intel_pm.c 206.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void bxt_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

63 64
	/*
	 * FIXME:
65
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 67
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 70 71 72 73 74 75 76

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
77 78
}

79 80
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
81
	struct drm_i915_private *dev_priv = dev->dev_private;
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
120
	struct drm_i915_private *dev_priv = dev->dev_private;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

146
	dev_priv->ips.r_t = dev_priv->mem_freq;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
178
		dev_priv->ips.c_m = 0;
179
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180
		dev_priv->ips.c_m = 1;
181
	} else {
182
		dev_priv->ips.c_m = 2;
183 184 185
	}
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

224
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

286 287 288
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

289
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290
{
291 292
	struct drm_device *dev = dev_priv->dev;
	u32 val;
293

294
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296
		POSTING_READ(FW_BLC_SELF_VLV);
297
		dev_priv->wm.vlv.cxsr = enable;
298 299
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300
		POSTING_READ(FW_BLC_SELF);
301 302 303 304
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
305
		POSTING_READ(DSPFW3);
306 307 308 309
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
310
		POSTING_READ(FW_BLC_SELF);
311 312 313 314
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
315
		POSTING_READ(INSTPM);
316 317 318
	} else {
		return;
	}
319

320 321
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
322 323
}

324

325 326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
339
static const int pessimal_latency_ns = 5000;
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

396
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

412
static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

429
static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
447 448 449 450 451
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 453
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 455 456 457 458
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 460
};
static const struct intel_watermark_params pineview_cursor_wm = {
461 462 463 464 465
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 467
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 469 470 471 472
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 474
};
static const struct intel_watermark_params g4x_wm_info = {
475 476 477 478 479
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
480 481
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
482 483 484 485 486
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
487 488
};
static const struct intel_watermark_params valleyview_wm_info = {
489 490 491 492 493
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 495
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 497 498 499 500
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 502
};
static const struct intel_watermark_params i965_cursor_wm_info = {
503 504 505 506 507
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
508 509
};
static const struct intel_watermark_params i945_wm_info = {
510 511 512 513 514
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
515 516
};
static const struct intel_watermark_params i915_wm_info = {
517 518 519 520 521
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
522
};
523
static const struct intel_watermark_params i830_a_wm_info = {
524 525 526 527 528
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
529
};
530 531 532 533 534 535 536
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
537
static const struct intel_watermark_params i845_wm_info = {
538 539 540 541 542
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
592 593 594 595 596 597 598 599 600 601 602

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

603 604 605 606 607 608 609
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

610
	for_each_crtc(dev, crtc) {
611
		if (intel_crtc_active(crtc)) {
612 613 614 615 616 617 618 619 620
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

621
static void pineview_update_wm(struct drm_crtc *unused_crtc)
622
{
623
	struct drm_device *dev = unused_crtc->dev;
624 625 626 627 628 629 630 631 632 633
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634
		intel_set_memory_cxsr(dev_priv, false);
635 636 637 638 639
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
640
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642
		int clock = adjusted_mode->crtc_clock;
643 644 645 646 647 648 649

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
650
		reg |= FW_WM(wm, SR);
651 652 653 654 655 656 657 658 659
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
660
		reg |= FW_WM(wm, CURSOR_SR);
661 662 663 664 665 666 667 668
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
669
		reg |= FW_WM(wm, HPLL_SR);
670 671 672 673 674 675 676 677
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
678
		reg |= FW_WM(wm, HPLL_CURSOR);
679 680 681
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

682
		intel_set_memory_cxsr(dev_priv, true);
683
	} else {
684
		intel_set_memory_cxsr(dev_priv, false);
685 686 687 688 689 690 691 692 693 694 695 696 697
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
698
	const struct drm_display_mode *adjusted_mode;
699 700 701 702 703
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
704
	if (!intel_crtc_active(crtc)) {
705 706 707 708 709
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

710
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711
	clock = adjusted_mode->crtc_clock;
712
	htotal = adjusted_mode->crtc_htotal;
713
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715 716 717 718 719 720 721 722 723 724 725 726

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
727
	line_time_us = max(htotal * 1000 / clock, 1);
728
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
784
	const struct drm_display_mode *adjusted_mode;
785 786 787 788 789 790 791 792 793 794 795 796
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
797
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798
	clock = adjusted_mode->crtc_clock;
799
	htotal = adjusted_mode->crtc_htotal;
800
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802

803
	line_time_us = max(htotal * 1000 / clock, 1);
804 805 806 807 808 809 810 811 812 813 814
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
815
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 817 818 819 820 821 822 823
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

824 825 826
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

827 828 829 830 831 832 833 834 835 836 837 838
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

839
	I915_WRITE(DSPFW1,
840 841 842 843
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844
	I915_WRITE(DSPFW2,
845 846 847
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848
	I915_WRITE(DSPFW3,
849
		   FW_WM(wm->sr.cursor, CURSOR_SR));
850 851 852

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
853 854
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855
		I915_WRITE(DSPFW8_CHV,
856 857
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858
		I915_WRITE(DSPFW9_CHV,
859 860
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861
		I915_WRITE(DSPHOWM,
862 863 864 865 866 867 868 869 870 871
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 873
	} else {
		I915_WRITE(DSPFW7,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876
		I915_WRITE(DSPHOWM,
877 878 879 880 881 882 883
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 885
	}

886 887 888 889 890 891
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

892
	POSTING_READ(DSPFW1);
893 894
}

895 896
#undef FW_WM_VLV

897 898 899 900 901 902
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

926 927
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

928 929 930
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931 932

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1074
static void vlv_compute_wm(struct intel_crtc *crtc)
1075 1076 1077 1078 1079 1080 1081 1082 1083
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1084
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086 1087 1088

	wm_state->num_active_planes = 0;

1089
	vlv_compute_fifo(crtc);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1146
					wm_state->wm[level].cursor;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1165
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 1167 1168 1169 1170 1171 1172
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1263 1264 1265 1266 1267 1268
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1269
	wm->level = to_i915(dev)->wm.max_level;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1288 1289 1290
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1317
	vlv_compute_wm(intel_crtc);
1318 1319
	vlv_merge_wm(dev, &wm);

1320 1321 1322
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1323
		return;
1324
	}
1325 1326 1327 1328 1329 1330 1331 1332 1333

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1334
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 1336
		intel_set_memory_cxsr(dev_priv, false);

1337 1338 1339
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1340 1341 1342 1343 1344 1345 1346 1347
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1348
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1360 1361
}

1362 1363
#define single_plane_enabled(mask) is_power_of_2(mask)

1364
static void g4x_update_wm(struct drm_crtc *crtc)
1365
{
1366
	struct drm_device *dev = crtc->dev;
1367 1368 1369 1370 1371
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1372
	bool cxsr_enabled;
1373

1374
	if (g4x_compute_wm0(dev, PIPE_A,
1375 1376
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1377
			    &planea_wm, &cursora_wm))
1378
		enabled |= 1 << PIPE_A;
1379

1380
	if (g4x_compute_wm0(dev, PIPE_B,
1381 1382
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1383
			    &planeb_wm, &cursorb_wm))
1384
		enabled |= 1 << PIPE_B;
1385 1386 1387 1388 1389 1390

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1391
			     &plane_sr, &cursor_sr)) {
1392
		cxsr_enabled = true;
1393
	} else {
1394
		cxsr_enabled = false;
1395
		intel_set_memory_cxsr(dev_priv, false);
1396 1397
		plane_sr = cursor_sr = 0;
	}
1398

1399 1400
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 1402 1403 1404 1405
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1406 1407 1408 1409
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1410
	I915_WRITE(DSPFW2,
1411
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412
		   FW_WM(cursora_wm, CURSORA));
1413 1414
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1415
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416
		   FW_WM(cursor_sr, CURSOR_SR));
1417 1418 1419

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1420 1421
}

1422
static void i965_update_wm(struct drm_crtc *unused_crtc)
1423
{
1424
	struct drm_device *dev = unused_crtc->dev;
1425 1426 1427 1428
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1429
	bool cxsr_enabled;
1430 1431 1432 1433 1434 1435

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1436
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437
		int clock = adjusted_mode->crtc_clock;
1438
		int htotal = adjusted_mode->crtc_htotal;
1439
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 1442 1443
		unsigned long line_time_us;
		int entries;

1444
		line_time_us = max(htotal * 1000 / clock, 1);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458
			pixel_size * crtc->cursor->state->crtc_w;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1470
		cxsr_enabled = true;
1471
	} else {
1472
		cxsr_enabled = false;
1473
		/* Turn off self refresh if both pipes are enabled */
1474
		intel_set_memory_cxsr(dev_priv, false);
1475 1476 1477 1478 1479 1480
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1481 1482 1483 1484 1485 1486
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1487
	/* update cursor SR watermark */
1488
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489 1490 1491

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1492 1493
}

1494 1495
#undef FW_WM

1496
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497
{
1498
	struct drm_device *dev = unused_crtc->dev;
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1513
		wm_info = &i830_a_wm_info;
1514 1515 1516

