intel_pm.c 225.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_device *dev)
60
{
61 62
	struct drm_i915_private *dev_priv = dev->dev_private;

63
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
64 65 66
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

67 68
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
69 70 71 72

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
73 74

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
75 76 77 78
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
79 80 81 82

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
83 84 85 86
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
87
	struct drm_i915_private *dev_priv = to_i915(dev);
88 89 90

	gen9_init_clock_gating(dev);

91 92 93 94
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

95 96
	/*
	 * FIXME:
97
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
98 99
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
100
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
101 102 103 104 105 106 107 108

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
109 110
}

111 112
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
113
	struct drm_i915_private *dev_priv = to_i915(dev);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
152
	struct drm_i915_private *dev_priv = to_i915(dev);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

178
	dev_priv->ips.r_t = dev_priv->mem_freq;
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
210
		dev_priv->ips.c_m = 0;
211
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
212
		dev_priv->ips.c_m = 1;
213
	} else {
214
		dev_priv->ips.c_m = 2;
215 216 217
	}
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

256 257
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

321
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
322
{
323
	struct drm_device *dev = &dev_priv->drm;
324
	u32 val;
325

326
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
327
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
328
		POSTING_READ(FW_BLC_SELF_VLV);
329
		dev_priv->wm.vlv.cxsr = enable;
330
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
331
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
332
		POSTING_READ(FW_BLC_SELF);
333 334 335 336
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
337
		POSTING_READ(DSPFW3);
338
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349 350 351
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
352
		POSTING_READ(INSTPM);
353 354 355
	} else {
		return;
	}
356

357 358
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
359 360
}

361

362 363 364 365 366 367 368 369 370 371 372 373 374 375
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
376
static const int pessimal_latency_ns = 5000;
377

378 379 380 381 382 383
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
384
	struct drm_i915_private *dev_priv = to_i915(dev);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

433
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
434
{
435
	struct drm_i915_private *dev_priv = to_i915(dev);
436 437 438 439 440 441 442 443 444 445 446 447 448
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

449
static int i830_get_fifo_size(struct drm_device *dev, int plane)
450
{
451
	struct drm_i915_private *dev_priv = to_i915(dev);
452 453 454 455 456 457 458 459 460 461 462 463 464 465
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

466
static int i845_get_fifo_size(struct drm_device *dev, int plane)
467
{
468
	struct drm_i915_private *dev_priv = to_i915(dev);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
484 485 486 487 488
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
491 492 493 494 495
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params pineview_cursor_wm = {
498 499 500 501 502
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
505 506 507 508 509
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params g4x_wm_info = {
512 513 514 515 516
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
519 520 521 522 523
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
524 525
};
static const struct intel_watermark_params i965_cursor_wm_info = {
526 527 528 529 530
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
531 532
};
static const struct intel_watermark_params i945_wm_info = {
533 534 535 536 537
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
538 539
};
static const struct intel_watermark_params i915_wm_info = {
540 541 542 543 544
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
545
};
546
static const struct intel_watermark_params i830_a_wm_info = {
547 548 549 550 551
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
552
};
553 554 555 556 557 558 559
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
560
static const struct intel_watermark_params i845_wm_info = {
561 562 563 564 565
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
566 567 568 569 570 571
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
572
 * @cpp: bytes per pixel
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
588
					int fifo_size, int cpp,
589 590 591 592 593 594 595 596 597 598
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
599
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
600 601 602 603 604 605 606 607 608 609 610 611 612 613
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
614 615 616 617 618 619 620 621 622 623 624

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

625 626 627 628 629 630 631
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

632
	for_each_crtc(dev, crtc) {
633
		if (intel_crtc_active(crtc)) {
634 635 636 637 638 639 640 641 642
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

643
static void pineview_update_wm(struct drm_crtc *unused_crtc)
644
{
645
	struct drm_device *dev = unused_crtc->dev;
646
	struct drm_i915_private *dev_priv = to_i915(dev);
647 648 649 650 651
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

652 653 654 655
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
656 657
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
658
		intel_set_memory_cxsr(dev_priv, false);
659 660 661 662 663
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
664
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
665
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
666
		int clock = adjusted_mode->crtc_clock;
667 668 669 670

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
671
					cpp, latency->display_sr);
672 673
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
674
		reg |= FW_WM(wm, SR);
675 676 677 678 679 680
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
681
					cpp, latency->cursor_sr);
682 683
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
684
		reg |= FW_WM(wm, CURSOR_SR);
685 686 687 688 689
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
690
					cpp, latency->display_hpll_disable);
691 692
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
693
		reg |= FW_WM(wm, HPLL_SR);
694 695 696 697 698
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
699
					cpp, latency->cursor_hpll_disable);
700 701
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
702
		reg |= FW_WM(wm, HPLL_CURSOR);
703 704 705
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

706
		intel_set_memory_cxsr(dev_priv, true);
707
	} else {
708
		intel_set_memory_cxsr(dev_priv, false);
709 710 711 712 713 714 715 716 717 718 719 720 721
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
722
	const struct drm_display_mode *adjusted_mode;
723
	int htotal, hdisplay, clock, cpp;
724 725 726 727
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
728
	if (!intel_crtc_active(crtc)) {
729 730 731 732 733
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

734
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
735
	clock = adjusted_mode->crtc_clock;
736
	htotal = adjusted_mode->crtc_htotal;
737
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
738
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
739 740

	/* Use the small buffer method to calculate plane watermark */
741
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
742 743 744 745 746 747 748 749 750
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
751
	line_time_us = max(htotal * 1000 / clock, 1);
752
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
753
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
781
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
782 783 784 785 786
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
787
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
808
	const struct drm_display_mode *adjusted_mode;
809
	int hdisplay, htotal, cpp, clock;
810 811 812 813 814 815 816 817 818 819 820
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
821
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
822
	clock = adjusted_mode->crtc_clock;
823
	htotal = adjusted_mode->crtc_htotal;
824
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
825
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
826

827
	line_time_us = max(htotal * 1000 / clock, 1);
828
	line_count = (latency_ns / line_time_us + 1000) / 1000;
829
	line_size = hdisplay * cpp;
830 831

	/* Use the minimum of the small and large buffer method for primary */
832
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
833 834 835 836 837 838
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
839
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
840 841 842 843 844 845 846 847
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

848 849 850
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

851 852 853 854 855 856 857 858 859 860 861 862
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

863
	I915_WRITE(DSPFW1,
864 865 866 867
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
868
	I915_WRITE(DSPFW2,
869 870 871
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
872
	I915_WRITE(DSPFW3,
873
		   FW_WM(wm->sr.cursor, CURSOR_SR));
874 875 876

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
879
		I915_WRITE(DSPFW8_CHV,
880 881
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
882
		I915_WRITE(DSPFW9_CHV,
883 884
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
885
		I915_WRITE(DSPHOWM,
886 887 888 889 890 891 892 893 894 895
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
896 897
	} else {
		I915_WRITE(DSPFW7,
898 899
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
900
		I915_WRITE(DSPHOWM,
901 902 903 904 905 906 907
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
908 909
	}

910 911 912 913 914 915
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

916
	POSTING_READ(DSPFW1);
917 918
}

919 920
#undef FW_WM_VLV

921 922 923 924 925 926
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

927 928 929 930
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
931
				   unsigned int cpp,
932 933 934 935 936
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
937
	ret = (ret + 1) * horiz_pixels * cpp;
938 939 940 941 942 943 944
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
945
	struct drm_i915_private *dev_priv = to_i915(dev);
946 947 948 949

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

950 951
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

952 953 954
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
955 956

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
957 958 959 960 961 962 963 964 965
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
966
	int clock, htotal, cpp, width, wm;
967 968 969 970

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

971
	if (!state->base.visible)
972 973
		return 0;

974
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
990
		wm = vlv_wm_method2(clock, htotal, width, cpp,
991 992 993 994 995 996
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1013
		if (state->base.visible) {
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1029
		if (!state->base.visible) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1098
static void vlv_compute_wm(struct intel_crtc *crtc)
1099 1100 1101 1102 1103 1104 1105 1106 1107
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1108
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1109
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1110 1111 1112

	wm_state->num_active_planes = 0;

1113
	vlv_compute_fifo(crtc);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1129
		if (!state->base.visible)
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1170
					wm_state->wm[level].cursor;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1189
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1190 1191 1192 1193 1194 1195 1196
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1287 1288 1289 1290 1291 1292
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1293
	wm->level = to_i915(dev)->wm.max_level;
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1312 1313 1314
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
1336
	struct drm_i915_private *dev_priv = to_i915(dev);
1337 1338 1339 1340
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1341
	vlv_compute_wm(intel_crtc);
1342 1343
	vlv_merge_wm(dev, &wm);

1344 1345 1346
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1347
		return;
1348
	}
1349 1350 1351 1352 1353 1354 1355 1356 1357

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1358
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1359 1360
		intel_set_memory_cxsr(dev_priv, false);

1361 1362 1363
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1364 1365 1366 1367 1368 1369 1370 1371
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1372
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1384 1385
}

1386 1387
#define single_plane_enabled(mask) is_power_of_2(mask)

1388
static void g4x_update_wm(struct drm_crtc *crtc)
1389
{
1390
	struct drm_device *dev = crtc->dev;
1391
	static const int sr_latency_ns = 12000;
1392
	struct drm_i915_private *dev_priv = to_i915(dev);
1393 1394 1395
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1396
	bool cxsr_enabled;
1397

1398
	if (g4x_compute_wm0(dev, PIPE_A,
1399 1400
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1401
			    &planea_wm, &cursora_wm))
1402
		enabled |= 1 << PIPE_A;
1403

1404
	if (g4x_compute_wm0(dev, PIPE_B,
1405 1406
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1407
			    &planeb_wm, &cursorb_wm))
1408
		enabled |= 1 << PIPE_B;
1409 1410 1411 1412 1413 1414

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1415
			     &plane_sr, &cursor_sr)) {
1416
		cxsr_enabled = true;
1417
	} else {
1418
		cxsr_enabled = false;
1419
		intel_set_memory_cxsr(dev_priv, false);
1420 1421
		plane_sr = cursor_sr = 0;
	}
1422

1423 1424
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1425 1426 1427 1428 1429
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1430 1431 1432 1433
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1434
	I915_WRITE(DSPFW2,
1435
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1436
		   FW_WM(cursora_wm, CURSORA));
1437 1438
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1439
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1440
		   FW_WM(cursor_sr, CURSOR_SR));
1441 1442 1443

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1444 1445
}

1446
static void i965_update_wm(struct drm_crtc *unused_crtc)
1447
{
1448
	struct drm_device *dev = unused_crtc->dev;
1449
	struct drm_i915_private *dev_priv = to_i915(dev);
1450 1451 1452
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1453
	bool cxsr_enabled;
1454 1455 1456 1457 1458 1459

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1460
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1461
		int clock = adjusted_mode->crtc_clock;
1462
		int htotal = adjusted_mode->crtc_htotal;
1463
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1464
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1465 1466 1467
		unsigned long line_time_us;
		int entries;

1468
		line_time_us = max(htotal * 1000 / clock, 1);
1469 1470 1471

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1472
			cpp * hdisplay;
1473 1474 1475 1476 1477 1478 1479 1480 1481
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1482
			cpp * crtc->cursor->state->crtc_w;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1494
		cxsr_enabled = true;
1495
	} else {
1496
		cxsr_enabled = false;
1497
		/* Turn off self refresh if both pipes are enabled */
1498
		intel_set_memory_cxsr(dev_priv, false);
1499 1500 1501 1502 1503 1504
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1505 1506 1507 1508 1509 1510
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1511
	/* update cursor SR watermark */
1512
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1513 1514 1515

