intel_pm.c 238.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

389
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
390
{
391 392
	bool ret;

393
	mutex_lock(&dev_priv->wm.wm_mutex);
394
	ret = _intel_set_memory_cxsr(dev_priv, enable);
395 396
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
397 398

	return ret;
399
}
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
415
static const int pessimal_latency_ns = 5000;
416

417 418 419
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

420
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
421
{
422
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
423
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
425 426
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
427

428
	switch (pipe) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
449 450
		MISSING_CASE(pipe);
		return;
451 452
	}

453 454 455 456 457 458 459 460 461 462 463
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;

	DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
		      pipe_name(pipe),
		      fifo_state->plane[PLANE_PRIMARY],
		      fifo_state->plane[PLANE_SPRITE0],
		      fifo_state->plane[PLANE_SPRITE1],
		      fifo_state->plane[PLANE_CURSOR]);
464 465
}

466
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
467 468 469 470 471 472 473 474 475 476 477 478 479 480
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

481
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

497
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
514 515 516 517 518
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
521 522 523 524 525
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params pineview_cursor_wm = {
528 529 530 531 532
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
533 534
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
535 536 537 538 539
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
540 541
};
static const struct intel_watermark_params g4x_wm_info = {
542 543 544 545 546
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
547 548
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
549 550 551 552 553
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
554 555
};
static const struct intel_watermark_params i965_cursor_wm_info = {
556 557 558 559 560
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
561 562
};
static const struct intel_watermark_params i945_wm_info = {
563 564 565 566 567
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params i915_wm_info = {
570 571 572 573 574
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
575
};
576
static const struct intel_watermark_params i830_a_wm_info = {
577 578 579 580 581
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
582
};
583 584 585 586 587 588 589
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
590
static const struct intel_watermark_params i845_wm_info = {
591 592 593 594 595
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
596 597 598 599 600 601
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
602
 * @cpp: bytes per pixel
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
618
					int fifo_size, int cpp,
619 620 621 622 623 624 625 626 627 628
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
629
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
630 631 632 633 634 635 636 637 638 639 640 641 642 643
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
644 645 646 647 648 649 650 651 652 653 654

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

655 656 657
	return wm_size;
}

658
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
659
{
660
	struct intel_crtc *crtc, *enabled = NULL;
661

662
	for_each_intel_crtc(&dev_priv->drm, crtc) {
663
		if (intel_crtc_active(crtc)) {
664 665 666 667 668 669 670 671 672
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

673
static void pineview_update_wm(struct intel_crtc *unused_crtc)
674
{
675
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
676
	struct intel_crtc *crtc;
677 678 679 680
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

681 682 683 684
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
685 686
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
687
		intel_set_memory_cxsr(dev_priv, false);
688 689 690
		return;
	}

691
	crtc = single_enabled_crtc(dev_priv);
692
	if (crtc) {
693 694 695 696
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
697
		int cpp = fb->format->cpp[0];
698
		int clock = adjusted_mode->crtc_clock;
699 700 701 702

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
703
					cpp, latency->display_sr);
704 705
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
706
		reg |= FW_WM(wm, SR);
707 708 709 710 711 712
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
713
					cpp, latency->cursor_sr);
714 715
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
716
		reg |= FW_WM(wm, CURSOR_SR);
717 718 719 720 721
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
722
					cpp, latency->display_hpll_disable);
723 724
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
725
		reg |= FW_WM(wm, HPLL_SR);
726 727 728 729 730
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
731
					cpp, latency->cursor_hpll_disable);
732 733
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
734
		reg |= FW_WM(wm, HPLL_CURSOR);
735 736 737
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

738
		intel_set_memory_cxsr(dev_priv, true);
739
	} else {
740
		intel_set_memory_cxsr(dev_priv, false);
741 742 743
	}
}

744
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
745 746 747 748 749 750 751 752
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
753
	struct intel_crtc *crtc;
754
	const struct drm_display_mode *adjusted_mode;
755
	const struct drm_framebuffer *fb;
756
	int htotal, hdisplay, clock, cpp;
757 758 759
	int line_time_us, line_count;
	int entries, tlb_miss;

760
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
761
	if (!intel_crtc_active(crtc)) {
762 763 764 765 766
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

767 768
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
769
	clock = adjusted_mode->crtc_clock;
770
	htotal = adjusted_mode->crtc_htotal;
771
	hdisplay = crtc->config->pipe_src_w;
772
	cpp = fb->format->cpp[0];
773 774

	/* Use the small buffer method to calculate plane watermark */
775
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
776 777 778 779 780 781 782 783 784
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
785
	line_time_us = max(htotal * 1000 / clock, 1);
786
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
787
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
806
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
807 808 809 810 811 812 813 814
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
815
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
816 817 818 819 820
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
821
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
822 823 824 825 826 827 828 829 830 831 832 833
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

834
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
835 836 837 838 839 840
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
841
	struct intel_crtc *crtc;
842
	const struct drm_display_mode *adjusted_mode;
843
	const struct drm_framebuffer *fb;
844
	int hdisplay, htotal, cpp, clock;
845 846 847 848 849 850 851 852 853 854
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

855
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
856 857
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
858
	clock = adjusted_mode->crtc_clock;
859
	htotal = adjusted_mode->crtc_htotal;
860
	hdisplay = crtc->config->pipe_src_w;
861
	cpp = fb->format->cpp[0];
862

863
	line_time_us = max(htotal * 1000 / clock, 1);
864
	line_count = (latency_ns / line_time_us + 1000) / 1000;
865
	line_size = hdisplay * cpp;
866 867

	/* Use the minimum of the small and large buffer method for primary */
868
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
869 870 871 872 873 874
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
875
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
876 877 878
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

879
	return g4x_check_srwm(dev_priv,
880 881 882 883
			      *display_wm, *cursor_wm,
			      display, cursor);
}

884 885 886
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

887
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
888 889
				const struct vlv_wm_values *wm)
{
890 891 892
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
893 894
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

895 896 897 898 899 900
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
901

902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

913
	I915_WRITE(DSPFW1,
914
		   FW_WM(wm->sr.plane, SR) |
915 916 917
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
918
	I915_WRITE(DSPFW2,
919 920 921
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
922
	I915_WRITE(DSPFW3,
923
		   FW_WM(wm->sr.cursor, CURSOR_SR));
924 925 926

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
927 928
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929
		I915_WRITE(DSPFW8_CHV,
930 931
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
932
		I915_WRITE(DSPFW9_CHV,
933 934
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
935
		I915_WRITE(DSPHOWM,
936
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
937 938 939 940 941 942 943 944 945
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
946 947
	} else {
		I915_WRITE(DSPFW7,
948 949
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
950
		I915_WRITE(DSPHOWM,
951
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
952 953 954 955 956 957
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
958 959 960
	}

	POSTING_READ(DSPFW1);
961 962
}

963 964
#undef FW_WM_VLV

965 966 967 968
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
969
				   unsigned int cpp,
970 971 972 973 974
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
975
	ret = (ret + 1) * horiz_pixels * cpp;
976 977 978 979 980
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

981
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
982 983 984 985
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

986 987
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

988 989 990
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
991 992

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
993 994 995
	}
}

996 997
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
998 999
				     int level)
{
1000
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1001
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1002 1003
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1004
	int clock, htotal, cpp, width, wm;
1005 1006 1007 1008

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1009
	if (!plane_state->base.visible)
1010 1011
		return 0;

1012
	cpp = plane_state->base.fb->format->cpp[0];
1013 1014 1015
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1028
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1029 1030 1031 1032 1033 1034
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1035 1036 1037 1038 1039 1040
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1041
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1042
{
1043
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1044 1045
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1046
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1047 1048 1049
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1050
	int fifo_extra, fifo_left = fifo_size;
1051
	int sprite0_fifo_extra = 0;
1052 1053
	unsigned int total_rate;
	enum plane_id plane_id;
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1066 1067
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1068 1069
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1070

1071 1072
	if (total_rate > fifo_size)
		return -EINVAL;
1073

1074 1075
	if (total_rate == 0)
		total_rate = 1;
1076

1077
	for_each_plane_id_on_crtc(crtc, plane_id) {
1078 1079
		unsigned int rate;

1080 1081
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1082 1083 1084
			continue;
		}

1085 1086 1087
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1088 1089
	}

1090 1091 1092
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1093 1094 1095
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1096 1097

	/* spread the remainder evenly */
1098
	for_each_plane_id_on_crtc(crtc, plane_id) {
1099 1100 1101 1102 1103
		int plane_extra;

		if (fifo_left == 0)
			break;

1104
		if ((active_planes & BIT(plane_id)) == 0)
1105 1106 1107
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1108
		fifo_state->plane[plane_id] += plane_extra;
1109 1110 1111
		fifo_left -= plane_extra;
	}

1112 1113 1114 1115 1116 1117 1118 1119 1120
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static int vlv_num_wm_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	for (; level < vlv_num_wm_levels(dev_priv); level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1145 1146 1147 1148 1149 1150 1151 1152
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1153 1154 1155 1156
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1157
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1158
				 int level, enum plane_id plane_id, u16 value)
1159
{
1160 1161
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int num_levels = vlv_num_wm_levels(dev_priv);
1162
	bool dirty = false;
1163

1164 1165
	for (; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1166

1167
		dirty |= raw->plane[plane_id] != value;
1168
		raw->plane[plane_id] = value;
1169
	}
1170 1171

	return dirty;
1172 1173
}

1174
static bool vlv_plane_wm_compute(struct intel_crtc_state *crtc_state,
1175
				 const struct intel_plane_state *plane_state)
1176
{
1177 1178 1179
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
	int num_levels = vlv_num_wm_levels(to_i915(plane->base.dev));
1180
	int level;
1181
	bool dirty = false;
1182

1183
	if (!plane_state->base.visible) {
1184 1185
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1186
	}
1187

1188 1189 1190 1191
	for (level = 0; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1192

1193 1194
		if (wm > max_wm)
			break;
1195

1196
		dirty |= raw->plane[plane_id] != wm;
1197 1198
		raw->plane[plane_id] = wm;
	}
1199

1200
	/* mark all higher levels as invalid */
1201
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211
out:
	if (dirty)
		DRM_DEBUG_KMS("%s wms: [0]=%d,[1]=%d,[2]=%d\n",
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1212
}
1213

1214 1215 1216 1217 1218 1219 1220
static bool vlv_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				  enum plane_id plane_id, int level)
{
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1221

1222 1223
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static bool vlv_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
{
	return vlv_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1244
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1245 1246 1247 1248
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1249
	unsigned int dirty = 0;
1250 1251 1252 1253 1254 1255 1256 1257

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		if (vlv_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1290
	}
1291

1292 1293 1294 1295 1296 1297 1298
	/* initially allow all levels */
	wm_state->num_levels = vlv_num_wm_levels(dev_priv);
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1299
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1300

1301
	for (level = 0; level < wm_state->num_levels; level++) {
1302 1303
		const struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1304

1305 1306
		if (!vlv_crtc_wm_is_valid(crtc_state, level))
			break;
1307

1308 1309 1310 1311 1312 1313 1314 1315
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1316
						 raw->plane[PLANE_SPRITE0],
1317 1318
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1319

1320 1321 1322
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1323 1324
	}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1335 1336
}

1337 1338 1339
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1340 1341
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1342
{
1343
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1344
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1345 1346
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1347
	int sprite0_start, sprite1_start, fifo_size;
1348

1349 1350 1351
	if (!crtc_state->fifo_changed)
		return;

1352 1353 1354
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1355

1356 1357
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1358

1359 1360
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	/*
	 * uncore.lock serves a double purpose here. It allows us to
	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
	 * it protects the DSPARB registers from getting clobbered by
	 * parallel updates from multiple pipes.
	 *
	 * intel_pipe_update_start() has already disabled interrupts
	 * for us, so a plain spin_lock() is sufficient here.
	 */
	spin_lock(&dev_priv->uncore.lock);
1371

1372 1373 1374
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
1375 1376
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

1388 1389
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1390 1391
		break;
	case PIPE_B:
1392 1393
		dsparb = I915_READ_FW(DSPARB);
		dsparb2 = I915_READ_FW(DSPARB2);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

1405 1406
		I915_WRITE_FW(DSPARB, dsparb);
		I915_WRITE_FW(DSPARB2, dsparb2);
1407 1408
		break;
	case PIPE_C:
1409 1410
		dsparb3 = I915_READ_FW(DSPARB3);
		dsparb2 = I915_READ_FW(DSPARB2);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