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1517
	if (intel_crtc_active(crtc)) {
1518
		const struct drm_display_mode *adjusted_mode;
1519
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 1521 1522
		if (IS_GEN2(dev))
			cpp = 4;

1523
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525
					       wm_info, fifo_size, cpp,
1526
					       pessimal_latency_ns);
1527
		enabled = crtc;
1528
	} else {
1529
		planea_wm = fifo_size - wm_info->guard_size;
1530 1531 1532 1533 1534 1535
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1536 1537 1538

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1539
	if (intel_crtc_active(crtc)) {
1540
		const struct drm_display_mode *adjusted_mode;
1541
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 1543 1544
		if (IS_GEN2(dev))
			cpp = 4;

1545
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547
					       wm_info, fifo_size, cpp,
1548
					       pessimal_latency_ns);
1549 1550 1551 1552
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1553
	} else {
1554
		planeb_wm = fifo_size - wm_info->guard_size;
1555 1556 1557
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1558 1559 1560

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1561
	if (IS_I915GM(dev) && enabled) {
1562
		struct drm_i915_gem_object *obj;
1563

1564
		obj = intel_fb_obj(enabled->primary->state->fb);
1565 1566

		/* self-refresh seems busted with untiled */
1567
		if (obj->tiling_mode == I915_TILING_NONE)
1568 1569 1570
			enabled = NULL;
	}

1571 1572 1573 1574 1575 1576
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1577
	intel_set_memory_cxsr(dev_priv, false);
1578 1579 1580 1581 1582

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1583
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584
		int clock = adjusted_mode->crtc_clock;
1585
		int htotal = adjusted_mode->crtc_htotal;
1586
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 1589 1590
		unsigned long line_time_us;
		int entries;

1591
		line_time_us = max(htotal * 1000 / clock, 1);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1622 1623
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1624 1625
}

1626
static void i845_update_wm(struct drm_crtc *unused_crtc)
1627
{
1628
	struct drm_device *dev = unused_crtc->dev;
1629 1630
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1631
	const struct drm_display_mode *adjusted_mode;
1632 1633 1634 1635 1636 1637 1638
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1639
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641
				       &i845_wm_info,
1642
				       dev_priv->display.get_fifo_size(dev, 0),
1643
				       4, pessimal_latency_ns);
1644 1645 1646 1647 1648 1649 1650 1651
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1652
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653
{
1654
	uint32_t pixel_rate;
1655

1656
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657 1658 1659 1660

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1661
	if (pipe_config->pch_pfit.enabled) {
1662
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 1664 1665 1666
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1667 1668 1669 1670 1671 1672 1673 1674

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1675 1676 1677
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1678 1679 1680 1681 1682 1683 1684
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1685
/* latency must be in 0.1us units. */
1686
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1687 1688 1689 1690
			       uint32_t latency)
{
	uint64_t ret;

1691 1692 1693
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1694 1695 1696 1697 1698 1699
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1700
/* latency must be in 0.1us units. */
1701
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702 1703 1704 1705 1706
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1707 1708
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1709 1710
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1711

1712 1713 1714 1715 1716 1717
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1718
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719 1720
			   uint8_t bytes_per_pixel)
{
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
	if (WARN_ON(!bytes_per_pixel))
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1732 1733 1734
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1735
struct ilk_wm_maximums {
1736 1737 1738 1739 1740 1741
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1742 1743 1744 1745
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1746
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747
				   const struct intel_plane_state *pstate,
1748 1749
				   uint32_t mem_value,
				   bool is_lp)
1750
{
1751
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1752 1753
	uint32_t method1, method2;

1754
	if (!cstate->base.active || !pstate->visible)
1755 1756
		return 0;

1757
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1758 1759 1760 1761

	if (!is_lp)
		return method1;

1762 1763
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1764 1765
				 drm_rect_width(&pstate->dst),
				 bpp,
1766 1767 1768
				 mem_value);

	return min(method1, method2);
1769 1770
}

1771 1772 1773 1774
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1775
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776
				   const struct intel_plane_state *pstate,
1777 1778
				   uint32_t mem_value)
{
1779
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1780 1781
	uint32_t method1, method2;

1782
	if (!cstate->base.active || !pstate->visible)
1783 1784
		return 0;

1785 1786 1787
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1788 1789
				 drm_rect_width(&pstate->dst),
				 bpp,
1790 1791 1792 1793
				 mem_value);
	return min(method1, method2);
}

1794 1795 1796 1797
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1798
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799
				   const struct intel_plane_state *pstate,
1800 1801
				   uint32_t mem_value)
{
1802 1803
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1804
	if (!cstate->base.active || !pstate->visible)
1805 1806
		return 0;

1807 1808
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1809 1810
			      drm_rect_width(&pstate->dst),
			      bpp,
1811 1812 1813
			      mem_value);
}

1814
/* Only for WM_LP. */
1815
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1816
				   const struct intel_plane_state *pstate,
1817
				   uint32_t pri_val)
1818
{
1819 1820
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1821
	if (!cstate->base.active || !pstate->visible)
1822 1823
		return 0;

1824
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1825 1826
}

1827 1828
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1829 1830 1831
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1832 1833 1834 1835 1836
		return 768;
	else
		return 512;
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1871 1872 1873
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1874
				     const struct intel_wm_config *config,
1875 1876 1877 1878 1879 1880
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1881
	if (is_sprite && !config->sprites_enabled)
1882 1883 1884
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1885
	if (level == 0 || config->num_pipes_active > 1) {
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1897
	if (config->sprites_enabled) {
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1909
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1910 1911 1912 1913
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1914 1915
				      int level,
				      const struct intel_wm_config *config)
1916 1917
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1918
	if (level > 0 && config->num_pipes_active > 1)
1919 1920 1921
		return 64;

	/* otherwise just report max that registers can hold */
1922
	return ilk_cursor_wm_reg_max(dev, level);
1923 1924
}

1925
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1926 1927 1928
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1929
				    struct ilk_wm_maximums *max)
1930
{
1931 1932 1933
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1934
	max->fbc = ilk_fbc_wm_reg_max(dev);
1935 1936
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1947
static bool ilk_validate_wm_level(int level,
1948
				  const struct ilk_wm_maximums *max,
1949
				  struct intel_wm_level *result)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1988
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1989
				 const struct intel_crtc *intel_crtc,
1990
				 int level,
1991
				 struct intel_crtc_state *cstate,
1992 1993 1994
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1995
				 struct intel_wm_level *result)
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2008 2009 2010 2011 2012
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2013 2014 2015
	result->enable = true;
}

2016
static uint32_t
2017 2018
hsw_compute_linetime_wm(struct drm_device *dev,
			struct intel_crtc_state *cstate)
2019 2020
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2021 2022
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2023
	u32 linetime, ips_linetime;
2024

2025 2026 2027 2028 2029
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2030
		return 0;
2031

2032 2033 2034
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2035 2036 2037
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2038
					 dev_priv->cdclk_freq);
2039

2040 2041
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2042 2043
}

2044
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2045 2046 2047
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2048 2049
	if (IS_GEN9(dev)) {
		uint32_t val;
2050
		int ret, i;
2051
		int level, max_level = ilk_wm_max_level(dev);
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2094
		/*
2095 2096
		 * WaWmMemoryReadLatency:skl
		 *
2097 2098 2099 2100 2101 2102 2103 2104
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2105 2106 2107 2108 2109
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2110 2111 2112 2113 2114
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2115 2116 2117
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2118

2119 2120
				break;
			}
2121
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2122 2123 2124 2125 2126
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2127 2128 2129 2130
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2131 2132 2133 2134 2135 2136 2137
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2138 2139 2140 2141 2142 2143 2144
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2145 2146 2147
	}
}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2166
int ilk_wm_max_level(const struct drm_device *dev)
2167 2168
{
	/* how many WM levels are we expecting */
2169
	if (INTEL_INFO(dev)->gen >= 9)
2170 2171
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2172
		return 4;
2173
	else if (INTEL_INFO(dev)->gen >= 6)
2174
		return 3;
2175
	else
2176 2177
		return 2;
}
2178

2179 2180
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2181
				   const uint16_t wm[8])
2182 2183
{
	int level, max_level = ilk_wm_max_level(dev);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2194 2195 2196 2197 2198 2199 2200
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2201 2202 2203 2204 2205 2206 2207 2208
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2246
static void ilk_setup_wm_latency(struct drm_device *dev)
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2259 2260 2261 2262

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2263 2264 2265

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2266 2267
}

2268 2269 2270 2271 2272 2273 2274 2275
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2299
/* Compute new watermarks for the pipe */
2300 2301
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2302
{
2303 2304
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2305
	const struct drm_i915_private *dev_priv = dev->dev_private;
2306
	struct intel_crtc_state *cstate = NULL;
2307
	struct intel_plane *intel_plane;
2308 2309
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2310
	struct intel_plane_state *sprstate = NULL;
2311
	struct intel_plane_state *curstate = NULL;
2312
	int level, max_level = ilk_wm_max_level(dev);
2313
	struct ilk_wm_maximums max;
2314