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1516 1517
}

1518 1519
#undef FW_WM

1520
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1521
{
1522
	struct drm_device *dev = unused_crtc->dev;
1523
	struct drm_i915_private *dev_priv = to_i915(dev);
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
1534
	else if (!IS_GEN2(dev_priv))
1535 1536
		wm_info = &i915_wm_info;
	else
1537
		wm_info = &i830_a_wm_info;
1538 1539 1540

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1541
	if (intel_crtc_active(crtc)) {
1542
		const struct drm_display_mode *adjusted_mode;
1543
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1544
		if (IS_GEN2(dev_priv))
1545 1546
			cpp = 4;

1547
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1548
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1549
					       wm_info, fifo_size, cpp,
1550
					       pessimal_latency_ns);
1551
		enabled = crtc;
1552
	} else {
1553
		planea_wm = fifo_size - wm_info->guard_size;
1554 1555 1556 1557
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1558
	if (IS_GEN2(dev_priv))
1559
		wm_info = &i830_bc_wm_info;
1560 1561 1562

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1563
	if (intel_crtc_active(crtc)) {
1564
		const struct drm_display_mode *adjusted_mode;
1565
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1566
		if (IS_GEN2(dev_priv))
1567 1568
			cpp = 4;

1569
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1570
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1571
					       wm_info, fifo_size, cpp,
1572
					       pessimal_latency_ns);
1573 1574 1575 1576
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1577
	} else {
1578
		planeb_wm = fifo_size - wm_info->guard_size;
1579 1580 1581
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1582 1583 1584

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1585
	if (IS_I915GM(dev_priv) && enabled) {
1586
		struct drm_i915_gem_object *obj;
1587

1588
		obj = intel_fb_obj(enabled->primary->state->fb);
1589 1590

		/* self-refresh seems busted with untiled */
1591
		if (!i915_gem_object_is_tiled(obj))
1592 1593 1594
			enabled = NULL;
	}

1595 1596 1597 1598 1599 1600
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1601
	intel_set_memory_cxsr(dev_priv, false);
1602 1603 1604 1605 1606

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1607
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1608
		int clock = adjusted_mode->crtc_clock;
1609
		int htotal = adjusted_mode->crtc_htotal;
1610
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1611
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1612 1613 1614
		unsigned long line_time_us;
		int entries;

1615
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1616 1617
			cpp = 4;

1618
		line_time_us = max(htotal * 1000 / clock, 1);
1619 1620 1621

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1622
			cpp * hdisplay;
1623 1624 1625 1626 1627 1628
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1629
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1630 1631
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1632
		else
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1649 1650
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1651 1652
}

1653
static void i845_update_wm(struct drm_crtc *unused_crtc)
1654
{
1655
	struct drm_device *dev = unused_crtc->dev;
1656
	struct drm_i915_private *dev_priv = to_i915(dev);
1657
	struct drm_crtc *crtc;
1658
	const struct drm_display_mode *adjusted_mode;
1659 1660 1661 1662 1663 1664 1665
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1666
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1667
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1668
				       &i845_wm_info,
1669
				       dev_priv->display.get_fifo_size(dev, 0),
1670
				       4, pessimal_latency_ns);
1671 1672 1673 1674 1675 1676 1677 1678
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1679
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1680
{
1681
	uint32_t pixel_rate;
1682

1683
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1684 1685 1686 1687

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1688
	if (pipe_config->pch_pfit.enabled) {
1689
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1690 1691 1692 1693
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1694 1695 1696 1697 1698 1699 1700 1701

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1702 1703 1704
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1705 1706 1707 1708 1709 1710 1711
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1712
/* latency must be in 0.1us units. */
1713
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1714 1715 1716
{
	uint64_t ret;

1717 1718 1719
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1720
	ret = (uint64_t) pixel_rate * cpp * latency;
1721 1722 1723 1724 1725
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1726
/* latency must be in 0.1us units. */
1727
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1728
			       uint32_t horiz_pixels, uint8_t cpp,
1729 1730 1731 1732
			       uint32_t latency)
{
	uint32_t ret;

1733 1734
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1735 1736
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1737

1738
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1739
	ret = (ret + 1) * horiz_pixels * cpp;
1740 1741 1742 1743
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1744
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1745
			   uint8_t cpp)
1746
{
1747 1748 1749 1750 1751 1752
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1753
	if (WARN_ON(!cpp))
1754 1755 1756 1757
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1758
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1759 1760
}

1761
struct ilk_wm_maximums {
1762 1763 1764 1765 1766 1767
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1768 1769 1770 1771
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1772
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1773
				   const struct intel_plane_state *pstate,
1774 1775
				   uint32_t mem_value,
				   bool is_lp)
1776
{
1777 1778
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1779 1780
	uint32_t method1, method2;

1781
	if (!cstate->base.active || !pstate->base.visible)
1782 1783
		return 0;

1784
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1785 1786 1787 1788

	if (!is_lp)
		return method1;

1789 1790
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1791
				 drm_rect_width(&pstate->base.dst),
1792
				 cpp, mem_value);
1793 1794

	return min(method1, method2);
1795 1796
}

1797 1798 1799 1800
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1801
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1802
				   const struct intel_plane_state *pstate,
1803 1804
				   uint32_t mem_value)
{
1805 1806
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1807 1808
	uint32_t method1, method2;

1809
	if (!cstate->base.active || !pstate->base.visible)
1810 1811
		return 0;

1812
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1813 1814
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1815
				 drm_rect_width(&pstate->base.dst),
1816
				 cpp, mem_value);
1817 1818 1819
	return min(method1, method2);
}

1820 1821 1822 1823
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1824
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1825
				   const struct intel_plane_state *pstate,
1826 1827
				   uint32_t mem_value)
{
1828 1829 1830 1831 1832 1833
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1834
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1835

1836
	if (!cstate->base.active)
1837 1838
		return 0;

1839 1840
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1841
			      width, cpp, mem_value);
1842 1843
}

1844
/* Only for WM_LP. */
1845
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1846
				   const struct intel_plane_state *pstate,
1847
				   uint32_t pri_val)
1848
{
1849 1850
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1851

1852
	if (!cstate->base.active || !pstate->base.visible)
1853 1854
		return 0;

1855
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1856 1857
}

1858 1859
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1860 1861 1862
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1863 1864 1865 1866 1867
		return 768;
	else
		return 512;
}

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1902 1903 1904
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1905
				     const struct intel_wm_config *config,
1906 1907 1908 1909 1910 1911
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1912
	if (is_sprite && !config->sprites_enabled)
1913 1914 1915
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1916
	if (level == 0 || config->num_pipes_active > 1) {
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1928
	if (config->sprites_enabled) {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1940
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1941 1942 1943 1944
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1945 1946
				      int level,
				      const struct intel_wm_config *config)
1947 1948
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1949
	if (level > 0 && config->num_pipes_active > 1)
1950 1951 1952
		return 64;

	/* otherwise just report max that registers can hold */
1953
	return ilk_cursor_wm_reg_max(dev, level);
1954 1955
}

1956
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1957 1958 1959
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1960
				    struct ilk_wm_maximums *max)
1961
{
1962 1963 1964
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1965
	max->fbc = ilk_fbc_wm_reg_max(dev);
1966 1967
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1978
static bool ilk_validate_wm_level(int level,
1979
				  const struct ilk_wm_maximums *max,
1980
				  struct intel_wm_level *result)
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2019
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2020
				 const struct intel_crtc *intel_crtc,
2021
				 int level,
2022
				 struct intel_crtc_state *cstate,
2023 2024 2025
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2026
				 struct intel_wm_level *result)
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2051 2052 2053
	result->enable = true;
}

2054
static uint32_t
2055
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2056
{
2057 2058
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2059 2060
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2061
	u32 linetime, ips_linetime;
2062

2063 2064 2065 2066
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2067
	if (WARN_ON(intel_state->cdclk == 0))
2068
		return 0;
2069

2070 2071 2072
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2073 2074 2075
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2076
					 intel_state->cdclk);
2077

2078 2079
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2080 2081
}

2082
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2083
{
2084
	struct drm_i915_private *dev_priv = to_i915(dev);
2085

2086
	if (IS_GEN9(dev_priv)) {
2087
		uint32_t val;
2088
		int ret, i;
2089
		int level, max_level = ilk_wm_max_level(dev_priv);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2145
		/*
2146 2147
		 * WaWmMemoryReadLatency:skl
		 *
2148
		 * punit doesn't take into account the read latency so we need
2149 2150
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2151
		 */
2152 2153 2154 2155 2156
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2157
				wm[level] += 2;
2158
			}
2159 2160
		}

2161
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2162 2163 2164 2165 2166
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2167 2168 2169 2170
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2171 2172 2173 2174 2175 2176 2177
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2178 2179 2180 2181 2182 2183 2184
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2185 2186 2187
	}
}

2188 2189
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2190 2191
{
	/* ILK sprite LP0 latency is 1300 ns */
2192
	if (IS_GEN5(dev_priv))
2193 2194 2195
		wm[0] = 13;
}

2196 2197
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2198 2199
{
	/* ILK cursor LP0 latency is 1300 ns */
2200
	if (IS_GEN5(dev_priv))
2201 2202 2203
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2204
	if (IS_IVYBRIDGE(dev_priv))
2205 2206 2207
		wm[3] *= 2;
}

2208
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2209 2210
{
	/* how many WM levels are we expecting */
2211
	if (INTEL_GEN(dev_priv) >= 9)
2212
		return 7;
2213
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2214
		return 4;
2215
	else if (INTEL_GEN(dev_priv) >= 6)
2216
		return 3;
2217
	else
2218 2219
		return 2;
}
2220

2221
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2222
				   const char *name,
2223
				   const uint16_t wm[8])
2224
{
2225
	int level, max_level = ilk_wm_max_level(dev_priv);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2236 2237 2238 2239
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2240
		if (IS_GEN9(dev_priv))
2241 2242
			latency *= 10;
		else if (level > 0)
2243 2244 2245 2246 2247 2248 2249 2250
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2251 2252 2253
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2254
	int level, max_level = ilk_wm_max_level(dev_priv);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
2268
	struct drm_i915_private *dev_priv = to_i915(dev);
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2283 2284 2285
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2286 2287
}

2288
static void ilk_setup_wm_latency(struct drm_device *dev)
2289
{
2290
	struct drm_i915_private *dev_priv = to_i915(dev);
2291 2292 2293 2294 2295 2296 2297 2298

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2299
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2300
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2301

2302 2303 2304
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2305

2306
	if (IS_GEN6(dev_priv))
2307
		snb_wm_latency_quirk(dev);
2308 2309
}

2310 2311
static void skl_setup_wm_latency(struct drm_device *dev)
{
2312
	struct drm_i915_private *dev_priv = to_i915(dev);
2313 2314

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2315
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2341
/* Compute new watermarks for the pipe */
2342
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2343
{
2344 2345
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2346
	struct intel_pipe_wm *pipe_wm;
2347
	struct drm_device *dev = state->dev;
2348
	const struct drm_i915_private *dev_priv = to_i915(dev);
2349
	struct intel_plane *intel_plane;
2350
	struct intel_plane_state *pristate = NULL;
2351
	struct intel_plane_state *sprstate = NULL;
2352
	struct intel_plane_state *curstate = NULL;
2353
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2354
	struct ilk_wm_maximums max;
2355