1422 1423
		I915_WRITE_FW(DSPARB3, dsparb3);
		I915_WRITE_FW(DSPARB2, dsparb2);
1424 1425 1426 1427
		break;
	default:
		break;
	}
1428

1429
	POSTING_READ_FW(DSPARB);
1430

1431
	spin_unlock(&dev_priv->uncore.lock);
1432 1433 1434 1435
}

#undef VLV_FIFO

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1446 1447
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
1470 1471
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
1472 1473 1474 1475

	return 0;
}

1476
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1477 1478 1479 1480 1481
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1482
	wm->level = dev_priv->wm.max_level;
1483 1484
	wm->cxsr = true;

1485
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1486
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1501 1502 1503
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1504
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1505
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1506 1507 1508
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
1509
		if (crtc->active && wm->cxsr)
1510 1511
			wm->sr = wm_state->sr[wm->level];

1512 1513 1514 1515
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1516 1517 1518
	}
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1529
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1530
{
1531 1532
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1533

1534
	vlv_merge_wm(dev_priv, &new_wm);
1535

1536
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1537 1538
		return;

1539
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1540 1541
		chv_set_memory_dvfs(dev_priv, false);

1542
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1543 1544
		chv_set_memory_pm5(dev_priv, false);

1545
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1546
		_intel_set_memory_cxsr(dev_priv, false);
1547

1548
	vlv_write_wm_values(dev_priv, &new_wm);
1549

1550
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1551
		_intel_set_memory_cxsr(dev_priv, true);
1552

1553
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1554 1555
		chv_set_memory_pm5(dev_priv, true);

1556
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1557 1558
		chv_set_memory_dvfs(dev_priv, true);

1559
	*old_wm = new_wm;
1560 1561
}

1562 1563 1564 1565 1566 1567 1568
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1585 1586 1587 1588
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1589 1590
#define single_plane_enabled(mask) is_power_of_2(mask)

1591
static void g4x_update_wm(struct intel_crtc *crtc)
1592
{
1593
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1594 1595 1596 1597
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1598
	bool cxsr_enabled;
1599

1600
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1601 1602
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1603
			    &planea_wm, &cursora_wm))
1604
		enabled |= 1 << PIPE_A;
1605

1606
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1607 1608
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1609
			    &planeb_wm, &cursorb_wm))
1610
		enabled |= 1 << PIPE_B;
1611 1612

	if (single_plane_enabled(enabled) &&
1613
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1614 1615 1616
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1617
			     &plane_sr, &cursor_sr)) {
1618
		cxsr_enabled = true;
1619
	} else {
1620
		cxsr_enabled = false;
1621
		intel_set_memory_cxsr(dev_priv, false);
1622 1623
		plane_sr = cursor_sr = 0;
	}
1624

1625 1626
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1627 1628 1629 1630 1631
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1632 1633 1634 1635
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1636
	I915_WRITE(DSPFW2,
1637
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1638
		   FW_WM(cursora_wm, CURSORA));
1639 1640
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1641
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1642
		   FW_WM(cursor_sr, CURSOR_SR));
1643 1644 1645

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1646 1647
}

1648
static void i965_update_wm(struct intel_crtc *unused_crtc)
1649
{
1650
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1651
	struct intel_crtc *crtc;
1652 1653
	int srwm = 1;
	int cursor_sr = 16;
1654
	bool cxsr_enabled;
1655 1656

	/* Calc sr entries for one plane configs */
1657
	crtc = single_enabled_crtc(dev_priv);
1658 1659 1660
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1661 1662 1663 1664
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1665
		int clock = adjusted_mode->crtc_clock;
1666
		int htotal = adjusted_mode->crtc_htotal;
1667
		int hdisplay = crtc->config->pipe_src_w;
1668
		int cpp = fb->format->cpp[0];
1669 1670 1671
		unsigned long line_time_us;
		int entries;

1672
		line_time_us = max(htotal * 1000 / clock, 1);
1673 1674 1675

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1676
			cpp * hdisplay;
1677 1678 1679 1680 1681 1682 1683 1684 1685
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1686
			cpp * crtc->base.cursor->state->crtc_w;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1698
		cxsr_enabled = true;
1699
	} else {
1700
		cxsr_enabled = false;
1701
		/* Turn off self refresh if both pipes are enabled */
1702
		intel_set_memory_cxsr(dev_priv, false);
1703 1704 1705 1706 1707 1708
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1709 1710 1711 1712 1713 1714
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1715
	/* update cursor SR watermark */
1716
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1717 1718 1719

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1720 1721
}

1722 1723
#undef FW_WM

1724
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1725
{
1726
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1727 1728 1729 1730 1731 1732
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1733
	struct intel_crtc *crtc, *enabled = NULL;
1734

1735
	if (IS_I945GM(dev_priv))
1736
		wm_info = &i945_wm_info;
1737
	else if (!IS_GEN2(dev_priv))
1738 1739
		wm_info = &i915_wm_info;
	else
1740
		wm_info = &i830_a_wm_info;
1741

1742
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1743
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1744 1745 1746 1747 1748 1749 1750
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1751
		if (IS_GEN2(dev_priv))
1752
			cpp = 4;
1753
		else
1754
			cpp = fb->format->cpp[0];
1755

1756
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1757
					       wm_info, fifo_size, cpp,
1758
					       pessimal_latency_ns);
1759
		enabled = crtc;
1760
	} else {
1761
		planea_wm = fifo_size - wm_info->guard_size;
1762 1763 1764 1765
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1766
	if (IS_GEN2(dev_priv))
1767
		wm_info = &i830_bc_wm_info;
1768

1769
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1770
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1771 1772 1773 1774 1775 1776 1777
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1778
		if (IS_GEN2(dev_priv))
1779
			cpp = 4;
1780
		else
1781
			cpp = fb->format->cpp[0];
1782

1783
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1784
					       wm_info, fifo_size, cpp,
1785
					       pessimal_latency_ns);
1786 1787 1788 1789
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1790
	} else {
1791
		planeb_wm = fifo_size - wm_info->guard_size;
1792 1793 1794
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1795 1796 1797

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1798
	if (IS_I915GM(dev_priv) && enabled) {
1799
		struct drm_i915_gem_object *obj;
1800

1801
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1802 1803

		/* self-refresh seems busted with untiled */
1804
		if (!i915_gem_object_is_tiled(obj))
1805 1806 1807
			enabled = NULL;
	}

1808 1809 1810 1811 1812 1813
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1814
	intel_set_memory_cxsr(dev_priv, false);
1815 1816

	/* Calc sr entries for one plane configs */
1817
	if (HAS_FW_BLC(dev_priv) && enabled) {
1818 1819
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1820 1821 1822 1823
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1824
		int clock = adjusted_mode->crtc_clock;
1825
		int htotal = adjusted_mode->crtc_htotal;
1826 1827
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1828 1829 1830
		unsigned long line_time_us;
		int entries;

1831
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1832
			cpp = 4;
1833
		else
1834
			cpp = fb->format->cpp[0];
1835

1836
		line_time_us = max(htotal * 1000 / clock, 1);
1837 1838 1839

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1840
			cpp * hdisplay;
1841 1842 1843 1844 1845 1846
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1847
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1848 1849
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1850
		else
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1867 1868
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1869 1870
}

1871
static void i845_update_wm(struct intel_crtc *unused_crtc)
1872
{
1873
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1874
	struct intel_crtc *crtc;
1875
	const struct drm_display_mode *adjusted_mode;
1876 1877 1878
	uint32_t fwater_lo;
	int planea_wm;

1879
	crtc = single_enabled_crtc(dev_priv);
1880 1881 1882
	if (crtc == NULL)
		return;

1883
	adjusted_mode = &crtc->config->base.adjusted_mode;
1884
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1885
				       &i845_wm_info,
1886
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1887
				       4, pessimal_latency_ns);
1888 1889 1890 1891 1892 1893 1894 1895
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1896
/* latency must be in 0.1us units. */
1897
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1898 1899 1900
{
	uint64_t ret;

1901 1902 1903
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1904
	ret = (uint64_t) pixel_rate * cpp * latency;
1905 1906 1907 1908 1909
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1910
/* latency must be in 0.1us units. */
1911
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1912
			       uint32_t horiz_pixels, uint8_t cpp,
1913 1914 1915 1916
			       uint32_t latency)
{
	uint32_t ret;

1917 1918
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1919 1920
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1921

1922
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1923
	ret = (ret + 1) * horiz_pixels * cpp;
1924 1925 1926 1927
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1928
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1929
			   uint8_t cpp)
1930
{
1931 1932 1933 1934 1935 1936
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1937
	if (WARN_ON(!cpp))
1938 1939 1940 1941
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1942
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1943 1944
}

1945
struct ilk_wm_maximums {
1946 1947 1948 1949 1950 1951
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1952 1953 1954 1955
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1956
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1957
				   const struct intel_plane_state *pstate,
1958 1959
				   uint32_t mem_value,
				   bool is_lp)
1960
{
1961
	uint32_t method1, method2;
1962
	int cpp;
1963

1964
	if (!cstate->base.active || !pstate->base.visible)
1965 1966
		return 0;

1967
	cpp = pstate->base.fb->format->cpp[0];
1968

1969
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1970 1971 1972 1973

	if (!is_lp)
		return method1;

1974
	method2 = ilk_wm_method2(cstate->pixel_rate,
1975
				 cstate->base.adjusted_mode.crtc_htotal,
1976
				 drm_rect_width(&pstate->base.dst),
1977
				 cpp, mem_value);
1978 1979

	return min(method1, method2);
1980 1981
}

1982 1983 1984 1985
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1986
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1987
				   const struct intel_plane_state *pstate,
1988 1989 1990
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1991
	int cpp;
1992

1993
	if (!cstate->base.active || !pstate->base.visible)
1994 1995
		return 0;

1996
	cpp = pstate->base.fb->format->cpp[0];
1997

1998 1999
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
2000
				 cstate->base.adjusted_mode.crtc_htotal,
2001
				 drm_rect_width(&pstate->base.dst),
2002
				 cpp, mem_value);
2003 2004 2005
	return min(method1, method2);
}

2006 2007 2008 2009
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2010
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2011
				   const struct intel_plane_state *pstate,
2012 2013
				   uint32_t mem_value)
{
2014 2015
	int cpp;

2016
	/*
2017 2018 2019 2020 2021 2022
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
2023
	 */
2024
	if (!cstate->base.active || !pstate->base.fb)
2025 2026
		return 0;

2027 2028
	cpp = pstate->base.fb->format->cpp[0];

2029
	return ilk_wm_method2(cstate->pixel_rate,
2030
			      cstate->base.adjusted_mode.crtc_htotal,
2031
			      pstate->base.crtc_w, cpp, mem_value);
2032 2033
}

2034
/* Only for WM_LP. */
2035
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2036
				   const struct intel_plane_state *pstate,
2037
				   uint32_t pri_val)
2038
{
2039
	int cpp;
2040

2041
	if (!cstate->base.active || !pstate->base.visible)
2042 2043
		return 0;

2044
	cpp = pstate->base.fb->format->cpp[0];
2045

2046
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2047 2048
}

2049 2050
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2051
{
2052
	if (INTEL_GEN(dev_priv) >= 8)
2053
		return 3072;
2054
	else if (INTEL_GEN(dev_priv) >= 7)
2055 2056 2057 2058 2059
		return 768;
	else
		return 512;
}

2060 2061 2062
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2063
{
2064
	if (INTEL_GEN(dev_priv) >= 8)
2065 2066
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2067
	else if (INTEL_GEN(dev_priv) >= 7)
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2078 2079
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2080
{
2081
	if (INTEL_GEN(dev_priv) >= 7)
2082 2083 2084 2085 2086
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2087
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2088
{
2089
	if (INTEL_GEN(dev_priv) >= 8)
2090 2091 2092 2093 2094
		return 31;
	else
		return 15;
}

2095 2096 2097
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2098
				     const struct intel_wm_config *config,
2099 2100 2101
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2102 2103
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2104 2105

	/* if sprites aren't enabled, sprites get nothing */
2106
	if (is_sprite && !config->sprites_enabled)
2107 2108 2109
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2110
	if (level == 0 || config->num_pipes_active > 1) {
2111
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2112 2113 2114 2115 2116 2117

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2118
		if (INTEL_GEN(dev_priv) <= 6)
2119 2120 2121
			fifo_size /= 2;
	}

