BETWEEN:
4855 4856
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4857
			new_power = LOW_POWER;
4858 4859
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4860 4861 4862 4863
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4864 4865
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4866 4867 4868 4869
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4870
	if (val <= dev_priv->rps.min_freq_softlimit)
4871
		new_power = LOW_POWER;
4872
	if (val >= dev_priv->rps.max_freq_softlimit)
4873 4874 4875 4876 4877 4878 4879 4880
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4881 4882
		ei_up = 16000;
		threshold_up = 95;
4883 4884

		/* Downclock if less than 85% busy over 32ms */
4885 4886
		ei_down = 32000;
		threshold_down = 85;
4887 4888 4889 4890
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4891 4892
		ei_up = 13000;
		threshold_up = 90;
4893 4894

		/* Downclock if less than 75% busy over 32ms */
4895 4896
		ei_down = 32000;
		threshold_down = 75;
4897 4898 4899 4900
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4901 4902
		ei_up = 10000;
		threshold_up = 85;
4903 4904

		/* Downclock if less than 60% busy over 32ms */
4905 4906
		ei_down = 32000;
		threshold_down = 60;
4907 4908 4909
		break;
	}

4910
	I915_WRITE(GEN6_RP_UP_EI,
4911
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4912
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4913 4914
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4915 4916

	I915_WRITE(GEN6_RP_DOWN_EI,
4917
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4918
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4929

4930
	dev_priv->rps.power = new_power;
4931 4932
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4933 4934 4935
	dev_priv->rps.last_adj = 0;
}

4936 4937 4938 4939 4940
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4941
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4942
	if (val < dev_priv->rps.max_freq_softlimit)
4943
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4944

4945 4946
	mask &= dev_priv->pm_rps_events;

4947
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4948 4949
}

4950 4951 4952
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4953
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4954
{
4955
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4956
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4957 4958
		return;

4959
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4960 4961
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4962

C
Chris Wilson 已提交
4963 4964 4965 4966 4967
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4968

4969
		if (IS_GEN9(dev_priv))
4970 4971
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4972
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4973 4974 4975 4976 4977 4978 4979
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4980
	}
4981 4982 4983 4984

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4985
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4986
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4987

4988 4989
	POSTING_READ(GEN6_RPNSWREQ);

4990
	dev_priv->rps.cur_freq = val;
4991
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4992 4993
}

4994
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4995 4996
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4997 4998
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4999

5000
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5001 5002 5003
		      "Odd GPU freq value\n"))
		val &= ~1;

5004 5005
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5006
	if (val != dev_priv->rps.cur_freq) {
5007
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5008 5009 5010
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5011 5012 5013 5014 5015

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5016
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5017 5018
 *
 * * If Gfx is Idle, then
5019 5020 5021
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5022 5023 5024
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5025
	u32 val = dev_priv->rps.idle_freq;
5026

5027
	if (dev_priv->rps.cur_freq <= val)
5028 5029
		return;

5030 5031 5032
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5033
	valleyview_set_rps(dev_priv, val);
5034
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5035 5036
}

5037 5038 5039 5040 5041 5042 5043 5044
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5045

5046 5047
		gen6_enable_rps_interrupts(dev_priv);

5048 5049 5050 5051 5052
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5053 5054 5055 5056
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5057 5058
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5059 5060 5061 5062 5063 5064 5065
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5066
	mutex_lock(&dev_priv->rps.hw_lock);
5067
	if (dev_priv->rps.enabled) {
5068
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5069
			vlv_set_rps_idle(dev_priv);
5070
		else
5071
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5072
		dev_priv->rps.last_adj = 0;
5073 5074
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5075
	}
5076
	mutex_unlock(&dev_priv->rps.hw_lock);
5077

5078
	spin_lock(&dev_priv->rps.client_lock);
5079 5080
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5081
	spin_unlock(&dev_priv->rps.client_lock);
5082 5083
}

5084
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5085 5086
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5087
{
5088 5089 5090
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5091
	if (!(dev_priv->gt.awake &&
5092
	      dev_priv->rps.enabled &&
5093
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5094
		return;
5095

5096 5097 5098
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5099
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5100 5101
		rps = NULL;

5102 5103 5104 5105 5106
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5107
			schedule_work(&dev_priv->rps.work);
5108 5109
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5110

5111 5112 5113
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5114 5115
		} else
			dev_priv->rps.boosts++;
5116
	}
5117
	spin_unlock(&dev_priv->rps.client_lock);
5118 5119
}

5120
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5121
{
5122 5123
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5124
	else
5125
		gen6_set_rps(dev_priv, val);
5126 5127
}

5128
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5129 5130
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5131
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5132 5133
}

5134
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5135 5136 5137 5138
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5139
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5140 5141
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5142
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5143
	I915_WRITE(GEN6_RP_CONTROL, 0);
5144 5145
}

5146
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5147 5148 5149 5150
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5151
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5152
{
5153 5154
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5155
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5156