2356
	pipe_wm = &cstate->wm.ilk.optimal;
2357

2358
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2359 2360 2361 2362 2363 2364
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2365 2366

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2367
			pristate = ps;
2368
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2369
			sprstate = ps;
2370
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2371
			curstate = ps;
2372 2373
	}

2374
	pipe_wm->pipe_enabled = cstate->base.active;
2375
	if (sprstate) {
2376 2377 2378 2379
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2380 2381
	}

2382 2383
	usable_level = max_level;

2384
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2385
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2386
		usable_level = 1;
2387 2388

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2389
	if (pipe_wm->sprites_scaled)
2390
		usable_level = 0;
2391

2392
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2393 2394 2395 2396
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2397

2398
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2399
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2400

2401
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2402
		return -EINVAL;
2403 2404 2405 2406

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2407
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2408

2409
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2410
				     pristate, sprstate, curstate, wm);
2411 2412 2413 2414 2415 2416

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2417 2418 2419 2420 2421 2422
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2423
			usable_level = level;
2424 2425
	}

2426
	return 0;
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2438
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2439
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2440
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2441 2442 2443 2444 2445 2446

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2447
	*a = newstate->wm.ilk.optimal;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2476
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2477 2478 2479 2480 2481
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2491 2492
	ret_wm->enable = true;

2493
	for_each_intel_crtc(dev, intel_crtc) {
2494
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2495 2496 2497 2498
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2499

2500 2501 2502 2503 2504
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2505
		if (!wm->enable)
2506
			ret_wm->enable = false;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2519
			 const struct intel_wm_config *config,
2520
			 const struct ilk_wm_maximums *max,
2521 2522
			 struct intel_pipe_wm *merged)
{
2523
	struct drm_i915_private *dev_priv = to_i915(dev);
2524
	int level, max_level = ilk_wm_max_level(dev_priv);
2525
	int last_enabled_level = max_level;
2526

2527
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2528
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2529
	    config->num_pipes_active > 1)
2530
		last_enabled_level = 0;
2531

2532 2533
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2534 2535 2536 2537 2538 2539 2540

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2541 2542 2543 2544 2545
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2546 2547 2548 2549 2550 2551

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2552 2553
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2554 2555 2556
			wm->fbc_val = 0;
		}
	}
2557 2558 2559 2560 2561 2562 2563

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2564
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2565
	    intel_fbc_is_active(dev_priv)) {
2566 2567 2568 2569 2570 2571
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2572 2573
}

2574 2575 2576 2577 2578 2579
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2580 2581 2582
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2583
	struct drm_i915_private *dev_priv = to_i915(dev);
2584

2585
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2586 2587 2588 2589 2590
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2591
static void ilk_compute_wm_results(struct drm_device *dev,
2592
				   const struct intel_pipe_wm *merged,
2593
				   enum intel_ddb_partitioning partitioning,
2594
				   struct ilk_wm_values *results)
2595
{
2596 2597
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2598

2599
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2600
	results->partitioning = partitioning;
2601

2602
	/* LP1+ register values */
2603
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2604
		const struct intel_wm_level *r;
2605

2606
		level = ilk_wm_lp_to_level(wm_lp, merged);
2607

2608
		r = &merged->wm[level];
2609

2610 2611 2612 2613 2614
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2615
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2616 2617 2618
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2619 2620 2621
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2622 2623 2624 2625 2626 2627 2628
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2629 2630 2631 2632
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2633 2634 2635 2636 2637
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2638
	}
2639

2640
	/* LP0 register values */
2641
	for_each_intel_crtc(dev, intel_crtc) {
2642
		enum pipe pipe = intel_crtc->pipe;
2643 2644
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2645 2646 2647 2648

		if (WARN_ON(!r->enable))
			continue;

2649
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2650

2651 2652 2653 2654
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2655 2656 2657
	}
}

2658 2659
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2660
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2661 2662
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2663
{
2664
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2665
	int level1 = 0, level2 = 0;
2666

2667 2668 2669 2670 2671
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2672 2673
	}

2674 2675
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2676 2677 2678
			return r2;
		else
			return r1;
2679
	} else if (level1 > level2) {
2680 2681 2682 2683 2684 2685
		return r1;
	} else {
		return r2;
	}
}

2686 2687 2688 2689 2690 2691 2692 2693
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2694
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2695 2696
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2697 2698 2699 2700 2701
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2702
	for_each_pipe(dev_priv, pipe) {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2746 2747
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2748
{
2749
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750
	bool changed = false;
2751

2752 2753 2754
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2755
		changed = true;
2756 2757 2758 2759
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2760
		changed = true;
2761 2762 2763 2764
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2765
		changed = true;
2766
	}
2767

2768 2769 2770 2771
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2772

2773 2774 2775 2776 2777 2778 2779
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2780 2781
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2782
{
2783
	struct drm_device *dev = &dev_priv->drm;
2784
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2785 2786 2787
	unsigned int dirty;
	uint32_t val;

2788
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2789 2790 2791 2792 2793
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2794
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2795
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2796
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2797
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2798
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2799 2800
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2801
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2802
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2803
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2804
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2805
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2806 2807
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2808
	if (dirty & WM_DIRTY_DDB) {
2809
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2824 2825
	}

2826
	if (dirty & WM_DIRTY_FBC) {
2827 2828 2829 2830 2831 2832 2833 2834
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2835 2836 2837 2838 2839
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2840 2841 2842 2843 2844
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2845

2846
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2847
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2848
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2849
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2850
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2851
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2852 2853

	dev_priv->wm.hw = *results;
2854 2855
}

2856
bool ilk_disable_lp_wm(struct drm_device *dev)
2857
{
2858
	struct drm_i915_private *dev_priv = to_i915(dev);
2859 2860 2861 2862

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2863
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2902 2903 2904
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2905 2906 2907 2908 2909 2910 2911 2912
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2913 2914
}

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2927
intel_enable_sagv(struct drm_i915_private *dev_priv)
2928 2929 2930
{
	int ret;

2931 2932 2933 2934
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2950
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2951
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2952
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2953 2954 2955 2956 2957 2958
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2959
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2960 2961 2962 2963
	return 0;
}

static int
2964
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2978
intel_disable_sagv(struct drm_i915_private *dev_priv)
2979 2980 2981
{
	int ret, result;

2982 2983 2984 2985
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2986 2987 2988 2989 2990 2991
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2992
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3004
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
3005
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3006
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3007 3008 3009 3010 3011 3012
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3013
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3014 3015 3016
	return 0;
}

3017
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3018 3019 3020 3021
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3022 3023
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3024 3025
	struct intel_crtc_state *cstate;
	struct skl_plane_wm *wm;
3026
	enum pipe pipe;
3027
	int level, latency;
3028

3029 3030 3031
	if (!intel_has_sagv(dev_priv))
		return false;

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3045
	crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3046
	cstate = to_intel_crtc_state(crtc->base.state);
3047

3048
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3049 3050
		return false;

3051
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3052
		wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3053

3054
		/* Skip this plane if it's not enabled */
3055
		if (!wm->wm[0].plane_en)
3056 3057 3058
			continue;

		/* Find the highest enabled wm level for this plane */
3059
		for (level = ilk_wm_max_level(dev_priv);
3060
		     !wm->wm[level].plane_en; --level)
3061 3062
		     { }

3063 3064 3065 3066 3067 3068 3069
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
		    plane->base.state->fb->modifier[0] ==
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3070 3071 3072 3073 3074
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3075
		if (latency < SKL_SAGV_BLOCK_TIME)
3076 3077 3078 3079 3080 3081
			return false;
	}

	return true;
}

3082 3083
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3084
				   const struct intel_crtc_state *cstate,
3085 3086
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3087
{
3088 3089 3090
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3091
	struct drm_crtc *for_crtc = cstate->base.crtc;
3092 3093
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3094

3095
	if (WARN_ON(!state) || !cstate->base.active) {
3096 3097
		alloc->start = 0;
		alloc->end = 0;
3098
		*num_active = hweight32(dev_priv->active_crtcs);
3099 3100 3101
		return;
	}

3102 3103 3104 3105 3106
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3107 3108
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3109 3110 3111

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3112
	/*
3113 3114 3115 3116 3117 3118
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3119
	 */
3120
	if (!intel_state->active_pipe_changes) {
3121
		*alloc = to_intel_crtc(for_crtc)->hw_ddb;
3122
		return;
3123
	}
3124 3125 3126 3127 3128 3129

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3130 3131
}

3132
static unsigned int skl_cursor_allocation(int num_active)
3133
{
3134
	if (num_active == 1)
3135 3136 3137 3138 3139
		return 32;

	return 8;
}

3140 3141 3142 3143
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3144 3145
	if (entry->end)
		entry->end += 1;
3146 3147
}

3148 3149
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3150 3151 3152 3153 3154
{
	enum pipe pipe;
	int plane;
	u32 val;

3155 3156
	memset(ddb, 0, sizeof(*ddb));

3157
	for_each_pipe(dev_priv, pipe) {
3158 3159 3160 3161
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3162 3163
			continue;

3164
		for_each_universal_plane(dev_priv, pipe, plane) {
3165 3166 3167 3168 3169 3170
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
3171 3172
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
3173 3174

		intel_display_power_put(dev_priv, power_domain);
3175 3176 3177
	}
}

3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3200
	if (WARN_ON(!pstate->base.visible))
3201 3202 3203
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3204 3205 3206 3207
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3208
	if (drm_rotation_90_or_270(pstate->base.rotation))
3209 3210 3211 3212 3213 3214 3215 3216 3217
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3218
static unsigned int
3219 3220 3221
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3222
{
3223
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3224
	struct drm_framebuffer *fb = pstate->fb;
3225
	uint32_t down_scale_amount, data_rate;
3226
	uint32_t width = 0, height = 0;
3227 3228
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3229
	if (!intel_pstate->base.visible)
3230 3231 3232 3233 3234
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3235

3236 3237
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3238

3239
	if (drm_rotation_90_or_270(pstate->rotation))
3240
		swap(width, height);
3241 3242

	/* for planar format */
3243
	if (format == DRM_FORMAT_NV12) {
3244
		if (y)  /* y-plane data rate */
3245
			data_rate = width * height *
3246
				drm_format_plane_cpp(format, 0);
3247
		else    /* uv-plane data rate */
3248
			data_rate = (width / 2) * (height / 2) *
3249
				drm_format_plane_cpp(format, 1);
3250 3251 3252
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3253 3254
	}

3255 3256 3257
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3258 3259 3260 3261 3262 3263 3264 3265
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3266
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3267
{
3268 3269 3270 3271 3272
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3273
	struct drm_plane *plane;
3274
	const struct intel_plane *intel_plane;
3275
	const struct drm_plane_state *pstate;
3276
	unsigned int rate, total_data_rate = 0;
3277
	int id;
3278 3279 3280

	if (WARN_ON(!state))
		return 0;
3281

3282
	/* Calculate and cache data rate for each plane */
3283
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3296
	}
3297

