intel_pm.c 224.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	bool was_enabled;
318
	u32 val;
319

320
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
321
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
322
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323
		POSTING_READ(FW_BLC_SELF_VLV);
324
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
325
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
326
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327
		POSTING_READ(FW_BLC_SELF);
328
	} else if (IS_PINEVIEW(dev_priv)) {
329 330 331 332 333 334
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
335
		I915_WRITE(DSPFW3, val);
336
		POSTING_READ(DSPFW3);
337
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339 340 341
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
342
		POSTING_READ(FW_BLC_SELF);
343
	} else if (IS_I915GM(dev_priv)) {
344 345 346 347 348
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
349
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
350 351 352
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
353
		POSTING_READ(INSTPM);
354
	} else {
355
		return false;
356
	}
357

358 359 360 361 362
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
363 364
}

365
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
366
{
367 368
	bool ret;

369
	mutex_lock(&dev_priv->wm.wm_mutex);
370
	ret = _intel_set_memory_cxsr(dev_priv, enable);
371 372
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
373 374

	return ret;
375
}
376

377 378 379 380 381 382 383 384 385 386 387 388 389 390
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
391
static const int pessimal_latency_ns = 5000;
392

393 394 395
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

396
static int vlv_get_fifo_size(struct intel_plane *plane)
397
{
398
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
399 400
	int sprite0_start, sprite1_start, size;

401 402 403 404
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

428 429
	switch (plane->id) {
	case PLANE_PRIMARY:
430 431
		size = sprite0_start;
		break;
432
	case PLANE_SPRITE0:
433 434
		size = sprite1_start - sprite0_start;
		break;
435
	case PLANE_SPRITE1:
436 437 438 439 440 441
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

442
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
443 444 445 446

	return size;
}

447
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
448 449 450 451 452 453 454 455 456 457 458 459 460 461
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

462
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

478
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
495 496 497 498 499
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
502 503 504 505 506
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params pineview_cursor_wm = {
509 510 511 512 513
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 515
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516 517 518 519 520
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 522
};
static const struct intel_watermark_params g4x_wm_info = {
523 524 525 526 527
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
528 529
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
530 531 532 533 534
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
535 536
};
static const struct intel_watermark_params i965_cursor_wm_info = {
537 538 539 540 541
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
542 543
};
static const struct intel_watermark_params i945_wm_info = {
544 545 546 547 548
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
549 550
};
static const struct intel_watermark_params i915_wm_info = {
551 552 553 554 555
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
556
};
557
static const struct intel_watermark_params i830_a_wm_info = {
558 559 560 561 562
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
563
};
564 565 566 567 568 569 570
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
571
static const struct intel_watermark_params i845_wm_info = {
572 573 574 575 576
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
577 578 579 580 581 582
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
583
 * @cpp: bytes per pixel
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
599
					int fifo_size, int cpp,
600 601 602 603 604 605 606 607 608 609
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
610
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
611 612 613 614 615 616 617 618 619 620 621 622 623 624
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
625 626 627 628 629 630 631 632 633 634 635

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

636 637 638
	return wm_size;
}

639
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
640
{
641
	struct intel_crtc *crtc, *enabled = NULL;
642

643
	for_each_intel_crtc(&dev_priv->drm, crtc) {
644
		if (intel_crtc_active(crtc)) {
645 646 647 648 649 650 651 652 653
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

654
static void pineview_update_wm(struct intel_crtc *unused_crtc)
655
{
656
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
657
	struct intel_crtc *crtc;
658 659 660 661
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

662 663 664 665
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
666 667
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668
		intel_set_memory_cxsr(dev_priv, false);
669 670 671
		return;
	}

672
	crtc = single_enabled_crtc(dev_priv);
673
	if (crtc) {
674 675 676 677 678
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
679
		int clock = adjusted_mode->crtc_clock;
680 681 682 683

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
684
					cpp, latency->display_sr);
685 686
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
687
		reg |= FW_WM(wm, SR);
688 689 690 691 692 693
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
694
					cpp, latency->cursor_sr);
695 696
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
697
		reg |= FW_WM(wm, CURSOR_SR);
698 699 700 701 702
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
703
					cpp, latency->display_hpll_disable);
704 705
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
706
		reg |= FW_WM(wm, HPLL_SR);
707 708 709 710 711
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
712
					cpp, latency->cursor_hpll_disable);
713 714
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
715
		reg |= FW_WM(wm, HPLL_CURSOR);
716 717 718
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

719
		intel_set_memory_cxsr(dev_priv, true);
720
	} else {
721
		intel_set_memory_cxsr(dev_priv, false);
722 723 724
	}
}

725
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
726 727 728 729 730 731 732 733
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
734
	struct intel_crtc *crtc;
735
	const struct drm_display_mode *adjusted_mode;
736
	const struct drm_framebuffer *fb;
737
	int htotal, hdisplay, clock, cpp;
738 739 740
	int line_time_us, line_count;
	int entries, tlb_miss;

741
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
742
	if (!intel_crtc_active(crtc)) {
743 744 745 746 747
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

748 749
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
750
	clock = adjusted_mode->crtc_clock;
751
	htotal = adjusted_mode->crtc_htotal;
752 753
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
754 755

	/* Use the small buffer method to calculate plane watermark */
756
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
757 758 759 760 761 762 763 764 765
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
766
	line_time_us = max(htotal * 1000 / clock, 1);
767
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
768
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
787
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
788 789 790 791 792 793 794 795
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
796
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797 798 799 800 801
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
802
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803 804 805 806 807 808 809 810 811 812 813 814
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

815
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
816 817 818 819 820 821
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
822
	struct intel_crtc *crtc;
823
	const struct drm_display_mode *adjusted_mode;
824
	const struct drm_framebuffer *fb;
825
	int hdisplay, htotal, cpp, clock;
826 827 828 829 830 831 832 833 834 835
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

836
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
837 838
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
839
	clock = adjusted_mode->crtc_clock;
840
	htotal = adjusted_mode->crtc_htotal;
841 842
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
843

844
	line_time_us = max(htotal * 1000 / clock, 1);
845
	line_count = (latency_ns / line_time_us + 1000) / 1000;
846
	line_size = hdisplay * cpp;
847 848

	/* Use the minimum of the small and large buffer method for primary */
849
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
850 851 852 853 854 855
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
856
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
857 858 859
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

860
	return g4x_check_srwm(dev_priv,
861 862 863 864
			      *display_wm, *cursor_wm,
			      display, cursor);
}

865 866 867
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

868
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
869 870
				const struct vlv_wm_values *wm)
{
871 872 873 874 875 876 877 878 879
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
880

881 882 883 884 885 886 887 888 889 890 891
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

892
	I915_WRITE(DSPFW1,
893
		   FW_WM(wm->sr.plane, SR) |
894 895 896
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
897
	I915_WRITE(DSPFW2,
898 899 900
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
901
	I915_WRITE(DSPFW3,
902
		   FW_WM(wm->sr.cursor, CURSOR_SR));
903 904 905

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
906 907
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
908
		I915_WRITE(DSPFW8_CHV,
909 910
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
911
		I915_WRITE(DSPFW9_CHV,
912 913
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
914
		I915_WRITE(DSPHOWM,
915
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
916 917 918 919 920 921 922 923 924
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
925 926
	} else {
		I915_WRITE(DSPFW7,
927 928
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929
		I915_WRITE(DSPHOWM,
930
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
931 932 933 934 935 936
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
937 938 939
	}

	POSTING_READ(DSPFW1);
940 941
}

942 943
#undef FW_WM_VLV

944 945 946 947 948 949
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

950 951 952 953
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
954
				   unsigned int cpp,
955 956 957 958 959
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
960
	ret = (ret + 1) * horiz_pixels * cpp;
961 962 963 964 965
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

966
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
967 968 969 970
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

