intel_pm.c 220.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34

B
Ben Widawsky 已提交
35
/**
36 37
 * DOC: RC6
 *
B
Ben Widawsky 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

58
static void gen9_init_clock_gating(struct drm_device *dev)
59
{
60 61
	struct drm_i915_private *dev_priv = dev->dev_private;

62
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 64 65
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

66 67
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68 69 70 71

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72 73

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 75 76 77
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
78 79 80 81

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
82 83 84 85 86 87 88 89
}

static void bxt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	gen9_init_clock_gating(dev);

90 91 92 93
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

94 95
	/*
	 * FIXME:
96
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 98
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100 101 102 103 104 105 106 107

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
108 109
}

110 111
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = dev->dev_private;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
151
	struct drm_i915_private *dev_priv = dev->dev_private;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

177
	dev_priv->ips.r_t = dev_priv->mem_freq;
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
209
		dev_priv->ips.c_m = 0;
210
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211
		dev_priv->ips.c_m = 1;
212
	} else {
213
		dev_priv->ips.c_m = 2;
214 215 216
	}
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

255
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

317 318 319
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

320
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321
{
322 323
	struct drm_device *dev = dev_priv->dev;
	u32 val;
324

325
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327
		POSTING_READ(FW_BLC_SELF_VLV);
328
		dev_priv->wm.vlv.cxsr = enable;
329 330
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331
		POSTING_READ(FW_BLC_SELF);
332 333 334 335
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337 338 339 340
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
341
		POSTING_READ(FW_BLC_SELF);
342 343 344 345
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
346
		POSTING_READ(INSTPM);
347 348 349
	} else {
		return;
	}
350

351 352
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
353 354
}

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
370
static const int pessimal_latency_ns = 5000;
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

427
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

443
static int i830_get_fifo_size(struct drm_device *dev, int plane)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

460
static int i845_get_fifo_size(struct drm_device *dev, int plane)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
478 479 480 481 482
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 484
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
485 486 487 488 489
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 491
};
static const struct intel_watermark_params pineview_cursor_wm = {
492 493 494 495 496
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 498
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499 500 501 502 503
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 505
};
static const struct intel_watermark_params g4x_wm_info = {
506 507 508 509 510
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
511 512
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
513 514 515 516 517
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
518 519
};
static const struct intel_watermark_params i965_cursor_wm_info = {
520 521 522 523 524
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
525 526
};
static const struct intel_watermark_params i945_wm_info = {
527 528 529 530 531
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
532 533
};
static const struct intel_watermark_params i915_wm_info = {
534 535 536 537 538
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
539
};
540
static const struct intel_watermark_params i830_a_wm_info = {
541 542 543 544 545
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
546
};
547 548 549 550 551 552 553
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
554
static const struct intel_watermark_params i845_wm_info = {
555 556 557 558 559
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
560 561 562 563 564 565
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
566
 * @cpp: bytes per pixel
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
582
					int fifo_size, int cpp,
583 584 585 586 587 588 589 590 591 592
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
593
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594 595 596 597 598 599 600 601 602 603 604 605 606 607
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
608 609 610 611 612 613 614 615 616 617 618

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

619 620 621 622 623 624 625
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

626
	for_each_crtc(dev, crtc) {
627
		if (intel_crtc_active(crtc)) {
628 629 630 631 632 633 634 635 636
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

637
static void pineview_update_wm(struct drm_crtc *unused_crtc)
638
{
639
	struct drm_device *dev = unused_crtc->dev;
640 641 642 643 644 645 646 647 648 649
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650
		intel_set_memory_cxsr(dev_priv, false);
651 652 653 654 655
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
656
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658
		int clock = adjusted_mode->crtc_clock;
659 660 661 662

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
663
					cpp, latency->display_sr);
664 665
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
666
		reg |= FW_WM(wm, SR);
667 668 669 670 671 672
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
673
					cpp, latency->cursor_sr);
674 675
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
676
		reg |= FW_WM(wm, CURSOR_SR);
677 678 679 680 681
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
682
					cpp, latency->display_hpll_disable);
683 684
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
685
		reg |= FW_WM(wm, HPLL_SR);
686 687 688 689 690
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
691
					cpp, latency->cursor_hpll_disable);
692 693
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
694
		reg |= FW_WM(wm, HPLL_CURSOR);
695 696 697
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

698
		intel_set_memory_cxsr(dev_priv, true);
699
	} else {
700
		intel_set_memory_cxsr(dev_priv, false);
701 702 703 704 705 706 707 708 709 710 711 712 713
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
714
	const struct drm_display_mode *adjusted_mode;
715
	int htotal, hdisplay, clock, cpp;
716 717 718 719
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
720
	if (!intel_crtc_active(crtc)) {
721 722 723 724 725
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

726
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727
	clock = adjusted_mode->crtc_clock;
728
	htotal = adjusted_mode->crtc_htotal;
729
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731 732

	/* Use the small buffer method to calculate plane watermark */
733
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 735 736 737 738 739 740 741 742
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
743
	line_time_us = max(htotal * 1000 / clock, 1);
744
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
800
	const struct drm_display_mode *adjusted_mode;
801
	int hdisplay, htotal, cpp, clock;
802 803 804 805 806 807 808 809 810 811 812
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
813
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814
	clock = adjusted_mode->crtc_clock;
815
	htotal = adjusted_mode->crtc_htotal;
816
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818

819
	line_time_us = max(htotal * 1000 / clock, 1);
820
	line_count = (latency_ns / line_time_us + 1000) / 1000;
821
	line_size = hdisplay * cpp;
822 823

	/* Use the minimum of the small and large buffer method for primary */
824
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
825 826 827 828 829 830
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
831
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
832 833 834 835 836 837 838 839
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

840 841 842
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

843 844 845 846 847 848 849 850 851 852 853 854
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

855
	I915_WRITE(DSPFW1,
856 857 858 859
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860
	I915_WRITE(DSPFW2,
861 862 863
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864
	I915_WRITE(DSPFW3,
865
		   FW_WM(wm->sr.cursor, CURSOR_SR));
866 867 868

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
869 870
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871
		I915_WRITE(DSPFW8_CHV,
872 873
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874
		I915_WRITE(DSPFW9_CHV,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877
		I915_WRITE(DSPHOWM,
878 879 880 881 882 883 884 885 886 887
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888 889
	} else {
		I915_WRITE(DSPFW7,
890 891
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892
		I915_WRITE(DSPHOWM,
893 894 895 896 897 898 899
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900 901
	}

902 903 904 905 906 907
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

908
	POSTING_READ(DSPFW1);
909 910
}

911 912
#undef FW_WM_VLV

913 914 915 916 917 918
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

919 920 921 922
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
923
				   unsigned int cpp,
924 925 926 927 928
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929
	ret = (ret + 1) * horiz_pixels * cpp;
930 931 932 933 934 935 936 937 938 939 940 941
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

942 943
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

944 945 946
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947 948

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 950 951 952 953 954 955 956 957
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958
	int clock, htotal, cpp, width, wm;
959 960 961 962 963 964 965

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

966
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
982
		wm = vlv_wm_method2(clock, htotal, width, cpp,
983 984 985 986 987 988
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1090
static void vlv_compute_wm(struct intel_crtc *crtc)
1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1100
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102 1103 1104

	wm_state->num_active_planes = 0;

1105
	vlv_compute_fifo(crtc);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1162
					wm_state->wm[level].cursor;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1181
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182 1183 1184 1185 1186 1187 1188
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1279 1280 1281 1282 1283 1284
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1285
	wm->level = to_i915(dev)->wm.max_level;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1304 1305 1306
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1333
	vlv_compute_wm(intel_crtc);
1334 1335
	vlv_merge_wm(dev, &wm);

1336 1337 1338
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1339
		return;
1340
	}
1341 1342 1343 1344 1345 1346 1347 1348 1349

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1350
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351 1352
		intel_set_memory_cxsr(dev_priv, false);

1353 1354 1355
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1356 1357 1358 1359 1360 1361 1362 1363
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1364
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1376 1377
}

1378 1379
#define single_plane_enabled(mask) is_power_of_2(mask)

1380
static void g4x_update_wm(struct drm_crtc *crtc)
1381
{
1382
	struct drm_device *dev = crtc->dev;
1383 1384 1385 1386 1387
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1388
	bool cxsr_enabled;
1389

1390
	if (g4x_compute_wm0(dev, PIPE_A,
1391 1392
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1393
			    &planea_wm, &cursora_wm))
1394
		enabled |= 1 << PIPE_A;
1395

1396
	if (g4x_compute_wm0(dev, PIPE_B,
1397 1398
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1399
			    &planeb_wm, &cursorb_wm))
1400
		enabled |= 1 << PIPE_B;
1401 1402 1403 1404 1405 1406

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1407
			     &plane_sr, &cursor_sr)) {
1408
		cxsr_enabled = true;
1409
	} else {
1410
		cxsr_enabled = false;
1411
		intel_set_memory_cxsr(dev_priv, false);
1412 1413
		plane_sr = cursor_sr = 0;
	}
1414

1415 1416
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 1418 1419 1420 1421
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1422 1423 1424 1425
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1426
	I915_WRITE(DSPFW2,
1427
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428
		   FW_WM(cursora_wm, CURSORA));
1429 1430
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1431
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432
		   FW_WM(cursor_sr, CURSOR_SR));
1433 1434 1435

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1436 1437
}

1438
static void i965_update_wm(struct drm_crtc *unused_crtc)
1439
{
1440
	struct drm_device *dev = unused_crtc->dev;
1441 1442 1443 1444
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1445
	bool cxsr_enabled;
1446 1447 1448 1449 1450 1451

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1452
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453
		int clock = adjusted_mode->crtc_clock;
1454
		int htotal = adjusted_mode->crtc_htotal;
1455
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457 1458 1459
		unsigned long line_time_us;
		int entries;

1460
		line_time_us = max(htotal * 1000 / clock, 1);
1461 1462 1463

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464
			cpp * hdisplay;
1465 1466 1467 1468 1469 1470 1471 1472 1473
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474
			cpp * crtc->cursor->state->crtc_w;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1486
		cxsr_enabled = true;
1487
	} else {
1488
		cxsr_enabled = false;
1489
		/* Turn off self refresh if both pipes are enabled */
1490
		intel_set_memory_cxsr(dev_priv, false);
1491 1492 1493 1494 1495 1496
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1497 1498 1499 1500 1501 1502
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1503
	/* update cursor SR watermark */
1504
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505 1506 1507

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1508 1509
}

1510 1511
#undef FW_WM

1512
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513
{
1514
	struct drm_device *dev = unused_crtc->dev;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1529
		wm_info = &i830_a_wm_info;
1530 1531 1532