3298 3299 3300
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3301

3302
		/* packed/uv */
3303 3304
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3305 3306 3307 3308 3309
	}

	return total_data_rate;
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

3332 3333
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3334

3335
	if (drm_rotation_90_or_270(pstate->rotation))
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3349
	if (drm_rotation_90_or_270(pstate->rotation)) {
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3373
static int
3374
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3375 3376
		      struct skl_ddb_allocation *ddb /* out */)
{
3377
	struct drm_atomic_state *state = cstate->base.state;
3378
	struct drm_crtc *crtc = cstate->base.crtc;
3379 3380
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3381
	struct intel_plane *intel_plane;
3382
	struct drm_plane *plane;
3383
	const struct drm_plane_state *pstate;
3384
	enum pipe pipe = intel_crtc->pipe;
3385
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3386
	uint16_t alloc_size, start, cursor_blocks;
3387 3388
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3389
	unsigned int total_data_rate;
3390 3391
	int num_active;
	int id, i;
3392

3393 3394 3395 3396
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3397 3398 3399
	if (WARN_ON(!state))
		return 0;

3400
	if (!cstate->base.active) {
3401
		alloc->start = alloc->end = 0;
3402 3403 3404
		return 0;
	}

3405
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3406
	alloc_size = skl_ddb_entry_size(alloc);
3407 3408
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3409
		return 0;
3410 3411
	}

3412
	cursor_blocks = skl_cursor_allocation(num_active);
3413 3414
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3415 3416 3417

	alloc_size -= cursor_blocks;

3418
	/* 1. Allocate the mininum required blocks for each active plane */
3419
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3420 3421
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3422

3423
		if (!pstate->visible) {
3424 3425 3426 3427 3428 3429 3430 3431
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3432
		}
3433

3434 3435
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3436
	}
3437

3438 3439 3440
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3441 3442
	}

3443
	/*
3444 3445
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3446 3447 3448
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3449
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3450
	if (total_data_rate == 0)
3451
		return 0;
3452

3453
	start = alloc->start;
3454
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3455 3456
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3457
		int id = skl_wm_plane_id(intel_plane);
3458

3459
		data_rate = cstate->wm.skl.plane_data_rate[id];
3460 3461

		/*
3462
		 * allocation for (packed formats) or (uv-plane part of planar format):
3463 3464 3465
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3466
		plane_blocks = minimum[id];
3467 3468
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3469

3470 3471 3472 3473 3474
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3475 3476

		start += plane_blocks;
3477 3478 3479 3480

		/*
		 * allocation for y_plane part of planar format:
		 */
3481 3482 3483 3484 3485
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3486

3487 3488 3489 3490
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3491 3492

		start += y_plane_blocks;
3493 3494
	}

3495
	return 0;
3496 3497
}

3498 3499
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3500
 * for the read latency) and cpp should always be <= 8, so that
3501 3502 3503
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3504
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3505 3506 3507 3508 3509 3510
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3511
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3512 3513 3514 3515 3516 3517
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3518
			       uint32_t latency, uint32_t plane_blocks_per_line)
3519
{
3520 3521
	uint32_t ret;
	uint32_t wm_intermediate_val;
3522 3523 3524 3525 3526 3527

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3528
				plane_blocks_per_line;
3529 3530 3531 3532

	return ret;
}

3533 3534 3535 3536 3537 3538 3539 3540
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3541
	if (WARN_ON(!pstate->base.visible))
3542 3543 3544 3545 3546 3547
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3548
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3549 3550 3551 3552 3553 3554 3555 3556
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3557 3558 3559 3560 3561 3562 3563 3564
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3565
{
3566 3567
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3568 3569 3570 3571 3572
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3573
	uint8_t cpp;
3574
	uint32_t width = 0, height = 0;
3575
	uint32_t plane_pixel_rate;
3576
	uint32_t y_tile_minimum, y_min_scanlines;
3577 3578 3579
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3580

3581
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3582 3583 3584
		*enabled = false;
		return 0;
	}
3585

3586 3587 3588
	if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
		latency += 15;

3589 3590
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3591

3592
	if (drm_rotation_90_or_270(pstate->rotation))
3593 3594
		swap(width, height);

3595
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3596 3597
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3598
	if (drm_rotation_90_or_270(pstate->rotation)) {
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3613 3614 3615
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3616 3617 3618 3619 3620
		}
	} else {
		y_min_scanlines = 4;
	}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	plane_bytes_per_line = width * cpp;
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
	} else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3634 3635
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3636
				 cstate->base.adjusted_mode.crtc_htotal,
3637
				 latency,
3638
				 plane_blocks_per_line);
3639

3640
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3641 3642
	if (apply_memory_bw_wa)
		y_tile_minimum *= 2;
3643

3644 3645
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3646 3647
		selected_result = max(method2, y_tile_minimum);
	} else {
3648 3649 3650 3651
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3652 3653 3654 3655
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3656

3657 3658
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3659

3660
	if (level >= 1 && level <= 7) {
3661
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3662 3663
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
			res_blocks += y_tile_minimum;
3664
			res_lines += y_min_scanlines;
3665
		} else {
3666
			res_blocks++;
3667
		}
3668
	}
3669

3670 3671
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3688
	}
3689 3690 3691

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3692
	*enabled = true;
3693

3694
	return 0;
3695 3696
}

3697 3698 3699 3700
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3701
		     struct intel_plane *intel_plane,
3702 3703
		     int level,
		     struct skl_wm_level *result)
3704
{
3705
	struct drm_atomic_state *state = cstate->base.state;
3706
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3707 3708
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3709
	uint16_t ddb_blocks;
3710
	enum pipe pipe = intel_crtc->pipe;
3711
	int ret;
L
Lyude 已提交
3712 3713 3714 3715 3716 3717
	int i = skl_wm_plane_id(intel_plane);

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3718

3719
	/*
L
Lyude 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3729
	 */
L
Lyude 已提交
3730 3731
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3732

L
Lyude 已提交
3733
	WARN_ON(!intel_pstate->base.fb);
3734

L
Lyude 已提交
3735
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3736

L
Lyude 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3747 3748

	return 0;
3749 3750
}

3751
static uint32_t
3752
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3753
{
3754 3755
	uint32_t pixel_rate;

3756
	if (!cstate->base.active)
3757 3758
		return 0;

3759 3760 3761
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3762
		return 0;
3763

3764
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3765
			    pixel_rate);
3766 3767
}

3768
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3769
				      struct skl_wm_level *trans_wm /* out */)
3770
{
3771
	if (!cstate->base.active)
3772
		return;
3773 3774

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3775
	trans_wm->plane_en = false;
3776 3777
}

3778 3779 3780
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3781
{
3782
	struct drm_device *dev = cstate->base.crtc->dev;
3783
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3784 3785
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3786
	int level, max_level = ilk_wm_max_level(dev_priv);
3787
	int ret;
3788

L
Lyude 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
		wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3808
	}
3809
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3810

3811
	return 0;
3812 3813
}

3814 3815
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3816 3817 3818 3819 3820 3821 3822 3823
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3839
void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3840 3841
			const struct skl_plane_wm *wm,
			const struct skl_ddb_allocation *ddb,
3842 3843 3844 3845 3846
			int plane)
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3847
	int level, max_level = ilk_wm_max_level(dev_priv);
3848 3849 3850
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3851 3852
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
				   &wm->wm[level]);
3853
	}
3854 3855
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
			   &wm->trans_wm);
3856 3857

	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3858
			    &ddb->plane[pipe][plane]);
3859
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3860
			    &ddb->y_plane[pipe][plane]);
3861 3862 3863
}

void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3864 3865
			 const struct skl_plane_wm *wm,
			 const struct skl_ddb_allocation *ddb)
3866 3867 3868 3869
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3870
	int level, max_level = ilk_wm_max_level(dev_priv);
3871 3872 3873
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3874 3875
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3876
	}
3877
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3878

3879
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3880
			    &ddb->plane[pipe][PLANE_CURSOR]);
3881 3882
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3897 3898
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3899
{
3900
	return a->start < b->end && b->start < a->end;
3901 3902
}

3903
bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3904
				 struct intel_crtc *intel_crtc)
3905
{
3906 3907 3908 3909 3910 3911
	struct drm_crtc *other_crtc;
	struct drm_crtc_state *other_cstate;
	struct intel_crtc *other_intel_crtc;
	const struct skl_ddb_entry *ddb =
		&to_intel_crtc_state(intel_crtc->base.state)->wm.skl.ddb;
	int i;
3912

3913 3914
	for_each_crtc_in_state(state, other_crtc, other_cstate, i) {
		other_intel_crtc = to_intel_crtc(other_crtc);
3915

3916
		if (other_intel_crtc == intel_crtc)
3917 3918
			continue;

3919
		if (skl_ddb_entries_overlap(ddb, &other_intel_crtc->hw_ddb))
3920
			return true;
3921 3922
	}

3923
	return false;
3924 3925
}

3926 3927 3928 3929
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3930
{
3931 3932
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3933
	int ret;
3934

3935 3936 3937
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3938

3939
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3940 3941 3942
		*changed = false;
	else
		*changed = true;
3943

3944
	return 0;
3945 3946
}

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3960
static int
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;
	int id;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

	drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
		id = skl_wm_plane_id(to_intel_plane(plane));

		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
					&new_ddb->plane[pipe][id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
					&new_ddb->y_plane[pipe][id]))
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3995 3996 3997 3998 3999 4000 4001
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4002
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4003
	uint32_t realloc_pipes = pipes_modified(state);
4004 4005 4006 4007 4008 4009 4010 4011
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4012 4013 4014 4015 4016 4017
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4018 4019
		intel_state->active_pipe_changes = ~0;

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4043
	if (intel_state->active_pipe_changes) {
4044
		realloc_pipes = ~0;
4045 4046
		intel_state->wm_results.dirty_pipes = ~0;
	}
4047

4048 4049 4050 4051 4052 4053
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4054 4055 4056 4057 4058 4059 4060
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4061
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4062 4063
		if (ret)
			return ret;
4064

4065
		ret = skl_ddb_add_affected_planes(cstate);
4066 4067
		if (ret)
			return ret;
4068 4069 4070 4071 4072
	}

	return 0;
}

4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct drm_plane *plane;
	const struct intel_plane *intel_plane;
	const struct drm_plane_state *pstate;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	enum pipe pipe;
	int id;
	int i, j;

	for_each_crtc_in_state(state, crtc, cstate, i) {
		pipe = to_intel_crtc(crtc)->pipe;

		for_each_plane_in_state(state, plane, pstate, j) {
			const struct skl_ddb_entry *old, *new;

			intel_plane = to_intel_plane(plane);
			id = skl_wm_plane_id(intel_plane);
			old = &old_ddb->plane[pipe][id];
			new = &new_ddb->plane[pipe][id];

			if (intel_plane->pipe != pipe)
				continue;

			if (skl_ddb_entry_equal(old, new))
				continue;

			if (id != PLANE_CURSOR) {
				DRM_DEBUG_ATOMIC("[PLANE:%d:plane %d%c] ddb (%d - %d) -> (%d - %d)\n",
						 plane->base.id, id + 1,
						 pipe_name(pipe),
						 old->start, old->end,
						 new->start, new->end);
			} else {
				DRM_DEBUG_ATOMIC("[PLANE:%d:cursor %c] ddb (%d - %d) -> (%d - %d)\n",
						 plane->base.id,
						 pipe_name(pipe),
						 old->start, old->end,
						 new->start, new->end);
			}
		}
	}
}

4136 4137 4138 4139 4140
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4141 4142 4143
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4144
	bool changed = false;
4145
	int ret, i;
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4160 4161 4162
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4163 4164 4165 4166
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4197 4198
	skl_print_wm_changes(state);