971 972
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

973 974 975
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
976 977

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
978 979 980 981 982 983 984 985 986
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
987
	int clock, htotal, cpp, width, wm;
988 989 990 991

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

992
	if (!state->base.visible)
993 994
		return 0;

995
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1011
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1012 1013 1014 1015 1016 1017
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1034
		if (state->base.visible) {
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1050
		if (!state->base.visible) {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1085 1086 1087 1088 1089 1090 1091 1092
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1093 1094 1095 1096 1097 1098
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
1099
		struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1100
		const int sr_fifo_size =
1101
			INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1102 1103
		struct intel_plane *plane;

1104 1105 1106 1107 1108 1109
		wm_state->sr[level].plane =
			vlv_invert_wm_value(wm_state->sr[level].plane,
					    sr_fifo_size);
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(wm_state->sr[level].cursor,
					    63);
1110

1111
		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1112 1113 1114
			wm_state->wm[level].plane[plane->id] =
				vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
						    plane->wm.fifo_size);
1115 1116 1117 1118
		}
	}
}

1119
static void vlv_compute_wm(struct intel_crtc *crtc)
1120
{
1121
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1122 1123 1124 1125 1126 1127
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1128
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1129
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1130 1131 1132

	wm_state->num_active_planes = 0;

1133
	vlv_compute_fifo(crtc);
1134 1135 1136 1137

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

1138
	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1139 1140
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
1141
		int level;
1142

1143
		if (!state->base.visible)
1144 1145 1146 1147 1148
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1149
			int max_wm = plane->wm.fifo_size;
1150 1151 1152 1153 1154

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1155
			if (wm > max_wm)
1156 1157
				break;

1158
			wm_state->wm[level].plane[plane->id] = wm;
1159 1160 1161 1162 1163 1164 1165 1166
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
1167
		if (plane->id == PLANE_CURSOR) {
1168 1169
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1170 1171
					wm_state->wm[level].plane[PLANE_CURSOR];
		} else {
1172 1173
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1174
					max(wm_state->sr[level].plane,
1175
					    wm_state->wm[level].plane[plane->id]);
1176 1177 1178 1179
		}
	}

	/* clear any (partially) filled invalid levels */
1180
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1181 1182 1183 1184 1185 1186 1187
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1199 1200
		switch (plane->id) {
		case PLANE_PRIMARY:
1201
			sprite0_start = plane->wm.fifo_size;
1202 1203
			break;
		case PLANE_SPRITE0:
1204
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1205 1206
			break;
		case PLANE_SPRITE1:
1207
			fifo_size = sprite1_start + plane->wm.fifo_size;
1208 1209 1210 1211 1212 1213 1214 1215
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1284
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1285 1286 1287 1288 1289
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1290
	wm->level = dev_priv->wm.max_level;
1291 1292
	wm->cxsr = true;

1293
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1309 1310 1311
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1312
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

1323 1324 1325 1326
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1327 1328 1329
	}
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1340
static void vlv_update_wm(struct intel_crtc *crtc)
1341
{
1342
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1343
	enum pipe pipe = crtc->pipe;
1344 1345
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1346

1347
	vlv_compute_wm(crtc);
1348
	vlv_merge_wm(dev_priv, &new_wm);
1349

1350
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1351
		/* FIXME should be part of crtc atomic commit */
1352
		vlv_pipe_set_fifo_size(crtc);
1353

1354
		return;
1355
	}
1356

1357
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1358 1359
		chv_set_memory_dvfs(dev_priv, false);

1360
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1361 1362
		chv_set_memory_pm5(dev_priv, false);

1363
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1364
		_intel_set_memory_cxsr(dev_priv, false);
1365

1366
	/* FIXME should be part of crtc atomic commit */
1367
	vlv_pipe_set_fifo_size(crtc);
1368

1369
	vlv_write_wm_values(dev_priv, &new_wm);
1370 1371 1372

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1373 1374 1375
		      pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
		      new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
		      new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1376

1377
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1378
		_intel_set_memory_cxsr(dev_priv, true);
1379

1380
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1381 1382
		chv_set_memory_pm5(dev_priv, true);

1383
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1384 1385
		chv_set_memory_dvfs(dev_priv, true);

1386
	*old_wm = new_wm;
1387 1388
}

1389 1390
#define single_plane_enabled(mask) is_power_of_2(mask)

1391
static void g4x_update_wm(struct intel_crtc *crtc)
1392
{
1393
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1394 1395 1396 1397
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1398
	bool cxsr_enabled;
1399

1400
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1401 1402
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1403
			    &planea_wm, &cursora_wm))
1404
		enabled |= 1 << PIPE_A;
1405

1406
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1407 1408
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1409
			    &planeb_wm, &cursorb_wm))
1410
		enabled |= 1 << PIPE_B;
1411 1412

	if (single_plane_enabled(enabled) &&
1413
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1414 1415 1416
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1417
			     &plane_sr, &cursor_sr)) {
1418
		cxsr_enabled = true;
1419
	} else {
1420
		cxsr_enabled = false;
1421
		intel_set_memory_cxsr(dev_priv, false);
1422 1423
		plane_sr = cursor_sr = 0;
	}
1424

1425 1426
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1427 1428 1429 1430 1431
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1432 1433 1434 1435
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1436
	I915_WRITE(DSPFW2,
1437
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1438
		   FW_WM(cursora_wm, CURSORA));
1439 1440
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1441
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1442
		   FW_WM(cursor_sr, CURSOR_SR));
1443 1444 1445

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1446 1447
}

1448
static void i965_update_wm(struct intel_crtc *unused_crtc)
1449
{
1450
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1451
	struct intel_crtc *crtc;
1452 1453
	int srwm = 1;
	int cursor_sr = 16;
1454
	bool cxsr_enabled;
1455 1456

	/* Calc sr entries for one plane configs */
1457
	crtc = single_enabled_crtc(dev_priv);
1458 1459 1460
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1461 1462 1463 1464
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1465
		int clock = adjusted_mode->crtc_clock;
1466
		int htotal = adjusted_mode->crtc_htotal;
1467 1468
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1469 1470 1471
		unsigned long line_time_us;
		int entries;

1472
		line_time_us = max(htotal * 1000 / clock, 1);
1473 1474 1475

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1476
			cpp * hdisplay;
1477 1478 1479 1480 1481 1482 1483 1484 1485
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1486
			cpp * crtc->base.cursor->state->crtc_w;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1498
		cxsr_enabled = true;
1499
	} else {
1500
		cxsr_enabled = false;
1501
		/* Turn off self refresh if both pipes are enabled */
1502
		intel_set_memory_cxsr(dev_priv, false);
1503 1504 1505 1506 1507 1508
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1509 1510 1511 1512 1513 1514
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1515
	/* update cursor SR watermark */
1516
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1517 1518 1519

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1520 1521
}

1522 1523
#undef FW_WM

1524
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1525
{
1526
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1527 1528 1529 1530 1531 1532
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1533
	struct intel_crtc *crtc, *enabled = NULL;
1534

1535
	if (IS_I945GM(dev_priv))
1536
		wm_info = &i945_wm_info;
1537
	else if (!IS_GEN2(dev_priv))
1538 1539
		wm_info = &i915_wm_info;
	else
1540
		wm_info = &i830_a_wm_info;
1541

1542
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1543
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1544 1545 1546 1547 1548 1549 1550
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1551
		if (IS_GEN2(dev_priv))
1552
			cpp = 4;
1553 1554
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1555

1556
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1557
					       wm_info, fifo_size, cpp,
1558
					       pessimal_latency_ns);
1559
		enabled = crtc;
1560
	} else {
1561
		planea_wm = fifo_size - wm_info->guard_size;
1562 1563 1564 1565
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1566
	if (IS_GEN2(dev_priv))
1567
		wm_info = &i830_bc_wm_info;
1568