2122
	if (config->sprites_enabled) {
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2134
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2135 2136 2137 2138
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2139 2140
				      int level,
				      const struct intel_wm_config *config)
2141 2142
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2143
	if (level > 0 && config->num_pipes_active > 1)
2144 2145 2146
		return 64;

	/* otherwise just report max that registers can hold */
2147
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2148 2149
}

2150
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2151 2152 2153
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2154
				    struct ilk_wm_maximums *max)
2155
{
2156 2157 2158
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2159
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2160 2161
}

2162
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2163 2164 2165
					int level,
					struct ilk_wm_maximums *max)
{
2166 2167 2168 2169
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2170 2171
}

2172
static bool ilk_validate_wm_level(int level,
2173
				  const struct ilk_wm_maximums *max,
2174
				  struct intel_wm_level *result)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2213
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2214
				 const struct intel_crtc *intel_crtc,
2215
				 int level,
2216
				 struct intel_crtc_state *cstate,
2217 2218 2219
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2220
				 struct intel_wm_level *result)
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2245 2246 2247
	result->enable = true;
}

2248
static uint32_t
2249
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2250
{
2251 2252
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2253 2254
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2255
	u32 linetime, ips_linetime;
2256

2257 2258 2259 2260
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2261
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2262
		return 0;
2263

2264 2265 2266
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2267 2268 2269
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2270
					 intel_state->cdclk.logical.cdclk);
2271

2272 2273
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2274 2275
}

2276 2277
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2278
{
2279
	if (IS_GEN9(dev_priv)) {
2280
		uint32_t val;
2281
		int ret, i;
2282
		int level, max_level = ilk_wm_max_level(dev_priv);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2338
		/*
2339
		 * WaWmMemoryReadLatency:skl,glk
2340
		 *
2341
		 * punit doesn't take into account the read latency so we need
2342 2343
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2344
		 */
2345 2346 2347 2348 2349
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2350
				wm[level] += 2;
2351
			}
2352 2353
		}

2354
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2355 2356 2357 2358 2359
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2360 2361 2362 2363
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2364
	} else if (INTEL_GEN(dev_priv) >= 6) {
2365 2366 2367 2368 2369 2370
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2371
	} else if (INTEL_GEN(dev_priv) >= 5) {
2372 2373 2374 2375 2376 2377
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2378 2379 2380
	}
}

2381 2382
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2383 2384
{
	/* ILK sprite LP0 latency is 1300 ns */
2385
	if (IS_GEN5(dev_priv))
2386 2387 2388
		wm[0] = 13;
}

2389 2390
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2391 2392
{
	/* ILK cursor LP0 latency is 1300 ns */
2393
	if (IS_GEN5(dev_priv))
2394 2395 2396
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2397
	if (IS_IVYBRIDGE(dev_priv))
2398 2399 2400
		wm[3] *= 2;
}

2401
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2402 2403
{
	/* how many WM levels are we expecting */
2404
	if (INTEL_GEN(dev_priv) >= 9)
2405
		return 7;
2406
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2407
		return 4;
2408
	else if (INTEL_GEN(dev_priv) >= 6)
2409
		return 3;
2410
	else
2411 2412
		return 2;
}
2413

2414
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2415
				   const char *name,
2416
				   const uint16_t wm[8])
2417
{
2418
	int level, max_level = ilk_wm_max_level(dev_priv);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2429 2430 2431 2432
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2433
		if (IS_GEN9(dev_priv))
2434 2435
			latency *= 10;
		else if (level > 0)
2436 2437 2438 2439 2440 2441 2442 2443
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2444 2445 2446
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2447
	int level, max_level = ilk_wm_max_level(dev_priv);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2459
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2475 2476 2477
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2478 2479
}

2480
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2481
{
2482
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2483 2484 2485 2486 2487 2488

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2489
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2490
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2491

2492 2493 2494
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2495

2496
	if (IS_GEN6(dev_priv))
2497
		snb_wm_latency_quirk(dev_priv);
2498 2499
}

2500
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2501
{
2502
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2503
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2529
/* Compute new watermarks for the pipe */
2530
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2531
{
2532 2533
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2534
	struct intel_pipe_wm *pipe_wm;
2535
	struct drm_device *dev = state->dev;
2536
	const struct drm_i915_private *dev_priv = to_i915(dev);
2537
	struct intel_plane *intel_plane;
2538
	struct intel_plane_state *pristate = NULL;
2539
	struct intel_plane_state *sprstate = NULL;
2540
	struct intel_plane_state *curstate = NULL;
2541
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2542
	struct ilk_wm_maximums max;
2543

2544
	pipe_wm = &cstate->wm.ilk.optimal;
2545

2546
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2547 2548 2549 2550 2551 2552
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2553 2554

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2555
			pristate = ps;
2556
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2557
			sprstate = ps;
2558
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2559
			curstate = ps;
2560 2561
	}

2562
	pipe_wm->pipe_enabled = cstate->base.active;
2563
	if (sprstate) {
2564 2565 2566 2567
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2568 2569
	}

2570 2571
	usable_level = max_level;

2572
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2573
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2574
		usable_level = 1;
2575 2576

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2577
	if (pipe_wm->sprites_scaled)
2578
		usable_level = 0;
2579

2580
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2581 2582 2583 2584
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2585

2586
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2587
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2588

2589
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2590
		return -EINVAL;
2591

2592
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2593 2594

	for (level = 1; level <= max_level; level++) {
2595
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2596

2597
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2598
				     pristate, sprstate, curstate, wm);
2599 2600 2601 2602 2603 2604

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2605 2606 2607 2608 2609 2610
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2611
			usable_level = level;
2612 2613
	}

2614
	return 0;
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624 2625
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2626
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2627
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2628
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2629 2630 2631 2632 2633 2634

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2635
	*a = newstate->wm.ilk.optimal;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2664 2665
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
2666 2667 2668 2669

	return 0;
}

2670 2671 2672 2673 2674 2675 2676 2677 2678
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2679 2680
	ret_wm->enable = true;

2681
	for_each_intel_crtc(dev, intel_crtc) {
2682
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2683 2684 2685 2686
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2687

2688 2689 2690 2691 2692
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2693
		if (!wm->enable)
2694
			ret_wm->enable = false;
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2707
			 const struct intel_wm_config *config,
2708
			 const struct ilk_wm_maximums *max,
2709 2710
			 struct intel_pipe_wm *merged)
{
2711
	struct drm_i915_private *dev_priv = to_i915(dev);
2712
	int level, max_level = ilk_wm_max_level(dev_priv);
2713
	int last_enabled_level = max_level;
2714

2715
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2716
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2717
	    config->num_pipes_active > 1)
2718
		last_enabled_level = 0;
2719

2720
	/* ILK: FBC WM must be disabled always */
2721
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2722 2723 2724 2725 2726 2727 2728

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2729 2730 2731 2732 2733
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2734 2735 2736 2737 2738 2739

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2740 2741
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2742 2743 2744
			wm->fbc_val = 0;
		}
	}
2745 2746 2747 2748 2749 2750 2751

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2752
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2753
	    intel_fbc_is_active(dev_priv)) {
2754 2755 2756 2757 2758 2759
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2760 2761
}

2762 2763 2764 2765 2766 2767
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2768 2769 2770
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2771
	struct drm_i915_private *dev_priv = to_i915(dev);
2772

2773
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2774 2775 2776 2777 2778
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2779
static void ilk_compute_wm_results(struct drm_device *dev,
2780
				   const struct intel_pipe_wm *merged,
2781
				   enum intel_ddb_partitioning partitioning,
2782
				   struct ilk_wm_values *results)
2783
{
2784
	struct drm_i915_private *dev_priv = to_i915(dev);
2785 2786
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2787

2788
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2789
	results->partitioning = partitioning;
2790

2791
	/* LP1+ register values */
2792
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2793
		const struct intel_wm_level *r;
2794

2795
		level = ilk_wm_lp_to_level(wm_lp, merged);
2796

2797
		r = &merged->wm[level];
2798

2799 2800 2801 2802 2803
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2804
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2805 2806 2807
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2808 2809 2810
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2811
		if (INTEL_GEN(dev_priv) >= 8)
2812 2813 2814 2815 2816 2817
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2818 2819 2820 2821
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2822
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2823 2824 2825 2826
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2827
	}
2828

2829
	/* LP0 register values */
2830
	for_each_intel_crtc(dev, intel_crtc) {
2831
		enum pipe pipe = intel_crtc->pipe;
2832 2833
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2834 2835 2836 2837

		if (WARN_ON(!r->enable))
			continue;

2838
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2839

2840 2841 2842 2843
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2844 2845 2846
	}
}

2847 2848
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2849
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2850 2851
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2852
{
2853
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2854
	int level1 = 0, level2 = 0;
2855

2856 2857 2858 2859 2860
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2861 2862
	}

2863 2864
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2865 2866 2867
			return r2;
		else
			return r1;
2868
	} else if (level1 > level2) {
2869 2870 2871 2872 2873 2874
		return r1;
	} else {
		return r2;
	}
}

2875 2876 2877 2878 2879 2880 2881 2882
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2883
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2884 2885
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2886 2887 2888 2889 2890
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2891
	for_each_pipe(dev_priv, pipe) {
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2935 2936
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2937
{
2938
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2939
	bool changed = false;
2940

2941 2942 2943
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2944
		changed = true;
2945 2946 2947 2948
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2949
		changed = true;
2950 2951 2952 2953
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2954
		changed = true;
2955
	}
2956

2957 2958 2959 2960
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2961

2962 2963 2964 2965 2966 2967 2968
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2969 2970
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2971
{
2972
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2973 2974 2975
	unsigned int dirty;
	uint32_t val;

2976
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2977 2978 2979 2980 2981
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2982
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2983
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2984
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2985
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2986
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2987 2988
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2989
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2990
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2991
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2992
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2993
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2994 2995
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2996
	if (dirty & WM_DIRTY_DDB) {
2997
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3012 3013
	}

3014
	if (dirty & WM_DIRTY_FBC) {
3015 3016 3017 3018 3019 3020 3021 3022
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3023 3024 3025 3026
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3027
	if (INTEL_GEN(dev_priv) >= 7) {
3028 3029 3030 3031 3032
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3033

3034
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3035
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3036
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3037
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3038
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3039
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3040 3041

	dev_priv->wm.hw = *results;
3042 3043
}

3044
bool ilk_disable_lp_wm(struct drm_device *dev)
3045
{
3046
	struct drm_i915_private *dev_priv = to_i915(dev);
3047 3048 3049 3050

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3051
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3052

3053 3054 3055 3056 3057 3058 3059 3060
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3061
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3062 3063 3064 3065 3066
		return true;

	return false;
}

3067 3068 3069
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3070 3071 3072 3073 3074 3075 3076 3077
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3078 3079
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3092
intel_enable_sagv(struct drm_i915_private *dev_priv)
3093 3094 3095
{
	int ret;

3096 3097 3098 3099
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3115
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3116
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3117
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3118 3119 3120 3121 3122 3123
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3124
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3125 3126 3127 3128
	return 0;
}

int
3129
intel_disable_sagv(struct drm_i915_private *dev_priv)
3130
{
3131
	int ret;
3132

3133 3134 3135 3136
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3137 3138 3139 3140 3141 3142
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3143 3144 3145 3146
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3147 3148 3149 3150 3151 3152
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3153
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3154
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3155
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3156
		return 0;
3157 3158 3159
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3160 3161
	}

3162
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3163 3164 3165
	return 0;
}

3166
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3167 3168 3169 3170
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3171 3172
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3173
	struct intel_crtc_state *cstate;
3174
	enum pipe pipe;
3175
	int level, latency;
3176

3177 3178 3179
	if (!intel_has_sagv(dev_priv))
		return false;

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3193
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3194
	cstate = to_intel_crtc_state(crtc->base.state);
3195

3196
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3197 3198
		return false;

3199
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3200 3201
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3202

3203
		/* Skip this plane if it's not enabled */
3204
		if (!wm->wm[0].plane_en)
3205 3206 3207
			continue;

		/* Find the highest enabled wm level for this plane */
3208
		for (level = ilk_wm_max_level(dev_priv);
3209
		     !wm->wm[level].plane_en; --level)
3210 3211
		     { }

3212 3213 3214
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3215
		    plane->base.state->fb->modifier ==
3216 3217 3218
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3219 3220 3221 3222 3223
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3224
		if (latency < SKL_SAGV_BLOCK_TIME)
3225 3226 3227 3228 3229 3230
			return false;
	}

	return true;
}

3231 3232
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3233
				   const struct intel_crtc_state *cstate,
3234 3235
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3236
{
3237 3238 3239
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3240
	struct drm_crtc *for_crtc = cstate->base.crtc;
3241 3242
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3243