5157
	I915_WRITE(GEN6_RC_CONTROL, 0);
5158

5159
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5160 5161
}

5162
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5163
{
5164
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5165 5166 5167 5168 5169
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5170
	if (HAS_RC6p(dev_priv))
5171 5172 5173 5174 5175
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5176 5177

	else
5178 5179
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5180 5181
}

5182
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5183
{
5184
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5185 5186
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5198 5199

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5200
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5201 5202 5203 5204 5205 5206 5207 5208
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5209 5210 5211
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5212
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5213 5214 5215 5216 5217 5218 5219
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5220
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5221 5222 5223
		enable_rc6 = false;
	}

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5238 5239 5240 5241 5242 5243
		enable_rc6 = false;
	}

	return enable_rc6;
}

5244
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5245
{
5246
	/* No RC6 before Ironlake and code is gone for ilk. */
5247
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5248 5249
		return 0;

5250 5251 5252
	if (!enable_rc6)
		return 0;

5253
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5254 5255 5256 5257
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5258
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5259 5260 5261
	if (enable_rc6 >= 0) {
		int mask;

5262
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5263 5264 5265 5266 5267 5268
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5269 5270 5271
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5272 5273 5274

		return enable_rc6 & mask;
	}
5275

5276
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5277
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5278 5279

	return INTEL_RC6_ENABLE;
5280 5281
}

5282
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5283 5284
{
	/* All of these values are in units of 50MHz */
5285

5286
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5287
	if (IS_BROXTON(dev_priv)) {
5288
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5289 5290 5291 5292
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5293
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5294 5295 5296 5297
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5298
	/* hw_max = RP0 until we check for overclocking */
5299
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5300

5301
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5302 5303
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5304 5305 5306 5307 5308
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5309
			dev_priv->rps.efficient_freq =
5310 5311 5312 5313
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5314 5315
	}

5316
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5317
		/* Store the frequency values in 16.66 MHZ units, which is
5318 5319
		 * the natural hardware unit for SKL
		 */
5320 5321 5322 5323 5324 5325
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5326 5327
}

5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5340
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5341
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5342 5343 5344
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5345
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5346
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5347 5348 5349 5350 5351 5352 5353 5354 5355
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5356
		gen9_disable_rps(dev_priv);
5357 5358 5359 5360
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5361 5362 5363 5364 5365 5366 5367 5368
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5369 5370
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5371 5372 5373
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5374
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5375 5376 5377 5378

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5379
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5380
{
5381
	struct intel_engine_cs *engine;
5382
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5383 5384 5385 5386 5387 5388 5389
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5390
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5391 5392 5393 5394 5395

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5396 5397

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5398
	if (IS_SKYLAKE(dev_priv))
5399 5400 5401
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5402 5403
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5404
	for_each_engine(engine, dev_priv, id)
5405
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5406

5407
	if (HAS_GUC(dev_priv))
5408 5409
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5410 5411
	I915_WRITE(GEN6_RC_SLEEP, 0);

5412 5413 5414 5415
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5416
	/* 3a: Enable RC6 */
5417
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5418
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5419
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5420
	/* WaRsUseTimeoutMode:bxt */
5421
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5422
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5423 5424 5425
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5426 5427
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5428 5429 5430
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5431
	}
Z
Zhe Wang 已提交
5432

5433 5434
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5435
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5436
	 */
5437
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5438 5439 5440 5441
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5442

5443
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5444 5445
}

5446
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5447
{
5448
	struct intel_engine_cs *engine;
5449
	enum intel_engine_id id;
5450
	uint32_t rc6_mask = 0;
5451 5452 5453 5454 5455 5456

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5457
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5458 5459 5460 5461 5462 5463 5464 5465

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5466
	for_each_engine(engine, dev_priv, id)
5467
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5468
	I915_WRITE(GEN6_RC_SLEEP, 0);
5469
	if (IS_BROADWELL(dev_priv))
5470 5471 5472
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5473 5474

	/* 3: Enable RC6 */
5475
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5476
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5477 5478
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5479 5480 5481 5482 5483 5484 5485
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5486 5487

	/* 4 Program defaults and thresholds for RPS*/
5488 5489 5490 5491
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5506 5507

	/* 5: Enable RPS */
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5518
	reset_rps(dev_priv, gen6_set_rps);
5519

5520
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5521 5522
}

5523
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5524
{
5525
	struct intel_engine_cs *engine;
5526
	enum intel_engine_id id;
5527
	u32 rc6vids, rc6_mask = 0;
5528 5529
	u32 gtfifodbg;
	int rc6_mode;
5530
	int ret;
5531

5532
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5533

5534 5535 5536 5537 5538 5539 5540 5541 5542
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5543 5544
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5545 5546 5547 5548
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5549
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5560
	for_each_engine(engine, dev_priv, id)
5561
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5562 5563 5564