4199 4200 4201
	return 0;
}

4202 4203 4204 4205
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
4206
	struct drm_i915_private *dev_priv = to_i915(dev);
4207
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4208
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4209
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4210
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4211
	enum pipe pipe = intel_crtc->pipe;
4212

4213
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4214 4215
		return;

4216 4217 4218
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4219

4220
	/*
4221 4222 4223 4224
	 * If this pipe isn't active already, we're going to be enabling it
	 * very soon. Since it's safe to update a pipe's ddb allocation while
	 * the pipe's shut off, just do so here. Already active pipes will have
	 * their watermarks updated once we update their planes.
4225
	 */
4226 4227 4228
	if (crtc->state->active_changed) {
		int plane;

4229
		for_each_universal_plane(dev_priv, pipe, plane)
4230 4231
			skl_write_plane_wm(intel_crtc, &pipe_wm->planes[plane],
					   &results->ddb, plane);
4232

4233 4234
		skl_write_cursor_wm(intel_crtc, &pipe_wm->planes[PLANE_CURSOR],
				    &results->ddb);
4235 4236 4237
	}

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4238

4239 4240
	intel_crtc->hw_ddb = cstate->wm.skl.ddb;

4241
	mutex_unlock(&dev_priv->wm.wm_mutex);
4242 4243
}

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4262
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4263
{
4264
	struct drm_device *dev = &dev_priv->drm;
4265
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4266
	struct ilk_wm_maximums max;
4267
	struct intel_wm_config config = {};
4268
	struct ilk_wm_values results = {};
4269
	enum intel_ddb_partitioning partitioning;
4270

4271 4272 4273 4274
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4275 4276

	/* 5/6 split only in single pipe config on IVB+ */
4277
	if (INTEL_INFO(dev)->gen >= 7 &&
4278 4279 4280
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4281

4282
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4283
	} else {
4284
		best_lp_wm = &lp_wm_1_2;
4285 4286
	}

4287
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4288
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4289

4290
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4291

4292
	ilk_write_wm_values(dev_priv, &results);
4293 4294
}

4295
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4296
{
4297 4298
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4299

4300
	mutex_lock(&dev_priv->wm.wm_mutex);
4301
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4302 4303 4304
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4305

4306 4307 4308 4309
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4310

4311 4312
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4313
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4314 4315 4316
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4317 4318
}

4319 4320
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4321
{
4322 4323 4324 4325
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4326 4327
}

4328 4329
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4330 4331
{
	struct drm_device *dev = crtc->dev;
4332
	struct drm_i915_private *dev_priv = to_i915(dev);
4333
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4334 4335
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
4336
	enum pipe pipe = intel_crtc->pipe;
4337 4338
	int level, id, max_level;
	uint32_t val;
4339

4340
	max_level = ilk_wm_max_level(dev_priv);
4341

4342 4343
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		id = skl_wm_plane_id(intel_plane);
4344
		wm = &out->planes[id];
4345

4346 4347 4348 4349 4350
		for (level = 0; level <= max_level; level++) {
			if (id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, id, level));
			else
				val = I915_READ(CUR_WM(pipe, level));
4351

4352
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4353 4354
		}

4355 4356 4357 4358 4359 4360
		if (id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, id));
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4361 4362
	}

4363 4364
	if (!intel_crtc->active)
		return;
4365

4366
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4367 4368 4369 4370
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4371
	struct drm_i915_private *dev_priv = to_i915(dev);
4372
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4373
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4374
	struct drm_crtc *crtc;
4375 4376
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4377

4378
	skl_ddb_get_hw_state(dev_priv, ddb);
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

		if (intel_crtc->active) {
			hw->dirty_pipes |= drm_crtc_mask(crtc);
			intel_crtc->wm.active.skl = cstate->wm.skl.optimal;
		}
	}
4390

4391 4392 4393 4394 4395 4396 4397
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4398 4399
}

4400 4401 4402
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4403
	struct drm_i915_private *dev_priv = to_i915(dev);
4404
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4405
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4406
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4407
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4408
	enum pipe pipe = intel_crtc->pipe;
4409
	static const i915_reg_t wm0_pipe_reg[] = {
4410 4411 4412 4413 4414 4415
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4416
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4417
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4418

4419 4420
	memset(active, 0, sizeof(*active));

4421
	active->pipe_enabled = intel_crtc->active;
4422 4423

	if (active->pipe_enabled) {
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4438
		int level, max_level = ilk_wm_max_level(dev_priv);
4439 4440 4441 4442 4443 4444 4445 4446 4447

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4448 4449

	intel_crtc->wm.active.ilk = *active;
4450 4451
}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4569 4570 4571 4572 4573 4574 4575 4576 4577
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4578
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4605 4606
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4607
	struct drm_i915_private *dev_priv = to_i915(dev);
4608
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4609 4610
	struct drm_crtc *crtc;

4611
	for_each_crtc(dev, crtc)
4612 4613 4614 4615 4616 4617 4618
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4619 4620 4621 4622
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4623

4624
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4625 4626
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4627
	else if (IS_IVYBRIDGE(dev_priv))
4628 4629
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4630 4631 4632 4633 4634

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4667
void intel_update_watermarks(struct drm_crtc *crtc)
4668
{
4669
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4670 4671

	if (dev_priv->display.update_wm)
4672
		dev_priv->display.update_wm(crtc);
4673 4674
}

4675
/*
4676 4677 4678 4679 4680 4681 4682 4683
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4684
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4685 4686 4687
{
	u16 rgvswctl;

4688 4689
	assert_spin_locked(&mchdev_lock);

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4707
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4708
{
4709
	u32 rgvmodectl;
4710 4711
	u8 fmax, fmin, fstart, vstart;

4712 4713
	spin_lock_irq(&mchdev_lock);

4714 4715
	rgvmodectl = I915_READ(MEMMODECTL);

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4736
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4737 4738
		PXVFREQ_PX_SHIFT;

4739 4740
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4741

4742 4743 4744
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4761
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4762
		DRM_ERROR("stuck trying to change perf mode\n");
4763
	mdelay(1);
4764

4765
	ironlake_set_drps(dev_priv, fstart);
4766

4767 4768
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4769
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4770
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4771
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4772 4773

	spin_unlock_irq(&mchdev_lock);
4774 4775
}

4776
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4777
{
4778 4779 4780 4781 4782
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4783 4784 4785 4786 4787 4788 4789 4790 4791

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4792
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4793
	mdelay(1);
4794 4795
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4796
	mdelay(1);
4797

4798
	spin_unlock_irq(&mchdev_lock);
4799 4800
}

4801 4802 4803 4804 4805
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4806
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4807
{
4808
	u32 limits;
4809

4810 4811 4812 4813 4814 4815
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4816
	if (IS_GEN9(dev_priv)) {
4817 4818 4819 4820 4821 4822 4823 4824
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4825 4826 4827 4828

	return limits;
}

4829 4830 4831
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4832 4833
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4834 4835 4836 4837

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4838 4839
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4840 4841 4842 4843
			new_power = BETWEEN;
		break;

	case BETWEEN:
4844 4845
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4846
			new_power = LOW_POWER;
4847 4848
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4849 4850 4851 4852
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4853 4854
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4855 4856 4857 4858
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4859
	if (val <= dev_priv->rps.min_freq_softlimit)
4860
		new_power = LOW_POWER;
4861
	if (val >= dev_priv->rps.max_freq_softlimit)
4862 4863 4864 4865 4866 4867 4868 4869
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4870 4871
		ei_up = 16000;
		threshold_up = 95;
4872 4873

		/* Downclock if less than 85% busy over 32ms */
4874 4875
		ei_down = 32000;
		threshold_down = 85;
4876 4877 4878 4879
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4880 4881
		ei_up = 13000;
		threshold_up = 90;
4882 4883

		/* Downclock if less than 75% busy over 32ms */
4884 4885
		ei_down = 32000;
		threshold_down = 75;
4886 4887 4888 4889
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4890 4891
		ei_up = 10000;
		threshold_up = 85;
4892 4893

		/* Downclock if less than 60% busy over 32ms */
4894 4895
		ei_down = 32000;
		threshold_down = 60;
4896 4897 4898
		break;
	}

4899
	I915_WRITE(GEN6_RP_UP_EI,
4900
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4901
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4902 4903
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4904 4905

	I915_WRITE(GEN6_RP_DOWN_EI,
4906
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4907
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4918

4919
	dev_priv->rps.power = new_power;
4920 4921
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4922 4923 4924
	dev_priv->rps.last_adj = 0;
}

4925 4926 4927 4928 4929
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4930
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4931
	if (val < dev_priv->rps.max_freq_softlimit)
4932
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4933

4934 4935
	mask &= dev_priv->pm_rps_events;

4936
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4937 4938
}

4939 4940 4941
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4942
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4943
{
4944
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4945
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4946 4947
		return;

4948
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4949 4950
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4951

C
Chris Wilson 已提交
4952 4953 4954 4955 4956
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4957

4958
		if (IS_GEN9(dev_priv))
4959 4960
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4961
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4962 4963 4964 4965 4966 4967 4968
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4969
	}
4970 4971 4972 4973

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4974
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4975
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4976

4977 4978
	POSTING_READ(GEN6_RPNSWREQ);

4979
	dev_priv->rps.cur_freq = val;
4980
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4981 4982
}

4983
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4984 4985
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4986 4987
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4988

4989
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4990 4991 4992
		      "Odd GPU freq value\n"))
		val &= ~1;

4993 4994
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4995
	if (val != dev_priv->rps.cur_freq) {
4996
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4997 4998 4999
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
5000 5001 5002 5003 5004

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

5005
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5006 5007
 *
 * * If Gfx is Idle, then
5008 5009 5010
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5011 5012 5013
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5014
	u32 val = dev_priv->rps.idle_freq;
5015

5016
	if (dev_priv->rps.cur_freq <= val)
5017 5018
		return;

5019 5020 5021
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5022
	valleyview_set_rps(dev_priv, val);
5023
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5024 5025
}

5026 5027 5028 5029 5030 5031 5032 5033
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5034

5035 5036
		gen6_enable_rps_interrupts(dev_priv);

5037 5038 5039 5040 5041
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5042 5043 5044 5045
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5046 5047
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5048 5049 5050 5051 5052 5053 5054
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5055
	mutex_lock(&dev_priv->rps.hw_lock);
5056
	if (dev_priv->rps.enabled) {
5057
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5058
			vlv_set_rps_idle(dev_priv);
5059
		else
5060
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5061
		dev_priv->rps.last_adj = 0;
5062 5063
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5064
	}
5065
	mutex_unlock(&dev_priv->rps.hw_lock);
5066

5067
	spin_lock(&dev_priv->rps.client_lock);
5068 5069
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5070
	spin_unlock(&dev_priv->rps.client_lock);
5071 5072
}

5073
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5074 5075
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5076
{
5077 5078 5079
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5080
	if (!(dev_priv->gt.awake &&
5081
	      dev_priv->rps.enabled &&
5082
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5083
		return;
5084

5085 5086 5087
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5088
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5089 5090
		rps = NULL;

5091 5092 5093 5094 5095
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5096
			schedule_work(&dev_priv->rps.work);
5097 5098
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5099

5100 5101 5102
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5103 5104
		} else
			dev_priv->rps.boosts++;
5105
	}
5106
	spin_unlock(&dev_priv->rps.client_lock);
5107 5108
}

5109
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5110
{
5111 5112
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5113
	else
5114
		gen6_set_rps(dev_priv, val);
5115 5116
}

5117
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5118 5119
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5120
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5121 5122
}