3244
	if (WARN_ON(!state) || !cstate->base.active) {
3245 3246
		alloc->start = 0;
		alloc->end = 0;
3247
		*num_active = hweight32(dev_priv->active_crtcs);
3248 3249 3250
		return;
	}

3251 3252 3253 3254 3255
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3256 3257
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3258 3259 3260

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3261
	/*
3262 3263 3264 3265 3266 3267
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3268
	 */
3269
	if (!intel_state->active_pipe_changes) {
3270 3271 3272 3273 3274
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3275
		return;
3276
	}
3277 3278 3279 3280 3281 3282

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3283 3284
}

3285
static unsigned int skl_cursor_allocation(int num_active)
3286
{
3287
	if (num_active == 1)
3288 3289 3290 3291 3292
		return 32;

	return 8;
}

3293 3294 3295 3296
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3297 3298
	if (entry->end)
		entry->end += 1;
3299 3300
}

3301 3302
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3303
{
3304
	struct intel_crtc *crtc;
3305

3306 3307
	memset(ddb, 0, sizeof(*ddb));

3308
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3309
		enum intel_display_power_domain power_domain;
3310 3311
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3312 3313 3314

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3315 3316
			continue;

3317 3318 3319 3320 3321 3322 3323
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3324

3325 3326
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3327 3328

		intel_display_power_put(dev_priv, power_domain);
3329 3330 3331
	}
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3354
	if (WARN_ON(!pstate->base.visible))
3355 3356 3357
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3358 3359 3360 3361
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3362
	if (drm_rotation_90_or_270(pstate->base.rotation))
3363 3364 3365 3366 3367 3368 3369 3370 3371
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3372
static unsigned int
3373 3374 3375
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3376
{
3377
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3378
	uint32_t down_scale_amount, data_rate;
3379
	uint32_t width = 0, height = 0;
3380 3381
	struct drm_framebuffer *fb;
	u32 format;
3382

3383
	if (!intel_pstate->base.visible)
3384
		return 0;
3385 3386

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3387
	format = fb->format->format;
3388

3389 3390 3391 3392
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3393

3394 3395
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3396

3397
	if (drm_rotation_90_or_270(pstate->rotation))
3398
		swap(width, height);
3399 3400

	/* for planar format */
3401
	if (format == DRM_FORMAT_NV12) {
3402
		if (y)  /* y-plane data rate */
3403
			data_rate = width * height *
3404
				fb->format->cpp[0];
3405
		else    /* uv-plane data rate */
3406
			data_rate = (width / 2) * (height / 2) *
3407
				fb->format->cpp[1];
3408 3409
	} else {
		/* for packed formats */
3410
		data_rate = width * height * fb->format->cpp[0];
3411 3412
	}

3413 3414 3415
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3416 3417 3418 3419 3420 3421 3422 3423
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3424 3425 3426
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3427
{
3428 3429
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3430 3431
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3432
	unsigned int total_data_rate = 0;
3433 3434 3435

	if (WARN_ON(!state))
		return 0;
3436

3437
	/* Calculate and cache data rate for each plane */
3438
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3439 3440
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3441 3442 3443 3444

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3445
		plane_data_rate[plane_id] = rate;
3446 3447

		total_data_rate += rate;
3448 3449 3450 3451

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3452
		plane_y_data_rate[plane_id] = rate;
3453

3454
		total_data_rate += rate;
3455 3456 3457 3458 3459
	}

	return total_data_rate;
}

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3474
	if (y && fb->format->format != DRM_FORMAT_NV12)
3475 3476 3477
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3478 3479
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3480 3481
		return 8;

3482 3483
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3484

3485
	if (drm_rotation_90_or_270(pstate->rotation))
3486 3487 3488
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3489
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3490 3491 3492 3493
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3494
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3495
		plane_bpp = fb->format->cpp[1];
3496
	else
3497
		plane_bpp = fb->format->cpp[0];
3498

3499
	if (drm_rotation_90_or_270(pstate->rotation)) {
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3523 3524 3525 3526 3527 3528 3529 3530
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3531
		enum plane_id plane_id = to_intel_plane(plane)->id;
3532

3533
		if (plane_id == PLANE_CURSOR)
3534 3535 3536 3537 3538
			continue;

		if (!pstate->visible)
			continue;

3539 3540
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3541 3542 3543 3544 3545
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3546
static int
3547
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3548 3549
		      struct skl_ddb_allocation *ddb /* out */)
{
3550
	struct drm_atomic_state *state = cstate->base.state;
3551
	struct drm_crtc *crtc = cstate->base.crtc;
3552 3553 3554
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3555
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3556
	uint16_t alloc_size, start;
3557 3558
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3559
	unsigned int total_data_rate;
3560
	enum plane_id plane_id;
3561
	int num_active;
3562 3563
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3564

3565 3566 3567 3568
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3569 3570 3571
	if (WARN_ON(!state))
		return 0;

3572
	if (!cstate->base.active) {
3573
		alloc->start = alloc->end = 0;
3574 3575 3576
		return 0;
	}

3577
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3578
	alloc_size = skl_ddb_entry_size(alloc);
3579 3580
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3581
		return 0;
3582 3583
	}

3584
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3585

3586 3587 3588 3589 3590
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3591

3592 3593 3594
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3595 3596
	}

3597 3598 3599
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3600
	/*
3601 3602
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3603 3604 3605
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3606 3607 3608
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3609
	if (total_data_rate == 0)
3610
		return 0;
3611

3612
	start = alloc->start;
3613
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3614 3615
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3616

3617
		if (plane_id == PLANE_CURSOR)
3618 3619
			continue;

3620
		data_rate = plane_data_rate[plane_id];
3621 3622

		/*
3623
		 * allocation for (packed formats) or (uv-plane part of planar format):
3624 3625 3626
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3627
		plane_blocks = minimum[plane_id];
3628 3629
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3630

3631 3632
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3633 3634
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3635
		}
3636 3637

		start += plane_blocks;
3638 3639 3640 3641

		/*
		 * allocation for y_plane part of planar format:
		 */
3642
		y_data_rate = plane_y_data_rate[plane_id];
3643

3644
		y_plane_blocks = y_minimum[plane_id];
3645 3646
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3647

3648
		if (y_data_rate) {
3649 3650
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3651
		}
3652 3653

		start += y_plane_blocks;
3654 3655
	}

3656
	return 0;
3657 3658
}

3659 3660
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3661
 * for the read latency) and cpp should always be <= 8, so that
3662 3663 3664
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3665 3666
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3667
{
3668 3669
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3670 3671

	if (latency == 0)
3672
		return FP_16_16_MAX;
3673

3674 3675
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3676 3677 3678
	return ret;
}

3679 3680 3681 3682
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3683
{
3684
	uint32_t wm_intermediate_val;
3685
	uint_fixed_16_16_t ret;
3686 3687

	if (latency == 0)
3688
		return FP_16_16_MAX;
3689 3690

	wm_intermediate_val = latency * pixel_rate;
3691 3692 3693
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3694 3695 3696
	return ret;
}

3697 3698 3699 3700 3701 3702 3703 3704
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3705
	if (WARN_ON(!pstate->base.visible))
3706 3707 3708 3709 3710 3711
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3712
	adjusted_pixel_rate = cstate->pixel_rate;
3713 3714 3715 3716 3717 3718 3719 3720
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3721 3722 3723 3724 3725 3726 3727 3728
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3729
{
3730 3731
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3732
	uint32_t latency = dev_priv->wm.skl_latency[level];
3733 3734 3735 3736 3737
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3738
	uint32_t res_blocks, res_lines;
3739
	uint8_t cpp;
3740
	uint32_t width = 0, height = 0;
3741
	uint32_t plane_pixel_rate;
3742 3743
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3744 3745 3746
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3747
	bool y_tiled, x_tiled;
3748

3749
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3750 3751 3752
		*enabled = false;
		return 0;
	}
3753

3754 3755 3756 3757
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3758 3759 3760 3761
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3762
	if (apply_memory_bw_wa && x_tiled)
3763 3764
		latency += 15;

3765 3766
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3767

3768
	if (drm_rotation_90_or_270(pstate->rotation))
3769 3770
		swap(width, height);

3771
	cpp = fb->format->cpp[0];
3772 3773
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3774
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3775
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3776 3777
			fb->format->cpp[1] :
			fb->format->cpp[0];
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3789 3790 3791
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3792 3793 3794 3795 3796
		}
	} else {
		y_min_scanlines = 4;
	}

3797 3798 3799
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3800
	plane_bytes_per_line = width * cpp;
3801
	if (y_tiled) {
3802 3803
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3804
		plane_blocks_per_line =
3805
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3806
	} else if (x_tiled) {
3807 3808
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3809
	} else {
3810 3811
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3812 3813
	}

3814 3815
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3816
				 cstate->base.adjusted_mode.crtc_htotal,
3817
				 latency,
3818
				 plane_blocks_per_line);
3819

3820 3821
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3822

3823
	if (y_tiled) {
3824
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3825
	} else {
3826 3827 3828
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3829 3830 3831
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3832 3833 3834
		else
			selected_result = method1;
	}
3835

3836 3837 3838
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3839

3840
	if (level >= 1 && level <= 7) {
3841
		if (y_tiled) {
3842
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3843
			res_lines += y_min_scanlines;
3844
		} else {
3845
			res_blocks++;
3846
		}
3847
	}
3848

3849 3850
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3851 3852 3853 3854 3855 3856 3857 3858

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3859 3860
			struct drm_plane *plane = pstate->plane;

3861
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3862 3863
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3864 3865 3866
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3867
	}
3868 3869 3870

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3871
	*enabled = true;
3872

3873
	return 0;
3874 3875
}

3876 3877 3878 3879
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3880
		     struct intel_plane *intel_plane,
3881 3882
		     int level,
		     struct skl_wm_level *result)
3883
{
3884
	struct drm_atomic_state *state = cstate->base.state;
3885
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3886 3887
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3888
	uint16_t ddb_blocks;
3889
	enum pipe pipe = intel_crtc->pipe;
3890
	int ret;
L
Lyude 已提交
3891 3892 3893 3894 3895

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3896

3897
	/*
L
Lyude 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3907
	 */
L
Lyude 已提交
3908 3909
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3910

L
Lyude 已提交
3911
	WARN_ON(!intel_pstate->base.fb);
3912

3913
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3914

L
Lyude 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3925 3926

	return 0;
3927 3928
}

3929
static uint32_t
3930
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3931
{
M
Mahesh Kumar 已提交
3932 3933
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3934
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3935
	uint32_t linetime_wm;
3936

3937
	if (!cstate->base.active)
3938 3939
		return 0;

3940
	pixel_rate = cstate->pixel_rate;
3941 3942

	if (WARN_ON(pixel_rate == 0))
3943
		return 0;
3944

M
Mahesh Kumar 已提交
3945 3946 3947 3948 3949 3950 3951 3952
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3953 3954
}

3955
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3956
				      struct skl_wm_level *trans_wm /* out */)
3957
{
3958
	if (!cstate->base.active)
3959
		return;
3960 3961

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3962
	trans_wm->plane_en = false;
3963 3964
}

3965 3966 3967
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3968
{
3969
	struct drm_device *dev = cstate->base.crtc->dev;
3970
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3971 3972
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3973
	int level, max_level = ilk_wm_max_level(dev_priv);
3974
	int ret;
3975

L
Lyude 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3985
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3995
	}
3996
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3997

3998
	return 0;
3999 4000
}

4001 4002
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
4003 4004 4005 4006 4007 4008 4009 4010
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4026 4027 4028
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4029
			       enum plane_id plane_id)
4030 4031 4032 4033
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4034
	int level, max_level = ilk_wm_max_level(dev_priv);
4035 4036 4037
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4038
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4039
				   &wm->wm[level]);
4040
	}
4041
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4042
			   &wm->trans_wm);
4043

4044 4045 4046 4047
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4048 4049
}

4050 4051 4052
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4053 4054 4055 4056
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4057
	int level, max_level = ilk_wm_max_level(dev_priv);
4058 4059 4060
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4061 4062
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4063
	}
4064
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4065

4066
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4067
			    &ddb->plane[pipe][PLANE_CURSOR]);
4068 4069
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4084 4085
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4086
{
4087
	return a->start < b->end && b->start < a->end;
4088 4089
}