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5565
	if (IS_IVYBRIDGE(dev_priv))
5566 5567 5568
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5569
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5570 5571
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5572
	/* Check if we are enabling RC6 */
5573
	rc6_mode = intel_enable_rc6();
5574 5575 5576
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5577
	/* We don't use those on Haswell */
5578
	if (!IS_HASWELL(dev_priv)) {
5579 5580
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5581

5582 5583 5584
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5585

5586
	intel_print_rc6_info(dev_priv, rc6_mask);
5587 5588 5589 5590 5591 5592

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5593 5594
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5595 5596
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5597
	reset_rps(dev_priv, gen6_set_rps);
5598

5599 5600
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5601
	if (IS_GEN6(dev_priv) && ret) {
5602
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5603
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5604 5605 5606 5607 5608 5609 5610 5611 5612
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5613
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5614 5615
}

5616
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5617 5618
{
	int min_freq = 15;
5619 5620
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5621
	unsigned int max_gpu_freq, min_gpu_freq;
5622
	int scaling_factor = 180;
5623
	struct cpufreq_policy *policy;
5624

5625
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5626

5627 5628 5629 5630 5631 5632 5633 5634 5635
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5636
		max_ia_freq = tsc_khz;
5637
	}
5638 5639 5640 5641

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5642
	min_ring_freq = I915_READ(DCLK) & 0xf;
5643 5644
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5645

5646
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5647 5648 5649 5650 5651 5652 5653 5654
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5655 5656 5657 5658 5659
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5660 5661
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5662 5663
		unsigned int ia_freq = 0, ring_freq = 0;

5664
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5665 5666 5667 5668 5669
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5670
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5671 5672
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5673
		} else if (IS_HASWELL(dev_priv)) {
5674
			ring_freq = mult_frac(gpu_freq, 5, 4);
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5691

B
Ben Widawsky 已提交
5692 5693
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5694 5695 5696
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5697 5698 5699
	}
}

5700
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5701 5702 5703
{
	u32 val, rp0;

5704
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5705

5706
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5721
	}
5722 5723 5724

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5738 5739 5740 5741
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5742 5743 5744
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5745 5746 5747
	return rp1;
}

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5759
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5760 5761 5762
{
	u32 val, rp0;

5763
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5776
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5777
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5778
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5779 5780 5781 5782 5783
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5784
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5785
{
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5797 5798
}

5799 5800 5801 5802 5803 5804 5805 5806 5807
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5808 5809 5810 5811 5812 5813 5814 5815 5816

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5817
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5818
{
5819
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5820
	unsigned long pctx_paddr, paddr;
5821 5822 5823 5824 5825
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5826
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5827
		paddr = (dev_priv->mm.stolen_base +
5828
			 (ggtt->stolen_size - pctx_size));
5829 5830 5831 5832

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5833 5834

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5835 5836
}

5837
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5850
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5851
								      pcbr_offset,
5852
								      I915_GTT_OFFSET_NONE,
5853 5854 5855 5856
								      pctx_size);
		goto out;
	}

5857 5858
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5859 5860 5861 5862 5863 5864 5865 5866
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5867
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5868 5869
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5870
		goto out;
5871 5872 5873 5874 5875 5876
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5877
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5878 5879 5880
	dev_priv->vlv_pctx = pctx;
}

5881
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5882 5883 5884 5885
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5886
	i915_gem_object_put(dev_priv->vlv_pctx);
5887 5888 5889
	dev_priv->vlv_pctx = NULL;
}

5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5901
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5902
{
5903
	u32 val;
5904

5905
	valleyview_setup_pctx(dev_priv);
5906

5907 5908
	vlv_init_gpll_ref_freq(dev_priv);

5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5922
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5923

5924 5925 5926
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5927
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5928 5929 5930 5931
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5932
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5933 5934
			 dev_priv->rps.efficient_freq);

5935 5936
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5937
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5938 5939
			 dev_priv->rps.rp1_freq);

5940 5941
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5942
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5943 5944 5945
			 dev_priv->rps.min_freq);
}

5946
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5947
{
5948
	u32 val;
5949

5950
	cherryview_setup_pctx(dev_priv);
5951

5952 5953
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5954
	mutex_lock(&dev_priv->sb_lock);
5955
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5956
	mutex_unlock(&dev_priv->sb_lock);
5957

5958 5959 5960 5961
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5962
	default:
5963 5964 5965
		dev_priv->mem_freq = 1600;
		break;
	}
5966
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5967

5968 5969 5970
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5971
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5972 5973 5974 5975
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5976
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5977 5978
			 dev_priv->rps.efficient_freq);

5979 5980
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5981
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5982 5983
			 dev_priv->rps.rp1_freq);

5984 5985
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5986
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5987
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5988 5989
			 dev_priv->rps.min_freq);

5990 5991 5992 5993 5994
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5995 5996
}

5997
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5998
{
5999
	valleyview_cleanup_pctx(dev_priv);
6000 6001
}

6002
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6003
{
6004
	struct intel_engine_cs *engine;
6005
	enum intel_engine_id id;
6006
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6007 6008 6009

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6010 6011
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6022
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6023