1569
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1570
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1571 1572 1573 1574 1575 1576 1577
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1578
		if (IS_GEN2(dev_priv))
1579
			cpp = 4;
1580 1581
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1582

1583
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1584
					       wm_info, fifo_size, cpp,
1585
					       pessimal_latency_ns);
1586 1587 1588 1589
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1590
	} else {
1591
		planeb_wm = fifo_size - wm_info->guard_size;
1592 1593 1594
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1595 1596 1597

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1598
	if (IS_I915GM(dev_priv) && enabled) {
1599
		struct drm_i915_gem_object *obj;
1600

1601
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1602 1603

		/* self-refresh seems busted with untiled */
1604
		if (!i915_gem_object_is_tiled(obj))
1605 1606 1607
			enabled = NULL;
	}

1608 1609 1610 1611 1612 1613
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1614
	intel_set_memory_cxsr(dev_priv, false);
1615 1616

	/* Calc sr entries for one plane configs */
1617
	if (HAS_FW_BLC(dev_priv) && enabled) {
1618 1619
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1620 1621 1622 1623
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1624
		int clock = adjusted_mode->crtc_clock;
1625
		int htotal = adjusted_mode->crtc_htotal;
1626 1627
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1628 1629 1630
		unsigned long line_time_us;
		int entries;

1631
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1632
			cpp = 4;
1633 1634
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1635

1636
		line_time_us = max(htotal * 1000 / clock, 1);
1637 1638 1639

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1640
			cpp * hdisplay;
1641 1642 1643 1644 1645 1646
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1647
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1648 1649
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1650
		else
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1667 1668
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1669 1670
}

1671
static void i845_update_wm(struct intel_crtc *unused_crtc)
1672
{
1673
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1674
	struct intel_crtc *crtc;
1675
	const struct drm_display_mode *adjusted_mode;
1676 1677 1678
	uint32_t fwater_lo;
	int planea_wm;

1679
	crtc = single_enabled_crtc(dev_priv);
1680 1681 1682
	if (crtc == NULL)
		return;

1683
	adjusted_mode = &crtc->config->base.adjusted_mode;
1684
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1685
				       &i845_wm_info,
1686
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1687
				       4, pessimal_latency_ns);
1688 1689 1690 1691 1692 1693 1694 1695
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1696
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1697
{
1698
	uint32_t pixel_rate;
1699

1700
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1701 1702 1703 1704

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1705
	if (pipe_config->pch_pfit.enabled) {
1706
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1707 1708 1709 1710
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1711 1712 1713 1714 1715 1716 1717 1718

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1719 1720 1721
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1722 1723 1724 1725 1726 1727 1728
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1729
/* latency must be in 0.1us units. */
1730
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1731 1732 1733
{
	uint64_t ret;

1734 1735 1736
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1737
	ret = (uint64_t) pixel_rate * cpp * latency;
1738 1739 1740 1741 1742
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1743
/* latency must be in 0.1us units. */
1744
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1745
			       uint32_t horiz_pixels, uint8_t cpp,
1746 1747 1748 1749
			       uint32_t latency)
{
	uint32_t ret;

1750 1751
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1752 1753
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1754

1755
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1756
	ret = (ret + 1) * horiz_pixels * cpp;
1757 1758 1759 1760
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1761
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1762
			   uint8_t cpp)
1763
{
1764 1765 1766 1767 1768 1769
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1770
	if (WARN_ON(!cpp))
1771 1772 1773 1774
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1775
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1776 1777
}

1778
struct ilk_wm_maximums {
1779 1780 1781 1782 1783 1784
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1785 1786 1787 1788
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1789
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1790
				   const struct intel_plane_state *pstate,
1791 1792
				   uint32_t mem_value,
				   bool is_lp)
1793
{
1794 1795
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796 1797
	uint32_t method1, method2;

1798
	if (!cstate->base.active || !pstate->base.visible)
1799 1800
		return 0;

1801
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802 1803 1804 1805

	if (!is_lp)
		return method1;

1806 1807
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1808
				 drm_rect_width(&pstate->base.dst),
1809
				 cpp, mem_value);
1810 1811

	return min(method1, method2);
1812 1813
}

1814 1815 1816 1817
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1818
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1819
				   const struct intel_plane_state *pstate,
1820 1821
				   uint32_t mem_value)
{
1822 1823
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1824 1825
	uint32_t method1, method2;

1826
	if (!cstate->base.active || !pstate->base.visible)
1827 1828
		return 0;

1829
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1830 1831
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1832
				 drm_rect_width(&pstate->base.dst),
1833
				 cpp, mem_value);
1834 1835 1836
	return min(method1, method2);
}

1837 1838 1839 1840
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1841
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1842
				   const struct intel_plane_state *pstate,
1843 1844
				   uint32_t mem_value)
{
1845 1846 1847 1848 1849 1850
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1851
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1852

1853
	if (!cstate->base.active)
1854 1855
		return 0;

1856 1857
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1858
			      width, cpp, mem_value);
1859 1860
}

1861
/* Only for WM_LP. */
1862
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1863
				   const struct intel_plane_state *pstate,
1864
				   uint32_t pri_val)
1865
{
1866 1867
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1868

1869
	if (!cstate->base.active || !pstate->base.visible)
1870 1871
		return 0;

1872
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1873 1874
}

1875 1876
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1877
{
1878
	if (INTEL_GEN(dev_priv) >= 8)
1879
		return 3072;
1880
	else if (INTEL_GEN(dev_priv) >= 7)
1881 1882 1883 1884 1885
		return 768;
	else
		return 512;
}

1886 1887 1888
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1889
{
1890
	if (INTEL_GEN(dev_priv) >= 8)
1891 1892
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1893
	else if (INTEL_GEN(dev_priv) >= 7)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1904 1905
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1906
{
1907
	if (INTEL_GEN(dev_priv) >= 7)
1908 1909 1910 1911 1912
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1913
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1914
{
1915
	if (INTEL_GEN(dev_priv) >= 8)
1916 1917 1918 1919 1920
		return 31;
	else
		return 15;
}

1921 1922 1923
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1924
				     const struct intel_wm_config *config,
1925 1926 1927
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1928 1929
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1930 1931

	/* if sprites aren't enabled, sprites get nothing */
1932
	if (is_sprite && !config->sprites_enabled)
1933 1934 1935
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1936
	if (level == 0 || config->num_pipes_active > 1) {
1937
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1938 1939 1940 1941 1942 1943

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1944
		if (INTEL_GEN(dev_priv) <= 6)
1945 1946 1947
			fifo_size /= 2;
	}

1948
	if (config->sprites_enabled) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1960
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1961 1962 1963 1964
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1965 1966
				      int level,
				      const struct intel_wm_config *config)
1967 1968
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1969
	if (level > 0 && config->num_pipes_active > 1)
1970 1971 1972
		return 64;

	/* otherwise just report max that registers can hold */
1973
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1974 1975
}

1976
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1977 1978 1979
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1980
				    struct ilk_wm_maximums *max)
1981
{
1982 1983 1984
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1985
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1986 1987
}

1988
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1989 1990 1991
					int level,
					struct ilk_wm_maximums *max)
{
1992 1993 1994 1995
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1996 1997
}

1998
static bool ilk_validate_wm_level(int level,
1999
				  const struct ilk_wm_maximums *max,
2000
				  struct intel_wm_level *result)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2039
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2040
				 const struct intel_crtc *intel_crtc,
2041
				 int level,
2042
				 struct intel_crtc_state *cstate,
2043 2044 2045
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2046
				 struct intel_wm_level *result)
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2071 2072 2073
	result->enable = true;
}

2074
static uint32_t
2075
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2076
{
2077 2078
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2079 2080
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2081
	u32 linetime, ips_linetime;
2082