5123
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5124 5125 5126 5127
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5128
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5129 5130
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5131
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5132
	I915_WRITE(GEN6_RP_CONTROL, 0);
5133 5134
}

5135
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5136 5137 5138 5139
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5140
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5141
{
5142 5143
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5144
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5145

5146
	I915_WRITE(GEN6_RC_CONTROL, 0);
5147

5148
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5149 5150
}

5151
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5152
{
5153
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5154 5155 5156 5157 5158
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5159
	if (HAS_RC6p(dev_priv))
5160 5161 5162 5163 5164
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5165 5166

	else
5167 5168
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5169 5170
}

5171
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5172
{
5173
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5174 5175
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5187 5188

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5189
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5190 5191 5192 5193 5194 5195 5196 5197
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5198 5199 5200
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5201
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5202 5203 5204 5205 5206 5207 5208
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5209
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5210 5211 5212
		enable_rc6 = false;
	}

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5227 5228 5229 5230 5231 5232
		enable_rc6 = false;
	}

	return enable_rc6;
}

5233
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5234
{
5235
	/* No RC6 before Ironlake and code is gone for ilk. */
5236
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5237 5238
		return 0;

5239 5240 5241
	if (!enable_rc6)
		return 0;

5242
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5243 5244 5245 5246
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5247
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5248 5249 5250
	if (enable_rc6 >= 0) {
		int mask;

5251
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5252 5253 5254 5255 5256 5257
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5258 5259 5260
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5261 5262 5263

		return enable_rc6 & mask;
	}
5264

5265
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5266
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5267 5268

	return INTEL_RC6_ENABLE;
5269 5270
}

5271
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5272 5273
{
	/* All of these values are in units of 50MHz */
5274

5275
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5276
	if (IS_BROXTON(dev_priv)) {
5277
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5278 5279 5280 5281
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5282
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5283 5284 5285 5286
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5287
	/* hw_max = RP0 until we check for overclocking */
5288
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5289

5290
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5291 5292
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5293 5294 5295 5296 5297
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5298
			dev_priv->rps.efficient_freq =
5299 5300 5301 5302
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5303 5304
	}

5305
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5306
		/* Store the frequency values in 16.66 MHZ units, which is
5307 5308
		 * the natural hardware unit for SKL
		 */
5309 5310 5311 5312 5313 5314
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5315 5316
}

5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5329
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5330
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5331 5332 5333
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5334
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5335
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5336 5337 5338 5339 5340 5341 5342 5343 5344
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5345
		gen9_disable_rps(dev_priv);
5346 5347 5348 5349
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5350 5351 5352 5353 5354 5355 5356 5357
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5358 5359
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5360 5361 5362
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5363
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5364 5365 5366 5367

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5368
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5369
{
5370
	struct intel_engine_cs *engine;
5371
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5372 5373 5374 5375 5376 5377 5378
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5379
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5380 5381 5382 5383 5384

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5385 5386

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5387
	if (IS_SKYLAKE(dev_priv))
5388 5389 5390
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5391 5392
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5393
	for_each_engine(engine, dev_priv, id)
5394
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5395

5396
	if (HAS_GUC(dev_priv))
5397 5398
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5399 5400
	I915_WRITE(GEN6_RC_SLEEP, 0);

5401 5402 5403 5404
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5405
	/* 3a: Enable RC6 */
5406
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5407
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5408
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5409
	/* WaRsUseTimeoutMode:bxt */
5410
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5411
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5412 5413 5414
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5415 5416
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5417 5418 5419
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5420
	}
Z
Zhe Wang 已提交
5421

5422 5423
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5424
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5425
	 */
5426
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5427 5428 5429 5430
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5431

5432
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5433 5434
}

5435
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5436
{
5437
	struct intel_engine_cs *engine;
5438
	enum intel_engine_id id;
5439
	uint32_t rc6_mask = 0;
5440 5441 5442 5443 5444 5445

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5446
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5447 5448 5449 5450 5451 5452 5453 5454

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5455
	for_each_engine(engine, dev_priv, id)
5456
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5457
	I915_WRITE(GEN6_RC_SLEEP, 0);
5458
	if (IS_BROADWELL(dev_priv))
5459 5460 5461
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5462 5463

	/* 3: Enable RC6 */
5464
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5465
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5466 5467
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5468 5469 5470 5471 5472 5473 5474
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5475 5476

	/* 4 Program defaults and thresholds for RPS*/
5477 5478 5479 5480
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5495 5496

	/* 5: Enable RPS */
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5507
	reset_rps(dev_priv, gen6_set_rps);
5508

5509
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5510 5511
}

5512
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5513
{
5514
	struct intel_engine_cs *engine;
5515
	enum intel_engine_id id;
5516
	u32 rc6vids, rc6_mask = 0;
5517 5518
	u32 gtfifodbg;
	int rc6_mode;
5519
	int ret;
5520

5521
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5532 5533
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5534 5535 5536 5537
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5538
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5549
	for_each_engine(engine, dev_priv, id)
5550
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5551 5552 5553

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5554
	if (IS_IVYBRIDGE(dev_priv))
5555 5556 5557
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5558
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5559 5560
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5561
	/* Check if we are enabling RC6 */
5562
	rc6_mode = intel_enable_rc6();
5563 5564 5565
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5566
	/* We don't use those on Haswell */
5567
	if (!IS_HASWELL(dev_priv)) {
5568 5569
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5570

5571 5572 5573
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5574

5575
	intel_print_rc6_info(dev_priv, rc6_mask);
5576 5577 5578 5579 5580 5581

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5582 5583
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5584 5585
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5586
	reset_rps(dev_priv, gen6_set_rps);
5587

5588 5589
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5590
	if (IS_GEN6(dev_priv) && ret) {
5591
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5592
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5593 5594 5595 5596 5597 5598 5599 5600 5601
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5602
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5603 5604
}

5605
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5606 5607
{
	int min_freq = 15;
5608 5609
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5610
	unsigned int max_gpu_freq, min_gpu_freq;
5611
	int scaling_factor = 180;
5612
	struct cpufreq_policy *policy;
5613

5614
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5615

5616 5617 5618 5619 5620 5621 5622 5623 5624
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5625
		max_ia_freq = tsc_khz;
5626
	}
5627 5628 5629 5630

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5631
	min_ring_freq = I915_READ(DCLK) & 0xf;
5632 5633
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5634

5635
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5636 5637 5638 5639 5640 5641 5642 5643
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5644 5645 5646 5647 5648
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5649 5650
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5651 5652
		unsigned int ia_freq = 0, ring_freq = 0;

5653
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5654 5655 5656 5657 5658
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5659
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5660 5661
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5662
		} else if (IS_HASWELL(dev_priv)) {
5663
			ring_freq = mult_frac(gpu_freq, 5, 4);
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5680

B
Ben Widawsky 已提交
5681 5682
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5683 5684 5685
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5686 5687 5688
	}
}

5689
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5690 5691 5692
{
	u32 val, rp0;

5693
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5694

5695
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5710
	}
5711 5712 5713

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5727 5728 5729 5730
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5731 5732 5733
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5734 5735 5736
	return rp1;
}

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5748
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5749 5750 5751
{
	u32 val, rp0;

5752
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5765
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5766
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5767
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5768 5769 5770 5771 5772
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5773
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5774
{
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5786 5787
}

5788 5789 5790 5791 5792 5793 5794 5795 5796
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5797 5798 5799 5800 5801 5802 5803 5804 5805

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5806
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5807
{
5808
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5809
	unsigned long pctx_paddr, paddr;
5810 5811 5812 5813 5814
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5815
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5816
		paddr = (dev_priv->mm.stolen_base +
5817
			 (ggtt->stolen_size - pctx_size));
5818 5819 5820 5821

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5822 5823

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5824 5825
}

5826
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5839
		pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5840
								      pcbr_offset,
5841
								      I915_GTT_OFFSET_NONE,
5842 5843 5844 5845
								      pctx_size);
		goto out;
	}

5846 5847
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5848 5849 5850 5851 5852 5853 5854 5855
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5856
	pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5857 5858
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5859
		goto out;
5860 5861 5862 5863 5864 5865
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5866
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5867 5868 5869
	dev_priv->vlv_pctx = pctx;
}

5870
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5871 5872 5873 5874
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5875
	i915_gem_object_put(dev_priv->vlv_pctx);
5876 5877 5878
	dev_priv->vlv_pctx = NULL;
}

5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5890
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5891
{
5892
	u32 val;
5893

5894
	valleyview_setup_pctx(dev_priv);
5895

5896 5897
	vlv_init_gpll_ref_freq(dev_priv);

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5911
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5912

5913 5914 5915
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5916
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5917 5918 5919 5920
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5921
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5922 5923
			 dev_priv->rps.efficient_freq);

5924 5925
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5926
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5927 5928
			 dev_priv->rps.rp1_freq);

5929 5930
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5931
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5932 5933 5934
			 dev_priv->rps.min_freq);
}

5935
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5936
{
5937
	u32 val;
5938

5939
	cherryview_setup_pctx(dev_priv);
5940

5941 5942
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5943
	mutex_lock(&dev_priv->sb_lock);
5944
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5945
	mutex_unlock(&dev_priv->sb_lock);
5946

5947 5948 5949 5950
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5951
	default:
5952 5953 5954
		dev_priv->mem_freq = 1600;
		break;
	}
5955
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5956

5957 5958 5959
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5960
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5961 5962 5963 5964
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5965
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5966 5967
			 dev_priv->rps.efficient_freq);

5968 5969
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5970
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5971 5972
			 dev_priv->rps.rp1_freq);

5973 5974
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5975
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5976
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5977 5978
			 dev_priv->rps.min_freq);

5979 5980 5981 5982 5983
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5984 5985
}

5986
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5987
{
5988
	valleyview_cleanup_pctx(dev_priv);
5989 5990
}

5991
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5992
{
5993
	struct intel_engine_cs *engine;
5994
	enum intel_engine_id id;
5995
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5996 5997 5998

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5999 6000
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6011
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6012

6013 6014 6015
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6016 6017 6018 6019 6020
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6021
	for_each_engine(engine, dev_priv, id)
6022
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6023 6024
	I915_WRITE(GEN6_RC_SLEEP, 0);

6025 6026
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6038 6039
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6040
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6041 6042 6043

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6044
	/* 4 Program defaults and thresholds for RPS*/
6045
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6056
		   GEN6_RP_MEDIA_IS_GFX |
6057 6058 6059 6060
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6061 6062 6063 6064 6065 6066
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6067 6068
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6069 6070 6071
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6072
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6073 6074
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6075
	reset_rps(dev_priv, valleyview_set_rps);
6076

6077
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6078 6079
}

6080
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6081
{
6082
	struct intel_engine_cs *engine;
6083
	enum intel_engine_id id;
6084
	u32 gtfifodbg, val, rc6_mode = 0;
6085 6086 6087

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6088 6089
	valleyview_check_pctx(dev_priv);

6090 6091
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6092 6093
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6094 6095 6096
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6097
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6098
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6099

6100 6101 6102
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6103
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6123
	for_each_engine(engine, dev_priv, id)
6124
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6125

6126
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6127 6128

	/* allows RC6 residency counter to work */
6129
	I915_WRITE(VLV_COUNTER_CONTROL,
6130 6131
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6132 6133
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6134

6135
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6136
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6137

6138
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6139

6140
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6141

D
Deepak S 已提交
6142 6143 6144 6145 6146 6147
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6148
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6149