6024 6025 6026
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6027 6028 6029 6030 6031
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6032
	for_each_engine(engine, dev_priv, id)
6033
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6034 6035
	I915_WRITE(GEN6_RC_SLEEP, 0);

6036 6037
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6049 6050
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6051
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6052 6053 6054

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6055
	/* 4 Program defaults and thresholds for RPS*/
6056
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6067
		   GEN6_RP_MEDIA_IS_GFX |
6068 6069 6070 6071
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6072 6073 6074 6075 6076 6077
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6078 6079
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6080 6081 6082
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6083
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6084 6085
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6086
	reset_rps(dev_priv, valleyview_set_rps);
6087

6088
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6089 6090
}

6091
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6092
{
6093
	struct intel_engine_cs *engine;
6094
	enum intel_engine_id id;
6095
	u32 gtfifodbg, val, rc6_mode = 0;
6096 6097 6098

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6099 6100
	valleyview_check_pctx(dev_priv);

6101 6102
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6103 6104
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6105 6106 6107
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6108
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6109
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6110

6111 6112 6113
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6114
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6134
	for_each_engine(engine, dev_priv, id)
6135
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6136

6137
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6138 6139

	/* allows RC6 residency counter to work */
6140
	I915_WRITE(VLV_COUNTER_CONTROL,
6141 6142
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6143 6144
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6145

6146
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6147
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6148

6149
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6150

6151
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6152

D
Deepak S 已提交
6153 6154 6155 6156 6157 6158
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6159
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6160

6161 6162 6163
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6164
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6165 6166
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6167
	reset_rps(dev_priv, valleyview_set_rps);
6168

6169
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6170 6171
}

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6201
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6202 6203 6204 6205 6206 6207
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6208 6209
	assert_spin_locked(&mchdev_lock);

6210
	diff1 = now - dev_priv->ips.last_time1;
6211 6212 6213 6214 6215 6216 6217

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6218
		return dev_priv->ips.chipset_power;
6219 6220 6221 6222 6223 6224 6225 6226

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6227 6228
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6229 6230
		diff += total_count;
	} else {
6231
		diff = total_count - dev_priv->ips.last_count1;
6232 6233 6234
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6235 6236
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6247 6248
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6249

6250
	dev_priv->ips.chipset_power = ret;
6251 6252 6253 6254

	return ret;
}

6255 6256 6257 6258
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6259
	if (INTEL_INFO(dev_priv)->gen != 5)
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6298
{
6299 6300 6301
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6302
	if (INTEL_INFO(dev_priv)->is_mobile)
6303 6304 6305
		return vm > 0 ? vm : 0;

	return vd;
6306 6307
}

6308
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6309
{
6310
	u64 now, diff, diffms;
6311 6312
	u32 count;

6313
	assert_spin_locked(&mchdev_lock);
6314

6315 6316 6317
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6318 6319 6320 6321 6322 6323 6324

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6325 6326
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6327 6328
		diff += count;
	} else {
6329
		diff = count - dev_priv->ips.last_count2;
6330 6331
	}

6332 6333
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6334 6335 6336 6337

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6338
	dev_priv->ips.gfx_power = diff;
6339 6340
}

6341 6342
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6343
	if (INTEL_INFO(dev_priv)->gen != 5)
6344 6345
		return;

6346
	spin_lock_irq(&mchdev_lock);
6347 6348 6349

	__i915_update_gfx_val(dev_priv);

6350
	spin_unlock_irq(&mchdev_lock);
6351 6352
}

6353
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6354 6355 6356 6357
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6358 6359
	assert_spin_locked(&mchdev_lock);

6360
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6380
	corr2 = (corr * dev_priv->ips.corr);
6381 6382 6383 6384

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6385
	__i915_update_gfx_val(dev_priv);
6386

6387
	return dev_priv->ips.gfx_power + state2;
6388 6389
}

6390 6391 6392 6393
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6394
	if (INTEL_INFO(dev_priv)->gen != 5)
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6417
	spin_lock_irq(&mchdev_lock);
6418 6419 6420 6421
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6422 6423
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6424 6425 6426 6427

	ret = chipset_val + graphics_val;

out_unlock:
6428
	spin_unlock_irq(&mchdev_lock);
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6444
	spin_lock_irq(&mchdev_lock);
6445 6446 6447 6448 6449 6450
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6451 6452
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6453 6454

out_unlock:
6455
	spin_unlock_irq(&mchdev_lock);
6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6472
	spin_lock_irq(&mchdev_lock);
6473 6474 6475 6476 6477 6478
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6479 6480
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6481 6482

out_unlock:
6483
	spin_unlock_irq(&mchdev_lock);
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6498
	spin_lock_irq(&mchdev_lock);
6499 6500
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6501
	spin_unlock_irq(&mchdev_lock);
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6518
	spin_lock_irq(&mchdev_lock);
6519 6520 6521 6522 6523 6524
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6525
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6526