2315 2316 2317 2318 2319
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;
2320
	memset(pipe_wm, 0, sizeof(*pipe_wm));
2321

2322
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2334 2335
	}

2336 2337 2338
	pipe_wm->pipe_enabled = cstate->base.active;
	pipe_wm->sprites_enabled = sprstate->visible;
	pipe_wm->sprites_scaled = sprstate->visible &&
2339 2340 2341
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2342
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2343
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2344 2345 2346
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2347
	if (pipe_wm->sprites_scaled)
2348 2349
		max_level = 0;

2350 2351
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2352

2353
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2354
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2355

2356 2357
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
		return false;
2358 2359 2360 2361 2362 2363

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2364 2365
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
				     pristate, sprstate, curstate, &wm);
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2378
	return 0;
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
	struct intel_pipe_wm *a = &newstate->wm.intermediate;
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
	*a = newstate->wm.optimal.ilk;
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
	if (memcmp(a, &newstate->wm.optimal.ilk, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2443 2444
	ret_wm->enable = true;

2445
	for_each_intel_crtc(dev, intel_crtc) {
2446
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2447 2448 2449 2450
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2451

2452 2453 2454 2455 2456
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2457
		if (!wm->enable)
2458
			ret_wm->enable = false;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2471
			 const struct intel_wm_config *config,
2472
			 const struct ilk_wm_maximums *max,
2473 2474
			 struct intel_pipe_wm *merged)
{
2475
	struct drm_i915_private *dev_priv = dev->dev_private;
2476
	int level, max_level = ilk_wm_max_level(dev);
2477
	int last_enabled_level = max_level;
2478

2479 2480 2481 2482 2483
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2484 2485
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2486 2487 2488 2489 2490 2491 2492

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2493 2494 2495 2496 2497
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2498 2499 2500 2501 2502 2503

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2504 2505
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2506 2507 2508
			wm->fbc_val = 0;
		}
	}
2509 2510 2511 2512 2513 2514 2515

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2516
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2517
	    intel_fbc_is_active(dev_priv)) {
2518 2519 2520 2521 2522 2523
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2524 2525
}

2526 2527 2528 2529 2530 2531
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2532 2533 2534 2535 2536
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2537
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2538 2539 2540 2541 2542
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2543
static void ilk_compute_wm_results(struct drm_device *dev,
2544
				   const struct intel_pipe_wm *merged,
2545
				   enum intel_ddb_partitioning partitioning,
2546
				   struct ilk_wm_values *results)
2547
{
2548 2549
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2550

2551
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2552
	results->partitioning = partitioning;
2553

2554
	/* LP1+ register values */
2555
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2556
		const struct intel_wm_level *r;
2557

2558
		level = ilk_wm_lp_to_level(wm_lp, merged);
2559

2560
		r = &merged->wm[level];
2561

2562 2563 2564 2565 2566
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2567
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2568 2569 2570
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2571 2572 2573
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2574 2575 2576 2577 2578 2579 2580
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2581 2582 2583 2584
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2585 2586 2587 2588 2589
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2590
	}
2591

2592
	/* LP0 register values */
2593
	for_each_intel_crtc(dev, intel_crtc) {
2594
		enum pipe pipe = intel_crtc->pipe;
2595 2596
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2597 2598 2599 2600

		if (WARN_ON(!r->enable))
			continue;

2601
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2602

2603 2604 2605 2606
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2607 2608 2609
	}
}

2610 2611
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2612
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2613 2614
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2615
{
2616 2617
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2618

2619 2620 2621 2622 2623
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2624 2625
	}

2626 2627
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2628 2629 2630
			return r2;
		else
			return r1;
2631
	} else if (level1 > level2) {
2632 2633 2634 2635 2636 2637
		return r1;
	} else {
		return r2;
	}
}

2638 2639 2640 2641 2642 2643 2644 2645
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2646
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2647 2648
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2649 2650 2651 2652 2653
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2654
	for_each_pipe(dev_priv, pipe) {
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2698 2699
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2700
{
2701
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2702
	bool changed = false;
2703

2704 2705 2706
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2707
		changed = true;
2708 2709 2710 2711
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2712
		changed = true;
2713 2714 2715 2716
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2717
		changed = true;
2718
	}
2719

2720 2721 2722 2723
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2724

2725 2726 2727 2728 2729 2730 2731
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2732 2733
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2734 2735
{
	struct drm_device *dev = dev_priv->dev;
2736
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2737 2738 2739
	unsigned int dirty;
	uint32_t val;

2740
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2741 2742 2743 2744 2745
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2746
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2747
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2748
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2749
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2750
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2751 2752
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2753
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2754
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2755
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2756
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2757
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2758 2759
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2760
	if (dirty & WM_DIRTY_DDB) {
2761
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2776 2777
	}

2778
	if (dirty & WM_DIRTY_FBC) {
2779 2780 2781 2782 2783 2784 2785 2786
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2787 2788 2789 2790 2791
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2792 2793 2794 2795 2796
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2797

2798
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2799
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2800
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2801
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2802
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2803
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2804 2805

	dev_priv->wm.hw = *results;
2806 2807
}

2808
bool ilk_disable_lp_wm(struct drm_device *dev)
2809 2810 2811 2812 2813 2814
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2815 2816 2817 2818 2819 2820
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2821
#define BXT_DDB_SIZE		512
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2845 2846
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2847
				   const struct intel_crtc_state *cstate,
2848 2849 2850
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2851
	struct drm_crtc *for_crtc = cstate->base.crtc;
2852 2853 2854 2855
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2856
	if (!cstate->base.active) {
2857 2858 2859 2860 2861
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2862 2863 2864 2865
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2866 2867 2868 2869 2870

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2871
		if (!to_intel_crtc(crtc)->active)
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2882
	alloc->end = alloc->start + pipe_size;
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2893 2894 2895 2896
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2897 2898
	if (entry->end)
		entry->end += 1;
2899 2900
}

2901 2902
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2903 2904 2905 2906 2907
{
	enum pipe pipe;
	int plane;
	u32 val;

2908 2909
	memset(ddb, 0, sizeof(*ddb));

2910
	for_each_pipe(dev_priv, pipe) {
2911 2912 2913
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
			continue;

2914
		for_each_plane(dev_priv, pipe, plane) {
2915 2916 2917 2918 2919 2920
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2921 2922
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2923 2924 2925
	}
}

2926
static unsigned int
2927 2928 2929
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2930
{
2931 2932
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2933 2934

	/* for planar format */
2935
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2936
		if (y)  /* y-plane data rate */
2937 2938 2939
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2940
		else    /* uv-plane data rate */
2941 2942 2943
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2944 2945 2946
	}

	/* for packed formats */
2947 2948 2949
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2950 2951 2952 2953 2954 2955 2956 2957
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2958
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2959
{
2960 2961 2962
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2963 2964
	unsigned int total_data_rate = 0;

2965 2966
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2967

2968
		if (pstate->fb == NULL)
2969 2970
			continue;

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2984 2985 2986 2987 2988 2989
	}

	return total_data_rate;
}

static void
2990
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2991 2992
		      struct skl_ddb_allocation *ddb /* out */)
{
2993
	struct drm_crtc *crtc = cstate->base.crtc;
2994
	struct drm_device *dev = crtc->dev;
2995 2996
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
2997
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2998
	struct intel_plane *intel_plane;
2999
	enum pipe pipe = intel_crtc->pipe;
3000
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3001
	uint16_t alloc_size, start, cursor_blocks;
3002
	uint16_t minimum[I915_MAX_PLANES];
3003
	uint16_t y_minimum[I915_MAX_PLANES];
3004 3005
	unsigned int total_data_rate;

3006
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
3007
	alloc_size = skl_ddb_entry_size(alloc);
3008 3009
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3010 3011
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
3012 3013 3014 3015
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
3016 3017
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3018 3019

	alloc_size -= cursor_blocks;
3020
	alloc->end -= cursor_blocks;
3021

3022
	/* 1. Allocate the mininum required blocks for each active plane */
3023 3024 3025 3026
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
3027

3028 3029 3030
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3031 3032
			continue;

3033 3034 3035 3036
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
3037 3038
	}

3039
	/*
3040 3041
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3042 3043 3044
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3045
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3046

3047
	start = alloc->start;
3048 3049 3050
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
3051 3052
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3053
		int id = skl_wm_plane_id(intel_plane);
3054

3055 3056 3057
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3058 3059
			continue;

3060
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3061 3062

		/*
3063
		 * allocation for (packed formats) or (uv-plane part of planar format):
3064 3065 3066
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3067
		plane_blocks = minimum[id];
3068 3069
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3070