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1533
	if (intel_crtc_active(crtc)) {
1534
		const struct drm_display_mode *adjusted_mode;
1535
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536 1537 1538
		if (IS_GEN2(dev))
			cpp = 4;

1539
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541
					       wm_info, fifo_size, cpp,
1542
					       pessimal_latency_ns);
1543
		enabled = crtc;
1544
	} else {
1545
		planea_wm = fifo_size - wm_info->guard_size;
1546 1547 1548 1549 1550 1551
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1552 1553 1554

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1555
	if (intel_crtc_active(crtc)) {
1556
		const struct drm_display_mode *adjusted_mode;
1557
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558 1559 1560
		if (IS_GEN2(dev))
			cpp = 4;

1561
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563
					       wm_info, fifo_size, cpp,
1564
					       pessimal_latency_ns);
1565 1566 1567 1568
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1569
	} else {
1570
		planeb_wm = fifo_size - wm_info->guard_size;
1571 1572 1573
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1574 1575 1576

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1577
	if (IS_I915GM(dev) && enabled) {
1578
		struct drm_i915_gem_object *obj;
1579

1580
		obj = intel_fb_obj(enabled->primary->state->fb);
1581 1582

		/* self-refresh seems busted with untiled */
1583
		if (obj->tiling_mode == I915_TILING_NONE)
1584 1585 1586
			enabled = NULL;
	}

1587 1588 1589 1590 1591 1592
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1593
	intel_set_memory_cxsr(dev_priv, false);
1594 1595 1596 1597 1598

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1599
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600
		int clock = adjusted_mode->crtc_clock;
1601
		int htotal = adjusted_mode->crtc_htotal;
1602
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604 1605 1606
		unsigned long line_time_us;
		int entries;

1607
		line_time_us = max(htotal * 1000 / clock, 1);
1608 1609 1610

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611
			cpp * hdisplay;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1638 1639
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1640 1641
}

1642
static void i845_update_wm(struct drm_crtc *unused_crtc)
1643
{
1644
	struct drm_device *dev = unused_crtc->dev;
1645 1646
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1647
	const struct drm_display_mode *adjusted_mode;
1648 1649 1650 1651 1652 1653 1654
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1655
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657
				       &i845_wm_info,
1658
				       dev_priv->display.get_fifo_size(dev, 0),
1659
				       4, pessimal_latency_ns);
1660 1661 1662 1663 1664 1665 1666 1667
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1668
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669
{
1670
	uint32_t pixel_rate;
1671

1672
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673 1674 1675 1676

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1677
	if (pipe_config->pch_pfit.enabled) {
1678
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679 1680 1681 1682
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1683 1684 1685 1686 1687 1688 1689 1690

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1691 1692 1693
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1694 1695 1696 1697 1698 1699 1700
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1701
/* latency must be in 0.1us units. */
1702
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 1704 1705
{
	uint64_t ret;

1706 1707 1708
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1709
	ret = (uint64_t) pixel_rate * cpp * latency;
1710 1711 1712 1713 1714
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1715
/* latency must be in 0.1us units. */
1716
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717
			       uint32_t horiz_pixels, uint8_t cpp,
1718 1719 1720 1721
			       uint32_t latency)
{
	uint32_t ret;

1722 1723
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1724 1725
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1726

1727
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728
	ret = (ret + 1) * horiz_pixels * cpp;
1729 1730 1731 1732
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1733
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734
			   uint8_t cpp)
1735
{
1736 1737 1738 1739 1740 1741
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1742
	if (WARN_ON(!cpp))
1743 1744 1745 1746
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1747
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 1749
}

1750
struct ilk_wm_maximums {
1751 1752 1753 1754 1755 1756
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1757 1758 1759 1760
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1761
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762
				   const struct intel_plane_state *pstate,
1763 1764
				   uint32_t mem_value,
				   bool is_lp)
1765
{
1766 1767
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768 1769
	uint32_t method1, method2;

1770
	if (!cstate->base.active || !pstate->visible)
1771 1772
		return 0;

1773
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774 1775 1776 1777

	if (!is_lp)
		return method1;

1778 1779
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1780
				 drm_rect_width(&pstate->dst),
1781
				 cpp, mem_value);
1782 1783

	return min(method1, method2);
1784 1785
}

1786 1787 1788 1789
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1790
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791
				   const struct intel_plane_state *pstate,
1792 1793
				   uint32_t mem_value)
{
1794 1795
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796 1797
	uint32_t method1, method2;

1798
	if (!cstate->base.active || !pstate->visible)
1799 1800
		return 0;

1801
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802 1803
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1804
				 drm_rect_width(&pstate->dst),
1805
				 cpp, mem_value);
1806 1807 1808
	return min(method1, method2);
}

1809 1810 1811 1812
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1813
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814
				   const struct intel_plane_state *pstate,
1815 1816
				   uint32_t mem_value)
{
1817 1818 1819 1820 1821 1822 1823
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1824

1825
	if (!cstate->base.active)
1826 1827
		return 0;

1828 1829
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1830
			      width, cpp, mem_value);
1831 1832
}

1833
/* Only for WM_LP. */
1834
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835
				   const struct intel_plane_state *pstate,
1836
				   uint32_t pri_val)
1837
{
1838 1839
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840

1841
	if (!cstate->base.active || !pstate->visible)
1842 1843
		return 0;

1844
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 1846
}

1847 1848
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1849 1850 1851
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1852 1853 1854 1855 1856
		return 768;
	else
		return 512;
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1891 1892 1893
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1894
				     const struct intel_wm_config *config,
1895 1896 1897 1898 1899 1900
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1901
	if (is_sprite && !config->sprites_enabled)
1902 1903 1904
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1905
	if (level == 0 || config->num_pipes_active > 1) {
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1917
	if (config->sprites_enabled) {
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1929
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 1931 1932 1933
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934 1935
				      int level,
				      const struct intel_wm_config *config)
1936 1937
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1938
	if (level > 0 && config->num_pipes_active > 1)
1939 1940 1941
		return 64;

	/* otherwise just report max that registers can hold */
1942
	return ilk_cursor_wm_reg_max(dev, level);
1943 1944
}

1945
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946 1947 1948
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1949
				    struct ilk_wm_maximums *max)
1950
{
1951 1952 1953
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1954
	max->fbc = ilk_fbc_wm_reg_max(dev);
1955 1956
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1967
static bool ilk_validate_wm_level(int level,
1968
				  const struct ilk_wm_maximums *max,
1969
				  struct intel_wm_level *result)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2008
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009
				 const struct intel_crtc *intel_crtc,
2010
				 int level,
2011
				 struct intel_crtc_state *cstate,
2012 2013 2014
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2015
				 struct intel_wm_level *result)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2040 2041 2042
	result->enable = true;
}

2043
static uint32_t
2044
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045
{
2046 2047
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2048 2049
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2050
	u32 linetime, ips_linetime;
2051

2052 2053 2054 2055
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2056
	if (WARN_ON(intel_state->cdclk == 0))
2057
		return 0;
2058

2059 2060 2061
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2062 2063 2064
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065
					 intel_state->cdclk);
2066

2067 2068
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2069 2070
}

2071
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072 2073 2074
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2075 2076
	if (IS_GEN9(dev)) {
		uint32_t val;
2077
		int ret, i;
2078
		int level, max_level = ilk_wm_max_level(dev);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2121
		/*
2122 2123
		 * WaWmMemoryReadLatency:skl
		 *
2124 2125 2126 2127 2128 2129 2130 2131
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2132 2133 2134 2135 2136
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2137 2138 2139 2140 2141
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2142 2143 2144
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2145

2146 2147
				break;
			}
2148
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149 2150 2151 2152 2153
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2154 2155 2156 2157
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2158 2159 2160 2161 2162 2163 2164
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165 2166 2167 2168 2169 2170 2171
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172 2173 2174
	}
}

2175 2176 2177
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
2178
	if (IS_GEN5(dev))
2179 2180 2181 2182 2183 2184
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
2185
	if (IS_GEN5(dev))
2186 2187 2188 2189 2190 2191 2192
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2193
int ilk_wm_max_level(const struct drm_device *dev)
2194 2195
{
	/* how many WM levels are we expecting */
2196
	if (INTEL_INFO(dev)->gen >= 9)
2197 2198
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199
		return 4;
2200
	else if (INTEL_INFO(dev)->gen >= 6)
2201
		return 3;
2202
	else
2203 2204
		return 2;
}
2205

2206 2207
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2208
				   const uint16_t wm[8])
2209 2210
{
	int level, max_level = ilk_wm_max_level(dev);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2221 2222 2223 2224 2225 2226 2227
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2228 2229 2230 2231 2232 2233 2234 2235
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2273
static void ilk_setup_wm_latency(struct drm_device *dev)
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286 2287 2288 2289

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290 2291 2292

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2293 2294
}

2295 2296 2297 2298 2299 2300 2301 2302
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2326
/* Compute new watermarks for the pipe */
2327
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328
{
2329 2330
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331
	struct intel_pipe_wm *pipe_wm;
2332
	struct drm_device *dev = state->dev;
2333
	const struct drm_i915_private *dev_priv = dev->dev_private;
2334
	struct intel_plane *intel_plane;
2335
	struct intel_plane_state *pristate = NULL;
2336
	struct intel_plane_state *sprstate = NULL;
2337
	struct intel_plane_state *curstate = NULL;
2338
	int level, max_level = ilk_wm_max_level(dev), usable_level;
2339
	struct ilk_wm_maximums max;
2340

2341
	pipe_wm = &cstate->wm.ilk.optimal;
2342

2343
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344 2345 2346 2347 2348 2349
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2350 2351

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352
			pristate = ps;
2353
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354
			sprstate = ps;
2355
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356
			curstate = ps;
2357 2358
	}

2359
	pipe_wm->pipe_enabled = cstate->base.active;
2360 2361 2362 2363 2364 2365 2366
	if (sprstate) {
		pipe_wm->sprites_enabled = sprstate->visible;
		pipe_wm->sprites_scaled = sprstate->visible &&
			(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
			 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
	}

2367 2368
	usable_level = max_level;

2369
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2370
	if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371
		usable_level = 1;
2372 2373

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374
	if (pipe_wm->sprites_scaled)
2375
		usable_level = 0;
2376

2377
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378 2379 2380 2381
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382

2383
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385

2386
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387
		return -EINVAL;
2388 2389 2390 2391

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
2392
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393

2394
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395
				     pristate, sprstate, curstate, wm);
2396 2397 2398 2399 2400 2401

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2402 2403 2404 2405 2406 2407
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2408
			usable_level = level;
2409 2410
	}

2411
	return 0;
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421 2422
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2423
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424 2425 2426 2427 2428 2429 2430 2431
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
	int level, max_level = ilk_wm_max_level(dev);

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2432
	*a = newstate->wm.ilk.optimal;
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2461
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462 2463 2464 2465 2466
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2476 2477
	ret_wm->enable = true;