6527
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6528 6529 6530
		ret = false;

out_unlock:
6531
	spin_unlock_irq(&mchdev_lock);
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6559 6560
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6561
	spin_lock_irq(&mchdev_lock);
6562
	i915_mch_dev = dev_priv;
6563
	spin_unlock_irq(&mchdev_lock);
6564 6565 6566 6567 6568 6569

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6570
	spin_lock_irq(&mchdev_lock);
6571
	i915_mch_dev = NULL;
6572
	spin_unlock_irq(&mchdev_lock);
6573
}
6574

6575
static void intel_init_emon(struct drm_i915_private *dev_priv)
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6592
		I915_WRITE(PEW(i), 0);
6593
	for (i = 0; i < 3; i++)
6594
		I915_WRITE(DEW(i), 0);
6595 6596 6597

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6598
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6619
		I915_WRITE(PXW(i), val);
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6635
		I915_WRITE(PXWL(i), 0);
6636 6637 6638 6639 6640 6641

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6642
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6643 6644
}

6645
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6646
{
6647 6648 6649 6650 6651 6652 6653 6654
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6655

6656
	mutex_lock(&dev_priv->drm.struct_mutex);
6657 6658 6659
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6660 6661 6662 6663
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6664
	else if (INTEL_GEN(dev_priv) >= 6)
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6694 6695 6696
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6697
	mutex_unlock(&dev_priv->rps.hw_lock);
6698
	mutex_unlock(&dev_priv->drm.struct_mutex);
6699 6700

	intel_autoenable_gt_powersave(dev_priv);
6701 6702
}

6703
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6704
{
6705
	if (IS_VALLEYVIEW(dev_priv))
6706
		valleyview_cleanup_gt_powersave(dev_priv);
6707 6708 6709

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6710 6711
}

6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6731 6732 6733 6734
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6735 6736

	gen6_reset_rps_interrupts(dev_priv);
6737 6738
}

6739
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6740
{
6741 6742
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6743

6744
	mutex_lock(&dev_priv->rps.hw_lock);
6745

6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6757
	}
6758 6759 6760

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6761 6762
}

6763
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6764
{
6765 6766 6767
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6768 6769
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6770

6771 6772 6773
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6774

6775
	mutex_lock(&dev_priv->rps.hw_lock);
6776 6777 6778 6779 6780

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6781
	} else if (INTEL_GEN(dev_priv) >= 9) {
6782 6783 6784
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6785
			gen6_update_ring_freq(dev_priv);
6786 6787
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6788
		gen6_update_ring_freq(dev_priv);
6789
	} else if (INTEL_GEN(dev_priv) >= 6) {
6790
		gen6_enable_rps(dev_priv);
6791
		gen6_update_ring_freq(dev_priv);
6792 6793 6794
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6795
	}
6796 6797 6798 6799 6800 6801 6802

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6803
	dev_priv->rps.enabled = true;
6804 6805
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6806

6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6817
	rcs = dev_priv->engine[RCS];
6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6870 6871
static void ibx_init_clock_gating(struct drm_device *dev)
{
6872
	struct drm_i915_private *dev_priv = to_i915(dev);
6873 6874 6875 6876 6877 6878 6879 6880 6881

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6882 6883
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6884
	struct drm_i915_private *dev_priv = to_i915(dev);
6885
	enum pipe pipe;
6886

6887
	for_each_pipe(dev_priv, pipe) {
6888 6889 6890
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6891 6892 6893

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6894 6895 6896
	}
}

6897 6898
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6899
	struct drm_i915_private *dev_priv = to_i915(dev);
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6911
static void ironlake_init_clock_gating(struct drm_device *dev)
6912
{
6913
	struct drm_i915_private *dev_priv = to_i915(dev);
6914
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6915

6916 6917 6918 6919
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6920 6921 6922
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6940
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6941 6942 6943
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6944 6945

	ilk_init_lp_watermarks(dev);
6946 6947 6948 6949 6950 6951 6952 6953

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6954
	if (IS_IRONLAKE_M(dev_priv)) {
6955
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6956 6957 6958 6959 6960 6961 6962 6963
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6964 6965
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6966 6967 6968 6969 6970 6971
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6972

6973
	/* WaDisableRenderCachePipelinedFlush:ilk */
6974 6975
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6976

6977 6978 6979
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6980
	g4x_disable_trickle_feed(dev);
6981

6982 6983 6984 6985 6986
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6987
	struct drm_i915_private *dev_priv = to_i915(dev);
6988
	int pipe;
6989
	uint32_t val;
6990 6991 6992 6993 6994 6995

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6996 6997 6998
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6999 7000
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7001 7002 7003
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7004
	for_each_pipe(dev_priv, pipe) {
7005 7006 7007
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7008
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7009
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7010 7011 7012
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7013 7014
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7015
	/* WADP0ClockGatingDisable */
7016
	for_each_pipe(dev_priv, pipe) {
7017 7018 7019
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7020 7021
}