2083 2084 2085 2086
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2087
	if (WARN_ON(intel_state->cdclk == 0))
2088
		return 0;
2089

2090 2091 2092
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2093 2094 2095
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2096
					 intel_state->cdclk);
2097

2098 2099
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2100 2101
}

2102 2103
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2104
{
2105
	if (IS_GEN9(dev_priv)) {
2106
		uint32_t val;
2107
		int ret, i;
2108
		int level, max_level = ilk_wm_max_level(dev_priv);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2164
		/*
2165 2166
		 * WaWmMemoryReadLatency:skl
		 *
2167
		 * punit doesn't take into account the read latency so we need
2168 2169
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2170
		 */
2171 2172 2173 2174 2175
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2176
				wm[level] += 2;
2177
			}
2178 2179
		}

2180
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2181 2182 2183 2184 2185
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2186 2187 2188 2189
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2190
	} else if (INTEL_GEN(dev_priv) >= 6) {
2191 2192 2193 2194 2195 2196
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2197
	} else if (INTEL_GEN(dev_priv) >= 5) {
2198 2199 2200 2201 2202 2203
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2204 2205 2206
	}
}

2207 2208
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2209 2210
{
	/* ILK sprite LP0 latency is 1300 ns */
2211
	if (IS_GEN5(dev_priv))
2212 2213 2214
		wm[0] = 13;
}

2215 2216
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2217 2218
{
	/* ILK cursor LP0 latency is 1300 ns */
2219
	if (IS_GEN5(dev_priv))
2220 2221 2222
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2223
	if (IS_IVYBRIDGE(dev_priv))
2224 2225 2226
		wm[3] *= 2;
}

2227
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2228 2229
{
	/* how many WM levels are we expecting */
2230
	if (INTEL_GEN(dev_priv) >= 9)
2231
		return 7;
2232
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2233
		return 4;
2234
	else if (INTEL_GEN(dev_priv) >= 6)
2235
		return 3;
2236
	else
2237 2238
		return 2;
}
2239

2240
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2241
				   const char *name,
2242
				   const uint16_t wm[8])
2243
{
2244
	int level, max_level = ilk_wm_max_level(dev_priv);
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2255 2256 2257 2258
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2259
		if (IS_GEN9(dev_priv))
2260 2261
			latency *= 10;
		else if (level > 0)
2262 2263 2264 2265 2266 2267 2268 2269
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2270 2271 2272
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2273
	int level, max_level = ilk_wm_max_level(dev_priv);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2285
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2301 2302 2303
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2304 2305
}

2306
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2307
{
2308
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2309 2310 2311 2312 2313 2314

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2315
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2316
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2317

2318 2319 2320
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2321

2322
	if (IS_GEN6(dev_priv))
2323
		snb_wm_latency_quirk(dev_priv);
2324 2325
}

2326
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2327
{
2328
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2329
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2355
/* Compute new watermarks for the pipe */
2356
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2357
{
2358 2359
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2360
	struct intel_pipe_wm *pipe_wm;
2361
	struct drm_device *dev = state->dev;
2362
	const struct drm_i915_private *dev_priv = to_i915(dev);
2363
	struct intel_plane *intel_plane;
2364
	struct intel_plane_state *pristate = NULL;
2365
	struct intel_plane_state *sprstate = NULL;
2366
	struct intel_plane_state *curstate = NULL;
2367
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2368
	struct ilk_wm_maximums max;
2369

2370
	pipe_wm = &cstate->wm.ilk.optimal;
2371

2372
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2373 2374 2375 2376 2377 2378
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2379 2380

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2381
			pristate = ps;
2382
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2383
			sprstate = ps;
2384
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2385
			curstate = ps;
2386 2387
	}

2388
	pipe_wm->pipe_enabled = cstate->base.active;
2389
	if (sprstate) {
2390 2391 2392 2393
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2394 2395
	}

2396 2397
	usable_level = max_level;

2398
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2399
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2400
		usable_level = 1;
2401 2402

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2403
	if (pipe_wm->sprites_scaled)
2404
		usable_level = 0;
2405

2406
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2407 2408 2409 2410
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2411

2412
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2413
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2414

2415
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2416
		return -EINVAL;
2417

2418
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2419 2420

	for (level = 1; level <= max_level; level++) {
2421
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2422

2423
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2424
				     pristate, sprstate, curstate, wm);
2425 2426 2427 2428 2429 2430

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2431 2432 2433 2434 2435 2436
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2437
			usable_level = level;
2438 2439
	}

2440
	return 0;
2441 2442
}

2443 2444 2445 2446 2447 2448 2449 2450 2451
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2452
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2453
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2454
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2455 2456 2457 2458 2459 2460

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2461
	*a = newstate->wm.ilk.optimal;
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2490
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2491 2492 2493 2494 2495
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2505 2506
	ret_wm->enable = true;

2507
	for_each_intel_crtc(dev, intel_crtc) {
2508
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2509 2510 2511 2512
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2513

2514 2515 2516 2517 2518
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2519
		if (!wm->enable)
2520
			ret_wm->enable = false;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2533
			 const struct intel_wm_config *config,
2534
			 const struct ilk_wm_maximums *max,
2535 2536
			 struct intel_pipe_wm *merged)
{
2537
	struct drm_i915_private *dev_priv = to_i915(dev);
2538
	int level, max_level = ilk_wm_max_level(dev_priv);
2539
	int last_enabled_level = max_level;
2540

2541
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2542
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2543
	    config->num_pipes_active > 1)
2544
		last_enabled_level = 0;
2545

2546
	/* ILK: FBC WM must be disabled always */
2547
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2548 2549 2550 2551 2552 2553 2554

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2555 2556 2557 2558 2559
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2560 2561 2562 2563 2564 2565

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2566 2567
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2568 2569 2570
			wm->fbc_val = 0;
		}
	}
2571 2572 2573 2574 2575 2576 2577

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2578
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2579
	    intel_fbc_is_active(dev_priv)) {
2580 2581 2582 2583 2584 2585
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2586 2587
}

2588 2589 2590 2591 2592 2593
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2594 2595 2596
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2597
	struct drm_i915_private *dev_priv = to_i915(dev);
2598

2599
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2600 2601 2602 2603 2604
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2605
static void ilk_compute_wm_results(struct drm_device *dev,
2606
				   const struct intel_pipe_wm *merged,
2607
				   enum intel_ddb_partitioning partitioning,
2608
				   struct ilk_wm_values *results)
2609
{
2610
	struct drm_i915_private *dev_priv = to_i915(dev);
2611 2612
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2613

2614
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2615
	results->partitioning = partitioning;
2616

2617
	/* LP1+ register values */
2618
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2619
		const struct intel_wm_level *r;
2620

2621
		level = ilk_wm_lp_to_level(wm_lp, merged);
2622

2623
		r = &merged->wm[level];
2624

2625 2626 2627 2628 2629
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2630
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2631 2632 2633
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2634 2635 2636
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2637
		if (INTEL_GEN(dev_priv) >= 8)
2638 2639 2640 2641 2642 2643
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2644 2645 2646 2647
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2648
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2649 2650 2651 2652
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2653
	}
2654

2655
	/* LP0 register values */
2656
	for_each_intel_crtc(dev, intel_crtc) {
2657
		enum pipe pipe = intel_crtc->pipe;
2658 2659
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2660 2661 2662 2663

		if (WARN_ON(!r->enable))
			continue;

2664
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2665

2666 2667 2668 2669
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2670 2671 2672
	}
}

2673 2674
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2675
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2676 2677
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2678
{
2679
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2680
	int level1 = 0, level2 = 0;
2681

2682 2683 2684 2685 2686
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2687 2688
	}

2689 2690
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2691 2692 2693
			return r2;
		else
			return r1;
2694
	} else if (level1 > level2) {
2695 2696 2697 2698 2699 2700
		return r1;
	} else {
		return r2;
	}
}