2478
	for_each_intel_crtc(dev, intel_crtc) {
2479
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480 2481 2482 2483
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2484

2485 2486 2487 2488 2489
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2490
		if (!wm->enable)
2491
			ret_wm->enable = false;
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2504
			 const struct intel_wm_config *config,
2505
			 const struct ilk_wm_maximums *max,
2506 2507
			 struct intel_pipe_wm *merged)
{
2508
	struct drm_i915_private *dev_priv = dev->dev_private;
2509
	int level, max_level = ilk_wm_max_level(dev);
2510
	int last_enabled_level = max_level;
2511

2512 2513 2514
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
2515
		last_enabled_level = 0;
2516

2517 2518
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519 2520 2521 2522 2523 2524 2525

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2526 2527 2528 2529 2530
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2531 2532 2533 2534 2535 2536

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2537 2538
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2539 2540 2541
			wm->fbc_val = 0;
		}
	}
2542 2543 2544 2545 2546 2547 2548

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2549
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550
	    intel_fbc_is_active(dev_priv)) {
2551 2552 2553 2554 2555 2556
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2557 2558
}

2559 2560 2561 2562 2563 2564
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2565 2566 2567 2568 2569
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2570
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571 2572 2573 2574 2575
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2576
static void ilk_compute_wm_results(struct drm_device *dev,
2577
				   const struct intel_pipe_wm *merged,
2578
				   enum intel_ddb_partitioning partitioning,
2579
				   struct ilk_wm_values *results)
2580
{
2581 2582
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2583

2584
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2585
	results->partitioning = partitioning;
2586

2587
	/* LP1+ register values */
2588
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589
		const struct intel_wm_level *r;
2590

2591
		level = ilk_wm_lp_to_level(wm_lp, merged);
2592

2593
		r = &merged->wm[level];
2594

2595 2596 2597 2598 2599
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2600
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601 2602 2603
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2604 2605 2606
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2607 2608 2609 2610 2611 2612 2613
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2614 2615 2616 2617
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2618 2619 2620 2621 2622
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623
	}
2624

2625
	/* LP0 register values */
2626
	for_each_intel_crtc(dev, intel_crtc) {
2627
		enum pipe pipe = intel_crtc->pipe;
2628 2629
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2630 2631 2632 2633

		if (WARN_ON(!r->enable))
			continue;

2634
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635

2636 2637 2638 2639
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2640 2641 2642
	}
}

2643 2644
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2645
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646 2647
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2648
{
2649 2650
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2651

2652 2653 2654 2655 2656
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2657 2658
	}

2659 2660
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661 2662 2663
			return r2;
		else
			return r1;
2664
	} else if (level1 > level2) {
2665 2666 2667 2668 2669 2670
		return r1;
	} else {
		return r2;
	}
}

2671 2672 2673 2674 2675 2676 2677 2678
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2679
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680 2681
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2682 2683 2684 2685 2686
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2687
	for_each_pipe(dev_priv, pipe) {
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2731 2732
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2733
{
2734
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735
	bool changed = false;
2736

2737 2738 2739
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740
		changed = true;
2741 2742 2743 2744
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745
		changed = true;
2746 2747 2748 2749
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750
		changed = true;
2751
	}
2752

2753 2754 2755 2756
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2757

2758 2759 2760 2761 2762 2763 2764
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2765 2766
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2767 2768
{
	struct drm_device *dev = dev_priv->dev;
2769
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770 2771 2772
	unsigned int dirty;
	uint32_t val;

2773
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774 2775 2776 2777 2778
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2779
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784 2785
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2786
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791 2792
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2793
	if (dirty & WM_DIRTY_DDB) {
2794
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2809 2810
	}

2811
	if (dirty & WM_DIRTY_FBC) {
2812 2813 2814 2815 2816 2817 2818 2819
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2820 2821 2822 2823 2824
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2825 2826 2827 2828 2829
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2830

2831
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837 2838

	dev_priv->wm.hw = *results;
2839 2840
}

2841
bool ilk_disable_lp_wm(struct drm_device *dev)
2842 2843 2844 2845 2846 2847
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2848 2849 2850 2851 2852 2853
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2854
#define BXT_DDB_SIZE		512
2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2878 2879
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2880
				   const struct intel_crtc_state *cstate,
2881 2882
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
2883
{
2884 2885 2886
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
2887
	struct drm_crtc *for_crtc = cstate->base.crtc;
2888 2889
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
2890 2891
	int pipe = to_intel_crtc(for_crtc)->pipe;

2892
	if (WARN_ON(!state) || !cstate->base.active) {
2893 2894
		alloc->start = 0;
		alloc->end = 0;
2895
		*num_active = hweight32(dev_priv->active_crtcs);
2896 2897 2898
		return;
	}

2899 2900 2901 2902 2903
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

2904 2905 2906 2907
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2908 2909 2910

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

2911
	/*
2912 2913 2914 2915 2916 2917
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
2918
	 */
2919 2920 2921
	if (!intel_state->active_pipe_changes) {
		*alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
		return;
2922
	}
2923 2924 2925 2926 2927 2928

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
2929 2930
}

2931
static unsigned int skl_cursor_allocation(int num_active)
2932
{
2933
	if (num_active == 1)
2934 2935 2936 2937 2938
		return 32;

	return 8;
}

2939 2940 2941 2942
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2943 2944
	if (entry->end)
		entry->end += 1;
2945 2946
}

2947 2948
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2949 2950 2951 2952 2953
{
	enum pipe pipe;
	int plane;
	u32 val;

2954 2955
	memset(ddb, 0, sizeof(*ddb));

2956
	for_each_pipe(dev_priv, pipe) {
2957 2958 2959 2960
		enum intel_display_power_domain power_domain;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2961 2962
			continue;

2963
		for_each_plane(dev_priv, pipe, plane) {
2964 2965 2966 2967 2968 2969
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2970 2971
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2972 2973

		intel_display_power_put(dev_priv, power_domain);
2974 2975 2976
	}
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

	if (WARN_ON(!pstate->visible))
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
	src_w = drm_rect_width(&pstate->src);
	src_h = drm_rect_height(&pstate->src);
	dst_w = drm_rect_width(&pstate->dst);
	dst_h = drm_rect_height(&pstate->dst);
	if (intel_rotation_90_or_270(pstate->base.rotation))
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3017
static unsigned int
3018 3019 3020
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3021
{
3022
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3023
	struct drm_framebuffer *fb = pstate->fb;
3024
	uint32_t down_scale_amount, data_rate;
3025
	uint32_t width = 0, height = 0;
3026 3027 3028 3029 3030 3031 3032 3033
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

	if (!intel_pstate->visible)
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3034 3035 3036 3037 3038 3039

	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(width, height);
3040 3041

	/* for planar format */
3042
	if (format == DRM_FORMAT_NV12) {
3043
		if (y)  /* y-plane data rate */
3044
			data_rate = width * height *
3045
				drm_format_plane_cpp(format, 0);
3046
		else    /* uv-plane data rate */
3047
			data_rate = (width / 2) * (height / 2) *
3048
				drm_format_plane_cpp(format, 1);
3049 3050 3051
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3052 3053
	}

3054 3055 3056
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3057 3058 3059 3060 3061 3062 3063 3064
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3065
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3066
{
3067 3068 3069 3070 3071
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
	struct drm_crtc *crtc = cstate->crtc;
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072
	const struct drm_plane *plane;
3073
	const struct intel_plane *intel_plane;
3074
	struct drm_plane_state *pstate;
3075
	unsigned int rate, total_data_rate = 0;
3076
	int id;
3077 3078 3079 3080
	int i;

	if (WARN_ON(!state))
		return 0;
3081

3082
	/* Calculate and cache data rate for each plane */
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	for_each_plane_in_state(state, plane, pstate, i) {
		id = skl_wm_plane_id(to_intel_plane(plane));
		intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe != intel_crtc->pipe)
			continue;

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
		intel_cstate->wm.skl.plane_data_rate[id] = rate;

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
		intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3099
	}
3100

3101 3102 3103
	/* Calculate CRTC's total data rate from cached values */
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int id = skl_wm_plane_id(intel_plane);
3104

3105
		/* packed/uv */
3106 3107
		total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
		total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3108 3109
	}

3110 3111
	WARN_ON(cstate->plane_mask && total_data_rate == 0);

3112 3113 3114
	return total_data_rate;
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
	if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
		return 8;

	src_w = drm_rect_width(&intel_pstate->src) >> 16;
	src_h = drm_rect_height(&intel_pstate->src) >> 16;

	if (intel_rotation_90_or_270(pstate->rotation))
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

	if (intel_rotation_90_or_270(pstate->rotation)) {
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3178
static int
3179
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3180 3181
		      struct skl_ddb_allocation *ddb /* out */)
{
3182
	struct drm_atomic_state *state = cstate->base.state;
3183
	struct drm_crtc *crtc = cstate->base.crtc;
3184 3185
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3186
	struct intel_plane *intel_plane;
3187 3188
	struct drm_plane *plane;
	struct drm_plane_state *pstate;
3189
	enum pipe pipe = intel_crtc->pipe;
3190
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3191
	uint16_t alloc_size, start, cursor_blocks;
3192 3193
	uint16_t *minimum = cstate->wm.skl.minimum_blocks;
	uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3194
	unsigned int total_data_rate;
3195 3196
	int num_active;
	int id, i;
3197

3198 3199 3200
	if (WARN_ON(!state))
		return 0;

3201 3202 3203 3204 3205 3206 3207
	if (!cstate->base.active) {
		ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
		return 0;
	}

3208
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3209
	alloc_size = skl_ddb_entry_size(alloc);
3210 3211
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212
		return 0;
3213 3214
	}

3215
	cursor_blocks = skl_cursor_allocation(num_active);
3216 3217
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3218 3219 3220

	alloc_size -= cursor_blocks;

3221
	/* 1. Allocate the mininum required blocks for each active plane */
3222 3223 3224
	for_each_plane_in_state(state, plane, pstate, i) {
		intel_plane = to_intel_plane(plane);
		id = skl_wm_plane_id(intel_plane);
3225

3226 3227
		if (intel_plane->pipe != pipe)
			continue;
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237
		if (!to_intel_plane_state(pstate)->visible) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
		}
		if (plane->type == DRM_PLANE_TYPE_CURSOR) {
			minimum[id] = 0;
			y_minimum[id] = 0;
			continue;
3238
		}
3239

3240 3241
		minimum[id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3242
	}
3243

3244 3245 3246
	for (i = 0; i < PLANE_CURSOR; i++) {
		alloc_size -= minimum[i];
		alloc_size -= y_minimum[i];
3247 3248
	}

3249
	/*
3250 3251
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3252 3253 3254
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3255
	total_data_rate = skl_get_total_relative_data_rate(cstate);
3256
	if (total_data_rate == 0)
3257
		return 0;
3258