7022 7023
static void gen6_check_mch_setup(struct drm_device *dev)
{
7024
	struct drm_i915_private *dev_priv = to_i915(dev);
7025 7026 7027
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7028 7029 7030
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7031 7032
}

7033
static void gen6_init_clock_gating(struct drm_device *dev)
7034
{
7035
	struct drm_i915_private *dev_priv = to_i915(dev);
7036
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7037

7038
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7039 7040 7041 7042 7043

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7044
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7045 7046 7047
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7048 7049 7050
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7051 7052 7053
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7054 7055 7056 7057
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7058 7059
	 */
	I915_WRITE(GEN6_GT_MODE,
7060
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7061

7062
	ilk_init_lp_watermarks(dev);
7063 7064

	I915_WRITE(CACHE_MODE_0,
7065
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7081
	 *
7082 7083
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7084 7085 7086 7087 7088
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7089
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7090 7091
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7092

7093 7094 7095 7096 7097 7098 7099 7100
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7101 7102 7103 7104 7105 7106 7107 7108
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7109 7110
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7111 7112 7113 7114 7115 7116 7117
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7118 7119 7120 7121
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7122

7123
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7124

7125
	cpt_init_clock_gating(dev);
7126 7127

	gen6_check_mch_setup(dev);
7128 7129 7130 7131 7132 7133
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7134
	/*
7135
	 * WaVSThreadDispatchOverride:ivb,vlv
7136 7137 7138 7139
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7140 7141 7142 7143 7144 7145 7146 7147
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7148 7149
static void lpt_init_clock_gating(struct drm_device *dev)
{
7150
	struct drm_i915_private *dev_priv = to_i915(dev);
7151 7152 7153 7154 7155

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7156
	if (HAS_PCH_LPT_LP(dev_priv))
7157 7158 7159
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7160 7161

	/* WADPOClockGatingDisable:hsw */
7162 7163
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7164
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7165 7166
}

7167 7168
static void lpt_suspend_hw(struct drm_device *dev)
{
7169
	struct drm_i915_private *dev_priv = to_i915(dev);
7170

7171
	if (HAS_PCH_LPT_LP(dev_priv)) {
7172 7173 7174 7175 7176 7177 7178
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7202 7203
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7204
	struct drm_i915_private *dev_priv = dev->dev_private;
7205

7206
	gen9_init_clock_gating(dev);
7207 7208 7209 7210 7211

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7212 7213 7214 7215 7216

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7217 7218 7219 7220

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7221 7222
}

7223 7224
static void skylake_init_clock_gating(struct drm_device *dev)
{
7225
	struct drm_i915_private *dev_priv = dev->dev_private;
7226

7227
	gen9_init_clock_gating(dev);
7228 7229 7230 7231

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7232 7233 7234 7235

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7236 7237
}

7238
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7239
{
7240
	struct drm_i915_private *dev_priv = to_i915(dev);
7241
	enum pipe pipe;
B
Ben Widawsky 已提交
7242

7243
	ilk_init_lp_watermarks(dev);
7244

7245
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7246
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7247

7248
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7249 7250 7251
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7252
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7253
	for_each_pipe(dev_priv, pipe) {
7254
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7255
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7256
			   BDW_DPRS_MASK_VBLANK_SRD);
7257
	}
7258

7259 7260 7261 7262 7263
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7264

7265 7266
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7267 7268 7269 7270

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7271

7272 7273
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7274

7275 7276 7277 7278 7279 7280 7281
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7282 7283 7284 7285
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7286
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7287 7288
}

7289 7290
static void haswell_init_clock_gating(struct drm_device *dev)
{
7291
	struct drm_i915_private *dev_priv = to_i915(dev);
7292

7293
	ilk_init_lp_watermarks(dev);
7294

7295 7296 7297 7298 7299
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7300
	/* This is required by WaCatErrorRejectionIssue:hsw */
7301 7302 7303 7304
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7305 7306 7307
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7308

7309 7310 7311
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7312 7313 7314 7315
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7316
	/* WaDisable4x2SubspanOptimization:hsw */
7317 7318
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7319

7320 7321 7322
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7323 7324 7325 7326
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7327 7328
	 */
	I915_WRITE(GEN7_GT_MODE,
7329
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7330

7331 7332 7333 7334
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7335
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7336 7337
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7338 7339 7340
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7341

7342
	lpt_init_clock_gating(dev);
7343 7344
}

7345
static void ivybridge_init_clock_gating(struct drm_device *dev)
7346
{
7347
	struct drm_i915_private *dev_priv = to_i915(dev);
7348
	uint32_t snpcr;
7349

7350
	ilk_init_lp_watermarks(dev);
7351

7352
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7353

7354
	/* WaDisableEarlyCull:ivb */
7355 7356 7357
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7358
	/* WaDisableBackToBackFlipFix:ivb */
7359 7360 7361 7362
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7363
	/* WaDisablePSDDualDispatchEnable:ivb */
7364
	if (IS_IVB_GT1(dev_priv))
7365 7366 7367
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7368 7369 7370
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7371
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7372 7373 7374
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7375
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7376 7377 7378
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7379
		   GEN7_WA_L3_CHICKEN_MODE);
7380
	if (IS_IVB_GT1(dev_priv))
7381 7382
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7383 7384 7385 7386
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7387 7388
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7389
	}
7390