2701 2702 2703 2704 2705 2706 2707 2708
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2709
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2710 2711
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2712 2713 2714 2715 2716
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2717
	for_each_pipe(dev_priv, pipe) {
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2761 2762
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2763
{
2764
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2765
	bool changed = false;
2766

2767 2768 2769
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2770
		changed = true;
2771 2772 2773 2774
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2775
		changed = true;
2776 2777 2778 2779
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2780
		changed = true;
2781
	}
2782

2783 2784 2785 2786
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2787

2788 2789 2790 2791 2792 2793 2794
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2795 2796
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2797
{
2798
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2799 2800 2801
	unsigned int dirty;
	uint32_t val;

2802
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2803 2804 2805 2806 2807
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2808
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2809
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2810
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2811
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2812
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2813 2814
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2815
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2816
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2817
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2818
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2819
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2820 2821
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2822
	if (dirty & WM_DIRTY_DDB) {
2823
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2838 2839
	}

2840
	if (dirty & WM_DIRTY_FBC) {
2841 2842 2843 2844 2845 2846 2847 2848
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2849 2850 2851 2852
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2853
	if (INTEL_GEN(dev_priv) >= 7) {
2854 2855 2856 2857 2858
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2859

2860
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2861
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2862
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2863
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2864
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2865
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2866 2867

	dev_priv->wm.hw = *results;
2868 2869
}

2870
bool ilk_disable_lp_wm(struct drm_device *dev)
2871
{
2872
	struct drm_i915_private *dev_priv = to_i915(dev);
2873 2874 2875 2876

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2877
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2878

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2894 2895 2896
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2897 2898 2899 2900 2901 2902 2903 2904
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2919
intel_enable_sagv(struct drm_i915_private *dev_priv)
2920 2921 2922
{
	int ret;

2923 2924 2925 2926
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2942
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2943
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2944
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2945 2946 2947 2948 2949 2950
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2951
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2952 2953 2954 2955
	return 0;
}

static int
2956
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2970
intel_disable_sagv(struct drm_i915_private *dev_priv)
2971 2972 2973
{
	int ret, result;

2974 2975 2976 2977
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2978 2979 2980 2981 2982 2983
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2984
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2996
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2997
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2998
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2999 3000 3001 3002 3003 3004
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

3005
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3006 3007 3008
	return 0;
}

3009
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3010 3011 3012 3013
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3014 3015
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3016
	struct intel_crtc_state *cstate;
3017
	enum pipe pipe;
3018
	int level, latency;
3019

3020 3021 3022
	if (!intel_has_sagv(dev_priv))
		return false;

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3036
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3037
	cstate = to_intel_crtc_state(crtc->base.state);
3038

3039
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3040 3041
		return false;

3042
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3043 3044
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3045

3046
		/* Skip this plane if it's not enabled */
3047
		if (!wm->wm[0].plane_en)
3048 3049 3050
			continue;

		/* Find the highest enabled wm level for this plane */
3051
		for (level = ilk_wm_max_level(dev_priv);
3052
		     !wm->wm[level].plane_en; --level)
3053 3054
		     { }

3055 3056 3057
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3058
		    plane->base.state->fb->modifier ==
3059 3060 3061
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3062 3063 3064 3065 3066
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3067
		if (latency < SKL_SAGV_BLOCK_TIME)
3068 3069 3070 3071 3072 3073
			return false;
	}

	return true;
}

3074 3075
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3076
				   const struct intel_crtc_state *cstate,
3077 3078
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3079
{
3080 3081 3082
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3083
	struct drm_crtc *for_crtc = cstate->base.crtc;
3084 3085
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3086

3087
	if (WARN_ON(!state) || !cstate->base.active) {
3088 3089
		alloc->start = 0;
		alloc->end = 0;
3090
		*num_active = hweight32(dev_priv->active_crtcs);
3091 3092 3093
		return;
	}

3094 3095 3096 3097 3098
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3099 3100
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3101 3102 3103

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3104
	/*
3105 3106 3107 3108 3109 3110
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3111
	 */
3112
	if (!intel_state->active_pipe_changes) {
3113 3114 3115 3116 3117
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3118
		return;
3119
	}
3120 3121 3122 3123 3124 3125

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3126 3127
}

3128
static unsigned int skl_cursor_allocation(int num_active)
3129
{
3130
	if (num_active == 1)
3131 3132 3133 3134 3135
		return 32;

	return 8;
}

3136 3137 3138 3139
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3140 3141
	if (entry->end)
		entry->end += 1;
3142 3143
}

3144 3145
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3146
{
3147
	struct intel_crtc *crtc;
3148

3149 3150
	memset(ddb, 0, sizeof(*ddb));

3151
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3152
		enum intel_display_power_domain power_domain;
3153 3154
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3155 3156 3157

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3158 3159
			continue;

3160 3161 3162 3163 3164 3165 3166
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3167

3168 3169
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3170 3171

		intel_display_power_put(dev_priv, power_domain);
3172 3173 3174
	}
}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3197
	if (WARN_ON(!pstate->base.visible))
3198 3199 3200
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3201 3202 3203 3204
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3205
	if (drm_rotation_90_or_270(pstate->base.rotation))
3206 3207 3208 3209 3210 3211 3212 3213 3214
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3215
static unsigned int
3216 3217 3218
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3219
{
3220
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3221
	struct drm_framebuffer *fb = pstate->fb;
3222
	uint32_t down_scale_amount, data_rate;
3223
	uint32_t width = 0, height = 0;
3224 3225
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3226
	if (!intel_pstate->base.visible)
3227 3228 3229 3230 3231
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3232

3233 3234
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3235

3236
	if (drm_rotation_90_or_270(pstate->rotation))
3237
		swap(width, height);
3238 3239

	/* for planar format */
3240
	if (format == DRM_FORMAT_NV12) {
3241
		if (y)  /* y-plane data rate */
3242
			data_rate = width * height *
3243
				drm_format_plane_cpp(format, 0);
3244
		else    /* uv-plane data rate */
3245
			data_rate = (width / 2) * (height / 2) *
3246
				drm_format_plane_cpp(format, 1);
3247 3248 3249
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3250 3251
	}

3252 3253 3254
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3255 3256 3257 3258 3259 3260 3261 3262
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3263 3264 3265
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3266
{
3267 3268
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3269 3270
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3271
	unsigned int total_data_rate = 0;
3272 3273 3274

	if (WARN_ON(!state))
		return 0;
3275

3276
	/* Calculate and cache data rate for each plane */
3277
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3278 3279
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3280 3281 3282 3283

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3284
		plane_data_rate[plane_id] = rate;
3285 3286

		total_data_rate += rate;
3287 3288 3289 3290

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3291
		plane_y_data_rate[plane_id] = rate;
3292

3293
		total_data_rate += rate;
3294 3295 3296 3297 3298
	}

	return total_data_rate;
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3317 3318
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3319 3320
		return 8;

3321 3322
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3323

3324
	if (drm_rotation_90_or_270(pstate->rotation))
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3338
	if (drm_rotation_90_or_270(pstate->rotation)) {
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3362 3363 3364 3365 3366 3367 3368 3369
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3370
		enum plane_id plane_id = to_intel_plane(plane)->id;
3371

3372
		if (plane_id == PLANE_CURSOR)
3373 3374 3375 3376 3377
			continue;

		if (!pstate->visible)
			continue;

3378 3379
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3380 3381 3382 3383 3384
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3385
static int
3386
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3387 3388
		      struct skl_ddb_allocation *ddb /* out */)
{
3389
	struct drm_atomic_state *state = cstate->base.state;
3390
	struct drm_crtc *crtc = cstate->base.crtc;
3391 3392 3393
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3394
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3395
	uint16_t alloc_size, start;
3396 3397
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3398
	unsigned int total_data_rate;
3399
	enum plane_id plane_id;
3400
	int num_active;
3401 3402
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3403