3259
	start = alloc->start;
3260
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3261 3262
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3263
		int id = skl_wm_plane_id(intel_plane);
3264

3265
		data_rate = cstate->wm.skl.plane_data_rate[id];
3266 3267

		/*
3268
		 * allocation for (packed formats) or (uv-plane part of planar format):
3269 3270 3271
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3272
		plane_blocks = minimum[id];
3273 3274
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3275

3276 3277 3278 3279 3280
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
			ddb->plane[pipe][id].start = start;
			ddb->plane[pipe][id].end = start + plane_blocks;
		}
3281 3282

		start += plane_blocks;
3283 3284 3285 3286

		/*
		 * allocation for y_plane part of planar format:
		 */
3287 3288 3289 3290 3291
		y_data_rate = cstate->wm.skl.plane_y_data_rate[id];

		y_plane_blocks = y_minimum[id];
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3292

3293 3294 3295 3296
		if (y_data_rate) {
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
		}
3297 3298

		start += y_plane_blocks;
3299 3300
	}

3301
	return 0;
3302 3303
}

3304
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3305 3306
{
	/* TODO: Take into account the scalers once we support them */
3307
	return config->base.adjusted_mode.crtc_clock;
3308 3309 3310 3311
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3312
 * for the read latency) and cpp should always be <= 8, so that
3313 3314 3315
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3316
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3317 3318 3319 3320 3321 3322
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3323
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3324 3325 3326 3327 3328 3329
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3330
			       uint32_t horiz_pixels, uint8_t cpp,
3331
			       uint64_t tiling, uint32_t latency)
3332
{
3333 3334 3335
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3336 3337 3338 3339

	if (latency == 0)
		return UINT_MAX;

3340
	plane_bytes_per_line = horiz_pixels * cpp;
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3351 3352
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3353
				plane_blocks_per_line;
3354 3355 3356 3357

	return ret;
}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
	if (WARN_ON(!pstate->visible))
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
	adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3382 3383 3384 3385 3386 3387 3388 3389
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3390
{
3391 3392
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3393 3394 3395 3396 3397
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3398
	uint8_t cpp;
3399
	uint32_t width = 0, height = 0;
3400
	uint32_t plane_pixel_rate;
3401

3402 3403 3404 3405
	if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
		*enabled = false;
		return 0;
	}
3406

3407 3408 3409
	width = drm_rect_width(&intel_pstate->src) >> 16;
	height = drm_rect_height(&intel_pstate->src) >> 16;

3410
	if (intel_rotation_90_or_270(pstate->rotation))
3411 3412
		swap(width, height);

3413
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3414 3415 3416 3417
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3418
				 cstate->base.adjusted_mode.crtc_htotal,
3419 3420 3421
				 width,
				 cpp,
				 fb->modifier[0],
3422
				 latency);
3423

3424
	plane_bytes_per_line = width * cpp;
3425
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3426

3427 3428
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3429 3430
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3431
		if (intel_rotation_90_or_270(pstate->rotation)) {
3432
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3433 3434 3435
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3436
			switch (cpp) {
3437 3438 3439 3440 3441 3442 3443 3444
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3445
			}
3446 3447
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3448 3449 3450 3451 3452 3453 3454
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3455

3456 3457
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3458

3459
	if (level >= 1 && level <= 7) {
3460 3461
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3462 3463 3464 3465
			res_lines += 4;
		else
			res_blocks++;
	}
3466

3467 3468
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
			DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
				      to_intel_crtc(cstate->base.crtc)->pipe,
				      skl_wm_plane_id(to_intel_plane(pstate->plane)),
				      res_blocks, ddb_allocation, res_lines);

			return -EINVAL;
		}
3485
	}
3486 3487 3488

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3489
	*enabled = true;
3490

3491
	return 0;
3492 3493
}

3494 3495 3496 3497 3498 3499
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
		     int level,
		     struct skl_wm_level *result)
3500
{
3501
	struct drm_device *dev = dev_priv->dev;
3502
	struct drm_atomic_state *state = cstate->base.state;
3503
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3504
	struct drm_plane *plane;
3505
	struct intel_plane *intel_plane;
3506
	struct intel_plane_state *intel_pstate;
3507
	uint16_t ddb_blocks;
3508
	enum pipe pipe = intel_crtc->pipe;
3509
	int ret;
3510

3511 3512 3513 3514 3515 3516 3517
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(result, 0, sizeof(*result));

	for_each_intel_plane_mask(dev, intel_plane, cstate->base.plane_mask) {
3518
		int i = skl_wm_plane_id(intel_plane);
3519

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		plane = &intel_plane->base;
		intel_pstate = NULL;
		if (state)
			intel_pstate =
				intel_atomic_get_existing_plane_state(state,
								      intel_plane);

		/*
		 * Note: If we start supporting multiple pending atomic commits
		 * against the same planes/CRTC's in the future, plane->state
		 * will no longer be the correct pre-state to use for the
		 * calculations here and we'll need to change where we get the
		 * 'unchanged' plane data from.
		 *
		 * For now this is fine because we only allow one queued commit
		 * against a CRTC.  Even if the plane isn't modified by this
		 * transaction and we don't have a plane lock, we still have
		 * the CRTC's lock, so we know that no other transactions are
		 * racing with us to update it.
		 */
		if (!intel_pstate)
			intel_pstate = to_intel_plane_state(plane->state);

		WARN_ON(!intel_pstate->base.fb);

3545 3546
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556
		ret = skl_compute_plane_wm(dev_priv,
					   cstate,
					   intel_pstate,
					   ddb_blocks,
					   level,
					   &result->plane_res_b[i],
					   &result->plane_res_l[i],
					   &result->plane_en[i]);
		if (ret)
			return ret;
3557
	}
3558 3559

	return 0;
3560 3561
}

3562
static uint32_t
3563
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3564
{
3565
	if (!cstate->base.active)
3566 3567
		return 0;

3568
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3569
		return 0;
3570

3571 3572
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3573 3574
}

3575
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3576
				      struct skl_wm_level *trans_wm /* out */)
3577
{
3578
	struct drm_crtc *crtc = cstate->base.crtc;
3579
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3580
	struct intel_plane *intel_plane;
3581

3582
	if (!cstate->base.active)
3583
		return;
3584 3585

	/* Until we know more, just disable transition WMs */
3586 3587 3588
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3589
		trans_wm->plane_en[i] = false;
3590
	}
3591 3592
}

3593 3594 3595
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3596
{
3597
	struct drm_device *dev = cstate->base.crtc->dev;
3598 3599
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);
3600
	int ret;
3601 3602

	for (level = 0; level <= max_level; level++) {
3603 3604 3605 3606
		ret = skl_compute_wm_level(dev_priv, ddb, cstate,
					   level, &pipe_wm->wm[level]);
		if (ret)
			return ret;
3607
	}
3608
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3609

3610
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3611 3612

	return 0;
3613 3614 3615 3616 3617 3618 3619 3620 3621
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3622 3623
	uint32_t temp;
	int i;
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3640 3641
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3642

3643
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3644 3645
			temp |= PLANE_WM_EN;

3646
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3647 3648 3649

	}

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3662 3663 3664
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3665 3666
		temp |= PLANE_WM_EN;

3667
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3668

3669 3670 3671
	r->wm_linetime[pipe] = p_wm->linetime;
}

3672 3673
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3674 3675 3676 3677 3678 3679 3680 3681
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3682 3683 3684 3685 3686 3687
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3688
	for_each_intel_crtc(dev, crtc) {
3689 3690 3691
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3692
		if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3693
			continue;
3694 3695
		if (!crtc->active)
			continue;
3696

3697
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3698

3699 3700 3701 3702 3703
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3704
				   new->plane[pipe][PLANE_CURSOR][level]);
3705
		}
3706 3707 3708
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3709 3710
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3711

3712
		for (i = 0; i < intel_num_planes(crtc); i++) {
3713 3714 3715
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3716 3717 3718 3719
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3720 3721

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3722
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3723 3724 3725
	}
}

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3750 3751
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3752 3753 3754
{
	int plane;

3755 3756
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3757
	for_each_plane(dev_priv, pipe, plane) {
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3784
	bool reallocated[I915_MAX_PIPES] = {};
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3807
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3832
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3833
			intel_wait_for_vblank(dev, pipe);
3834
			reallocated[pipe] = true;
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3857
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3858 3859 3860
	}
}

3861 3862 3863 3864
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
			      struct skl_ddb_allocation *ddb, /* out */
			      struct skl_pipe_wm *pipe_wm, /* out */
			      bool *changed /* out */)
3865
{
3866 3867
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3868
	int ret;
3869

3870 3871 3872
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3873

3874
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3875 3876 3877
		*changed = false;
	else
		*changed = true;
3878

3879
	return 0;
3880 3881
}

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3895 3896 3897 3898 3899 3900 3901
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3902
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3903
	uint32_t realloc_pipes = pipes_modified(state);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
	if (dev_priv->wm.distrust_bios_wm)
		intel_state->active_pipe_changes = ~0;

	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
3928
	if (intel_state->active_pipe_changes) {
3929
		realloc_pipes = ~0;
3930 3931
		intel_state->wm_results.dirty_pipes = ~0;
	}
3932 3933 3934 3935 3936 3937 3938 3939

	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

3940
		ret = skl_allocate_pipe_ddb(cstate, ddb);
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
		if (ret)
			return ret;
	}

	return 0;
}

static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
3953 3954 3955
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
3956
	bool changed = false;
3957
	int ret, i;
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

3972 3973 3974
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

3975 3976 3977 3978
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);

		pipe_wm = &intel_cstate->wm.skl.optimal;
		ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
					 &changed);
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
		skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
	}

4011 4012 4013
	return 0;
}

4014 4015 4016 4017 4018 4019
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
4020
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4021
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4022

4023
	if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4024 4025
		return;

4026 4027 4028
	intel_crtc->wm.active.skl = *pipe_wm;

	mutex_lock(&dev_priv->wm.wm_mutex);
4029 4030

	skl_write_wm_values(dev_priv, results);
4031
	skl_flush_wm_values(dev_priv, results);
4032 4033 4034

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
4035 4036

	mutex_unlock(&dev_priv->wm.wm_mutex);
4037 4038
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4057
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4058
{
4059
	struct drm_device *dev = dev_priv->dev;
4060
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4061
	struct ilk_wm_maximums max;
4062
	struct intel_wm_config config = {};
4063
	struct ilk_wm_values results = {};
4064
	enum intel_ddb_partitioning partitioning;
4065

4066 4067 4068 4069
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4070 4071

	/* 5/6 split only in single pipe config on IVB+ */
4072
	if (INTEL_INFO(dev)->gen >= 7 &&
4073 4074 4075
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4076