3071 3072
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3073 3074

		start += plane_blocks;
3075 3076 3077 3078

		/*
		 * allocation for y_plane part of planar format:
		 */
3079 3080 3081 3082 3083
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3084 3085 3086
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3087 3088
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3089 3090 3091 3092

			start += y_plane_blocks;
		}

3093 3094 3095 3096
	}

}

3097
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3098 3099
{
	/* TODO: Take into account the scalers once we support them */
3100
	return config->base.adjusted_mode.crtc_clock;
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3117
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3118 3119 3120 3121 3122 3123 3124
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3125
			       uint64_t tiling, uint32_t latency)
3126
{
3127 3128 3129
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3130 3131 3132 3133 3134

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3145 3146
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3147
				plane_blocks_per_line;
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3159 3160 3161 3162 3163
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3164 3165 3166 3167 3168
		return true;

	return false;
}

3169
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3170 3171
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3172
				 uint16_t ddb_allocation,
3173
				 int level,
3174 3175
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3176
{
3177 3178
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3179 3180 3181 3182 3183
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3184
	uint8_t bytes_per_pixel;
3185

3186
	if (latency == 0 || !cstate->base.active || !fb)
3187 3188
		return false;

3189 3190
	bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3191
				 bytes_per_pixel,
3192
				 latency);
3193 3194 3195
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3196
				 bytes_per_pixel,
3197
				 fb->modifier[0],
3198
				 latency);
3199

3200
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3201
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3202

3203 3204
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3205 3206
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3207 3208 3209 3210 3211 3212
		if (intel_rotation_90_or_270(plane->state->rotation)) {
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

			switch (bpp) {
3213 3214 3215 3216 3217 3218 3219 3220
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3221
			}
3222 3223
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3224 3225 3226 3227 3228 3229 3230
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3231

3232 3233
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3234

3235
	if (level >= 1 && level <= 7) {
3236 3237
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3238 3239 3240 3241
			res_lines += 4;
		else
			res_blocks++;
	}
3242

3243
	if (res_blocks >= ddb_allocation || res_lines > 31)
3244 3245 3246 3247
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3248 3249 3250 3251 3252 3253

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3254
				 struct intel_crtc_state *cstate,
3255 3256 3257
				 int level,
				 struct skl_wm_level *result)
{
3258 3259 3260
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3261
	uint16_t ddb_blocks;
3262 3263 3264 3265
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3266 3267 3268

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3269
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3270 3271
						cstate,
						intel_plane,
3272
						ddb_blocks,
3273
						level,
3274 3275 3276 3277 3278
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3279
static uint32_t
3280
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3281
{
3282
	if (!cstate->base.active)
3283 3284
		return 0;

3285
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3286
		return 0;
3287

3288 3289
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3290 3291
}

3292
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3293
				      struct skl_wm_level *trans_wm /* out */)
3294
{
3295
	struct drm_crtc *crtc = cstate->base.crtc;
3296
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3297
	struct intel_plane *intel_plane;
3298

3299
	if (!cstate->base.active)
3300
		return;
3301 3302

	/* Until we know more, just disable transition WMs */
3303 3304 3305
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3306
		trans_wm->plane_en[i] = false;
3307
	}
3308 3309
}

3310
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3311 3312 3313
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3314
	struct drm_device *dev = cstate->base.crtc->dev;
3315 3316 3317 3318
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3319 3320
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3321
	}
3322
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3323

3324
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3325 3326 3327 3328 3329 3330 3331 3332 3333
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3334 3335
	uint32_t temp;
	int i;
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3352 3353
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3354

3355
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3356 3357
			temp |= PLANE_WM_EN;

3358
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3359 3360 3361

	}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3374 3375 3376
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3377 3378
		temp |= PLANE_WM_EN;

3379
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3380

3381 3382 3383
	r->wm_linetime[pipe] = p_wm->linetime;
}

3384 3385
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3386 3387 3388 3389 3390 3391 3392 3393
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3394 3395 3396 3397 3398 3399
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3400
	for_each_intel_crtc(dev, crtc) {
3401 3402 3403
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3404 3405
		if (!new->dirty[pipe])
			continue;
3406

3407
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3408

3409 3410 3411 3412 3413
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3414
				   new->plane[pipe][PLANE_CURSOR][level]);
3415
		}
3416 3417 3418
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3419 3420
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3421

3422
		for (i = 0; i < intel_num_planes(crtc); i++) {
3423 3424 3425
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3426 3427 3428 3429
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3430 3431

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3432
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3433 3434 3435
	}
}

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3460 3461
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3462 3463 3464
{
	int plane;

3465 3466
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3467
	for_each_plane(dev_priv, pipe, plane) {
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3494
	bool reallocated[I915_MAX_PIPES] = {};
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3517
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3542
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3543
			intel_wait_for_vblank(dev, pipe);
3544
			reallocated[pipe] = true;
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3567
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3568 3569 3570
	}
}

3571 3572 3573 3574 3575
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3576
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3577

3578
	skl_allocate_pipe_ddb(cstate, ddb);
3579
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3580

3581
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3582 3583
		return false;

3584
	intel_crtc->wm.active.skl = *pipe_wm;
3585

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3609
	for_each_intel_crtc(dev, intel_crtc) {
3610 3611 3612 3613 3614 3615 3616 3617 3618
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3619
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3620 3621 3622 3623 3624 3625 3626 3627 3628
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3629
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3630 3631 3632 3633
		r->dirty[intel_crtc->pipe] = true;
	}
}

3634 3635 3636 3637 3638 3639 3640
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3641
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3642 3643 3644 3645 3646 3647 3648

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3649 3650
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3651 3652 3653

}

3654 3655 3656 3657 3658 3659
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3660 3661
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3662

3663 3664 3665 3666 3667

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3668

3669
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3670 3671
		return;

3672
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3673 3674
	results->dirty[intel_crtc->pipe] = true;

3675
	skl_update_other_pipe_wm(dev, crtc, results);
3676
	skl_write_wm_values(dev_priv, results);
3677
	skl_flush_wm_values(dev_priv, results);
3678 3679 3680

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3681 3682
}

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3701
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3702
{
3703
	struct drm_device *dev = dev_priv->dev;
3704
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3705
	struct ilk_wm_maximums max;
3706
	struct intel_wm_config config = {};
3707
	struct ilk_wm_values results = {};
3708
	enum intel_ddb_partitioning partitioning;
3709

3710 3711 3712 3713
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3714 3715

	/* 5/6 split only in single pipe config on IVB+ */
3716
	if (INTEL_INFO(dev)->gen >= 7 &&
3717 3718 3719
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3720

3721
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3722
	} else {
3723
		best_lp_wm = &lp_wm_1_2;
3724 3725
	}

3726
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3727
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3728

3729
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3730

3731
	ilk_write_wm_values(dev_priv, &results);
3732 3733
}

3734
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
3735
{
3736 3737
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3738

3739 3740 3741 3742 3743
	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.ilk = cstate->wm.intermediate;
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
3744

3745 3746 3747 3748
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3749

3750 3751 3752 3753 3754 3755
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
		intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
3756 3757
}

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3776 3777
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3778
					val & PLANE_WM_BLOCKS_MASK;
3779
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3792 3793
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3794
					val & PLANE_WM_BLOCKS_MASK;
3795
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3808 3809
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3822
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3823 3824 3825 3826
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3827
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3828

3829
	if (!intel_crtc->active)
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3842
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3843 3844 3845 3846 3847 3848 3849 3850
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3851
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3852
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3853 3854

	intel_crtc->wm.active.skl = *active;
3855 3856 3857 3858
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3859 3860
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3861 3862
	struct drm_crtc *crtc;

3863
	skl_ddb_get_hw_state(dev_priv, ddb);
3864 3865 3866 3867
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3868 3869 3870 3871
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3872
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3873
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3874 3875
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3876
	enum pipe pipe = intel_crtc->pipe;
3877
	static const i915_reg_t wm0_pipe_reg[] = {
3878 3879 3880 3881 3882 3883
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3884
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3885
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3886

3887
	active->pipe_enabled = intel_crtc->active;
3888 3889

	if (active->pipe_enabled) {
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3914 3915

	intel_crtc->wm.active.ilk = *active;
3916 3917
}

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4035 4036 4037 4038 4039 4040 4041 4042 4043
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4044
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4071 4072 4073
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4074
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4075 4076
	struct drm_crtc *crtc;

4077
	for_each_crtc(dev, crtc)
4078 4079 4080 4081 4082 4083 4084
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4085 4086 4087 4088
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4089

4090
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4091 4092 4093 4094 4095
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4096 4097 4098 4099 4100

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4133
void intel_update_watermarks(struct drm_crtc *crtc)
4134
{
4135
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4136 4137

	if (dev_priv->display.update_wm)
4138
		dev_priv->display.update_wm(crtc);
4139 4140
}

4141
/*
4142 4143 4144 4145 4146 4147 4148 4149
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4150 4151 4152 4153 4154
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4155 4156
	assert_spin_locked(&mchdev_lock);