6150 6151 6152
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6153
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6154 6155
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6156
	reset_rps(dev_priv, valleyview_set_rps);
6157

6158
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6159 6160
}

6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6190
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6191 6192 6193 6194 6195 6196
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6197 6198
	assert_spin_locked(&mchdev_lock);

6199
	diff1 = now - dev_priv->ips.last_time1;
6200 6201 6202 6203 6204 6205 6206

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6207
		return dev_priv->ips.chipset_power;
6208 6209 6210 6211 6212 6213 6214 6215

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6216 6217
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6218 6219
		diff += total_count;
	} else {
6220
		diff = total_count - dev_priv->ips.last_count1;
6221 6222 6223
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6224 6225
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6236 6237
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6238

6239
	dev_priv->ips.chipset_power = ret;
6240 6241 6242 6243

	return ret;
}

6244 6245 6246 6247
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6248
	if (INTEL_INFO(dev_priv)->gen != 5)
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6287
{
6288 6289 6290
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6291
	if (INTEL_INFO(dev_priv)->is_mobile)
6292 6293 6294
		return vm > 0 ? vm : 0;

	return vd;
6295 6296
}

6297
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6298
{
6299
	u64 now, diff, diffms;
6300 6301
	u32 count;

6302
	assert_spin_locked(&mchdev_lock);
6303

6304 6305 6306
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6307 6308 6309 6310 6311 6312 6313

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6314 6315
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6316 6317
		diff += count;
	} else {
6318
		diff = count - dev_priv->ips.last_count2;
6319 6320
	}

6321 6322
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6323 6324 6325 6326

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6327
	dev_priv->ips.gfx_power = diff;
6328 6329
}

6330 6331
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6332
	if (INTEL_INFO(dev_priv)->gen != 5)
6333 6334
		return;

6335
	spin_lock_irq(&mchdev_lock);
6336 6337 6338

	__i915_update_gfx_val(dev_priv);

6339
	spin_unlock_irq(&mchdev_lock);
6340 6341
}

6342
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6343 6344 6345 6346
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6347 6348
	assert_spin_locked(&mchdev_lock);

6349
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6369
	corr2 = (corr * dev_priv->ips.corr);
6370 6371 6372 6373

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6374
	__i915_update_gfx_val(dev_priv);
6375

6376
	return dev_priv->ips.gfx_power + state2;
6377 6378
}

6379 6380 6381 6382
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6383
	if (INTEL_INFO(dev_priv)->gen != 5)
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6406
	spin_lock_irq(&mchdev_lock);
6407 6408 6409 6410
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6411 6412
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6413 6414 6415 6416

	ret = chipset_val + graphics_val;

out_unlock:
6417
	spin_unlock_irq(&mchdev_lock);
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6433
	spin_lock_irq(&mchdev_lock);
6434 6435 6436 6437 6438 6439
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6440 6441
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6442 6443

out_unlock:
6444
	spin_unlock_irq(&mchdev_lock);
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6461
	spin_lock_irq(&mchdev_lock);
6462 6463 6464 6465 6466 6467
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6468 6469
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6470 6471

out_unlock:
6472
	spin_unlock_irq(&mchdev_lock);
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6487
	spin_lock_irq(&mchdev_lock);
6488 6489
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6490
	spin_unlock_irq(&mchdev_lock);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6507
	spin_lock_irq(&mchdev_lock);
6508 6509 6510 6511 6512 6513
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6514
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6515

6516
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6517 6518 6519
		ret = false;

out_unlock:
6520
	spin_unlock_irq(&mchdev_lock);
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6548 6549
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6550
	spin_lock_irq(&mchdev_lock);
6551
	i915_mch_dev = dev_priv;
6552
	spin_unlock_irq(&mchdev_lock);
6553 6554 6555 6556 6557 6558

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6559
	spin_lock_irq(&mchdev_lock);
6560
	i915_mch_dev = NULL;
6561
	spin_unlock_irq(&mchdev_lock);
6562
}
6563

6564
static void intel_init_emon(struct drm_i915_private *dev_priv)
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6581
		I915_WRITE(PEW(i), 0);
6582
	for (i = 0; i < 3; i++)
6583
		I915_WRITE(DEW(i), 0);
6584 6585 6586

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6587
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6608
		I915_WRITE(PXW(i), val);
6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6624
		I915_WRITE(PXWL(i), 0);
6625 6626 6627 6628 6629 6630

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6631
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6632 6633
}

6634
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6635
{
6636 6637 6638 6639 6640 6641 6642 6643
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6644

6645
	mutex_lock(&dev_priv->drm.struct_mutex);
6646 6647 6648
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6649 6650 6651 6652
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6653
	else if (INTEL_GEN(dev_priv) >= 6)
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6683 6684 6685
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6686
	mutex_unlock(&dev_priv->rps.hw_lock);
6687
	mutex_unlock(&dev_priv->drm.struct_mutex);
6688 6689

	intel_autoenable_gt_powersave(dev_priv);
6690 6691
}

6692
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6693
{
6694
	if (IS_VALLEYVIEW(dev_priv))
6695
		valleyview_cleanup_gt_powersave(dev_priv);
6696 6697 6698

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6699 6700
}

6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6720 6721 6722 6723
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6724 6725

	gen6_reset_rps_interrupts(dev_priv);
6726 6727
}

6728
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6729
{
6730 6731
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6732

6733
	mutex_lock(&dev_priv->rps.hw_lock);
6734

6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6746
	}
6747 6748 6749

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6750 6751
}

6752
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6753
{
6754 6755 6756
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6757 6758
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6759

6760 6761 6762
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6763

6764
	mutex_lock(&dev_priv->rps.hw_lock);
6765 6766 6767 6768 6769

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6770
	} else if (INTEL_GEN(dev_priv) >= 9) {
6771 6772 6773
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6774
			gen6_update_ring_freq(dev_priv);
6775 6776
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6777
		gen6_update_ring_freq(dev_priv);
6778
	} else if (INTEL_GEN(dev_priv) >= 6) {
6779
		gen6_enable_rps(dev_priv);
6780
		gen6_update_ring_freq(dev_priv);
6781 6782 6783
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6784
	}
6785 6786 6787 6788 6789 6790 6791

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6792
	dev_priv->rps.enabled = true;
6793 6794
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6795

6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6806
	rcs = dev_priv->engine[RCS];
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6859 6860
static void ibx_init_clock_gating(struct drm_device *dev)
{
6861
	struct drm_i915_private *dev_priv = to_i915(dev);
6862 6863 6864 6865 6866 6867 6868 6869 6870

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6871 6872
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
6873
	struct drm_i915_private *dev_priv = to_i915(dev);
6874
	enum pipe pipe;
6875

6876
	for_each_pipe(dev_priv, pipe) {
6877 6878 6879
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6880 6881 6882

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6883 6884 6885
	}
}

6886 6887
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
6888
	struct drm_i915_private *dev_priv = to_i915(dev);
6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6900
static void ironlake_init_clock_gating(struct drm_device *dev)
6901
{
6902
	struct drm_i915_private *dev_priv = to_i915(dev);
6903
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6904

6905 6906 6907 6908
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6909 6910 6911
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6929
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6930 6931 6932
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6933 6934

	ilk_init_lp_watermarks(dev);
6935 6936 6937 6938 6939 6940 6941 6942

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6943
	if (IS_IRONLAKE_M(dev_priv)) {
6944
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6945 6946 6947 6948 6949 6950 6951 6952
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6953 6954
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6955 6956 6957 6958 6959 6960
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6961

6962
	/* WaDisableRenderCachePipelinedFlush:ilk */
6963 6964
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6965

6966 6967 6968
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6969
	g4x_disable_trickle_feed(dev);
6970

6971 6972 6973 6974 6975
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
6976
	struct drm_i915_private *dev_priv = to_i915(dev);
6977
	int pipe;
6978
	uint32_t val;
6979 6980 6981 6982 6983 6984

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6985 6986 6987
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6988 6989
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6990 6991 6992
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6993
	for_each_pipe(dev_priv, pipe) {
6994 6995 6996
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6997
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6998
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6999 7000 7001
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7002 7003
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7004
	/* WADP0ClockGatingDisable */
7005
	for_each_pipe(dev_priv, pipe) {
7006 7007 7008
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7009 7010
}

7011 7012
static void gen6_check_mch_setup(struct drm_device *dev)
{
7013
	struct drm_i915_private *dev_priv = to_i915(dev);
7014 7015 7016
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7017 7018 7019
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7020 7021
}

7022
static void gen6_init_clock_gating(struct drm_device *dev)
7023
{
7024
	struct drm_i915_private *dev_priv = to_i915(dev);
7025
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7026

7027
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7028 7029 7030 7031 7032

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7033
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7034 7035 7036
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7037 7038 7039
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7040 7041 7042
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7043 7044 7045 7046
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7047 7048
	 */
	I915_WRITE(GEN6_GT_MODE,
7049
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7050

7051
	ilk_init_lp_watermarks(dev);
7052 7053

	I915_WRITE(CACHE_MODE_0,
7054
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7070
	 *
7071 7072
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7073 7074 7075 7076 7077
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7078
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7079 7080
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7081

7082 7083 7084 7085 7086 7087 7088 7089
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7090 7091 7092 7093 7094 7095 7096 7097
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7098 7099
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7100 7101 7102 7103 7104 7105 7106
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7107 7108 7109 7110
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7111

7112
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
7113

7114
	cpt_init_clock_gating(dev);
7115 7116

	gen6_check_mch_setup(dev);
7117 7118 7119 7120 7121 7122
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7123
	/*
7124
	 * WaVSThreadDispatchOverride:ivb,vlv
7125 7126 7127 7128
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7129 7130 7131 7132 7133 7134 7135 7136
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7137 7138
static void lpt_init_clock_gating(struct drm_device *dev)
{
7139
	struct drm_i915_private *dev_priv = to_i915(dev);
7140 7141 7142 7143 7144

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7145
	if (HAS_PCH_LPT_LP(dev_priv))
7146 7147 7148
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7149 7150

	/* WADPOClockGatingDisable:hsw */
7151 7152
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7153
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7154 7155
}

7156 7157
static void lpt_suspend_hw(struct drm_device *dev)
{
7158
	struct drm_i915_private *dev_priv = to_i915(dev);
7159

7160
	if (HAS_PCH_LPT_LP(dev_priv)) {
7161 7162 7163 7164 7165 7166 7167
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7191 7192
static void kabylake_init_clock_gating(struct drm_device *dev)
{
7193
	struct drm_i915_private *dev_priv = dev->dev_private;
7194

7195
	gen9_init_clock_gating(dev);
7196 7197 7198 7199 7200

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7201 7202 7203 7204 7205

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7206 7207 7208 7209

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7210 7211
}

7212 7213
static void skylake_init_clock_gating(struct drm_device *dev)
{
7214
	struct drm_i915_private *dev_priv = dev->dev_private;
7215

7216
	gen9_init_clock_gating(dev);
7217 7218 7219 7220

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7221 7222 7223 7224

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7225 7226
}

7227
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7228
{
7229
	struct drm_i915_private *dev_priv = to_i915(dev);
7230
	enum pipe pipe;
B
Ben Widawsky 已提交
7231

7232
	ilk_init_lp_watermarks(dev);
7233

7234
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7235
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7236

7237
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7238 7239 7240
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7241
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7242
	for_each_pipe(dev_priv, pipe) {
7243
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7244
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7245
			   BDW_DPRS_MASK_VBLANK_SRD);
7246
	}
7247