4077
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4078
	} else {
4079
		best_lp_wm = &lp_wm_1_2;
4080 4081
	}

4082
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4083
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4084

4085
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4086

4087
	ilk_write_wm_values(dev_priv, &results);
4088 4089
}

4090
static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4091
{
4092 4093
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4094

4095
	mutex_lock(&dev_priv->wm.wm_mutex);
4096
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4097 4098 4099
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4100

4101 4102 4103 4104
static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4105

4106 4107
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4108
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4109 4110 4111
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4112 4113
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4132 4133
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
4134
					val & PLANE_WM_BLOCKS_MASK;
4135
			active->wm[level].plane_res_l[PLANE_CURSOR] =
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
4148 4149
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
4150
					val & PLANE_WM_BLOCKS_MASK;
4151
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4164
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4165
	struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
4178
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4179 4180 4181 4182
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4183
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4184

4185
	if (!intel_crtc->active)
4186 4187
		return;

4188
	hw->dirty_pipes |= drm_crtc_mask(crtc);
4189 4190 4191 4192 4193 4194 4195 4196 4197

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
4198
		temp = hw->plane[pipe][PLANE_CURSOR][level];
4199 4200 4201 4202 4203 4204 4205 4206
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

4207
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
4208
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4209 4210

	intel_crtc->wm.active.skl = *active;
4211 4212 4213 4214
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4215 4216
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4217 4218
	struct drm_crtc *crtc;

4219
	skl_ddb_get_hw_state(dev_priv, ddb);
4220 4221
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
4222

4223 4224 4225 4226 4227 4228 4229
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4230 4231
}

4232 4233 4234 4235
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
4236
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4237
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4238
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4239
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4240
	enum pipe pipe = intel_crtc->pipe;
4241
	static const i915_reg_t wm0_pipe_reg[] = {
4242 4243 4244 4245 4246 4247
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4248
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4249
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4250

4251 4252
	memset(active, 0, sizeof(*active));

4253
	active->pipe_enabled = intel_crtc->active;
4254 4255

	if (active->pipe_enabled) {
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4280 4281

	intel_crtc->wm.active.ilk = *active;
4282 4283
}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4401 4402 4403 4404 4405 4406 4407 4408 4409
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4410
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4437 4438 4439
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4440
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4441 4442
	struct drm_crtc *crtc;

4443
	for_each_crtc(dev, crtc)
4444 4445 4446 4447 4448 4449 4450
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4451 4452 4453 4454
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4455

4456
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4457 4458 4459 4460 4461
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4462 4463 4464 4465 4466

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4499
void intel_update_watermarks(struct drm_crtc *crtc)
4500
{
4501
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4502 4503

	if (dev_priv->display.update_wm)
4504
		dev_priv->display.update_wm(crtc);
4505 4506
}

4507
/*
4508 4509 4510 4511 4512 4513 4514 4515
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4516
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4517 4518 4519
{
	u16 rgvswctl;

4520 4521
	assert_spin_locked(&mchdev_lock);

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4539
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4540
{
4541
	u32 rgvmodectl;
4542 4543
	u8 fmax, fmin, fstart, vstart;

4544 4545
	spin_lock_irq(&mchdev_lock);

4546 4547
	rgvmodectl = I915_READ(MEMMODECTL);

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4568
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4569 4570
		PXVFREQ_PX_SHIFT;

4571 4572
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4573

4574 4575 4576
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4593
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4594
		DRM_ERROR("stuck trying to change perf mode\n");
4595
	mdelay(1);
4596

4597
	ironlake_set_drps(dev_priv, fstart);
4598

4599 4600
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4601
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4602
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4603
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4604 4605

	spin_unlock_irq(&mchdev_lock);
4606 4607
}

4608
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4609
{
4610 4611 4612 4613 4614
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4615 4616 4617 4618 4619 4620 4621 4622 4623

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4624
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4625
	mdelay(1);
4626 4627
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4628
	mdelay(1);
4629

4630
	spin_unlock_irq(&mchdev_lock);
4631 4632
}

4633 4634 4635 4636 4637
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4638
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4639
{
4640
	u32 limits;
4641

4642 4643 4644 4645 4646 4647
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4648
	if (IS_GEN9(dev_priv)) {
4649 4650 4651 4652 4653 4654 4655 4656
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4657 4658 4659 4660

	return limits;
}

4661 4662 4663
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4664 4665
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4666 4667 4668 4669

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4670 4671
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4672 4673 4674 4675
			new_power = BETWEEN;
		break;

	case BETWEEN:
4676 4677
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4678
			new_power = LOW_POWER;
4679 4680
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4681 4682 4683 4684
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4685 4686
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4687 4688 4689 4690
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4691
	if (val <= dev_priv->rps.min_freq_softlimit)
4692
		new_power = LOW_POWER;
4693
	if (val >= dev_priv->rps.max_freq_softlimit)
4694 4695 4696 4697 4698 4699 4700 4701
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4702 4703
		ei_up = 16000;
		threshold_up = 95;
4704 4705

		/* Downclock if less than 85% busy over 32ms */
4706 4707
		ei_down = 32000;
		threshold_down = 85;
4708 4709 4710 4711
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4712 4713
		ei_up = 13000;
		threshold_up = 90;
4714 4715

		/* Downclock if less than 75% busy over 32ms */
4716 4717
		ei_down = 32000;
		threshold_down = 75;
4718 4719 4720 4721
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4722 4723
		ei_up = 10000;
		threshold_up = 85;
4724 4725

		/* Downclock if less than 60% busy over 32ms */
4726 4727
		ei_down = 32000;
		threshold_down = 60;
4728 4729 4730
		break;
	}

4731
	I915_WRITE(GEN6_RP_UP_EI,
4732
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4733
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4734 4735
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4736 4737

	I915_WRITE(GEN6_RP_DOWN_EI,
4738
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4739
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4750

4751
	dev_priv->rps.power = new_power;
4752 4753
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4754 4755 4756
	dev_priv->rps.last_adj = 0;
}

4757 4758 4759 4760 4761
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4762
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4763
	if (val < dev_priv->rps.max_freq_softlimit)
4764
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4765

4766 4767
	mask &= dev_priv->pm_rps_events;

4768
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4769 4770
}

4771 4772 4773
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4774
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4775
{
4776
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4777
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4778 4779
		return;

4780
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4781 4782
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4783

C
Chris Wilson 已提交
4784 4785 4786 4787 4788
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4789

4790
		if (IS_GEN9(dev_priv))
4791 4792
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4793
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4794 4795 4796 4797 4798 4799 4800
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4801
	}
4802 4803 4804 4805

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4806
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4807
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4808

4809 4810
	POSTING_READ(GEN6_RPNSWREQ);

4811
	dev_priv->rps.cur_freq = val;
4812
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4813 4814
}

4815
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4816 4817
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4818 4819
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4820

4821
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4822 4823 4824
		      "Odd GPU freq value\n"))
		val &= ~1;

4825 4826
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4827
	if (val != dev_priv->rps.cur_freq) {
4828
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4829 4830 4831
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4832 4833 4834 4835 4836

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4837
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4838 4839
 *
 * * If Gfx is Idle, then
4840 4841 4842
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4843 4844 4845
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4846
	u32 val = dev_priv->rps.idle_freq;
4847

4848
	if (dev_priv->rps.cur_freq <= val)
4849 4850
		return;

4851 4852 4853
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4854
	valleyview_set_rps(dev_priv, val);
4855
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4856 4857
}

4858 4859 4860 4861 4862 4863 4864 4865
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4866 4867 4868 4869 4870 4871

		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
4872 4873 4874 4875
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4876 4877 4878
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
4879
	if (dev_priv->rps.enabled) {
4880
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4881
			vlv_set_rps_idle(dev_priv);
4882
		else
4883
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4884
		dev_priv->rps.last_adj = 0;
4885
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4886
	}
4887
	mutex_unlock(&dev_priv->rps.hw_lock);
4888

4889
	spin_lock(&dev_priv->rps.client_lock);
4890 4891
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4892
	spin_unlock(&dev_priv->rps.client_lock);
4893 4894
}

4895
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4896 4897
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4898
{
4899 4900 4901
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
4902
	if (!(dev_priv->gt.awake &&
4903 4904 4905
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4906

4907 4908 4909
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4910
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4911 4912
		rps = NULL;

4913 4914 4915 4916 4917 4918 4919 4920
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4921

4922 4923 4924
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4925 4926
		} else
			dev_priv->rps.boosts++;
4927
	}
4928
	spin_unlock(&dev_priv->rps.client_lock);
4929 4930
}

4931
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4932
{
4933 4934
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
4935
	else
4936
		gen6_set_rps(dev_priv, val);
4937 4938
}

4939
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
4940 4941
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4942
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4943 4944
}

4945
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4946 4947 4948 4949
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

4950
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4951 4952
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
4953
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4954
	I915_WRITE(GEN6_RP_CONTROL, 0);
4955 4956
}

4957
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4958 4959 4960 4961
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4962
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4963
{
4964 4965
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4966
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4967

4968
	I915_WRITE(GEN6_RC_CONTROL, 0);
4969

4970
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971 4972
}

4973
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
4974
{
4975
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4976 4977 4978 4979 4980
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4981
	if (HAS_RC6p(dev_priv))
4982 4983 4984 4985 4986
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4987 4988

	else
4989 4990
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4991 4992
}

4993
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
4994
{
4995
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
4996 4997
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5009 5010

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5011
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5012 5013 5014 5015 5016 5017 5018 5019
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5020 5021 5022
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5023
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5024 5025 5026 5027 5028 5029 5030
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5031
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5032 5033 5034
		enable_rc6 = false;
	}

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5049 5050 5051 5052 5053 5054
		enable_rc6 = false;
	}

	return enable_rc6;
}

5055
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5056
{
5057
	/* No RC6 before Ironlake and code is gone for ilk. */
5058
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5059 5060
		return 0;

5061 5062 5063
	if (!enable_rc6)
		return 0;

5064
	if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5065 5066 5067 5068
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5069
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5070 5071 5072
	if (enable_rc6 >= 0) {
		int mask;

5073
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5074 5075 5076 5077 5078 5079
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5080 5081 5082
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5083 5084 5085

		return enable_rc6 & mask;
	}
5086

5087
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5088
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5089 5090

	return INTEL_RC6_ENABLE;
5091 5092
}

5093
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5094
{
5095 5096 5097 5098
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

5099 5100
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
5101
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5102
	if (IS_BROXTON(dev_priv)) {
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

5114 5115 5116
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

5117
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5118 5119
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5120 5121 5122 5123 5124
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
5125 5126 5127 5128
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5129 5130
	}

5131
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5132 5133 5134 5135 5136 5137 5138 5139 5140
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

5141 5142
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5143 5144 5145 5146
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