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4174
static void ironlake_enable_drps(struct drm_device *dev)
4175 4176 4177 4178 4179
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4180 4181
	spin_lock_irq(&mchdev_lock);

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4202
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4203 4204
		PXVFREQ_PX_SHIFT;

4205 4206
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4207

4208 4209 4210
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4227
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4228
		DRM_ERROR("stuck trying to change perf mode\n");
4229
	mdelay(1);
4230 4231 4232

	ironlake_set_drps(dev, fstart);

4233 4234
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4235
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4236
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4237
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4238 4239

	spin_unlock_irq(&mchdev_lock);
4240 4241
}

4242
static void ironlake_disable_drps(struct drm_device *dev)
4243 4244
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4245 4246 4247 4248 4249
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4250 4251 4252 4253 4254 4255 4256 4257 4258

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4259
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4260
	mdelay(1);
4261 4262
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4263
	mdelay(1);
4264

4265
	spin_unlock_irq(&mchdev_lock);
4266 4267
}

4268 4269 4270 4271 4272
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4273
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4274
{
4275
	u32 limits;
4276

4277 4278 4279 4280 4281 4282
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4283 4284 4285 4286 4287 4288 4289 4290 4291
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4292 4293 4294 4295

	return limits;
}

4296 4297 4298
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4299 4300
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4301 4302 4303 4304

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4305
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4306 4307 4308 4309
			new_power = BETWEEN;
		break;

	case BETWEEN:
4310
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4311
			new_power = LOW_POWER;
4312
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4313 4314 4315 4316
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4317
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4318 4319 4320 4321
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4322
	if (val <= dev_priv->rps.min_freq_softlimit)
4323
		new_power = LOW_POWER;
4324
	if (val >= dev_priv->rps.max_freq_softlimit)
4325 4326 4327 4328 4329 4330 4331 4332
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4333 4334
		ei_up = 16000;
		threshold_up = 95;
4335 4336

		/* Downclock if less than 85% busy over 32ms */
4337 4338
		ei_down = 32000;
		threshold_down = 85;
4339 4340 4341 4342
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4343 4344
		ei_up = 13000;
		threshold_up = 90;
4345 4346

		/* Downclock if less than 75% busy over 32ms */
4347 4348
		ei_down = 32000;
		threshold_down = 75;
4349 4350 4351 4352
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4353 4354
		ei_up = 10000;
		threshold_up = 85;
4355 4356

		/* Downclock if less than 60% busy over 32ms */
4357 4358
		ei_down = 32000;
		threshold_down = 60;
4359 4360 4361
		break;
	}

4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4380
	dev_priv->rps.power = new_power;
4381 4382
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4383 4384 4385
	dev_priv->rps.last_adj = 0;
}

4386 4387 4388 4389 4390
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4391
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4392
	if (val < dev_priv->rps.max_freq_softlimit)
4393
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4394

4395 4396
	mask &= dev_priv->pm_rps_events;

4397
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4398 4399
}

4400 4401 4402
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4403
static void gen6_set_rps(struct drm_device *dev, u8 val)
4404 4405
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4406

4407
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4408
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4409 4410
		return;

4411
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4412 4413
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4414

C
Chris Wilson 已提交
4415 4416 4417 4418 4419
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4420

4421 4422 4423 4424
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4425 4426 4427 4428 4429 4430 4431
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4432
	}
4433 4434 4435 4436

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4437
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4438
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4439

4440 4441
	POSTING_READ(GEN6_RPNSWREQ);

4442
	dev_priv->rps.cur_freq = val;
4443
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4444 4445
}

4446 4447 4448 4449 4450
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4451 4452
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4453 4454 4455 4456 4457

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4458 4459
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4460
	if (val != dev_priv->rps.cur_freq) {
4461
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4462 4463 4464
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4465 4466 4467 4468 4469

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4470
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4471 4472
 *
 * * If Gfx is Idle, then
4473 4474 4475
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4476 4477 4478
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4479
	u32 val = dev_priv->rps.idle_freq;
4480

4481
	if (dev_priv->rps.cur_freq <= val)
4482 4483
		return;

4484 4485 4486 4487 4488
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4489 4490
}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4503 4504
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4505 4506
	struct drm_device *dev = dev_priv->dev;

4507
	mutex_lock(&dev_priv->rps.hw_lock);
4508
	if (dev_priv->rps.enabled) {
4509
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4510
			vlv_set_rps_idle(dev_priv);
4511
		else
4512
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4513
		dev_priv->rps.last_adj = 0;
4514
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4515
	}
4516
	mutex_unlock(&dev_priv->rps.hw_lock);
4517

4518
	spin_lock(&dev_priv->rps.client_lock);
4519 4520
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4521
	spin_unlock(&dev_priv->rps.client_lock);
4522 4523
}

4524
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4525 4526
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4527
{
4528 4529 4530 4531 4532 4533 4534
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4535

4536 4537 4538
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4539
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4540 4541
		rps = NULL;

4542 4543 4544 4545 4546 4547 4548 4549
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4550

4551 4552 4553
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4554 4555
		} else
			dev_priv->rps.boosts++;
4556
	}
4557
	spin_unlock(&dev_priv->rps.client_lock);
4558 4559
}

4560
void intel_set_rps(struct drm_device *dev, u8 val)
4561
{
4562
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4563 4564 4565
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4566 4567
}

Z
Zhe Wang 已提交
4568 4569 4570 4571 4572
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4573
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4574 4575
}

4576
static void gen6_disable_rps(struct drm_device *dev)
4577 4578 4579 4580
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4581 4582 4583
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4584 4585 4586 4587 4588 4589 4590
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4591 4592 4593 4594
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4595 4596
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4597
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4598

4599
	I915_WRITE(GEN6_RC_CONTROL, 0);
4600

4601
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4602 4603
}

B
Ben Widawsky 已提交
4604 4605
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4606
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4607 4608 4609 4610 4611
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4612 4613
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4614 4615 4616
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4617 4618 4619

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4620
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4621 4622
}

I
Imre Deak 已提交
4623
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4624
{
4625 4626
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4627 4628
		return 0;

4629
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4630 4631 4632
	if (enable_rc6 >= 0) {
		int mask;

4633
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4634 4635 4636 4637 4638 4639
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4640 4641
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4642 4643 4644

		return enable_rc6 & mask;
	}
4645

4646
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4647
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4648 4649

	return INTEL_RC6_ENABLE;
4650 4651
}

I
Imre Deak 已提交
4652 4653 4654 4655 4656
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4657
static void gen6_init_rps_frequencies(struct drm_device *dev)
4658
{
4659 4660 4661 4662 4663
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4664 4665
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4666
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4679 4680 4681
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4682
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4683 4684
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4685 4686 4687 4688 4689
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4690 4691 4692 4693
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4694 4695
	}

4696
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4697 4698 4699 4700 4701 4702 4703 4704 4705
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4706 4707
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4708 4709 4710 4711
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4712 4713 4714
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4715 4716
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4717 4718 4719 4720
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4721 4722
}

J
Jesse Barnes 已提交
4723
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4724
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4725 4726 4727 4728 4729
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4730 4731
	gen6_init_rps_frequencies(dev);

4732
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4733
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4734 4735 4736 4737
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4738 4739 4740 4741 4742 4743 4744 4745
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4746 4747
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4748 4749 4750 4751 4752
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4753 4754 4755 4756 4757

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4769
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4770 4771 4772 4773 4774

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4775 4776

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4777
	if (IS_SKYLAKE(dev))
4778 4779 4780
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4781 4782 4783 4784
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4785 4786 4787 4788

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4789 4790
	I915_WRITE(GEN6_RC_SLEEP, 0);

4791 4792 4793 4794
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4795 4796 4797
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4798
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4799
	/* WaRsUseTimeoutMode */
4800
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4801
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4802
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4803 4804 4805
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4806 4807
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4808 4809 4810
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4811
	}
Z
Zhe Wang 已提交
4812

4813 4814
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4815
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4816
	 */
4817
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4818 4819 4820 4821
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4822

4823
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4824 4825 4826

}

4827 4828 4829
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4830
	struct intel_engine_cs *ring;
4831
	uint32_t rc6_mask = 0;
4832 4833 4834 4835 4836 4837 4838
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4839
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840 4841 4842 4843

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4844 4845
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4846 4847 4848 4849 4850 4851 4852 4853

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4854 4855 4856 4857
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4858 4859 4860 4861

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4862
	intel_print_rc6_info(dev, rc6_mask);
4863 4864 4865 4866 4867 4868 4869 4870
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4871 4872

	/* 4 Program defaults and thresholds for RPS*/
4873 4874 4875 4876
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4891 4892

	/* 5: Enable RPS */
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4903
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4904
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4905

4906
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4907 4908
}

4909
static void gen6_enable_rps(struct drm_device *dev)
4910
{
4911
	struct drm_i915_private *dev_priv = dev->dev_private;
4912
	struct intel_engine_cs *ring;
4913
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4914 4915
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4916
	int i, ret;
4917