7248 7249 7250 7251 7252
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7253

7254 7255
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7256 7257 7258 7259

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7260

7261 7262
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7263

7264 7265 7266 7267 7268 7269 7270
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7271 7272 7273 7274
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7275
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7276 7277
}

7278 7279
static void haswell_init_clock_gating(struct drm_device *dev)
{
7280
	struct drm_i915_private *dev_priv = to_i915(dev);
7281

7282
	ilk_init_lp_watermarks(dev);
7283

7284 7285 7286 7287 7288
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7289
	/* This is required by WaCatErrorRejectionIssue:hsw */
7290 7291 7292 7293
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7294 7295 7296
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7297

7298 7299 7300
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7301 7302 7303 7304
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7305
	/* WaDisable4x2SubspanOptimization:hsw */
7306 7307
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7308

7309 7310 7311
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7312 7313 7314 7315
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7316 7317
	 */
	I915_WRITE(GEN7_GT_MODE,
7318
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7319

7320 7321 7322 7323
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7324
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7325 7326
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7327 7328 7329
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7330

7331
	lpt_init_clock_gating(dev);
7332 7333
}

7334
static void ivybridge_init_clock_gating(struct drm_device *dev)
7335
{
7336
	struct drm_i915_private *dev_priv = to_i915(dev);
7337
	uint32_t snpcr;
7338

7339
	ilk_init_lp_watermarks(dev);
7340

7341
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7342

7343
	/* WaDisableEarlyCull:ivb */
7344 7345 7346
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7347
	/* WaDisableBackToBackFlipFix:ivb */
7348 7349 7350 7351
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7352
	/* WaDisablePSDDualDispatchEnable:ivb */
7353
	if (IS_IVB_GT1(dev_priv))
7354 7355 7356
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7357 7358 7359
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7360
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7361 7362 7363
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7364
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7365 7366 7367
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7368
		   GEN7_WA_L3_CHICKEN_MODE);
7369
	if (IS_IVB_GT1(dev_priv))
7370 7371
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7372 7373 7374 7375
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7376 7377
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7378
	}
7379

7380
	/* WaForceL3Serialization:ivb */
7381 7382 7383
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7384
	/*
7385
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7386
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7387 7388
	 */
	I915_WRITE(GEN6_UCGCTL2,
7389
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7390

7391
	/* This is required by WaCatErrorRejectionIssue:ivb */
7392 7393 7394 7395
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7396
	g4x_disable_trickle_feed(dev);
7397 7398

	gen7_setup_fixed_func_scheduler(dev_priv);
7399

7400 7401 7402 7403 7404
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7405

7406
	/* WaDisable4x2SubspanOptimization:ivb */
7407 7408
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7409

7410 7411 7412
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7413 7414 7415 7416
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7417 7418
	 */
	I915_WRITE(GEN7_GT_MODE,
7419
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7420

7421 7422 7423 7424
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7425

7426
	if (!HAS_PCH_NOP(dev_priv))
7427
		cpt_init_clock_gating(dev);
7428 7429

	gen6_check_mch_setup(dev);
7430 7431
}

7432
static void valleyview_init_clock_gating(struct drm_device *dev)
7433
{
7434
	struct drm_i915_private *dev_priv = to_i915(dev);
7435

7436
	/* WaDisableEarlyCull:vlv */
7437 7438 7439
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7440
	/* WaDisableBackToBackFlipFix:vlv */
7441 7442 7443 7444
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7445
	/* WaPsdDispatchEnable:vlv */
7446
	/* WaDisablePSDDualDispatchEnable:vlv */
7447
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7448 7449
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7450

7451 7452 7453
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7454
	/* WaForceL3Serialization:vlv */
7455 7456 7457
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7458
	/* WaDisableDopClockGating:vlv */
7459 7460 7461
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7462
	/* This is required by WaCatErrorRejectionIssue:vlv */
7463 7464 7465 7466
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7467 7468
	gen7_setup_fixed_func_scheduler(dev_priv);

7469
	/*
7470
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7471
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7472 7473
	 */
	I915_WRITE(GEN6_UCGCTL2,
7474
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7475

7476 7477 7478 7479 7480
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7481

7482 7483 7484 7485
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7486 7487
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7488

7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7500 7501 7502 7503 7504 7505
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7506
	/*
7507
	 * WaDisableVLVClockGating_VBIIssue:vlv
7508 7509 7510
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7511
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7512 7513
}

7514 7515
static void cherryview_init_clock_gating(struct drm_device *dev)
{
7516
	struct drm_i915_private *dev_priv = to_i915(dev);
7517

7518 7519 7520 7521 7522
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7523 7524 7525 7526

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7527 7528 7529 7530

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7531 7532 7533 7534

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7535

7536 7537 7538 7539 7540 7541 7542
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7543 7544 7545 7546 7547
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7548 7549
}

7550
static void g4x_init_clock_gating(struct drm_device *dev)
7551
{
7552
	struct drm_i915_private *dev_priv = to_i915(dev);
7553 7554 7555 7556 7557 7558 7559 7560 7561 7562
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7563
	if (IS_GM45(dev_priv))
7564 7565
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7566 7567 7568 7569

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7570

7571 7572 7573
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7574
	g4x_disable_trickle_feed(dev);
7575 7576
}

7577
static void crestline_init_clock_gating(struct drm_device *dev)
7578
{
7579
	struct drm_i915_private *dev_priv = to_i915(dev);
7580 7581 7582 7583 7584 7585

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7586 7587
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7588 7589 7590

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7591 7592
}

7593
static void broadwater_init_clock_gating(struct drm_device *dev)
7594
{
7595
	struct drm_i915_private *dev_priv = to_i915(dev);
7596 7597 7598 7599 7600 7601 7602

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7603 7604
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7605 7606 7607

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7608 7609
}

7610
static void gen3_init_clock_gating(struct drm_device *dev)
7611
{
7612
	struct drm_i915_private *dev_priv = to_i915(dev);
7613 7614 7615 7616 7617
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7618 7619 7620

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7621 7622 7623

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7624 7625

	/* interrupts should cause a wake up from C3 */
7626
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7627 7628 7629

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7630 7631 7632

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7633 7634
}

7635
static void i85x_init_clock_gating(struct drm_device *dev)
7636
{
7637
	struct drm_i915_private *dev_priv = to_i915(dev);
7638 7639

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7640 7641 7642 7643

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7644 7645 7646

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7647 7648
}

7649
static void i830_init_clock_gating(struct drm_device *dev)
7650
{
7651
	struct drm_i915_private *dev_priv = to_i915(dev);
7652 7653

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7654 7655 7656 7657

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7658 7659 7660 7661
}

void intel_init_clock_gating(struct drm_device *dev)
{
7662
	struct drm_i915_private *dev_priv = to_i915(dev);
7663

7664
	dev_priv->display.init_clock_gating(dev);
7665 7666
}

7667 7668
void intel_suspend_hw(struct drm_device *dev)
{
7669
	if (HAS_PCH_LPT(to_i915(dev)))
7670 7671 7672
		lpt_suspend_hw(dev);
}

7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7690
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7691
	else if (IS_KABYLAKE(dev_priv))
7692
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7727 7728 7729
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
7730
	struct drm_i915_private *dev_priv = to_i915(dev);
7731

7732
	intel_fbc_init(dev_priv);
7733

7734 7735 7736
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
7737
	else if (IS_GEN5(dev_priv))
7738 7739
		i915_ironlake_get_mem_freq(dev);

7740
	/* For FIFO watermark updates */
7741
	if (INTEL_INFO(dev)->gen >= 9) {
7742
		skl_setup_wm_latency(dev);
7743
		dev_priv->display.update_wm = skl_update_wm;
7744
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7745
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7746
		ilk_setup_wm_latency(dev);
7747

7748
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7749
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7750
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7751
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7752
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7753 7754 7755 7756 7757 7758
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7759 7760 7761 7762
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7763
	} else if (IS_CHERRYVIEW(dev_priv)) {
7764 7765
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7766
	} else if (IS_VALLEYVIEW(dev_priv)) {
7767 7768
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7769
	} else if (IS_PINEVIEW(dev)) {
7770
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7771 7772 7773 7774 7775 7776 7777 7778 7779
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7780
			intel_set_memory_cxsr(dev_priv, false);
7781 7782 7783
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7784
	} else if (IS_G4X(dev_priv)) {
7785
		dev_priv->display.update_wm = g4x_update_wm;
7786
	} else if (IS_GEN4(dev_priv)) {
7787
		dev_priv->display.update_wm = i965_update_wm;
7788
	} else if (IS_GEN3(dev_priv)) {
7789 7790
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7791
	} else if (IS_GEN2(dev_priv)) {
7792 7793
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7794
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7795 7796
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7797
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7798 7799 7800
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7801 7802 7803
	}
}

7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7816
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7848
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7849
{
7850 7851
	int status;

7852
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7853

7854 7855 7856 7857 7858 7859
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7860 7861 7862 7863
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7864 7865 7866
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7867

7868 7869 7870
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7871 7872 7873 7874
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7875 7876
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7877

7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7889 7890 7891
	return 0;
}

7892
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7893
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7894
{
7895 7896
	int status;

7897
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7898

7899 7900 7901 7902 7903 7904
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7905 7906 7907 7908
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7909 7910
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7911

7912 7913 7914
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7915 7916 7917 7918
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7919
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7920

7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7932 7933
	return 0;
}
7934

7935 7936
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7937 7938 7939 7940 7941
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7942 7943
}

7944
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7945
{
7946
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7947 7948
}

7949
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7950
{
7951 7952 7953 7954 7955
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7956 7957
}

7958
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7959
{
7960
	/* CHV needs even values */
7961
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7962 7963
}

7964
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7965
{
7966
	if (IS_GEN9(dev_priv))
7967 7968
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7969
	else if (IS_CHERRYVIEW(dev_priv))
7970
		return chv_gpu_freq(dev_priv, val);
7971
	else if (IS_VALLEYVIEW(dev_priv))
7972 7973 7974
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7975 7976
}

7977 7978
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7979
	if (IS_GEN9(dev_priv))
7980 7981
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7982
	else if (IS_CHERRYVIEW(dev_priv))
7983
		return chv_freq_opcode(dev_priv, val);
7984
	else if (IS_VALLEYVIEW(dev_priv))
7985 7986
		return byt_freq_opcode(dev_priv, val);
	else
7987
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7988
}
7989

7990 7991
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7992
	struct drm_i915_gem_request *req;
7993 7994 7995 7996 7997
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7998
	struct drm_i915_gem_request *req = boost->req;
7999

8000
	if (!i915_gem_request_completed(req))
8001
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8002

8003
	i915_gem_request_put(req);
8004 8005 8006
	kfree(boost);
}

8007
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8008 8009 8010
{
	struct request_boost *boost;

8011
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8012 8013
		return;

8014
	if (i915_gem_request_completed(req))
8015 8016
		return;

8017 8018 8019 8020
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8021
	boost->req = i915_gem_request_get(req);
8022 8023

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8024
	queue_work(req->i915->wq, &boost->work);
8025 8026
}

D
Daniel Vetter 已提交
8027
void intel_pm_setup(struct drm_device *dev)
8028
{
8029
	struct drm_i915_private *dev_priv = to_i915(dev);
8030

D
Daniel Vetter 已提交
8031
	mutex_init(&dev_priv->rps.hw_lock);
8032
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8033

8034 8035
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8036
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8037

8038
	dev_priv->pm.suspended = false;
8039
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8040
}