5147
	if (dev_priv->rps.min_freq_softlimit == 0) {
5148
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5149
			dev_priv->rps.min_freq_softlimit =
5150 5151
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
5152 5153 5154 5155
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
5156 5157
}

J
Jesse Barnes 已提交
5158
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5159
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5160 5161 5162
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5163
	gen6_init_rps_frequencies(dev_priv);
5164

5165
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5166
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5167 5168 5169 5170 5171 5172 5173 5174 5175
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5176
		gen9_disable_rps(dev_priv);
5177 5178 5179 5180
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5181 5182 5183 5184 5185 5186 5187 5188
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5189 5190
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5191 5192 5193 5194
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5195
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
J
Jesse Barnes 已提交
5196 5197 5198 5199

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5200
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5201
{
5202
	struct intel_engine_cs *engine;
Z
Zhe Wang 已提交
5203 5204 5205 5206 5207 5208 5209
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5210
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5211 5212 5213 5214 5215

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5216 5217

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5218
	if (IS_SKYLAKE(dev_priv))
5219 5220 5221
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5222 5223
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5224
	for_each_engine(engine, dev_priv)
5225
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5226

5227
	if (HAS_GUC(dev_priv))
5228 5229
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5230 5231
	I915_WRITE(GEN6_RC_SLEEP, 0);

5232 5233 5234 5235
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5236
	/* 3a: Enable RC6 */
5237
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5238
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5239
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5240
	/* WaRsUseTimeoutMode */
5241 5242
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5243
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5244 5245 5246
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5247 5248
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5249 5250 5251
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5252
	}
Z
Zhe Wang 已提交
5253

5254 5255
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5256
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5257
	 */
5258
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5259 5260 5261 5262
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5263

5264
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5265 5266
}

5267
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5268
{
5269
	struct intel_engine_cs *engine;
5270
	uint32_t rc6_mask = 0;
5271 5272 5273 5274 5275 5276

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5277
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5278 5279 5280 5281

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5282
	/* Initialize rps frequencies */
5283
	gen6_init_rps_frequencies(dev_priv);
5284 5285 5286 5287 5288

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5289
	for_each_engine(engine, dev_priv)
5290
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5291
	I915_WRITE(GEN6_RC_SLEEP, 0);
5292
	if (IS_BROADWELL(dev_priv))
5293 5294 5295
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5296 5297

	/* 3: Enable RC6 */
5298
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5299
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5300 5301
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5302 5303 5304 5305 5306 5307 5308
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5309 5310

	/* 4 Program defaults and thresholds for RPS*/
5311 5312 5313 5314
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5329 5330

	/* 5: Enable RPS */
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5341
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5342
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5343

5344
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5345 5346
}

5347
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5348
{
5349
	struct intel_engine_cs *engine;
5350
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5351 5352
	u32 gtfifodbg;
	int rc6_mode;
5353
	int ret;
5354

5355
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5356

5357 5358 5359 5360 5361 5362 5363 5364 5365
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5366 5367
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5368 5369 5370 5371
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5372
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5373

5374
	/* Initialize rps frequencies */
5375
	gen6_init_rps_frequencies(dev_priv);
J
Jeff McGee 已提交
5376

5377 5378 5379 5380 5381 5382 5383 5384 5385
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5386
	for_each_engine(engine, dev_priv)
5387
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5388 5389 5390

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5391
	if (IS_IVYBRIDGE(dev_priv))
5392 5393 5394
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5395
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5396 5397
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5398
	/* Check if we are enabling RC6 */
5399
	rc6_mode = intel_enable_rc6();
5400 5401 5402
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5403
	/* We don't use those on Haswell */
5404
	if (!IS_HASWELL(dev_priv)) {
5405 5406
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5407

5408 5409 5410
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5411

5412
	intel_print_rc6_info(dev_priv, rc6_mask);
5413 5414 5415 5416 5417 5418

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5419 5420
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5421 5422
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
5423
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5424
	if (ret)
B
Ben Widawsky 已提交
5425
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5426 5427 5428 5429

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5430
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5431
				 (pcu_mbox & 0xff) * 50);
5432
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5433 5434
	}

5435
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5436
	gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5437

5438 5439
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5440
	if (IS_GEN6(dev_priv) && ret) {
5441
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5442
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5443 5444 5445 5446 5447 5448 5449 5450 5451
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5452
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5453 5454
}

5455
static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5456 5457
{
	int min_freq = 15;
5458 5459
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5460
	unsigned int max_gpu_freq, min_gpu_freq;
5461
	int scaling_factor = 180;
5462
	struct cpufreq_policy *policy;
5463

5464
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5465

5466 5467 5468 5469 5470 5471 5472 5473 5474
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5475
		max_ia_freq = tsc_khz;
5476
	}
5477 5478 5479 5480

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5481
	min_ring_freq = I915_READ(DCLK) & 0xf;
5482 5483
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5484

5485
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5486 5487 5488 5489 5490 5491 5492 5493
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5494 5495 5496 5497 5498
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5499 5500
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5501 5502
		unsigned int ia_freq = 0, ring_freq = 0;

5503
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5504 5505 5506 5507 5508
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5509
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5510 5511
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5512
		} else if (IS_HASWELL(dev_priv)) {
5513
			ring_freq = mult_frac(gpu_freq, 5, 4);
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5530

B
Ben Widawsky 已提交
5531 5532
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5533 5534 5535
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5536 5537 5538
	}
}

5539
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5540
{
5541
	if (!HAS_CORE_RING_FREQ(dev_priv))
5542 5543 5544
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
5545
	__gen6_update_ring_freq(dev_priv);
5546 5547 5548
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5549
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5550 5551 5552
{
	u32 val, rp0;

5553
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5554

5555
	switch (INTEL_INFO(dev_priv)->eu_total) {
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5570
	}
5571 5572 5573

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5587 5588 5589 5590
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5591 5592 5593
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5594 5595 5596
	return rp1;
}

5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5608
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5609 5610 5611
{
	u32 val, rp0;

5612
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5625
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5626
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5627
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5628 5629 5630 5631 5632
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5633
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5634
{
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5646 5647
}

5648 5649 5650 5651 5652 5653 5654 5655 5656
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5657 5658 5659 5660 5661 5662 5663 5664 5665

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5666
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5667
{
5668
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5669
	unsigned long pctx_paddr, paddr;
5670 5671 5672 5673 5674
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5675
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5676
		paddr = (dev_priv->mm.stolen_base +
5677
			 (ggtt->stolen_size - pctx_size));
5678 5679 5680 5681

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5682 5683

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5684 5685
}

5686
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5687 5688 5689 5690 5691 5692
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5693
	mutex_lock(&dev_priv->dev->struct_mutex);
5694

5695 5696 5697 5698 5699 5700 5701 5702
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5703
								      I915_GTT_OFFSET_NONE,
5704 5705 5706 5707
								      pctx_size);
		goto out;
	}

5708 5709
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5710 5711 5712 5713 5714 5715 5716 5717
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5718
	pctx = i915_gem_object_create_stolen(dev_priv->dev, pctx_size);
5719 5720
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5721
		goto out;
5722 5723 5724 5725 5726 5727
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5728
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5729
	dev_priv->vlv_pctx = pctx;
5730
	mutex_unlock(&dev_priv->dev->struct_mutex);
5731 5732
}

5733
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5734 5735 5736 5737
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

5738
	drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5739 5740 5741
	dev_priv->vlv_pctx = NULL;
}

5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5753
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5754
{
5755
	u32 val;
5756

5757
	valleyview_setup_pctx(dev_priv);
5758

5759 5760
	vlv_init_gpll_ref_freq(dev_priv);

5761 5762
	mutex_lock(&dev_priv->rps.hw_lock);

5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5776
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5777

5778 5779 5780
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5781
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5782 5783 5784 5785
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5786
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5787 5788
			 dev_priv->rps.efficient_freq);

5789 5790
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5791
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5792 5793
			 dev_priv->rps.rp1_freq);

5794 5795
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5796
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5797 5798
			 dev_priv->rps.min_freq);

5799 5800
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5811
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5812
{
5813
	u32 val;
5814

5815
	cherryview_setup_pctx(dev_priv);
5816

5817 5818
	vlv_init_gpll_ref_freq(dev_priv);

5819 5820
	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5821
	mutex_lock(&dev_priv->sb_lock);
5822
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5823
	mutex_unlock(&dev_priv->sb_lock);
5824

5825 5826 5827 5828
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5829
	default:
5830 5831 5832
		dev_priv->mem_freq = 1600;
		break;
	}
5833
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5834

5835 5836 5837
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5838
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5839 5840 5841 5842
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5843
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5844 5845
			 dev_priv->rps.efficient_freq);

5846 5847
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5848
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5849 5850
			 dev_priv->rps.rp1_freq);

5851 5852
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5853
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5854
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5855 5856
			 dev_priv->rps.min_freq);

5857 5858 5859 5860 5861 5862
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5863 5864
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5865 5866 5867 5868 5869 5870 5871 5872
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5873 5874
}

5875
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5876
{
5877
	valleyview_cleanup_pctx(dev_priv);
5878 5879
}

5880
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5881
{
5882
	struct intel_engine_cs *engine;
5883
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5884 5885 5886

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5887 5888
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5899
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5900

5901 5902 5903
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5904 5905 5906 5907 5908
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5909
	for_each_engine(engine, dev_priv)
5910
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5911 5912
	I915_WRITE(GEN6_RC_SLEEP, 0);

5913 5914
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5926 5927
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
5928
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5929 5930 5931

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5932
	/* 4 Program defaults and thresholds for RPS*/
5933
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5944
		   GEN6_RP_MEDIA_IS_GFX |
5945 5946 5947 5948
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5949 5950 5951 5952 5953 5954
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5955 5956
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5957 5958 5959
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5960
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5961 5962 5963 5964
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5965
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5966 5967 5968
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5969 5970
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
5971

5972
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5973

5974
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5975 5976
}

5977
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5978
{
5979
	struct intel_engine_cs *engine;
5980
	u32 gtfifodbg, val, rc6_mode = 0;
5981 5982 5983

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5984 5985
	valleyview_check_pctx(dev_priv);

5986 5987
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5988 5989
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5990 5991 5992
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5993
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5994
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5995

5996 5997 5998
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5999
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6019
	for_each_engine(engine, dev_priv)
6020
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6021

6022
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6023 6024

	/* allows RC6 residency counter to work */
6025
	I915_WRITE(VLV_COUNTER_CONTROL,
6026 6027
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6028 6029
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6030

6031
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6032
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6033

6034
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6035

6036
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6037

D
Deepak S 已提交
6038 6039 6040 6041 6042 6043
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6044
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6045

6046 6047 6048
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6049
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6050 6051
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6052
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6053
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6054
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6055
			 dev_priv->rps.cur_freq);
6056