4918
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4919

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4934
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4935

4936 4937
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4938

4939 4940 4941 4942 4943 4944 4945 4946 4947
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4948 4949
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4950 4951 4952

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4953
	if (IS_IVYBRIDGE(dev))
4954 4955 4956
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4957
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4958 4959
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4960
	/* Check if we are enabling RC6 */
4961 4962 4963 4964
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4965 4966 4967 4968
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4969

4970 4971 4972
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4973

B
Ben Widawsky 已提交
4974
	intel_print_rc6_info(dev, rc6_mask);
4975 4976 4977 4978 4979 4980

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4981 4982
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4983 4984
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4985
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4986
	if (ret)
B
Ben Widawsky 已提交
4987
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4988 4989 4990 4991

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4992
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4993
				 (pcu_mbox & 0xff) * 50);
4994
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4995 4996
	}

4997
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4998
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4999

5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5014
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5015 5016
}

5017
static void __gen6_update_ring_freq(struct drm_device *dev)
5018
{
5019
	struct drm_i915_private *dev_priv = dev->dev_private;
5020
	int min_freq = 15;
5021 5022
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5023
	unsigned int max_gpu_freq, min_gpu_freq;
5024
	int scaling_factor = 180;
5025
	struct cpufreq_policy *policy;
5026

5027
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5028

5029 5030 5031 5032 5033 5034 5035 5036 5037
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5038
		max_ia_freq = tsc_khz;
5039
	}
5040 5041 5042 5043

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5044
	min_ring_freq = I915_READ(DCLK) & 0xf;
5045 5046
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5047

5048
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5049 5050 5051 5052 5053 5054 5055 5056
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5057 5058 5059 5060 5061
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5062 5063
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5064 5065
		unsigned int ia_freq = 0, ring_freq = 0;

5066
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5067 5068 5069 5070 5071 5072
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5073 5074 5075
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5076
			ring_freq = mult_frac(gpu_freq, 5, 4);
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5093

B
Ben Widawsky 已提交
5094 5095
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5096 5097 5098
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5099 5100 5101
	}
}

5102 5103 5104 5105
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5106
	if (!HAS_CORE_RING_FREQ(dev))
5107 5108 5109 5110 5111 5112 5113
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5114
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5115
{
5116
	struct drm_device *dev = dev_priv->dev;
5117 5118
	u32 val, rp0;

5119
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5120

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5136
	}
5137 5138 5139

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5153 5154 5155 5156
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5157 5158 5159
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5160 5161 5162
	return rp1;
}

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5174
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5175 5176 5177
{
	u32 val, rp0;

5178
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5191
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5192
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5193
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5194 5195 5196 5197 5198
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5199
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5200
{
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5212 5213
}

5214 5215 5216 5217 5218 5219 5220 5221 5222
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5244
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5245 5246 5247 5248 5249 5250
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5251 5252

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5253 5254
}

5255 5256 5257 5258 5259 5260 5261 5262
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5263 5264
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5265 5266 5267 5268 5269 5270 5271 5272
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5273
								      I915_GTT_OFFSET_NONE,
5274 5275 5276 5277
								      pctx_size);
		goto out;
	}

5278 5279
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5298
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5299 5300 5301
	dev_priv->vlv_pctx = pctx;
}

5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5313 5314 5315
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5316
	u32 val;
5317 5318 5319 5320 5321

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5335
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5336

5337 5338 5339
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5340
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5341 5342 5343 5344
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5345
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5346 5347
			 dev_priv->rps.efficient_freq);

5348 5349
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5350
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5351 5352
			 dev_priv->rps.rp1_freq);

5353 5354
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5355
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5356 5357
			 dev_priv->rps.min_freq);

5358 5359
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5370 5371
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5372
	struct drm_i915_private *dev_priv = dev->dev_private;
5373
	u32 val;
5374

5375
	cherryview_setup_pctx(dev);
5376 5377 5378

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5379
	mutex_lock(&dev_priv->sb_lock);
5380
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5381
	mutex_unlock(&dev_priv->sb_lock);
5382

5383 5384 5385 5386
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5387
	default:
5388 5389 5390
		dev_priv->mem_freq = 1600;
		break;
	}
5391
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5392

5393 5394 5395
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5396
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5397 5398 5399 5400
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5401
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5402 5403
			 dev_priv->rps.efficient_freq);

5404 5405
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5406
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5407 5408
			 dev_priv->rps.rp1_freq);

5409 5410
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5411
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5412
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5413 5414
			 dev_priv->rps.min_freq);

5415 5416 5417 5418 5419 5420
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5421 5422
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5423 5424 5425 5426 5427 5428 5429 5430
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5431 5432
}

5433 5434 5435 5436 5437
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5438 5439 5440 5441
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5442
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5458
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5459

5460 5461 5462
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5463 5464 5465 5466 5467 5468 5469 5470 5471
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5472 5473
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5487
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5488 5489 5490

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5491
	/* 4 Program defaults and thresholds for RPS*/
5492
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5503
		   GEN6_RP_MEDIA_IS_GFX |
5504 5505 5506 5507
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5508 5509 5510 5511 5512 5513
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5514 5515
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5516 5517 5518
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5519
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5520 5521 5522 5523
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5524
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5525 5526 5527
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5528
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5529 5530 5531 5532
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5533
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5534 5535
}

5536 5537 5538
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5539
	struct intel_engine_cs *ring;
5540
	u32 gtfifodbg, val, rc6_mode = 0;
5541 5542 5543 5544
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5545 5546
	valleyview_check_pctx(dev_priv);

5547
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5548 5549
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5550 5551 5552
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5553
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5554
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5555

5556 5557 5558
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5559
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5582
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5583 5584

	/* allows RC6 residency counter to work */
5585
	I915_WRITE(VLV_COUNTER_CONTROL,
5586 5587
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5588 5589
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5590

5591
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5592
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5593 5594 5595

	intel_print_rc6_info(dev, rc6_mode);

5596
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5597

D
Deepak S 已提交
5598 5599 5600 5601 5602 5603
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5604
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5605

5606 5607 5608
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5609
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5610 5611
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5612
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5613
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5614
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5615
			 dev_priv->rps.cur_freq);
5616

5617
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5618
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5619
			 dev_priv->rps.efficient_freq);
5620

5621
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5622

5623
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5624 5625
}

5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5655
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5656 5657 5658 5659 5660 5661
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5662 5663
	assert_spin_locked(&mchdev_lock);

5664
	diff1 = now - dev_priv->ips.last_time1;
5665 5666 5667 5668 5669 5670 5671

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5672
		return dev_priv->ips.chipset_power;
5673 5674 5675 5676 5677 5678 5679 5680

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5681 5682
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5683 5684
		diff += total_count;
	} else {
5685
		diff = total_count - dev_priv->ips.last_count1;
5686 5687 5688
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5689 5690
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5701 5702
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5703

5704
	dev_priv->ips.chipset_power = ret;
5705 5706 5707 5708

	return ret;
}

5709 5710
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5711
	struct drm_device *dev = dev_priv->dev;
5712 5713
	unsigned long val;

5714
	if (INTEL_INFO(dev)->gen != 5)
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5753
{
5754
	struct drm_device *dev = dev_priv->dev;
5755 5756 5757
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5758
	if (INTEL_INFO(dev)->is_mobile)
5759 5760 5761
		return vm > 0 ? vm : 0;

	return vd;
5762 5763
}

5764
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5765
{
5766
	u64 now, diff, diffms;
5767 5768
	u32 count;

5769
	assert_spin_locked(&mchdev_lock);
5770

5771 5772 5773
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5774 5775 5776 5777 5778 5779 5780

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5781 5782
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5783 5784
		diff += count;
	} else {
5785
		diff = count - dev_priv->ips.last_count2;
5786 5787
	}

5788 5789
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5790 5791 5792 5793

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5794
	dev_priv->ips.gfx_power = diff;
5795 5796
}

5797 5798
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5799 5800 5801
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5802 5803
		return;

5804
	spin_lock_irq(&mchdev_lock);
5805 5806 5807

	__i915_update_gfx_val(dev_priv);

5808
	spin_unlock_irq(&mchdev_lock);
5809 5810
}

5811
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5812 5813 5814 5815
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5816 5817
	assert_spin_locked(&mchdev_lock);

5818
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5838
	corr2 = (corr * dev_priv->ips.corr);
5839 5840 5841 5842

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5843
	__i915_update_gfx_val(dev_priv);
5844

5845
	return dev_priv->ips.gfx_power + state2;
5846 5847
}

5848 5849
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5850
	struct drm_device *dev = dev_priv->dev;
5851 5852
	unsigned long val;