3404 3405 3406 3407
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3408 3409 3410
	if (WARN_ON(!state))
		return 0;

3411
	if (!cstate->base.active) {
3412
		alloc->start = alloc->end = 0;
3413 3414 3415
		return 0;
	}

3416
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3417
	alloc_size = skl_ddb_entry_size(alloc);
3418 3419
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3420
		return 0;
3421 3422
	}

3423
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3424

3425 3426 3427 3428 3429
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3430

3431 3432 3433
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3434 3435
	}

3436 3437 3438
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3439
	/*
3440 3441
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3442 3443 3444
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3445 3446 3447
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3448
	if (total_data_rate == 0)
3449
		return 0;
3450

3451
	start = alloc->start;
3452
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3453 3454
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3455

3456
		if (plane_id == PLANE_CURSOR)
3457 3458
			continue;

3459
		data_rate = plane_data_rate[plane_id];
3460 3461

		/*
3462
		 * allocation for (packed formats) or (uv-plane part of planar format):
3463 3464 3465
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3466
		plane_blocks = minimum[plane_id];
3467 3468
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3469

3470 3471
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3472 3473
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3474
		}
3475 3476

		start += plane_blocks;
3477 3478 3479 3480

		/*
		 * allocation for y_plane part of planar format:
		 */
3481
		y_data_rate = plane_y_data_rate[plane_id];
3482

3483
		y_plane_blocks = y_minimum[plane_id];
3484 3485
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3486

3487
		if (y_data_rate) {
3488 3489
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3490
		}
3491 3492

		start += y_plane_blocks;
3493 3494
	}

3495
	return 0;
3496 3497
}

3498 3499
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3500
 * for the read latency) and cpp should always be <= 8, so that
3501 3502 3503
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3504
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3505 3506 3507 3508 3509 3510
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3511
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3512 3513 3514 3515 3516 3517
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3518
			       uint32_t latency, uint32_t plane_blocks_per_line)
3519
{
3520 3521
	uint32_t ret;
	uint32_t wm_intermediate_val;
3522 3523 3524 3525 3526 3527

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3528
				plane_blocks_per_line;
3529 3530 3531 3532

	return ret;
}

3533 3534 3535 3536 3537 3538 3539 3540
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3541
	if (WARN_ON(!pstate->base.visible))
3542 3543 3544 3545 3546 3547
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3548
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3549 3550 3551 3552 3553 3554 3555 3556
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3557 3558 3559 3560 3561 3562 3563 3564
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3565
{
3566 3567
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3568 3569 3570 3571 3572
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3573
	uint8_t cpp;
3574
	uint32_t width = 0, height = 0;
3575
	uint32_t plane_pixel_rate;
3576
	uint32_t y_tile_minimum, y_min_scanlines;
3577 3578 3579
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3580

3581
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3582 3583 3584
		*enabled = false;
		return 0;
	}
3585

V
Ville Syrjälä 已提交
3586
	if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3587 3588
		latency += 15;

3589 3590
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3591

3592
	if (drm_rotation_90_or_270(pstate->rotation))
3593 3594
		swap(width, height);

3595
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3596 3597
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3598
	if (drm_rotation_90_or_270(pstate->rotation)) {
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3613 3614 3615
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3616 3617 3618 3619 3620
		}
	} else {
		y_min_scanlines = 4;
	}

3621 3622 3623
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3624
	plane_bytes_per_line = width * cpp;
V
Ville Syrjälä 已提交
3625 3626
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3627 3628 3629
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
V
Ville Syrjälä 已提交
3630
	} else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3631 3632 3633 3634 3635 3636
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3637 3638
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3639
				 cstate->base.adjusted_mode.crtc_htotal,
3640
				 latency,
3641
				 plane_blocks_per_line);
3642

3643 3644
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

V
Ville Syrjälä 已提交
3645 3646
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3647 3648
		selected_result = max(method2, y_tile_minimum);
	} else {
3649 3650 3651 3652
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3653 3654 3655 3656
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3657

3658 3659
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3660

3661
	if (level >= 1 && level <= 7) {
V
Ville Syrjälä 已提交
3662 3663
		if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3664
			res_blocks += y_tile_minimum;
3665
			res_lines += y_min_scanlines;
3666
		} else {
3667
			res_blocks++;
3668
		}
3669
	}
3670

3671 3672
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3673 3674 3675 3676 3677 3678 3679 3680

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3681 3682
			struct drm_plane *plane = pstate->plane;

3683
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3684 3685
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3686 3687 3688
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3689
	}
3690 3691 3692

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3693
	*enabled = true;
3694

3695
	return 0;
3696 3697
}

3698 3699 3700 3701
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3702
		     struct intel_plane *intel_plane,
3703 3704
		     int level,
		     struct skl_wm_level *result)
3705
{
3706
	struct drm_atomic_state *state = cstate->base.state;
3707
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3708 3709
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3710
	uint16_t ddb_blocks;
3711
	enum pipe pipe = intel_crtc->pipe;
3712
	int ret;
L
Lyude 已提交
3713 3714 3715 3716 3717

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3718

3719
	/*
L
Lyude 已提交
3720 3721 3722 3723 3724 3725 3726 3727 3728
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3729
	 */
L
Lyude 已提交
3730 3731
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3732

L
Lyude 已提交
3733
	WARN_ON(!intel_pstate->base.fb);
3734

3735
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3736

L
Lyude 已提交
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3747 3748

	return 0;
3749 3750
}

3751
static uint32_t
3752
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3753
{
3754 3755
	uint32_t pixel_rate;

3756
	if (!cstate->base.active)
3757 3758
		return 0;

3759 3760 3761
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3762
		return 0;
3763

3764
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3765
			    pixel_rate);
3766 3767
}

3768
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3769
				      struct skl_wm_level *trans_wm /* out */)
3770
{
3771
	if (!cstate->base.active)
3772
		return;
3773 3774

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3775
	trans_wm->plane_en = false;
3776 3777
}

3778 3779 3780
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3781
{
3782
	struct drm_device *dev = cstate->base.crtc->dev;
3783
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3784 3785
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3786
	int level, max_level = ilk_wm_max_level(dev_priv);
3787
	int ret;
3788

L
Lyude 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3798
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3808
	}
3809
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3810

3811
	return 0;
3812 3813
}

3814 3815
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3816 3817 3818 3819 3820 3821 3822 3823
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3839 3840 3841
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3842
			       enum plane_id plane_id)
3843 3844 3845 3846
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3847
	int level, max_level = ilk_wm_max_level(dev_priv);
3848 3849 3850
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3851
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3852
				   &wm->wm[level]);
3853
	}
3854
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3855
			   &wm->trans_wm);
3856

3857 3858 3859 3860
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3861 3862
}

3863 3864 3865
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3866 3867 3868 3869
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3870
	int level, max_level = ilk_wm_max_level(dev_priv);
3871 3872 3873
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3874 3875
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3876
	}
3877
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3878

3879
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3880
			    &ddb->plane[pipe][PLANE_CURSOR]);
3881 3882
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3897 3898
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3899
{
3900
	return a->start < b->end && b->start < a->end;
3901 3902
}

3903 3904 3905
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3906
{
3907
	int i;
3908

3909 3910 3911
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3912
			return true;
3913

3914
	return false;
3915 3916
}

3917
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3918
			      const struct skl_pipe_wm *old_pipe_wm,
3919
			      struct skl_pipe_wm *pipe_wm, /* out */
3920
			      struct skl_ddb_allocation *ddb, /* out */
3921
			      bool *changed /* out */)
3922
{
3923
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3924
	int ret;
3925