6057
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6058 6059
			 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
			 dev_priv->rps.idle_freq);
6060

6061
	valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6062

6063
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6064 6065
}

6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6095
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6096 6097 6098 6099 6100 6101
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6102 6103
	assert_spin_locked(&mchdev_lock);

6104
	diff1 = now - dev_priv->ips.last_time1;
6105 6106 6107 6108 6109 6110 6111

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6112
		return dev_priv->ips.chipset_power;
6113 6114 6115 6116 6117 6118 6119 6120

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6121 6122
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6123 6124
		diff += total_count;
	} else {
6125
		diff = total_count - dev_priv->ips.last_count1;
6126 6127 6128
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6129 6130
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6141 6142
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6143

6144
	dev_priv->ips.chipset_power = ret;
6145 6146 6147 6148

	return ret;
}

6149 6150 6151 6152
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6153
	if (INTEL_INFO(dev_priv)->gen != 5)
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6192
{
6193 6194 6195
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6196
	if (INTEL_INFO(dev_priv)->is_mobile)
6197 6198 6199
		return vm > 0 ? vm : 0;

	return vd;
6200 6201
}

6202
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6203
{
6204
	u64 now, diff, diffms;
6205 6206
	u32 count;

6207
	assert_spin_locked(&mchdev_lock);
6208

6209 6210 6211
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6212 6213 6214 6215 6216 6217 6218

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6219 6220
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6221 6222
		diff += count;
	} else {
6223
		diff = count - dev_priv->ips.last_count2;
6224 6225
	}

6226 6227
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6228 6229 6230 6231

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6232
	dev_priv->ips.gfx_power = diff;
6233 6234
}

6235 6236
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6237
	if (INTEL_INFO(dev_priv)->gen != 5)
6238 6239
		return;

6240
	spin_lock_irq(&mchdev_lock);
6241 6242 6243

	__i915_update_gfx_val(dev_priv);

6244
	spin_unlock_irq(&mchdev_lock);
6245 6246
}

6247
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6248 6249 6250 6251
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6252 6253
	assert_spin_locked(&mchdev_lock);

6254
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6274
	corr2 = (corr * dev_priv->ips.corr);
6275 6276 6277 6278

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6279
	__i915_update_gfx_val(dev_priv);
6280

6281
	return dev_priv->ips.gfx_power + state2;
6282 6283
}

6284 6285 6286 6287
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6288
	if (INTEL_INFO(dev_priv)->gen != 5)
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6311
	spin_lock_irq(&mchdev_lock);
6312 6313 6314 6315
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6316 6317
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6318 6319 6320 6321

	ret = chipset_val + graphics_val;

out_unlock:
6322
	spin_unlock_irq(&mchdev_lock);
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6338
	spin_lock_irq(&mchdev_lock);
6339 6340 6341 6342 6343 6344
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6345 6346
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6347 6348

out_unlock:
6349
	spin_unlock_irq(&mchdev_lock);
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6366
	spin_lock_irq(&mchdev_lock);
6367 6368 6369 6370 6371 6372
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6373 6374
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6375 6376

out_unlock:
6377
	spin_unlock_irq(&mchdev_lock);
6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
6391
	struct intel_engine_cs *engine;
6392 6393
	bool ret = false;

6394
	spin_lock_irq(&mchdev_lock);
6395 6396 6397 6398
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6399
	for_each_engine(engine, dev_priv)
6400
		ret |= !list_empty(&engine->request_list);
6401 6402

out_unlock:
6403
	spin_unlock_irq(&mchdev_lock);
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6420
	spin_lock_irq(&mchdev_lock);
6421 6422 6423 6424 6425 6426
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6427
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6428

6429
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6430 6431 6432
		ret = false;

out_unlock:
6433
	spin_unlock_irq(&mchdev_lock);
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6461 6462
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6463
	spin_lock_irq(&mchdev_lock);
6464
	i915_mch_dev = dev_priv;
6465
	spin_unlock_irq(&mchdev_lock);
6466 6467 6468 6469 6470 6471

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6472
	spin_lock_irq(&mchdev_lock);
6473
	i915_mch_dev = NULL;
6474
	spin_unlock_irq(&mchdev_lock);
6475
}
6476

6477
static void intel_init_emon(struct drm_i915_private *dev_priv)
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6494
		I915_WRITE(PEW(i), 0);
6495
	for (i = 0; i < 3; i++)
6496
		I915_WRITE(DEW(i), 0);
6497 6498 6499

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6500
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6521
		I915_WRITE(PXW(i), val);
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6537
		I915_WRITE(PXWL(i), 0);
6538 6539 6540 6541 6542 6543

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6544
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6545 6546
}

6547
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6548
{
6549 6550 6551 6552 6553 6554 6555 6556
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6557

6558 6559 6560 6561
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6562 6563
}

6564
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6565
{
6566
	if (IS_CHERRYVIEW(dev_priv))
6567
		return;
6568 6569
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_cleanup_gt_powersave(dev_priv);
6570 6571 6572

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6573 6574
}

6575
static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6576 6577 6578
{
	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6579
	gen6_disable_rps_interrupts(dev_priv);
6580 6581
}

6582 6583
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6584
 * @dev_priv: i915 device
6585 6586 6587 6588 6589
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
6590
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6591
{
6592
	if (INTEL_GEN(dev_priv) < 6)
I
Imre Deak 已提交
6593 6594
		return;

6595
	gen6_suspend_rps(dev_priv);
6596 6597 6598

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6599 6600
}

6601
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6602
{
6603
	if (IS_IRONLAKE_M(dev_priv)) {
6604
		ironlake_disable_drps(dev_priv);
6605 6606
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		intel_suspend_gt_powersave(dev_priv);
6607

6608
		mutex_lock(&dev_priv->rps.hw_lock);
6609 6610 6611 6612 6613 6614 6615
		if (INTEL_INFO(dev_priv)->gen >= 9) {
			gen9_disable_rc6(dev_priv);
			gen9_disable_rps(dev_priv);
		} else if (IS_CHERRYVIEW(dev_priv))
			cherryview_disable_rps(dev_priv);
		else if (IS_VALLEYVIEW(dev_priv))
			valleyview_disable_rps(dev_priv);
6616
		else
6617
			gen6_disable_rps(dev_priv);
6618

6619
		dev_priv->rps.enabled = false;
6620
		mutex_unlock(&dev_priv->rps.hw_lock);
6621
	}
6622 6623
}

6624 6625 6626 6627 6628 6629
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);

6630
	mutex_lock(&dev_priv->rps.hw_lock);
6631

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
	gen6_reset_rps_interrupts(dev_priv);

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 9) {
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
			__gen6_update_ring_freq(dev_priv);
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6646
	} else {
6647 6648
		gen6_enable_rps(dev_priv);
		__gen6_update_ring_freq(dev_priv);
6649
	}
6650 6651 6652 6653 6654 6655 6656

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6657
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6658

6659
	gen6_enable_rps_interrupts(dev_priv);
I
Imre Deak 已提交
6660

6661
	mutex_unlock(&dev_priv->rps.hw_lock);
6662 6663

	intel_runtime_pm_put(dev_priv);
6664 6665
}

6666
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6667
{
6668
	/* Powersaving is controlled by the host when inside a VM */
6669
	if (intel_vgpu_active(dev_priv))
6670 6671
		return;

6672
	if (IS_IRONLAKE_M(dev_priv)) {
6673
		ironlake_enable_drps(dev_priv);
6674 6675 6676 6677
		mutex_lock(&dev_priv->dev->struct_mutex);
		intel_init_emon(dev_priv);
		mutex_unlock(&dev_priv->dev->struct_mutex);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
6678 6679 6680 6681
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6682 6683 6684 6685 6686 6687 6688
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6689
		 */
6690 6691 6692
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6693 6694 6695
	}
}

6696
void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6697
{
6698
	if (INTEL_INFO(dev_priv)->gen < 6)
6699 6700
		return;

6701
	gen6_suspend_rps(dev_priv);
6702 6703 6704
	dev_priv->rps.enabled = false;
}

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6717 6718 6719
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6720
	enum pipe pipe;
6721

6722
	for_each_pipe(dev_priv, pipe) {
6723 6724 6725
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6726 6727 6728

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6729 6730 6731
	}
}

6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6746
static void ironlake_init_clock_gating(struct drm_device *dev)
6747 6748
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6749
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6750

6751 6752 6753 6754
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6755 6756 6757
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6775
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6776 6777 6778
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6779 6780

	ilk_init_lp_watermarks(dev);
6781 6782 6783 6784 6785 6786 6787 6788 6789

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6790
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6791 6792 6793 6794 6795 6796 6797 6798
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6799 6800
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6801 6802 6803 6804 6805 6806
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6807

6808
	/* WaDisableRenderCachePipelinedFlush:ilk */
6809 6810
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6811

6812 6813 6814
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6815
	g4x_disable_trickle_feed(dev);
6816

6817 6818 6819 6820 6821 6822 6823
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6824
	uint32_t val;
6825 6826 6827 6828 6829 6830

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6831 6832 6833
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6834 6835
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6836 6837 6838
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6839
	for_each_pipe(dev_priv, pipe) {
6840 6841 6842
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6843
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6844
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6845 6846 6847
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6848 6849
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6850
	/* WADP0ClockGatingDisable */
6851
	for_each_pipe(dev_priv, pipe) {
6852 6853 6854
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6855 6856
}

6857 6858 6859 6860 6861 6862
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6863 6864 6865
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6866 6867
}

6868
static void gen6_init_clock_gating(struct drm_device *dev)
6869 6870
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6871
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6872

6873
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6874 6875 6876 6877 6878

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6879
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6880 6881 6882
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6883 6884 6885
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6886 6887 6888
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6889 6890 6891 6892
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6893 6894
	 */
	I915_WRITE(GEN6_GT_MODE,
6895
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6896

6897
	ilk_init_lp_watermarks(dev);
6898 6899

	I915_WRITE(CACHE_MODE_0,
6900
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6916
	 *
6917 6918
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6919 6920 6921 6922 6923
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6924
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6925 6926
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6927

6928 6929 6930 6931 6932 6933 6934 6935
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6936 6937 6938 6939 6940 6941 6942 6943
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6944 6945
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6946 6947 6948 6949 6950 6951 6952
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6953 6954 6955 6956
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6957

6958
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6959

6960
	cpt_init_clock_gating(dev);
6961 6962

	gen6_check_mch_setup(dev);
6963 6964 6965 6966 6967 6968
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6969
	/*
6970
	 * WaVSThreadDispatchOverride:ivb,vlv
6971 6972 6973 6974
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6975 6976 6977 6978 6979 6980 6981 6982
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6983 6984 6985 6986 6987 6988 6989 6990
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6991
	if (HAS_PCH_LPT_LP(dev))
6992 6993 6994
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6995 6996