4090 4091 4092
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4093
{
4094
	int i;
4095

4096 4097 4098
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4099
			return true;
4100

4101
	return false;
4102 4103
}

4104
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4105
			      const struct skl_pipe_wm *old_pipe_wm,
4106
			      struct skl_pipe_wm *pipe_wm, /* out */
4107
			      struct skl_ddb_allocation *ddb, /* out */
4108
			      bool *changed /* out */)
4109
{
4110
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4111
	int ret;
4112

4113 4114 4115
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4116

4117
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4118 4119 4120
		*changed = false;
	else
		*changed = true;
4121

4122
	return 0;
4123 4124
}

4125 4126 4127 4128 4129 4130 4131
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4132
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4133 4134 4135 4136 4137
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4138
static int
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4155
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4156
		enum plane_id plane_id = to_intel_plane(plane)->id;
4157

4158 4159 4160 4161
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4172 4173 4174 4175 4176 4177 4178
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4179
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4180
	uint32_t realloc_pipes = pipes_modified(state);
4181 4182 4183 4184 4185 4186 4187 4188
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4189 4190 4191 4192 4193 4194
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4195 4196
		intel_state->active_pipe_changes = ~0;

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4220
	if (intel_state->active_pipe_changes) {
4221
		realloc_pipes = ~0;
4222 4223
		intel_state->wm_results.dirty_pipes = ~0;
	}
4224

4225 4226 4227 4228 4229 4230
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4231 4232 4233 4234 4235 4236 4237
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4238
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4239 4240
		if (ret)
			return ret;
4241

4242
		ret = skl_ddb_add_affected_planes(cstate);
4243 4244
		if (ret)
			return ret;
4245 4246 4247 4248 4249
	}

	return 0;
}

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4273
	int i;
4274

4275
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4276 4277
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4278

4279
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4280
			enum plane_id plane_id = intel_plane->id;
4281 4282
			const struct skl_ddb_entry *old, *new;

4283 4284
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4285 4286 4287 4288

			if (skl_ddb_entry_equal(old, new))
				continue;

4289 4290 4291 4292 4293
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4294 4295 4296 4297
		}
	}
}

4298 4299 4300 4301 4302
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4303 4304 4305
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4306
	bool changed = false;
4307
	int ret, i;
4308 4309 4310 4311 4312 4313 4314 4315 4316

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4317
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4318 4319 4320 4321
		changed = true;
	if (!changed)
		return 0;

4322 4323 4324
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4325 4326 4327 4328
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4339
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4340 4341
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4342 4343
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4344 4345

		pipe_wm = &intel_cstate->wm.skl.optimal;
4346 4347
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4361 4362
	skl_print_wm_changes(state);

4363 4364 4365
	return 0;
}

4366 4367 4368 4369 4370 4371
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4372
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4373
	enum pipe pipe = crtc->pipe;
4374
	enum plane_id plane_id;
4375 4376 4377

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4378 4379

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4380

4381 4382 4383 4384 4385 4386 4387 4388
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4389 4390
}

4391 4392
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4393
{
4394
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4395
	struct drm_device *dev = intel_crtc->base.dev;
4396
	struct drm_i915_private *dev_priv = to_i915(dev);
4397
	struct skl_wm_values *results = &state->wm_results;
4398
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4399
	enum pipe pipe = intel_crtc->pipe;
4400

4401
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4402 4403
		return;

4404
	mutex_lock(&dev_priv->wm.wm_mutex);
4405

4406 4407
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4408 4409

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4410 4411

	mutex_unlock(&dev_priv->wm.wm_mutex);
4412 4413
}

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4432
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4433
{
4434
	struct drm_device *dev = &dev_priv->drm;
4435
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4436
	struct ilk_wm_maximums max;
4437
	struct intel_wm_config config = {};
4438
	struct ilk_wm_values results = {};
4439
	enum intel_ddb_partitioning partitioning;
4440

4441 4442 4443 4444
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4445 4446

	/* 5/6 split only in single pipe config on IVB+ */
4447
	if (INTEL_GEN(dev_priv) >= 7 &&
4448 4449 4450
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4451

4452
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4453
	} else {
4454
		best_lp_wm = &lp_wm_1_2;
4455 4456
	}

4457
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4458
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4459

4460
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4461

4462
	ilk_write_wm_values(dev_priv, &results);
4463 4464
}

4465 4466
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4467
{
4468 4469
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4470

4471
	mutex_lock(&dev_priv->wm.wm_mutex);
4472
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4473 4474 4475
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4476

4477 4478
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4479 4480 4481
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4482

4483 4484
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4485
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4486 4487 4488
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4489 4490
}

4491 4492
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4493
{
4494 4495 4496 4497
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4498 4499
}

4500 4501
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4502
{
4503
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4504 4505
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4506 4507
	int level, max_level;
	enum plane_id plane_id;
4508
	uint32_t val;
4509

4510
	max_level = ilk_wm_max_level(dev_priv);
4511

4512 4513
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4514

4515
		for (level = 0; level <= max_level; level++) {
4516 4517
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4518 4519
			else
				val = I915_READ(CUR_WM(pipe, level));
4520

4521
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4522 4523
		}

4524 4525
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4526 4527 4528 4529
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4530 4531
	}

4532 4533
	if (!intel_crtc->active)
		return;
4534

4535
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4536 4537 4538 4539
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4540
	struct drm_i915_private *dev_priv = to_i915(dev);
4541
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4542
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4543
	struct drm_crtc *crtc;
4544 4545
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4546

4547
	skl_ddb_get_hw_state(dev_priv, ddb);
4548 4549 4550 4551 4552 4553
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4554
		if (intel_crtc->active)
4555 4556
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4557

4558 4559 4560 4561 4562 4563 4564
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4565 4566
}

4567 4568 4569
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4570
	struct drm_i915_private *dev_priv = to_i915(dev);
4571
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4572
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4573
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4574
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4575
	enum pipe pipe = intel_crtc->pipe;
4576
	static const i915_reg_t wm0_pipe_reg[] = {
4577 4578 4579 4580 4581 4582
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4583
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4584
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4585

4586 4587
	memset(active, 0, sizeof(*active));

4588
	active->pipe_enabled = intel_crtc->active;
4589 4590

	if (active->pipe_enabled) {
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4605
		int level, max_level = ilk_wm_max_level(dev_priv);
4606 4607 4608 4609 4610 4611 4612 4613 4614

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4615 4616

	intel_crtc->wm.active.ilk = *active;
4617 4618
}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4633
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4634
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4635
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4636
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4637
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4638
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4639
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4640 4641 4642 4643 4644
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4645 4646 4647
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4648 4649

	tmp = I915_READ(DSPFW2);
4650 4651 4652
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4653 4654 4655 4656 4657 4658

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4659 4660
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4661 4662

		tmp = I915_READ(DSPFW8_CHV);
4663 4664
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4665 4666

		tmp = I915_READ(DSPFW9_CHV);
4667 4668
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4669 4670 4671

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4672 4673 4674 4675 4676 4677 4678 4679 4680
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4681 4682
	} else {
		tmp = I915_READ(DSPFW7);
4683 4684
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4685 4686 4687

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4688 4689 4690 4691 4692 4693
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4704
	struct intel_crtc *crtc;
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4719 4720 4721 4722 4723 4724 4725 4726 4727
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4728
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4742 4743 4744 4745

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
4784
		crtc_state->wm.vlv.intermediate = *active;
4785

4786
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4787 4788 4789 4790 4791
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4792
	}
4793 4794 4795 4796 4797

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

4847 4848
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4849
	struct drm_i915_private *dev_priv = to_i915(dev);
4850
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4851 4852
	struct drm_crtc *crtc;

4853
	for_each_crtc(dev, crtc)
4854 4855 4856 4857 4858 4859 4860
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4861
	if (INTEL_GEN(dev_priv) >= 7) {
4862 4863 4864
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4865

4866
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4867 4868
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4869
	else if (IS_IVYBRIDGE(dev_priv))
4870 4871
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4872 4873 4874 4875 4876

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4909
void intel_update_watermarks(struct intel_crtc *crtc)
4910
{
4911
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4912 4913

	if (dev_priv->display.update_wm)
4914
		dev_priv->display.update_wm(crtc);
4915 4916
}

4917
/*
4918 4919 4920 4921 4922 4923 4924 4925
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4926
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4927 4928 4929
{
	u16 rgvswctl;

4930
	lockdep_assert_held(&mchdev_lock);
4931

4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4949
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4950
{
4951
	u32 rgvmodectl;
4952 4953
	u8 fmax, fmin, fstart, vstart;

4954 4955
	spin_lock_irq(&mchdev_lock);

4956 4957
	rgvmodectl = I915_READ(MEMMODECTL);

4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4978
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4979 4980
		PXVFREQ_PX_SHIFT;

4981 4982
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4983

4984 4985 4986
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

5003
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5004
		DRM_ERROR("stuck trying to change perf mode\n");
5005
	mdelay(1);
5006

5007
	ironlake_set_drps(dev_priv, fstart);
5008

5009 5010
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5011
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5012
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5013
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5014 5015

	spin_unlock_irq(&mchdev_lock);
5016 5017
}

5018
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5019
{
5020 5021 5022 5023 5024
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5025 5026 5027 5028 5029 5030 5031 5032 5033

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5034
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5035
	mdelay(1);
5036 5037
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5038
	mdelay(1);
5039

5040
	spin_unlock_irq(&mchdev_lock);
5041 5042
}

5043 5044 5045 5046 5047
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5048
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5049
{
5050
	u32 limits;
5051

5052 5053 5054 5055 5056 5057
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5058
	if (IS_GEN9(dev_priv)) {
5059 5060 5061 5062 5063 5064 5065 5066
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5067 5068 5069 5070

	return limits;
}

5071 5072 5073
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5074 5075
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5076 5077 5078 5079

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5080 5081
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5082 5083 5084 5085
			new_power = BETWEEN;
		break;

	case BETWEEN:
5086 5087
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5088
			new_power = LOW_POWER;
5089 5090
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5091 5092 5093 5094
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5095 5096
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5097 5098 5099 5100
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5101
	if (val <= dev_priv->rps.min_freq_softlimit)
5102
		new_power = LOW_POWER;
5103
	if (val >= dev_priv->rps.max_freq_softlimit)
5104 5105 5106 5107 5108 5109 5110 5111
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5112 5113
		ei_up = 16000;
		threshold_up = 95;
5114 5115

		/* Downclock if less than 85% busy over 32ms */
5116 5117
		ei_down = 32000;
		threshold_down = 85;
5118 5119 5120 5121
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5122 5123
		ei_up = 13000;
		threshold_up = 90;
5124 5125

		/* Downclock if less than 75% busy over 32ms */
5126 5127
		ei_down = 32000;
		threshold_down = 75;
5128 5129 5130 5131
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5132 5133
		ei_up = 10000;
		threshold_up = 85;
5134 5135

		/* Downclock if less than 60% busy over 32ms */
5136 5137
		ei_down = 32000;
		threshold_down = 60;
5138 5139 5140
		break;
	}

5141 5142 5143 5144 5145 5146
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5147
	I915_WRITE(GEN6_RP_UP_EI,
5148
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5149
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5150 5151
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5152 5153

	I915_WRITE(GEN6_RP_DOWN_EI,
5154
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5155
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5166

5167
skip_hw_write:
5168
	dev_priv->rps.power = new_power;
5169 5170
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5171 5172 5173
	dev_priv->rps.last_adj = 0;
}

5174 5175 5176 5177
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5178
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5179
	if (val > dev_priv->rps.min_freq_softlimit)
5180
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5181
	if (val < dev_priv->rps.max_freq_softlimit)
5182
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5183

5184 5185
	mask &= dev_priv->pm_rps_events;

5186
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5187 5188
}

5189 5190 5191
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5192
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5193
{
C
Chris Wilson 已提交
5194 5195 5196 5197 5198
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5199

5200
		if (IS_GEN9(dev_priv))
5201 5202
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5203
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5204 5205 5206 5207 5208 5209 5210
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5211
	}
5212 5213 5214 5215

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5216
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5217
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5218

5219
	dev_priv->rps.cur_freq = val;
5220
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5221 5222

	return 0;
5223 5224
}

5225
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5226
{
5227 5228
	int err;

5229
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5230 5231 5232
		      "Odd GPU freq value\n"))
		val &= ~1;

5233 5234
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5235
	if (val != dev_priv->rps.cur_freq) {
5236 5237 5238 5239
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5240
		gen6_set_rps_thresholds(dev_priv, val);
5241
	}
5242 5243 5244