3926 3927 3928
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3929

3930
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3931 3932 3933
		*changed = false;
	else
		*changed = true;
3934

3935
	return 0;
3936 3937
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3951
static int
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3968
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3969
		enum plane_id plane_id = to_intel_plane(plane)->id;
3970

3971 3972 3973 3974
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3985 3986 3987 3988 3989 3990 3991
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3992
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3993
	uint32_t realloc_pipes = pipes_modified(state);
3994 3995 3996 3997 3998 3999 4000 4001
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4002 4003 4004 4005 4006 4007
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4008 4009
		intel_state->active_pipe_changes = ~0;

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4033
	if (intel_state->active_pipe_changes) {
4034
		realloc_pipes = ~0;
4035 4036
		intel_state->wm_results.dirty_pipes = ~0;
	}
4037

4038 4039 4040 4041 4042 4043
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4044 4045 4046 4047 4048 4049 4050
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4051
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4052 4053
		if (ret)
			return ret;
4054

4055
		ret = skl_ddb_add_affected_planes(cstate);
4056 4057
		if (ret)
			return ret;
4058 4059 4060 4061 4062
	}

	return 0;
}

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4086
	int i;
4087 4088

	for_each_crtc_in_state(state, crtc, cstate, i) {
4089 4090
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4091

4092
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4093
			enum plane_id plane_id = intel_plane->id;
4094 4095
			const struct skl_ddb_entry *old, *new;

4096 4097
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4098 4099 4100 4101

			if (skl_ddb_entry_equal(old, new))
				continue;

4102 4103 4104 4105 4106
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4107 4108 4109 4110
		}
	}
}

4111 4112 4113 4114 4115
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4116 4117 4118
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4119
	bool changed = false;
4120
	int ret, i;
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4135 4136 4137
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4138 4139 4140 4141
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4155 4156
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4157 4158

		pipe_wm = &intel_cstate->wm.skl.optimal;
4159 4160
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4174 4175
	skl_print_wm_changes(state);

4176 4177 4178
	return 0;
}

4179 4180 4181 4182 4183 4184
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4185
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4186
	enum pipe pipe = crtc->pipe;
4187
	enum plane_id plane_id;
4188 4189 4190

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4191 4192

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4193

4194 4195 4196 4197 4198 4199 4200 4201
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4202 4203
}

4204 4205
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4206
{
4207
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4208
	struct drm_device *dev = intel_crtc->base.dev;
4209
	struct drm_i915_private *dev_priv = to_i915(dev);
4210
	struct skl_wm_values *results = &state->wm_results;
4211
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4212
	enum pipe pipe = intel_crtc->pipe;
4213

4214
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4215 4216
		return;

4217
	mutex_lock(&dev_priv->wm.wm_mutex);
4218

4219 4220
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4221 4222

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4223 4224

	mutex_unlock(&dev_priv->wm.wm_mutex);
4225 4226
}

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4245
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4246
{
4247
	struct drm_device *dev = &dev_priv->drm;
4248
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4249
	struct ilk_wm_maximums max;
4250
	struct intel_wm_config config = {};
4251
	struct ilk_wm_values results = {};
4252
	enum intel_ddb_partitioning partitioning;
4253

4254 4255 4256 4257
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4258 4259

	/* 5/6 split only in single pipe config on IVB+ */
4260
	if (INTEL_GEN(dev_priv) >= 7 &&
4261 4262 4263
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4264

4265
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4266
	} else {
4267
		best_lp_wm = &lp_wm_1_2;
4268 4269
	}

4270
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4271
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4272

4273
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4274

4275
	ilk_write_wm_values(dev_priv, &results);
4276 4277
}

4278 4279
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4280
{
4281 4282
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4283

4284
	mutex_lock(&dev_priv->wm.wm_mutex);
4285
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4286 4287 4288
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4289

4290 4291
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4292 4293 4294
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4295

4296 4297
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4298
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4299 4300 4301
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4302 4303
}

4304 4305
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4306
{
4307 4308 4309 4310
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4311 4312
}

4313 4314
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4315
{
4316
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4317 4318
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4319 4320
	int level, max_level;
	enum plane_id plane_id;
4321
	uint32_t val;
4322

4323
	max_level = ilk_wm_max_level(dev_priv);
4324

4325 4326
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4327

4328
		for (level = 0; level <= max_level; level++) {
4329 4330
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4331 4332
			else
				val = I915_READ(CUR_WM(pipe, level));
4333

4334
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4335 4336
		}

4337 4338
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4339 4340 4341 4342
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4343 4344
	}

4345 4346
	if (!intel_crtc->active)
		return;
4347

4348
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4349 4350 4351 4352
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4353
	struct drm_i915_private *dev_priv = to_i915(dev);
4354
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4355
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4356
	struct drm_crtc *crtc;
4357 4358
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4359

4360
	skl_ddb_get_hw_state(dev_priv, ddb);
4361 4362 4363 4364 4365 4366
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4367
		if (intel_crtc->active)
4368 4369
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4370

4371 4372 4373 4374 4375 4376 4377
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4378 4379
}

4380 4381 4382
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4383
	struct drm_i915_private *dev_priv = to_i915(dev);
4384
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4385
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4386
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4387
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4388
	enum pipe pipe = intel_crtc->pipe;
4389
	static const i915_reg_t wm0_pipe_reg[] = {
4390 4391 4392 4393 4394 4395
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4396
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4397
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4398

4399 4400
	memset(active, 0, sizeof(*active));

4401
	active->pipe_enabled = intel_crtc->active;
4402 4403

	if (active->pipe_enabled) {
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4418
		int level, max_level = ilk_wm_max_level(dev_priv);
4419 4420 4421 4422 4423 4424 4425 4426 4427

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4428 4429

	intel_crtc->wm.active.ilk = *active;
4430 4431
}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4446
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4447
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4448
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4449
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4450
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4451
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4452
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4453 4454 4455 4456 4457
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4458 4459 4460
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4461 4462

	tmp = I915_READ(DSPFW2);
4463 4464 4465
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4466 4467 4468 4469 4470 4471

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4472 4473
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4474 4475

		tmp = I915_READ(DSPFW8_CHV);
4476 4477
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4478 4479

		tmp = I915_READ(DSPFW9_CHV);
4480 4481
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4482 4483 4484

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4485 4486 4487 4488 4489 4490 4491 4492 4493
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4494 4495
	} else {
		tmp = I915_READ(DSPFW7);
4496 4497
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4498 4499 4500

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4501 4502 4503 4504 4505 4506
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4523 4524
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4536 4537 4538 4539 4540 4541 4542 4543 4544
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4545
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4559 4560 4561 4562 4563 4564

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4565 4566 4567 4568 4569
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4570 4571 4572 4573 4574

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4575 4576
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4577
	struct drm_i915_private *dev_priv = to_i915(dev);
4578
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4579 4580
	struct drm_crtc *crtc;

4581
	for_each_crtc(dev, crtc)
4582 4583 4584 4585 4586 4587 4588
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4589
	if (INTEL_GEN(dev_priv) >= 7) {
4590 4591 4592
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4593

4594
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4595 4596
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4597
	else if (IS_IVYBRIDGE(dev_priv))
4598 4599
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4600 4601 4602 4603 4604

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4637
void intel_update_watermarks(struct intel_crtc *crtc)
4638
{
4639
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4640 4641

	if (dev_priv->display.update_wm)
4642
		dev_priv->display.update_wm(crtc);
4643 4644
}

4645
/*
4646 4647 4648 4649 4650 4651 4652 4653
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4654
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4655 4656 4657
{
	u16 rgvswctl;

4658 4659
	assert_spin_locked(&mchdev_lock);

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4677
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4678
{
4679
	u32 rgvmodectl;
4680 4681
	u8 fmax, fmin, fstart, vstart;

4682 4683
	spin_lock_irq(&mchdev_lock);