7391
	/* WaForceL3Serialization:ivb */
7392 7393 7394
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7395
	/*
7396
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7397
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7398 7399
	 */
	I915_WRITE(GEN6_UCGCTL2,
7400
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7401

7402
	/* This is required by WaCatErrorRejectionIssue:ivb */
7403 7404 7405 7406
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7407
	g4x_disable_trickle_feed(dev);
7408 7409

	gen7_setup_fixed_func_scheduler(dev_priv);
7410

7411 7412 7413 7414 7415
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7416

7417
	/* WaDisable4x2SubspanOptimization:ivb */
7418 7419
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7420

7421 7422 7423
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7424 7425 7426 7427
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7428 7429
	 */
	I915_WRITE(GEN7_GT_MODE,
7430
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7431

7432 7433 7434 7435
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7436

7437
	if (!HAS_PCH_NOP(dev_priv))
7438
		cpt_init_clock_gating(dev);
7439 7440

	gen6_check_mch_setup(dev);
7441 7442
}

7443
static void valleyview_init_clock_gating(struct drm_device *dev)
7444
{
7445
	struct drm_i915_private *dev_priv = to_i915(dev);
7446

7447
	/* WaDisableEarlyCull:vlv */
7448 7449 7450
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7451
	/* WaDisableBackToBackFlipFix:vlv */
7452 7453 7454 7455
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7456
	/* WaPsdDispatchEnable:vlv */
7457
	/* WaDisablePSDDualDispatchEnable:vlv */
7458
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7459 7460
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7461

7462 7463 7464
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7465
	/* WaForceL3Serialization:vlv */
7466 7467 7468
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7469
	/* WaDisableDopClockGating:vlv */
7470 7471 7472
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7473
	/* This is required by WaCatErrorRejectionIssue:vlv */
7474 7475 7476 7477
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7478 7479
	gen7_setup_fixed_func_scheduler(dev_priv);

7480
	/*
7481
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7482
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7483 7484
	 */
	I915_WRITE(GEN6_UCGCTL2,
7485
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7486

7487 7488 7489 7490 7491
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7492

7493 7494 7495 7496
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7497 7498
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7499

7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7511 7512 7513 7514 7515 7516
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7517
	/*
7518
	 * WaDisableVLVClockGating_VBIIssue:vlv
7519 7520 7521
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7522
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7523 7524
}

7525 7526
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7527
	struct drm_i915_private *dev_priv = to_i915(dev);
7528

7529 7530 7531 7532 7533
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7534 7535 7536 7537

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7538 7539 7540 7541

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7542 7543 7544 7545

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7546

7547 7548 7549 7550 7551 7552 7553
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7554 7555 7556 7557 7558
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7559 7560
}

7561
static void g4x_init_clock_gating(struct drm_device *dev)
7562
{
7563
	struct drm_i915_private *dev_priv = to_i915(dev);
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7574
	if (IS_GM45(dev_priv))
7575 7576
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7577 7578 7579 7580

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7581

7582 7583 7584
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7585
	g4x_disable_trickle_feed(dev);
7586 7587
}

7588
static void crestline_init_clock_gating(struct drm_device *dev)
7589
{
7590
	struct drm_i915_private *dev_priv = to_i915(dev);
7591 7592 7593 7594 7595 7596

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7597 7598
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7599 7600 7601

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7602 7603
}

7604
static void broadwater_init_clock_gating(struct drm_device *dev)
7605
{
7606
	struct drm_i915_private *dev_priv = to_i915(dev);
7607 7608 7609 7610 7611 7612 7613

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7614 7615
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7616 7617 7618

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7619 7620
}

7621
static void gen3_init_clock_gating(struct drm_device *dev)
7622
{
7623
	struct drm_i915_private *dev_priv = to_i915(dev);
7624 7625 7626 7627 7628
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7629

7630
	if (IS_PINEVIEW(dev_priv))
7631
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7632 7633 7634

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7635 7636

	/* interrupts should cause a wake up from C3 */
7637
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7638 7639 7640

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7641 7642 7643

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7644 7645
}

7646
static void i85x_init_clock_gating(struct drm_device *dev)
7647
{
7648
	struct drm_i915_private *dev_priv = to_i915(dev);
7649 7650

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7651 7652 7653 7654

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7655 7656 7657

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7658 7659
}

7660
static void i830_init_clock_gating(struct drm_device *dev)
7661
{
7662
	struct drm_i915_private *dev_priv = to_i915(dev);
7663 7664

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7665 7666 7667 7668

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7669 7670 7671 7672
}

void intel_init_clock_gating(struct drm_device *dev)
{
7673
	struct drm_i915_private *dev_priv = to_i915(dev);
7674