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5245 5246

	return 0;
5247 5248
}

5249
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5250 5251
 *
 * * If Gfx is Idle, then
5252 5253 5254
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5255 5256 5257
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5258
	u32 val = dev_priv->rps.idle_freq;
5259
	int err;
5260

5261
	if (dev_priv->rps.cur_freq <= val)
5262 5263
		return;

5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5276
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5277
	err = valleyview_set_rps(dev_priv, val);
5278
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5279 5280 5281

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5282 5283
}

5284 5285 5286 5287
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5288 5289
		u8 freq;

5290
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5291 5292 5293
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5294

5295 5296
		gen6_enable_rps_interrupts(dev_priv);

5297 5298 5299 5300 5301 5302
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5303
		if (intel_set_rps(dev_priv,
5304
				  clamp(freq,
5305 5306 5307
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5308 5309 5310 5311
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5312 5313
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5314 5315 5316 5317 5318 5319 5320
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5321
	mutex_lock(&dev_priv->rps.hw_lock);
5322
	if (dev_priv->rps.enabled) {
5323
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5324
			vlv_set_rps_idle(dev_priv);
5325
		else
5326
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5327
		dev_priv->rps.last_adj = 0;
5328 5329
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5330
	}
5331
	mutex_unlock(&dev_priv->rps.hw_lock);
5332

5333
	spin_lock(&dev_priv->rps.client_lock);
5334 5335
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5336
	spin_unlock(&dev_priv->rps.client_lock);
5337 5338
}

5339
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5340 5341
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5342
{
5343 5344 5345
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5346
	if (!(dev_priv->gt.awake &&
5347
	      dev_priv->rps.enabled &&
5348
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5349
		return;
5350

5351 5352 5353
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5354
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5355 5356
		rps = NULL;

5357 5358 5359 5360 5361
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5362
			schedule_work(&dev_priv->rps.work);
5363 5364
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5365

5366 5367 5368
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5369 5370
		} else
			dev_priv->rps.boosts++;
5371
	}
5372
	spin_unlock(&dev_priv->rps.client_lock);
5373 5374
}

5375
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5376
{
5377 5378
	int err;

5379 5380 5381 5382
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5383 5384 5385 5386 5387
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5388
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5389
		err = valleyview_set_rps(dev_priv, val);
5390
	else
5391 5392 5393
		err = gen6_set_rps(dev_priv, val);

	return err;
5394 5395
}

5396
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5397 5398
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5399
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5400 5401
}

5402
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5403 5404 5405 5406
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5407
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5408 5409
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5410
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5411
	I915_WRITE(GEN6_RP_CONTROL, 0);
5412 5413
}

5414
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5415 5416 5417 5418
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5419
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5420
{
5421 5422
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5423
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5424

5425
	I915_WRITE(GEN6_RC_CONTROL, 0);
5426

5427
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5428 5429
}

5430
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5431
{
5432
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5433 5434 5435 5436 5437
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5438
	if (HAS_RC6p(dev_priv))
5439 5440 5441 5442 5443
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5444 5445

	else
5446 5447
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5448 5449
}

5450
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5451
{
5452
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5453 5454
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5466 5467

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5468
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5469 5470 5471 5472 5473 5474 5475 5476
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5477 5478 5479
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5480
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5481 5482 5483 5484 5485 5486 5487
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5488
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5489 5490 5491
		enable_rc6 = false;
	}

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5506 5507 5508 5509 5510 5511
		enable_rc6 = false;
	}

	return enable_rc6;
}

5512
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5513
{
5514
	/* No RC6 before Ironlake and code is gone for ilk. */
5515
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5516 5517
		return 0;

5518 5519 5520
	if (!enable_rc6)
		return 0;

5521
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5522 5523 5524 5525
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5526
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5527 5528 5529
	if (enable_rc6 >= 0) {
		int mask;

5530
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5531 5532 5533 5534 5535 5536
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5537 5538 5539
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5540 5541 5542

		return enable_rc6 & mask;
	}
5543

5544
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5545
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5546 5547

	return INTEL_RC6_ENABLE;
5548 5549
}

5550
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5551 5552
{
	/* All of these values are in units of 50MHz */
5553

5554
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5555
	if (IS_GEN9_LP(dev_priv)) {
5556
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5557 5558 5559 5560
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5561
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5562 5563 5564 5565
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5566
	/* hw_max = RP0 until we check for overclocking */
5567
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5568

5569
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5570
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5571
	    IS_GEN9_BC(dev_priv)) {
5572 5573 5574 5575 5576
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5577
			dev_priv->rps.efficient_freq =
5578 5579 5580 5581
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5582 5583
	}

5584
	if (IS_GEN9_BC(dev_priv)) {
5585
		/* Store the frequency values in 16.66 MHZ units, which is
5586 5587
		 * the natural hardware unit for SKL
		 */
5588 5589 5590 5591 5592 5593
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5594 5595
}

5596
static void reset_rps(struct drm_i915_private *dev_priv,
5597
		      int (*set)(struct drm_i915_private *, u8))
5598 5599 5600 5601 5602 5603 5604
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5605 5606
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5607 5608
}

J
Jesse Barnes 已提交
5609
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5610
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5611 5612 5613
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5614 5615 5616 5617 5618 5619 5620 5621
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5622 5623
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5624 5625 5626
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5627
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5628 5629 5630 5631

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5632
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5633
{
5634
	struct intel_engine_cs *engine;
5635
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5636 5637 5638 5639 5640 5641 5642
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5643
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5644 5645 5646 5647 5648

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5649 5650

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5651
	if (IS_SKYLAKE(dev_priv))
5652 5653 5654
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5655 5656
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5657
	for_each_engine(engine, dev_priv, id)
5658
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5659

5660
	if (HAS_GUC(dev_priv))
5661 5662
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5663 5664
	I915_WRITE(GEN6_RC_SLEEP, 0);

5665 5666 5667 5668
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5669
	/* 3a: Enable RC6 */
5670
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5671
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5672
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5673 5674 5675
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5676

5677 5678
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5679
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5680
	 */
5681
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5682 5683 5684 5685
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5686

5687
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5688 5689
}

5690
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5691
{
5692
	struct intel_engine_cs *engine;
5693
	enum intel_engine_id id;
5694
	uint32_t rc6_mask = 0;
5695 5696 5697 5698 5699 5700

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5701
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5702 5703 5704 5705 5706 5707 5708 5709

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5710
	for_each_engine(engine, dev_priv, id)
5711
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5712
	I915_WRITE(GEN6_RC_SLEEP, 0);
5713
	if (IS_BROADWELL(dev_priv))
5714 5715 5716
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5717 5718

	/* 3: Enable RC6 */
5719
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5720
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5721 5722
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5723 5724 5725 5726 5727 5728 5729
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5730 5731

	/* 4 Program defaults and thresholds for RPS*/
5732 5733 5734 5735
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5750 5751

	/* 5: Enable RPS */
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5762
	reset_rps(dev_priv, gen6_set_rps);
5763

5764
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5765 5766
}

5767
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5768
{
5769
	struct intel_engine_cs *engine;
5770
	enum intel_engine_id id;
5771
	u32 rc6vids, rc6_mask = 0;
5772 5773
	u32 gtfifodbg;
	int rc6_mode;
5774
	int ret;
5775

5776
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5777

5778 5779 5780 5781 5782 5783 5784 5785 5786
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5787 5788
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5789 5790 5791 5792
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5793
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5804
	for_each_engine(engine, dev_priv, id)
5805
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5806 5807 5808

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5809
	if (IS_IVYBRIDGE(dev_priv))
5810 5811 5812
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5813
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5814 5815
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5816
	/* Check if we are enabling RC6 */
5817
	rc6_mode = intel_enable_rc6();
5818 5819 5820
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5821
	/* We don't use those on Haswell */
5822
	if (!IS_HASWELL(dev_priv)) {
5823 5824
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5825

5826 5827 5828
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5829

5830
	intel_print_rc6_info(dev_priv, rc6_mask);
5831 5832 5833 5834 5835 5836

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5837 5838
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5839 5840
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5841
	reset_rps(dev_priv, gen6_set_rps);
5842

5843 5844
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5845
	if (IS_GEN6(dev_priv) && ret) {
5846
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5847
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5848 5849 5850 5851 5852 5853 5854 5855 5856
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5857
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5858 5859
}

5860
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5861 5862
{
	int min_freq = 15;
5863 5864
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5865
	unsigned int max_gpu_freq, min_gpu_freq;
5866
	int scaling_factor = 180;
5867
	struct cpufreq_policy *policy;
5868

5869
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5880
		max_ia_freq = tsc_khz;
5881
	}
5882 5883 5884 5885

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5886
	min_ring_freq = I915_READ(DCLK) & 0xf;
5887 5888
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5889

5890
	if (IS_GEN9_BC(dev_priv)) {
5891 5892 5893 5894 5895 5896 5897 5898
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5899 5900 5901 5902 5903
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5904 5905
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5906 5907
		unsigned int ia_freq = 0, ring_freq = 0;

5908
		if (IS_GEN9_BC(dev_priv)) {
5909 5910 5911 5912 5913
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5914
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5915 5916
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5917
		} else if (IS_HASWELL(dev_priv)) {
5918
			ring_freq = mult_frac(gpu_freq, 5, 4);
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5935

B
Ben Widawsky 已提交
5936 5937
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5938 5939 5940
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5941 5942 5943
	}
}

5944
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5945 5946 5947
{
	u32 val, rp0;

5948
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5949

5950
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5965
	}
5966 5967 5968

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5982 5983 5984 5985
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5986 5987 5988
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5989 5990 5991
	return rp1;
}

5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6014
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6015 6016 6017
{
	u32 val, rp0;

6018
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6031
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6032
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6033
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6034 6035 6036 6037 6038
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6039
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6040
{
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6052 6053
}

6054 6055 6056 6057 6058 6059 6060 6061 6062
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6063 6064 6065 6066 6067 6068 6069 6070 6071

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6072
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6073
{
6074
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6075
	unsigned long pctx_paddr, paddr;
6076 6077 6078 6079 6080
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6081
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6082
		paddr = (dev_priv->mm.stolen_base +
6083
			 (ggtt->stolen_size - pctx_size));
6084 6085 6086 6087

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6088 6089

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6090 6091
}

6092
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6105
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6106
								      pcbr_offset,
6107
								      I915_GTT_OFFSET_NONE,
6108 6109 6110 6111
								      pctx_size);
		goto out;
	}

6112 6113
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6114 6115 6116 6117 6118 6119 6120 6121
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6122
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6123 6124
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6125
		goto out;
6126 6127 6128 6129 6130 6131
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6132
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6133 6134 6135
	dev_priv->vlv_pctx = pctx;
}

6136
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6137 6138 6139 6140
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6141
	i915_gem_object_put(dev_priv->vlv_pctx);
6142 6143 6144
	dev_priv->vlv_pctx = NULL;
}

6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6156
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6157
{
6158
	u32 val;
6159

6160
	valleyview_setup_pctx(dev_priv);
6161

6162 6163
	vlv_init_gpll_ref_freq(dev_priv);

6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6177
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6178

6179 6180 6181
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6182
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6183 6184 6185 6186
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6187
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6188 6189
			 dev_priv->rps.efficient_freq);

6190 6191
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6192
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6193 6194
			 dev_priv->rps.rp1_freq);

6195 6196
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6197
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6198 6199 6200
			 dev_priv->rps.min_freq);
}

6201
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6202
{
6203
	u32 val;
6204

6205
	cherryview_setup_pctx(dev_priv);
6206

6207 6208
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6209
	mutex_lock(&dev_priv->sb_lock);
6210
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6211
	mutex_unlock(&dev_priv->sb_lock);
6212

6213 6214 6215 6216
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6217
	default:
6218 6219 6220
		dev_priv->mem_freq = 1600;
		break;
	}
6221
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6222

6223 6224 6225
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6226
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6227 6228 6229 6230
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6231
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6232 6233
			 dev_priv->rps.efficient_freq);

6234 6235
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6236
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6237 6238
			 dev_priv->rps.rp1_freq);

6239
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6240
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6241
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6242 6243
			 dev_priv->rps.min_freq);

6244 6245 6246 6247 6248
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6249 6250
}

6251
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6252
{
6253
	valleyview_cleanup_pctx(dev_priv);
6254 6255
}

6256
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6257
{
6258
	struct intel_engine_cs *engine;
6259
	enum intel_engine_id id;
6260
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6261 6262 6263