	/* WADPOClockGatingDisable:hsw */
6997 6998
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6999
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7000 7001
}

7002 7003 7004 7005
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7006
	if (HAS_PCH_LPT_LP(dev)) {
7007 7008 7009 7010 7011 7012 7013
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7037 7038 7039 7040
static void kabylake_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7041
	gen9_init_clock_gating(dev);
7042 7043 7044 7045 7046

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7047 7048 7049 7050 7051

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7052 7053 7054 7055

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7056 7057
}

7058 7059
static void skylake_init_clock_gating(struct drm_device *dev)
{
7060 7061
	struct drm_i915_private *dev_priv = dev->dev_private;

7062
	gen9_init_clock_gating(dev);
7063 7064 7065 7066

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7067 7068 7069 7070

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7071 7072
}

7073
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
7074 7075
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7076
	enum pipe pipe;
B
Ben Widawsky 已提交
7077

7078
	ilk_init_lp_watermarks(dev);
7079

7080
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7081
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7082

7083
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7084 7085 7086
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7087
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7088
	for_each_pipe(dev_priv, pipe) {
7089
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7090
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7091
			   BDW_DPRS_MASK_VBLANK_SRD);
7092
	}
7093

7094 7095 7096 7097 7098
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7099

7100 7101
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7102 7103 7104 7105

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7106

7107 7108
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7109

7110 7111 7112 7113 7114 7115 7116
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7117 7118 7119 7120
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7121
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
7122 7123
}

7124 7125 7126 7127
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7128
	ilk_init_lp_watermarks(dev);
7129

7130 7131 7132 7133 7134
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7135
	/* This is required by WaCatErrorRejectionIssue:hsw */
7136 7137 7138 7139
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7140 7141 7142
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7143

7144 7145 7146
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7147 7148 7149 7150
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7151
	/* WaDisable4x2SubspanOptimization:hsw */
7152 7153
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7154

7155 7156 7157
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7158 7159 7160 7161
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7162 7163
	 */
	I915_WRITE(GEN7_GT_MODE,
7164
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7165

7166 7167 7168 7169
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7170
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7171 7172
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7173 7174 7175
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7176

7177
	lpt_init_clock_gating(dev);
7178 7179
}

7180
static void ivybridge_init_clock_gating(struct drm_device *dev)
7181 7182
{
	struct drm_i915_private *dev_priv = dev->dev_private;
7183
	uint32_t snpcr;
7184

7185
	ilk_init_lp_watermarks(dev);
7186

7187
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7188

7189
	/* WaDisableEarlyCull:ivb */
7190 7191 7192
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7193
	/* WaDisableBackToBackFlipFix:ivb */
7194 7195 7196 7197
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7198
	/* WaDisablePSDDualDispatchEnable:ivb */
7199 7200 7201 7202
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7203 7204 7205
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7206
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7207 7208 7209
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7210
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7211 7212 7213
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7214 7215 7216 7217
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7218 7219 7220 7221
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7222 7223
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7224
	}
7225

7226
	/* WaForceL3Serialization:ivb */
7227 7228 7229
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7230
	/*
7231
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7232
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7233 7234
	 */
	I915_WRITE(GEN6_UCGCTL2,
7235
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7236

7237
	/* This is required by WaCatErrorRejectionIssue:ivb */
7238 7239 7240 7241
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7242
	g4x_disable_trickle_feed(dev);
7243 7244

	gen7_setup_fixed_func_scheduler(dev_priv);
7245

7246 7247 7248 7249 7250
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7251

7252
	/* WaDisable4x2SubspanOptimization:ivb */
7253 7254
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7255

7256 7257 7258
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7259 7260 7261 7262
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7263 7264
	 */
	I915_WRITE(GEN7_GT_MODE,
7265
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7266

7267 7268 7269 7270
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7271

7272 7273
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
7274 7275

	gen6_check_mch_setup(dev);
7276 7277
}

7278
static void valleyview_init_clock_gating(struct drm_device *dev)
7279 7280 7281
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7282
	/* WaDisableEarlyCull:vlv */
7283 7284 7285
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7286
	/* WaDisableBackToBackFlipFix:vlv */
7287 7288 7289 7290
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7291
	/* WaPsdDispatchEnable:vlv */
7292
	/* WaDisablePSDDualDispatchEnable:vlv */
7293
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7294 7295
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7296

7297 7298 7299
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7300
	/* WaForceL3Serialization:vlv */
7301 7302 7303
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7304
	/* WaDisableDopClockGating:vlv */
7305 7306 7307
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7308
	/* This is required by WaCatErrorRejectionIssue:vlv */
7309 7310 7311 7312
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7313 7314
	gen7_setup_fixed_func_scheduler(dev_priv);

7315
	/*
7316
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7317
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7318 7319
	 */
	I915_WRITE(GEN6_UCGCTL2,
7320
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7321

7322 7323 7324 7325 7326
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7327

7328 7329 7330 7331
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7332 7333
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7334

7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7346 7347 7348 7349 7350 7351
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7352
	/*
7353
	 * WaDisableVLVClockGating_VBIIssue:vlv
7354 7355 7356
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7357
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7358 7359
}

7360 7361 7362 7363
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7364 7365 7366 7367 7368
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7369 7370 7371 7372

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7373 7374 7375 7376

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7377 7378 7379 7380

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7381

7382 7383 7384 7385 7386 7387 7388
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7389 7390 7391 7392 7393
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7394 7395
}

7396
static void g4x_init_clock_gating(struct drm_device *dev)
7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7412 7413 7414 7415

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7416

7417 7418 7419
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7420
	g4x_disable_trickle_feed(dev);
7421 7422
}

7423
static void crestline_init_clock_gating(struct drm_device *dev)
7424 7425 7426 7427 7428 7429 7430 7431
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7432 7433
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7434 7435 7436

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7437 7438
}

7439
static void broadwater_init_clock_gating(struct drm_device *dev)
7440 7441 7442 7443 7444 7445 7446 7447 7448
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7449 7450
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7451 7452 7453

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7454 7455
}

7456
static void gen3_init_clock_gating(struct drm_device *dev)
7457 7458 7459 7460 7461 7462 7463
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7464 7465 7466

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7467 7468 7469

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7470 7471

	/* interrupts should cause a wake up from C3 */
7472
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7473 7474 7475

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7476 7477 7478

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7479 7480
}

7481
static void i85x_init_clock_gating(struct drm_device *dev)
7482 7483 7484 7485
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7486 7487 7488 7489

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7490 7491 7492

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7493 7494
}

7495
static void i830_init_clock_gating(struct drm_device *dev)
7496 7497 7498 7499
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7500 7501 7502 7503

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7504 7505 7506 7507 7508 7509
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7510
	dev_priv->display.init_clock_gating(dev);
7511 7512
}

7513 7514 7515 7516 7517 7518
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
static void nop_init_clock_gating(struct drm_device *dev)
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7536
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7537
	else if (IS_KABYLAKE(dev_priv))
7538
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
	else if (IS_BROXTON(dev_priv))
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7573 7574 7575 7576 7577
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7578
	intel_fbc_init(dev_priv);
7579

7580 7581 7582 7583 7584 7585
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7586
	/* For FIFO watermark updates */
7587
	if (INTEL_INFO(dev)->gen >= 9) {
7588
		skl_setup_wm_latency(dev);
7589
		dev_priv->display.update_wm = skl_update_wm;
7590
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7591
	} else if (HAS_PCH_SPLIT(dev)) {
7592
		ilk_setup_wm_latency(dev);
7593

7594 7595 7596 7597
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7598
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7599 7600 7601 7602 7603 7604
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7605 7606 7607 7608
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7609
	} else if (IS_CHERRYVIEW(dev)) {
7610 7611
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7612
	} else if (IS_VALLEYVIEW(dev)) {
7613 7614
		vlv_setup_wm_latency(dev);
		dev_priv->display.update_wm = vlv_update_wm;
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7626
			intel_set_memory_cxsr(dev_priv, false);
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7637 7638 7639
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7640
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7641 7642
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7643
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7644 7645 7646
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7647 7648 7649
	}
}

7650
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7651
{
7652
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7653

7654 7655 7656 7657 7658 7659
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7660 7661 7662 7663
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7664 7665 7666
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7667

7668 7669 7670
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7671 7672 7673 7674
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7675 7676
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7677 7678 7679 7680

	return 0;
}

7681 7682
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
			       u32 mbox, u32 val)
B
Ben Widawsky 已提交
7683
{
7684
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7685

7686 7687 7688 7689 7690 7691
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7692 7693 7694 7695
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7696 7697
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7698

7699 7700 7701
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7702 7703 7704 7705
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7706
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7707 7708 7709

	return 0;
}
7710

7711 7712
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7713 7714 7715 7716 7717
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7718 7719
}

7720
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7721
{
7722
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7723 7724
}

7725
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7726
{
7727 7728 7729 7730 7731
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7732 7733
}

7734
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7735
{
7736
	/* CHV needs even values */
7737
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7738 7739
}

7740
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7741
{
7742
	if (IS_GEN9(dev_priv))
7743 7744
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7745
	else if (IS_CHERRYVIEW(dev_priv))
7746
		return chv_gpu_freq(dev_priv, val);
7747
	else if (IS_VALLEYVIEW(dev_priv))
7748 7749 7750
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7751 7752
}

7753 7754
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7755
	if (IS_GEN9(dev_priv))
7756 7757
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7758
	else if (IS_CHERRYVIEW(dev_priv))
7759
		return chv_freq_opcode(dev_priv, val);
7760
	else if (IS_VALLEYVIEW(dev_priv))
7761 7762
		return byt_freq_opcode(dev_priv, val);
	else
7763
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7764
}
7765

7766 7767
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7768
	struct drm_i915_gem_request *req;
7769 7770 7771 7772 7773
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7774
	struct drm_i915_gem_request *req = boost->req;
7775

7776
	if (!i915_gem_request_completed(req))
7777
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7778

7779
	i915_gem_request_unreference(req);
7780 7781 7782
	kfree(boost);
}

7783
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7784 7785 7786
{
	struct request_boost *boost;

7787
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7788 7789
		return;

7790
	if (i915_gem_request_completed(req))
7791 7792
		return;

7793 7794 7795 7796
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7797 7798
	i915_gem_request_reference(req);
	boost->req = req;
7799 7800

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7801
	queue_work(req->i915->wq, &boost->work);
7802 7803
}

D
Daniel Vetter 已提交
7804
void intel_pm_setup(struct drm_device *dev)
7805 7806 7807
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7808
	mutex_init(&dev_priv->rps.hw_lock);
7809
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7810

7811 7812
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7813
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7814 7815
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7816

7817
	dev_priv->pm.suspended = false;
7818
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7819
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7820
}