7675
	dev_priv->display.init_clock_gating(dev);
7676 7677
}

7678 7679
void intel_suspend_hw(struct drm_device *dev)
{
7680
	if (HAS_PCH_LPT(to_i915(dev)))
7681 7682 7683
		lpt_suspend_hw(dev);
}

7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7701
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7702
	else if (IS_KABYLAKE(dev_priv))
7703
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7738 7739 7740
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7741
	struct drm_i915_private *dev_priv = to_i915(dev);
7742

7743
	intel_fbc_init(dev_priv);
7744

7745
	/* For cxsr */
7746
	if (IS_PINEVIEW(dev_priv))
7747
		i915_pineview_get_mem_freq(dev);
7748
	else if (IS_GEN5(dev_priv))
7749 7750
		i915_ironlake_get_mem_freq(dev);

7751
	/* For FIFO watermark updates */
7752
	if (INTEL_INFO(dev)->gen >= 9) {
7753
		skl_setup_wm_latency(dev);
7754
		dev_priv->display.update_wm = skl_update_wm;
7755
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7756
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7757
		ilk_setup_wm_latency(dev);
7758

7759
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7760
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7761
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7762
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7763
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7764 7765 7766 7767 7768 7769
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7770 7771 7772 7773
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7774
	} else if (IS_CHERRYVIEW(dev_priv)) {
7775 7776
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7777
	} else if (IS_VALLEYVIEW(dev_priv)) {
7778 7779
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7780
	} else if (IS_PINEVIEW(dev_priv)) {
7781
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7782 7783 7784 7785 7786 7787 7788 7789 7790
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7791
			intel_set_memory_cxsr(dev_priv, false);
7792 7793 7794
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7795
	} else if (IS_G4X(dev_priv)) {
7796
		dev_priv->display.update_wm = g4x_update_wm;
7797
	} else if (IS_GEN4(dev_priv)) {
7798
		dev_priv->display.update_wm = i965_update_wm;
7799
	} else if (IS_GEN3(dev_priv)) {
7800 7801
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7802
	} else if (IS_GEN2(dev_priv)) {
7803 7804
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7805
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7806 7807
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7808
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7809 7810 7811
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7812 7813 7814
	}
}

7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7827
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7859
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7860
{
7861 7862
	int status;

7863
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7864

7865 7866 7867 7868 7869 7870
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7871 7872 7873 7874
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7875 7876 7877
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7878

7879 7880 7881
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7882 7883 7884 7885
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7886 7887
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7888

7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7900 7901 7902
	return 0;
}

7903
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7904
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7905
{
7906 7907
	int status;

7908
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7909

7910 7911 7912 7913 7914 7915
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7916 7917 7918 7919
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7920 7921
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7922

7923 7924 7925
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7926 7927 7928 7929
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7930
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7931

7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7943 7944
	return 0;
}
7945

7946 7947
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7948 7949 7950 7951 7952
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7953 7954
}

7955
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7956
{
7957
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7958 7959
}

7960
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7961
{
7962 7963 7964 7965 7966
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7967 7968
}

7969
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7970
{
7971
	/* CHV needs even values */
7972
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7973 7974
}

7975
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7976
{
7977
	if (IS_GEN9(dev_priv))
7978 7979
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7980
	else if (IS_CHERRYVIEW(dev_priv))
7981
		return chv_gpu_freq(dev_priv, val);
7982
	else if (IS_VALLEYVIEW(dev_priv))
7983 7984 7985
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7986 7987
}

7988 7989
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7990
	if (IS_GEN9(dev_priv))
7991 7992
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7993
	else if (IS_CHERRYVIEW(dev_priv))
7994
		return chv_freq_opcode(dev_priv, val);
7995
	else if (IS_VALLEYVIEW(dev_priv))
7996 7997
		return byt_freq_opcode(dev_priv, val);
	else
7998
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7999
}
8000

8001 8002
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8003
	struct drm_i915_gem_request *req;
8004 8005 8006 8007 8008
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8009
	struct drm_i915_gem_request *req = boost->req;
8010

8011
	if (!i915_gem_request_completed(req))
8012
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8013

8014
	i915_gem_request_put(req);
8015 8016 8017
	kfree(boost);
}

8018
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8019 8020 8021
{
	struct request_boost *boost;

8022
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8023 8024
		return;

8025
	if (i915_gem_request_completed(req))
8026 8027
		return;

8028 8029 8030 8031
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8032
	boost->req = i915_gem_request_get(req);
8033 8034

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8035
	queue_work(req->i915->wq, &boost->work);
8036 8037
}

D
Daniel Vetter 已提交
8038
void intel_pm_setup(struct drm_device *dev)
8039
{
8040
	struct drm_i915_private *dev_priv = to_i915(dev);
8041

D
Daniel Vetter 已提交
8042
	mutex_init(&dev_priv->rps.hw_lock);
8043
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8044

8045 8046
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8047
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8048

8049
	dev_priv->pm.suspended = false;
8050
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8051
}