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6264 6265
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6276
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6277

6278 6279 6280
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6281 6282 6283 6284 6285
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6286
	for_each_engine(engine, dev_priv, id)
6287
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6288 6289
	I915_WRITE(GEN6_RC_SLEEP, 0);

6290 6291
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6303 6304
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6305
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6306 6307 6308

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6309
	/* 4 Program defaults and thresholds for RPS*/
6310
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6321
		   GEN6_RP_MEDIA_IS_GFX |
6322 6323 6324 6325
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6326 6327 6328 6329 6330 6331
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6332 6333
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6334 6335 6336
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6337
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6338 6339
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6340
	reset_rps(dev_priv, valleyview_set_rps);
6341

6342
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6343 6344
}

6345
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6346
{
6347
	struct intel_engine_cs *engine;
6348
	enum intel_engine_id id;
6349
	u32 gtfifodbg, val, rc6_mode = 0;
6350 6351 6352

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6353 6354
	valleyview_check_pctx(dev_priv);

6355 6356
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6357 6358
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6359 6360 6361
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6362
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6363
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6364

6365 6366 6367
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6368
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6388
	for_each_engine(engine, dev_priv, id)
6389
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6390

6391
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6392 6393

	/* allows RC6 residency counter to work */
6394
	I915_WRITE(VLV_COUNTER_CONTROL,
6395 6396
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC0_COUNT_EN |
6397
				      VLV_RENDER_RC0_COUNT_EN |
6398 6399
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6400

6401
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6402
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6403

6404
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6405

6406
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6407

D
Deepak S 已提交
6408 6409 6410 6411 6412 6413
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6414
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6415

6416 6417 6418
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6419
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6420 6421
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6422
	reset_rps(dev_priv, valleyview_set_rps);
6423

6424
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6425 6426
}

6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6456
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6457 6458 6459 6460 6461 6462
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6463
	lockdep_assert_held(&mchdev_lock);
6464

6465
	diff1 = now - dev_priv->ips.last_time1;
6466 6467 6468 6469 6470 6471 6472

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6473
		return dev_priv->ips.chipset_power;
6474 6475 6476 6477 6478 6479 6480 6481

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6482 6483
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6484 6485
		diff += total_count;
	} else {
6486
		diff = total_count - dev_priv->ips.last_count1;
6487 6488 6489
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6490 6491
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6502 6503
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6504

6505
	dev_priv->ips.chipset_power = ret;
6506 6507 6508 6509

	return ret;
}

6510 6511 6512 6513
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6514
	if (INTEL_INFO(dev_priv)->gen != 5)
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6553
{
6554 6555 6556
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6557
	if (INTEL_INFO(dev_priv)->is_mobile)
6558 6559 6560
		return vm > 0 ? vm : 0;

	return vd;
6561 6562
}

6563
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6564
{
6565
	u64 now, diff, diffms;
6566 6567
	u32 count;

6568
	lockdep_assert_held(&mchdev_lock);
6569

6570 6571 6572
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6573 6574 6575 6576 6577 6578 6579

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6580 6581
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6582 6583
		diff += count;
	} else {
6584
		diff = count - dev_priv->ips.last_count2;
6585 6586
	}

6587 6588
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6589 6590 6591 6592

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6593
	dev_priv->ips.gfx_power = diff;
6594 6595
}

6596 6597
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6598
	if (INTEL_INFO(dev_priv)->gen != 5)
6599 6600
		return;

6601
	spin_lock_irq(&mchdev_lock);
6602 6603 6604

	__i915_update_gfx_val(dev_priv);

6605
	spin_unlock_irq(&mchdev_lock);
6606 6607
}

6608
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6609 6610 6611 6612
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6613
	lockdep_assert_held(&mchdev_lock);
6614

6615
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6635
	corr2 = (corr * dev_priv->ips.corr);
6636 6637 6638 6639

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6640
	__i915_update_gfx_val(dev_priv);
6641

6642
	return dev_priv->ips.gfx_power + state2;
6643 6644
}

6645 6646 6647 6648
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6649
	if (INTEL_INFO(dev_priv)->gen != 5)
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6672
	spin_lock_irq(&mchdev_lock);
6673 6674 6675 6676
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6677 6678
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6679 6680 6681 6682

	ret = chipset_val + graphics_val;

out_unlock:
6683
	spin_unlock_irq(&mchdev_lock);
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6699
	spin_lock_irq(&mchdev_lock);
6700 6701 6702 6703 6704 6705
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6706 6707
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6708 6709

out_unlock:
6710
	spin_unlock_irq(&mchdev_lock);
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6727
	spin_lock_irq(&mchdev_lock);
6728 6729 6730 6731 6732 6733
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6734 6735
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6736 6737

out_unlock:
6738
	spin_unlock_irq(&mchdev_lock);
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6753
	spin_lock_irq(&mchdev_lock);
6754 6755
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6756
	spin_unlock_irq(&mchdev_lock);
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6773
	spin_lock_irq(&mchdev_lock);
6774 6775 6776 6777 6778 6779
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6780
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6781

6782
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6783 6784 6785
		ret = false;

out_unlock:
6786
	spin_unlock_irq(&mchdev_lock);
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6814 6815
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6816
	spin_lock_irq(&mchdev_lock);
6817
	i915_mch_dev = dev_priv;
6818
	spin_unlock_irq(&mchdev_lock);
6819 6820 6821 6822 6823 6824

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6825
	spin_lock_irq(&mchdev_lock);
6826
	i915_mch_dev = NULL;
6827
	spin_unlock_irq(&mchdev_lock);
6828
}
6829

6830
static void intel_init_emon(struct drm_i915_private *dev_priv)
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6847
		I915_WRITE(PEW(i), 0);
6848
	for (i = 0; i < 3; i++)
6849
		I915_WRITE(DEW(i), 0);
6850 6851 6852

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6853
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6874
		I915_WRITE(PXW(i), val);
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6890
		I915_WRITE(PXWL(i), 0);
6891 6892 6893 6894 6895 6896

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6897
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6898 6899
}

6900
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6901
{
6902 6903 6904 6905 6906 6907 6908 6909
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6910

6911
	mutex_lock(&dev_priv->drm.struct_mutex);
6912 6913 6914
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6915 6916 6917 6918
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6919
	else if (INTEL_GEN(dev_priv) >= 6)
6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6949 6950 6951
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6952
	mutex_unlock(&dev_priv->rps.hw_lock);
6953
	mutex_unlock(&dev_priv->drm.struct_mutex);
6954 6955

	intel_autoenable_gt_powersave(dev_priv);
6956 6957
}

6958
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6959
{
6960
	if (IS_VALLEYVIEW(dev_priv))
6961
		valleyview_cleanup_gt_powersave(dev_priv);
6962 6963 6964

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6965 6966
}

6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6986 6987 6988 6989
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6990 6991

	gen6_reset_rps_interrupts(dev_priv);
6992 6993
}

6994
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6995
{
6996 6997
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6998

6999
	mutex_lock(&dev_priv->rps.hw_lock);
7000

7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7012
	}
7013 7014 7015

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7016 7017
}

7018
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7019
{
7020 7021 7022
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7023 7024
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7025

7026 7027 7028
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7029

7030
	mutex_lock(&dev_priv->rps.hw_lock);
7031 7032 7033 7034 7035

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7036
	} else if (INTEL_GEN(dev_priv) >= 9) {
7037 7038
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7039
		if (IS_GEN9_BC(dev_priv))
7040
			gen6_update_ring_freq(dev_priv);
7041 7042
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7043
		gen6_update_ring_freq(dev_priv);
7044
	} else if (INTEL_GEN(dev_priv) >= 6) {
7045
		gen6_enable_rps(dev_priv);
7046
		gen6_update_ring_freq(dev_priv);
7047 7048 7049
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7050
	}
7051 7052 7053 7054 7055 7056 7057

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7058
	dev_priv->rps.enabled = true;
7059 7060
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7061

7062 7063 7064 7065 7066 7067 7068 7069 7070 7071
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7072
	rcs = dev_priv->engine[RCS];
7073
	if (rcs->last_retired_context)
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
7089
	i915_add_request(req);
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7125
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7126 7127 7128 7129 7130 7131 7132 7133 7134
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7135
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7136
{
7137
	enum pipe pipe;
7138

7139
	for_each_pipe(dev_priv, pipe) {
7140 7141 7142
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7143 7144 7145

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7146 7147 7148
	}
}

7149
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7161
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7162
{
7163
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7164

7165 7166 7167 7168
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7169 7170 7171
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7189
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7190 7191 7192
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7193

7194
	ilk_init_lp_watermarks(dev_priv);
7195 7196 7197 7198 7199 7200 7201 7202

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7203
	if (IS_IRONLAKE_M(dev_priv)) {
7204
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7205 7206 7207 7208 7209 7210 7211 7212
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7213 7214
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7215 7216 7217 7218 7219 7220
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7221

7222
	/* WaDisableRenderCachePipelinedFlush:ilk */
7223 7224
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7225

7226 7227 7228
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7229
	g4x_disable_trickle_feed(dev_priv);
7230

7231
	ibx_init_clock_gating(dev_priv);
7232 7233
}

7234
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7235 7236
{
	int pipe;
7237
	uint32_t val;
7238 7239 7240 7241 7242 7243

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7244 7245 7246
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7247 7248
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7249 7250 7251
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7252
	for_each_pipe(dev_priv, pipe) {
7253 7254 7255
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7256
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7257
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7258 7259 7260
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7261 7262
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7263
	/* WADP0ClockGatingDisable */
7264
	for_each_pipe(dev_priv, pipe) {
7265 7266 7267
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7268 7269
}

7270
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7271 7272 7273 7274
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7275 7276 7277
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7278 7279
}

7280
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7281
{
7282
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7283

7284
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7285 7286 7287 7288 7289

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7290
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7291 7292 7293
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7294 7295 7296
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7297 7298 7299
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7300 7301 7302 7303
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7304 7305
	 */
	I915_WRITE(GEN6_GT_MODE,
7306
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7307

7308
	ilk_init_lp_watermarks(dev_priv);
7309 7310

	I915_WRITE(CACHE_MODE_0,
7311
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7327
	 *
7328 7329
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7330 7331 7332 7333 7334
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7335
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7336 7337
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7338

7339 7340 7341 7342 7343 7344 7345 7346
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7347 7348 7349 7350 7351 7352 7353 7354
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7355 7356
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7357 7358 7359 7360 7361 7362 7363
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7364 7365 7366 7367
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7368

7369
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7370

7371
	cpt_init_clock_gating(dev_priv);
7372

7373
	gen6_check_mch_setup(dev_priv);
7374 7375 7376 7377 7378 7379
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7380
	/*
7381
	 * WaVSThreadDispatchOverride:ivb,vlv
7382 7383 7384 7385
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7386 7387 7388 7389 7390 7391 7392 7393
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7394
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7395 7396 7397 7398 7399
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7400
	if (HAS_PCH_LPT_LP(dev_priv))
7401 7402 7403
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7404 7405

	/* WADPOClockGatingDisable:hsw */
7406 7407
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7408
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7409 7410
}

7411
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7412
{
7413
	if (HAS_PCH_LPT_LP(dev_priv)) {
7414 7415 7416 7417 7418 7419 7420
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7444
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7445
{
7446
	gen9_init_clock_gating(dev_priv);
7447 7448 7449 7450 7451

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7452 7453 7454 7455 7456

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7457 7458 7459 7460

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7461 7462
}

7463
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7464
{
7465
	gen9_init_clock_gating(dev_priv);
7466 7467 7468 7469

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7470 7471 7472 7473

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7474 7475
}

7476
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7477
{
7478
	enum pipe pipe;
B
Ben Widawsky 已提交
7479

7480
	ilk_init_lp_watermarks(dev_priv);
7481

7482
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7483
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7484

7485
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7486 7487 7488
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7489
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7490
	for_each_pipe(dev_priv, pipe) {
7491
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7492
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7493
			   BDW_DPRS_MASK_VBLANK_SRD);
7494
	}
7495

7496 7497 7498 7499 7500
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7501

7502 7503
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7504 7505 7506 7507

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7508

7509 7510
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7511

7512 7513 7514 7515 7516 7517 7518
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7519 7520 7521 7522
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7523
	lpt_init_clock_gating(dev_priv);
7524 7525 7526 7527 7528 7529 7530 7531

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7532 7533
}

7534
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7535
{
7536
	ilk_init_lp_watermarks(dev_priv);
7537