5853
	if (INTEL_INFO(dev)->gen != 5)
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5876
	spin_lock_irq(&mchdev_lock);
5877 5878 5879 5880
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5881 5882
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5883 5884 5885 5886

	ret = chipset_val + graphics_val;

out_unlock:
5887
	spin_unlock_irq(&mchdev_lock);
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5903
	spin_lock_irq(&mchdev_lock);
5904 5905 5906 5907 5908 5909
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5910 5911
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5912 5913

out_unlock:
5914
	spin_unlock_irq(&mchdev_lock);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5931
	spin_lock_irq(&mchdev_lock);
5932 5933 5934 5935 5936 5937
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5938 5939
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5940 5941

out_unlock:
5942
	spin_unlock_irq(&mchdev_lock);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5956
	struct intel_engine_cs *ring;
5957
	bool ret = false;
5958
	int i;
5959

5960
	spin_lock_irq(&mchdev_lock);
5961 5962 5963 5964
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5965 5966
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5967 5968

out_unlock:
5969
	spin_unlock_irq(&mchdev_lock);
5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5986
	spin_lock_irq(&mchdev_lock);
5987 5988 5989 5990 5991 5992
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5993
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5994

5995
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5996 5997 5998
		ret = false;

out_unlock:
5999
	spin_unlock_irq(&mchdev_lock);
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6027 6028
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6029
	spin_lock_irq(&mchdev_lock);
6030
	i915_mch_dev = dev_priv;
6031
	spin_unlock_irq(&mchdev_lock);
6032 6033 6034 6035 6036 6037

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6038
	spin_lock_irq(&mchdev_lock);
6039
	i915_mch_dev = NULL;
6040
	spin_unlock_irq(&mchdev_lock);
6041
}
6042

6043
static void intel_init_emon(struct drm_device *dev)
6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6061
		I915_WRITE(PEW(i), 0);
6062
	for (i = 0; i < 3; i++)
6063
		I915_WRITE(DEW(i), 0);
6064 6065 6066

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6067
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6088
		I915_WRITE(PXW(i), val);
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6104
		I915_WRITE(PXWL(i), 0);
6105 6106 6107 6108 6109 6110

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6111
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6112 6113
}

6114 6115
void intel_init_gt_powersave(struct drm_device *dev)
{
6116 6117
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6118
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6119 6120 6121 6122 6123 6124 6125 6126
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6127

6128 6129 6130
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6131
		valleyview_init_gt_powersave(dev);
6132 6133 6134 6135
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6136 6137
	struct drm_i915_private *dev_priv = dev->dev_private;

6138 6139 6140
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6141
		valleyview_cleanup_gt_powersave(dev);
6142 6143 6144

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6145 6146
}

6147 6148 6149 6150 6151 6152
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6153
	gen6_disable_rps_interrupts(dev);
6154 6155
}

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6168 6169 6170
	if (INTEL_INFO(dev)->gen < 6)
		return;

6171
	gen6_suspend_rps(dev);
6172 6173 6174

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6175 6176
}

6177 6178
void intel_disable_gt_powersave(struct drm_device *dev)
{
6179 6180
	struct drm_i915_private *dev_priv = dev->dev_private;

6181
	if (IS_IRONLAKE_M(dev)) {
6182
		ironlake_disable_drps(dev);
6183
	} else if (INTEL_INFO(dev)->gen >= 6) {
6184
		intel_suspend_gt_powersave(dev);
6185

6186
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6187 6188 6189
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6190 6191
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6192 6193 6194
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6195

6196
		dev_priv->rps.enabled = false;
6197
		mutex_unlock(&dev_priv->rps.hw_lock);
6198
	}
6199 6200
}

6201 6202 6203 6204 6205 6206 6207
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6208
	mutex_lock(&dev_priv->rps.hw_lock);
6209

6210
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6211

6212 6213 6214
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6215
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6216
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6217
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6218
		gen9_enable_rps(dev);
6219
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6220
			__gen6_update_ring_freq(dev);
6221 6222
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6223
		__gen6_update_ring_freq(dev);
6224 6225
	} else {
		gen6_enable_rps(dev);
6226
		__gen6_update_ring_freq(dev);
6227
	}
6228 6229 6230 6231 6232 6233 6234

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6235
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6236

6237
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6238

6239
	mutex_unlock(&dev_priv->rps.hw_lock);
6240 6241

	intel_runtime_pm_put(dev_priv);
6242 6243
}

6244 6245
void intel_enable_gt_powersave(struct drm_device *dev)
{
6246 6247
	struct drm_i915_private *dev_priv = dev->dev_private;

6248 6249 6250 6251
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6252
	if (IS_IRONLAKE_M(dev)) {
6253
		mutex_lock(&dev->struct_mutex);
6254 6255
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6256
		mutex_unlock(&dev->struct_mutex);
6257
	} else if (INTEL_INFO(dev)->gen >= 6) {
6258 6259 6260 6261
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6262 6263 6264 6265 6266 6267 6268
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6269
		 */
6270 6271 6272
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6273 6274 6275
	}
}

6276 6277 6278 6279
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6280 6281 6282 6283
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6284 6285 6286
	dev_priv->rps.enabled = false;
}

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6299 6300 6301
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6302
	enum pipe pipe;
6303

6304
	for_each_pipe(dev_priv, pipe) {
6305 6306 6307
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6308 6309 6310

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6311 6312 6313
	}
}

6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6328
static void ironlake_init_clock_gating(struct drm_device *dev)
6329 6330
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6331
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6332

6333 6334 6335 6336
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6337 6338 6339
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6357
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6358 6359 6360
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6361 6362

	ilk_init_lp_watermarks(dev);
6363 6364 6365 6366 6367 6368 6369 6370 6371

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6372
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6373 6374 6375 6376 6377 6378 6379 6380
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6381 6382
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6383 6384 6385 6386 6387 6388
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6389

6390
	/* WaDisableRenderCachePipelinedFlush:ilk */
6391 6392
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6393

6394 6395 6396
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6397
	g4x_disable_trickle_feed(dev);
6398

6399 6400 6401 6402 6403 6404 6405
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6406
	uint32_t val;
6407 6408 6409 6410 6411 6412

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6413 6414 6415
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6416 6417
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6418 6419 6420
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6421
	for_each_pipe(dev_priv, pipe) {
6422 6423 6424
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6425
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6426
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6427 6428 6429
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6430 6431
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6432
	/* WADP0ClockGatingDisable */
6433
	for_each_pipe(dev_priv, pipe) {
6434 6435 6436
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6437 6438
}

6439 6440 6441 6442 6443 6444
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6445 6446 6447
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6448 6449
}

6450
static void gen6_init_clock_gating(struct drm_device *dev)
6451 6452
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6453
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6454

6455
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6456 6457 6458 6459 6460

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6461
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6462 6463 6464
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6465 6466 6467
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6468 6469 6470
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6471 6472 6473 6474
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6475 6476
	 */
	I915_WRITE(GEN6_GT_MODE,
6477
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6478

6479
	ilk_init_lp_watermarks(dev);
6480 6481

	I915_WRITE(CACHE_MODE_0,
6482
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6498
	 *
6499 6500
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6501 6502 6503 6504 6505
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6506
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6507 6508
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6509

6510 6511 6512 6513 6514 6515 6516 6517
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6518 6519 6520 6521 6522 6523 6524 6525
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6526 6527
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6528 6529 6530 6531 6532 6533 6534
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6535 6536 6537 6538
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6539

6540
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6541

6542
	cpt_init_clock_gating(dev);
6543 6544

	gen6_check_mch_setup(dev);
6545 6546 6547 6548 6549 6550
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6551
	/*
6552
	 * WaVSThreadDispatchOverride:ivb,vlv
6553 6554 6555 6556
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6557 6558 6559 6560 6561 6562 6563 6564
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6565 6566 6567 6568 6569 6570 6571 6572
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6573
	if (HAS_PCH_LPT_LP(dev))
6574 6575 6576
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6577 6578

	/* WADPOClockGatingDisable:hsw */
6579 6580
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6581
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6582 6583
}

6584 6585 6586 6587
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6588
	if (HAS_PCH_LPT_LP(dev)) {
6589 6590 6591 6592 6593 6594 6595
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6596
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6597 6598
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6599
	enum pipe pipe;
6600
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6601

6602
	ilk_init_lp_watermarks(dev);
6603

6604
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6605
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6606

6607
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6608 6609 6610
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6611
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6612
	for_each_pipe(dev_priv, pipe) {
6613
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6614
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6615
			   BDW_DPRS_MASK_VBLANK_SRD);
6616
	}
6617

6618 6619 6620 6621 6622
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6623

6624 6625
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6626 6627 6628 6629

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6630

6631 6632 6633 6634 6635 6636 6637 6638 6639
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6640 6641 6642 6643 6644 6645 6646
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6647
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6648 6649
}

6650 6651 6652 6653
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6654
	ilk_init_lp_watermarks(dev);
6655

6656 6657 6658 6659 6660
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6661
	/* This is required by WaCatErrorRejectionIssue:hsw */
6662 6663 6664 6665
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6666 6667 6668
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6669