7538 7539 7540 7541 7542
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7543
	/* This is required by WaCatErrorRejectionIssue:hsw */
7544 7545 7546 7547
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7548 7549 7550
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7551

7552 7553 7554
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7555 7556 7557 7558
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7559
	/* WaDisable4x2SubspanOptimization:hsw */
7560 7561
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7562

7563 7564 7565
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7566 7567 7568 7569
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7570 7571
	 */
	I915_WRITE(GEN7_GT_MODE,
7572
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7573

7574 7575 7576 7577
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7578
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7579 7580
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7581 7582 7583
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7584

7585
	lpt_init_clock_gating(dev_priv);
7586 7587
}

7588
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7589
{
7590
	uint32_t snpcr;
7591

7592
	ilk_init_lp_watermarks(dev_priv);
7593

7594
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7595

7596
	/* WaDisableEarlyCull:ivb */
7597 7598 7599
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7600
	/* WaDisableBackToBackFlipFix:ivb */
7601 7602 7603 7604
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7605
	/* WaDisablePSDDualDispatchEnable:ivb */
7606
	if (IS_IVB_GT1(dev_priv))
7607 7608 7609
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7610 7611 7612
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7613
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7614 7615 7616
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7617
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7618 7619 7620
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7621
		   GEN7_WA_L3_CHICKEN_MODE);
7622
	if (IS_IVB_GT1(dev_priv))
7623 7624
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7625 7626 7627 7628
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7629 7630
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7631
	}
7632

7633
	/* WaForceL3Serialization:ivb */
7634 7635 7636
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7637
	/*
7638
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7639
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7640 7641
	 */
	I915_WRITE(GEN6_UCGCTL2,
7642
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7643

7644
	/* This is required by WaCatErrorRejectionIssue:ivb */
7645 7646 7647 7648
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7649
	g4x_disable_trickle_feed(dev_priv);
7650 7651

	gen7_setup_fixed_func_scheduler(dev_priv);
7652

7653 7654 7655 7656 7657
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7658

7659
	/* WaDisable4x2SubspanOptimization:ivb */
7660 7661
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7662

7663 7664 7665
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7666 7667 7668 7669
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7670 7671
	 */
	I915_WRITE(GEN7_GT_MODE,
7672
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7673

7674 7675 7676 7677
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7678

7679
	if (!HAS_PCH_NOP(dev_priv))
7680
		cpt_init_clock_gating(dev_priv);
7681

7682
	gen6_check_mch_setup(dev_priv);
7683 7684
}

7685
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7686
{
7687
	/* WaDisableEarlyCull:vlv */
7688 7689 7690
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7691
	/* WaDisableBackToBackFlipFix:vlv */
7692 7693 7694 7695
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7696
	/* WaPsdDispatchEnable:vlv */
7697
	/* WaDisablePSDDualDispatchEnable:vlv */
7698
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7699 7700
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7701

7702 7703 7704
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7705
	/* WaForceL3Serialization:vlv */
7706 7707 7708
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7709
	/* WaDisableDopClockGating:vlv */
7710 7711 7712
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7713
	/* This is required by WaCatErrorRejectionIssue:vlv */
7714 7715 7716 7717
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7718 7719
	gen7_setup_fixed_func_scheduler(dev_priv);

7720
	/*
7721
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7722
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7723 7724
	 */
	I915_WRITE(GEN6_UCGCTL2,
7725
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7726

7727 7728 7729 7730 7731
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7732

7733 7734 7735 7736
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7737 7738
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7739

7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7751 7752 7753 7754 7755 7756
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7757
	/*
7758
	 * WaDisableVLVClockGating_VBIIssue:vlv
7759 7760 7761
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7762
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7763 7764
}

7765
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7766
{
7767 7768 7769 7770 7771
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7772 7773 7774 7775

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7776 7777 7778 7779

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7780 7781 7782 7783

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7784

7785 7786 7787 7788 7789 7790 7791
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7792 7793 7794 7795 7796
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7797 7798
}

7799
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7811
	if (IS_GM45(dev_priv))
7812 7813
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7814 7815 7816 7817

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7818

7819 7820 7821
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7822
	g4x_disable_trickle_feed(dev_priv);
7823 7824
}

7825
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7826 7827 7828 7829 7830 7831
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7832 7833
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7834 7835 7836

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7837 7838
}

7839
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7840 7841 7842 7843 7844 7845 7846
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7847 7848
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7849 7850 7851

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7852 7853
}

7854
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7855 7856 7857 7858 7859 7860
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7861

7862
	if (IS_PINEVIEW(dev_priv))
7863
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7864 7865 7866

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7867 7868

	/* interrupts should cause a wake up from C3 */
7869
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7870 7871 7872

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7873 7874 7875

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7876 7877
}

7878
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7879 7880
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7881 7882 7883 7884

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7885 7886 7887

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7888 7889
}

7890
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7891
{
7892 7893 7894
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7895 7896
}

7897
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7898
{
7899
	dev_priv->display.init_clock_gating(dev_priv);
7900 7901
}

7902
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7903
{
7904 7905
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7906 7907
}

7908
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7925
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7926
	else if (IS_KABYLAKE(dev_priv))
7927
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7928
	else if (IS_BROXTON(dev_priv))
7929
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7930 7931
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7948
	else if (IS_I965GM(dev_priv))
7949
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7950
	else if (IS_I965G(dev_priv))
7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7964
/* Set up chip specific power management-related functions */
7965
void intel_init_pm(struct drm_i915_private *dev_priv)
7966
{
7967
	intel_fbc_init(dev_priv);
7968

7969
	/* For cxsr */
7970
	if (IS_PINEVIEW(dev_priv))
7971
		i915_pineview_get_mem_freq(dev_priv);
7972
	else if (IS_GEN5(dev_priv))
7973
		i915_ironlake_get_mem_freq(dev_priv);
7974

7975
	/* For FIFO watermark updates */
7976
	if (INTEL_GEN(dev_priv) >= 9) {
7977
		skl_setup_wm_latency(dev_priv);
7978
		dev_priv->display.initial_watermarks = skl_initial_wm;
7979
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7980
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7981
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7982
		ilk_setup_wm_latency(dev_priv);
7983

7984
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7985
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7986
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7987
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7988
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7989 7990 7991 7992 7993 7994
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7995 7996 7997 7998
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7999
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8000
		vlv_setup_wm_latency(dev_priv);
8001
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8002
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8003
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8004
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8005
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8006
	} else if (IS_PINEVIEW(dev_priv)) {
8007
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8008 8009 8010 8011 8012 8013 8014 8015 8016
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8017
			intel_set_memory_cxsr(dev_priv, false);
8018 8019 8020
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8021
	} else if (IS_G4X(dev_priv)) {
8022
		dev_priv->display.update_wm = g4x_update_wm;
8023
	} else if (IS_GEN4(dev_priv)) {
8024
		dev_priv->display.update_wm = i965_update_wm;
8025
	} else if (IS_GEN3(dev_priv)) {
8026 8027
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8028
	} else if (IS_GEN2(dev_priv)) {
8029
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8030
			dev_priv->display.update_wm = i845_update_wm;
8031
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8032 8033
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8034
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8035 8036 8037
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8038 8039 8040
	}
}

8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8053
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8085
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8086
{
8087 8088
	int status;

8089
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8090

8091 8092 8093 8094 8095 8096
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8097 8098 8099 8100
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8101 8102 8103
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8104

8105 8106 8107
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8108 8109 8110 8111
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8112 8113
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8114

8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8126 8127 8128
	return 0;
}

8129
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8130
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8131
{
8132 8133
	int status;

8134
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8135

8136 8137 8138 8139 8140 8141
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8142 8143 8144 8145
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8146
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8147
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8148
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8149

8150 8151 8152
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8153 8154 8155 8156
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8157
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8158

8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8170 8171
	return 0;
}
8172

8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8194
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8195 8196
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8197
 * for @timeout_base_ms and if this times out for another 50 ms with
8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8233
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8234
	 * account for interrupts that could reduce the number of these
8235 8236
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8237 8238 8239 8240
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8241
	ret = wait_for_atomic(COND, 50);
8242 8243 8244 8245 8246 8247 8248
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8249 8250
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8251 8252 8253 8254 8255
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8256 8257
}

8258
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8259
{
8260
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8261 8262
}

8263
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8264
{
8265 8266 8267 8268 8269
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8270 8271
}

8272
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8273
{
8274
	/* CHV needs even values */
8275
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8276 8277
}

8278
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8279
{
8280
	if (IS_GEN9(dev_priv))
8281 8282
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8283
	else if (IS_CHERRYVIEW(dev_priv))
8284
		return chv_gpu_freq(dev_priv, val);
8285
	else if (IS_VALLEYVIEW(dev_priv))
8286 8287 8288
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8289 8290
}

8291 8292
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8293
	if (IS_GEN9(dev_priv))
8294 8295
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8296
	else if (IS_CHERRYVIEW(dev_priv))
8297
		return chv_freq_opcode(dev_priv, val);
8298
	else if (IS_VALLEYVIEW(dev_priv))
8299 8300
		return byt_freq_opcode(dev_priv, val);
	else
8301
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8302
}
8303

8304 8305
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8306
	struct drm_i915_gem_request *req;
8307 8308 8309 8310 8311
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8312
	struct drm_i915_gem_request *req = boost->req;
8313

8314
	if (!i915_gem_request_completed(req))
8315
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8316

8317
	i915_gem_request_put(req);
8318 8319 8320
	kfree(boost);
}

8321
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8322 8323 8324
{
	struct request_boost *boost;

8325
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8326 8327
		return;

8328
	if (i915_gem_request_completed(req))
8329 8330
		return;

8331 8332 8333 8334
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8335
	boost->req = i915_gem_request_get(req);
8336 8337

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8338
	queue_work(req->i915->wq, &boost->work);
8339 8340
}

8341
void intel_pm_setup(struct drm_i915_private *dev_priv)
8342
{
D
Daniel Vetter 已提交
8343
	mutex_init(&dev_priv->rps.hw_lock);
8344
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8345

8346 8347
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8348
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8349

8350
	dev_priv->pm.suspended = false;
8351
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8352
}
8353

8354 8355 8356
static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
			     const i915_reg_t reg)
{
8357
	u32 lower, upper, tmp;
8358 8359 8360 8361 8362 8363 8364 8365 8366

	/* The register accessed do not need forcewake. We borrow
	 * uncore lock to prevent concurrent access to range reg.
	 */
	spin_lock_irq(&dev_priv->uncore.lock);

	/* vlv and chv residency counters are 40 bits in width.
	 * With a control bit, we can choose between upper or lower
	 * 32bit window into this counter.
8367 8368 8369 8370 8371
	 *
	 * Although we always use the counter in high-range mode elsewhere,
	 * userspace may attempt to read the value before rc6 is initialised,
	 * before we have set the default VLV_COUNTER_CONTROL value. So always
	 * set the high bit to be safe.
8372
	 */
8373 8374
	I915_WRITE_FW(VLV_COUNTER_CONTROL,
		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
	upper = I915_READ_FW(reg);
	do {
		tmp = upper;

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
		lower = I915_READ_FW(reg);

		I915_WRITE_FW(VLV_COUNTER_CONTROL,
			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
		upper = I915_READ_FW(reg);
	} while (upper != tmp);

8388 8389 8390 8391 8392
	/* Everywhere else we always use VLV_COUNTER_CONTROL with the
	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
	 * now.
	 */

8393 8394 8395 8396 8397
	spin_unlock_irq(&dev_priv->uncore.lock);

	return lower | (u64)upper << 8;
}

8398 8399
u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
			   const i915_reg_t reg)
8400
{
8401
	u64 time_hw, units, div;
8402 8403 8404 8405 8406 8407 8408 8409

	if (!intel_enable_rc6())
		return 0;

	intel_runtime_pm_get(dev_priv);

	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8410
		units = 1000;
8411 8412
		div = dev_priv->czclk_freq;

8413
		time_hw = vlv_residency_raw(dev_priv, reg);
8414
	} else if (IS_GEN9_LP(dev_priv)) {
8415
		units = 1000;
8416 8417
		div = 1200;		/* 833.33ns */

8418 8419 8420 8421 8422 8423 8424
		time_hw = I915_READ(reg);
	} else {
		units = 128000; /* 1.28us */
		div = 100000;

		time_hw = I915_READ(reg);
	}
8425 8426

	intel_runtime_pm_put(dev_priv);
8427
	return DIV_ROUND_UP_ULL(time_hw * units, div);
8428
}