6670 6671 6672
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6673 6674 6675 6676
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6677
	/* WaDisable4x2SubspanOptimization:hsw */
6678 6679
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6680

6681 6682 6683
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6684 6685 6686 6687
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6688 6689
	 */
	I915_WRITE(GEN7_GT_MODE,
6690
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6691

6692 6693 6694 6695
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6696
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6697 6698
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6699 6700 6701
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6702

6703
	lpt_init_clock_gating(dev);
6704 6705
}

6706
static void ivybridge_init_clock_gating(struct drm_device *dev)
6707 6708
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6709
	uint32_t snpcr;
6710

6711
	ilk_init_lp_watermarks(dev);
6712

6713
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6714

6715
	/* WaDisableEarlyCull:ivb */
6716 6717 6718
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6719
	/* WaDisableBackToBackFlipFix:ivb */
6720 6721 6722 6723
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6724
	/* WaDisablePSDDualDispatchEnable:ivb */
6725 6726 6727 6728
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6729 6730 6731
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6732
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6733 6734 6735
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6736
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6737 6738 6739
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6740 6741 6742 6743
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6744 6745 6746 6747
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6748 6749
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6750
	}
6751

6752
	/* WaForceL3Serialization:ivb */
6753 6754 6755
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6756
	/*
6757
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6758
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6759 6760
	 */
	I915_WRITE(GEN6_UCGCTL2,
6761
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6762

6763
	/* This is required by WaCatErrorRejectionIssue:ivb */
6764 6765 6766 6767
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6768
	g4x_disable_trickle_feed(dev);
6769 6770

	gen7_setup_fixed_func_scheduler(dev_priv);
6771

6772 6773 6774 6775 6776
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6777

6778
	/* WaDisable4x2SubspanOptimization:ivb */
6779 6780
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6781

6782 6783 6784
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6785 6786 6787 6788
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6789 6790
	 */
	I915_WRITE(GEN7_GT_MODE,
6791
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6792

6793 6794 6795 6796
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6797

6798 6799
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6800 6801

	gen6_check_mch_setup(dev);
6802 6803
}

6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6815
static void valleyview_init_clock_gating(struct drm_device *dev)
6816 6817 6818
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6819
	vlv_init_display_clock_gating(dev_priv);
6820

6821
	/* WaDisableEarlyCull:vlv */
6822 6823 6824
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6825
	/* WaDisableBackToBackFlipFix:vlv */
6826 6827 6828 6829
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6830
	/* WaPsdDispatchEnable:vlv */
6831
	/* WaDisablePSDDualDispatchEnable:vlv */
6832
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6833 6834
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6835

6836 6837 6838
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6839
	/* WaForceL3Serialization:vlv */
6840 6841 6842
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6843
	/* WaDisableDopClockGating:vlv */
6844 6845 6846
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6847
	/* This is required by WaCatErrorRejectionIssue:vlv */
6848 6849 6850 6851
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6852 6853
	gen7_setup_fixed_func_scheduler(dev_priv);

6854
	/*
6855
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6856
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6857 6858
	 */
	I915_WRITE(GEN6_UCGCTL2,
6859
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6860

6861 6862 6863 6864 6865
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6866

6867 6868 6869 6870
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6871 6872
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6873

6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6885 6886 6887 6888 6889 6890
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6891
	/*
6892
	 * WaDisableVLVClockGating_VBIIssue:vlv
6893 6894 6895
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6896
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6897 6898
}

6899 6900 6901 6902
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6903
	vlv_init_display_clock_gating(dev_priv);
6904

6905 6906 6907 6908 6909
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6910 6911 6912 6913

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6914 6915 6916 6917

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6918 6919 6920 6921

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6922 6923 6924 6925 6926 6927

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6928 6929
}

6930
static void g4x_init_clock_gating(struct drm_device *dev)
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6946 6947 6948 6949

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6950

6951 6952 6953
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6954
	g4x_disable_trickle_feed(dev);
6955 6956
}

6957
static void crestline_init_clock_gating(struct drm_device *dev)
6958 6959 6960 6961 6962 6963 6964 6965
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6966 6967
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6968 6969 6970

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6971 6972
}

6973
static void broadwater_init_clock_gating(struct drm_device *dev)
6974 6975 6976 6977 6978 6979 6980 6981 6982
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6983 6984
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6985 6986 6987

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6988 6989
}

6990
static void gen3_init_clock_gating(struct drm_device *dev)
6991 6992 6993 6994 6995 6996 6997
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6998 6999 7000

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7001 7002 7003

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7004 7005

	/* interrupts should cause a wake up from C3 */
7006
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7007 7008 7009

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7010 7011 7012

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7013 7014
}

7015
static void i85x_init_clock_gating(struct drm_device *dev)
7016 7017 7018 7019
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7020 7021 7022 7023

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7024 7025 7026

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7027 7028
}

7029
static void i830_init_clock_gating(struct drm_device *dev)
7030 7031 7032 7033
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7034 7035 7036 7037

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7038 7039 7040 7041 7042 7043
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7044 7045
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7046 7047
}

7048 7049 7050 7051 7052 7053
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7054 7055 7056 7057 7058
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7059
	intel_fbc_init(dev_priv);
7060

7061 7062 7063 7064 7065 7066
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7067
	/* For FIFO watermark updates */
7068
	if (INTEL_INFO(dev)->gen >= 9) {
7069 7070
		skl_setup_wm_latency(dev);

7071 7072 7073
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
7074
		dev_priv->display.update_wm = skl_update_wm;
7075
	} else if (HAS_PCH_SPLIT(dev)) {
7076
		ilk_setup_wm_latency(dev);
7077

7078 7079 7080 7081
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7082
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7083 7084 7085 7086 7087 7088
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7089 7090 7091 7092 7093 7094
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7095
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7096
		else if (IS_GEN6(dev))
7097
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7098
		else if (IS_IVYBRIDGE(dev))
7099
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7100
		else if (IS_HASWELL(dev))
7101
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7102
		else if (INTEL_INFO(dev)->gen == 8)
7103
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7104
	} else if (IS_CHERRYVIEW(dev)) {
7105 7106 7107
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7108 7109
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7110
	} else if (IS_VALLEYVIEW(dev)) {
7111 7112 7113
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7127
			intel_set_memory_cxsr(dev_priv, false);
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7145 7146 7147
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7148
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7149 7150
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7151
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7152 7153 7154 7155 7156 7157 7158 7159
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7160 7161 7162
	}
}

7163
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7164
{
7165
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7166 7167 7168 7169 7170 7171 7172

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7173
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7188
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7189
{
7190
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7210

7211
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7212
{
7213 7214 7215 7216 7217 7218 7219 7220
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7221 7222
	case 400:
		return 20;
7223 7224 7225
	default:
		return -1;
	}
7226
}
7227

7228 7229
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7230
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7231 7232 7233 7234 7235 7236

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7237 7238
}

7239
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7240
{
7241
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7242

7243 7244 7245
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7246

7247
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7248 7249
}

7250
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7251
{
7252
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7253

7254 7255 7256
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7257

7258
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7259 7260
}

7261
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7262
{
7263
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7264

7265 7266 7267
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7268

7269
	/* CHV needs even values */
7270
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7271 7272
}

7273
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7274
{
7275
	if (IS_GEN9(dev_priv->dev))
7276 7277
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7278
	else if (IS_CHERRYVIEW(dev_priv->dev))
7279
		return chv_gpu_freq(dev_priv, val);
7280
	else if (IS_VALLEYVIEW(dev_priv->dev))
7281 7282 7283
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7284 7285
}

7286 7287
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7288
	if (IS_GEN9(dev_priv->dev))
7289 7290
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7291
	else if (IS_CHERRYVIEW(dev_priv->dev))
7292
		return chv_freq_opcode(dev_priv, val);
7293
	else if (IS_VALLEYVIEW(dev_priv->dev))
7294 7295
		return byt_freq_opcode(dev_priv, val);
	else
7296
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7297
}
7298

7299 7300
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7301
	struct drm_i915_gem_request *req;
7302 7303 7304 7305 7306
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7307
	struct drm_i915_gem_request *req = boost->req;
7308

7309 7310 7311
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7312

7313
	i915_gem_request_unreference__unlocked(req);
7314 7315 7316 7317
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7318
				       struct drm_i915_gem_request *req)
7319 7320 7321
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7322
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7323 7324
		return;

7325 7326 7327
	if (i915_gem_request_completed(req, true))
		return;

7328 7329 7330 7331
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7332 7333
	i915_gem_request_reference(req);
	boost->req = req;
7334 7335 7336 7337 7338

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7339
void intel_pm_setup(struct drm_device *dev)
7340 7341 7342
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7343
	mutex_init(&dev_priv->rps.hw_lock);
7344
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7345

7346 7347
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7348
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7349 7350
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7351

7352
	dev_priv->pm.suspended = false;
7353
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7354
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7355
}