4684 4685
	rgvmodectl = I915_READ(MEMMODECTL);

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4706
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4707 4708
		PXVFREQ_PX_SHIFT;

4709 4710
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4711

4712 4713 4714
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4731
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4732
		DRM_ERROR("stuck trying to change perf mode\n");
4733
	mdelay(1);
4734

4735
	ironlake_set_drps(dev_priv, fstart);
4736

4737 4738
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4739
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4740
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4741
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4742 4743

	spin_unlock_irq(&mchdev_lock);
4744 4745
}

4746
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4747
{
4748 4749 4750 4751 4752
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4753 4754 4755 4756 4757 4758 4759 4760 4761

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4762
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4763
	mdelay(1);
4764 4765
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4766
	mdelay(1);
4767

4768
	spin_unlock_irq(&mchdev_lock);
4769 4770
}

4771 4772 4773 4774 4775
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4776
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4777
{
4778
	u32 limits;
4779

4780 4781 4782 4783 4784 4785
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4786
	if (IS_GEN9(dev_priv)) {
4787 4788 4789 4790 4791 4792 4793 4794
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4795 4796 4797 4798

	return limits;
}

4799 4800 4801
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4802 4803
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4804 4805 4806 4807

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4808 4809
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4810 4811 4812 4813
			new_power = BETWEEN;
		break;

	case BETWEEN:
4814 4815
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4816
			new_power = LOW_POWER;
4817 4818
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4819 4820 4821 4822
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4823 4824
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4825 4826 4827 4828
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4829
	if (val <= dev_priv->rps.min_freq_softlimit)
4830
		new_power = LOW_POWER;
4831
	if (val >= dev_priv->rps.max_freq_softlimit)
4832 4833 4834 4835 4836 4837 4838 4839
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4840 4841
		ei_up = 16000;
		threshold_up = 95;
4842 4843

		/* Downclock if less than 85% busy over 32ms */
4844 4845
		ei_down = 32000;
		threshold_down = 85;
4846 4847 4848 4849
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4850 4851
		ei_up = 13000;
		threshold_up = 90;
4852 4853

		/* Downclock if less than 75% busy over 32ms */
4854 4855
		ei_down = 32000;
		threshold_down = 75;
4856 4857 4858 4859
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4860 4861
		ei_up = 10000;
		threshold_up = 85;
4862 4863

		/* Downclock if less than 60% busy over 32ms */
4864 4865
		ei_down = 32000;
		threshold_down = 60;
4866 4867 4868
		break;
	}

4869
	I915_WRITE(GEN6_RP_UP_EI,
4870
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4871
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4872 4873
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4874 4875

	I915_WRITE(GEN6_RP_DOWN_EI,
4876
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4877
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4888

4889
	dev_priv->rps.power = new_power;
4890 4891
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4892 4893 4894
	dev_priv->rps.last_adj = 0;
}

4895 4896 4897 4898 4899
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4900
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4901
	if (val < dev_priv->rps.max_freq_softlimit)
4902
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4903

4904 4905
	mask &= dev_priv->pm_rps_events;

4906
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4907 4908
}

4909 4910 4911
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4912
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4913
{
4914
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4915
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4916 4917
		return;

4918
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4919 4920
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4921

C
Chris Wilson 已提交
4922 4923 4924 4925 4926
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4927

4928
		if (IS_GEN9(dev_priv))
4929 4930
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4931
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4932 4933 4934 4935 4936 4937 4938
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4939
	}
4940 4941 4942 4943

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4944
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4945
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4946

4947 4948
	POSTING_READ(GEN6_RPNSWREQ);

4949
	dev_priv->rps.cur_freq = val;
4950
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4951 4952
}

4953
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4954 4955
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4956 4957
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4958

4959
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4960 4961 4962
		      "Odd GPU freq value\n"))
		val &= ~1;

4963 4964
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4965
	if (val != dev_priv->rps.cur_freq) {
4966
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4967 4968 4969
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4970 4971 4972 4973 4974

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4975
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4976 4977
 *
 * * If Gfx is Idle, then
4978 4979 4980
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4981 4982 4983
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4984
	u32 val = dev_priv->rps.idle_freq;
4985

4986
	if (dev_priv->rps.cur_freq <= val)
4987 4988
		return;

4989 4990 4991
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4992
	valleyview_set_rps(dev_priv, val);
4993
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4994 4995
}

4996 4997 4998 4999 5000 5001 5002 5003
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5004

5005 5006
		gen6_enable_rps_interrupts(dev_priv);

5007 5008 5009 5010 5011
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5012 5013 5014 5015
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5016 5017
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5018 5019 5020 5021 5022 5023 5024
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5025
	mutex_lock(&dev_priv->rps.hw_lock);
5026
	if (dev_priv->rps.enabled) {
5027
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5028
			vlv_set_rps_idle(dev_priv);
5029
		else
5030
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5031
		dev_priv->rps.last_adj = 0;
5032 5033
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5034
	}
5035
	mutex_unlock(&dev_priv->rps.hw_lock);
5036

5037
	spin_lock(&dev_priv->rps.client_lock);
5038 5039
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5040
	spin_unlock(&dev_priv->rps.client_lock);
5041 5042
}

5043
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5044 5045
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5046
{
5047 5048 5049
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5050
	if (!(dev_priv->gt.awake &&
5051
	      dev_priv->rps.enabled &&
5052
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5053
		return;
5054

5055 5056 5057
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5058
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5059 5060
		rps = NULL;

5061 5062 5063 5064 5065
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5066
			schedule_work(&dev_priv->rps.work);
5067 5068
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5069

5070 5071 5072
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5073 5074
		} else
			dev_priv->rps.boosts++;
5075
	}
5076
	spin_unlock(&dev_priv->rps.client_lock);
5077 5078
}

5079
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5080
{
5081 5082
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5083
	else
5084
		gen6_set_rps(dev_priv, val);
5085 5086
}

5087
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5088 5089
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5090
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5091 5092
}

5093
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5094 5095 5096 5097
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5098
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5099 5100
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5101
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5102
	I915_WRITE(GEN6_RP_CONTROL, 0);
5103 5104
}

5105
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5106 5107 5108 5109
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5110
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5111
{
5112 5113
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5114
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5115

5116
	I915_WRITE(GEN6_RC_CONTROL, 0);
5117

5118
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5119 5120
}

5121
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5122
{
5123
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5124 5125 5126 5127 5128
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5129
	if (HAS_RC6p(dev_priv))
5130 5131 5132 5133 5134
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5135 5136

	else
5137 5138
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5139 5140
}

5141
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5142
{
5143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5144 5145
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5157 5158

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5159
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5160 5161 5162 5163 5164 5165 5166 5167
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5168 5169 5170
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5171
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5172 5173 5174 5175 5176 5177 5178
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5179
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5180 5181 5182
		enable_rc6 = false;
	}

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5197 5198 5199 5200 5201 5202
		enable_rc6 = false;
	}

	return enable_rc6;
}

5203
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5204
{
5205
	/* No RC6 before Ironlake and code is gone for ilk. */
5206
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5207 5208
		return 0;

5209 5210 5211
	if (!enable_rc6)
		return 0;

5212
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5213 5214 5215 5216
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5217
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5218 5219 5220
	if (enable_rc6 >= 0) {
		int mask;

5221
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5222 5223 5224 5225 5226 5227
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5228 5229 5230
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5231 5232 5233

		return enable_rc6 & mask;
	}
5234

5235
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5236
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5237 5238

	return INTEL_RC6_ENABLE;
5239 5240
}

5241
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5242 5243
{
	/* All of these values are in units of 50MHz */
5244

5245
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5246
	if (IS_GEN9_LP(dev_priv)) {
5247
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5248 5249 5250 5251
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5252
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5253 5254 5255 5256
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5257
	/* hw_max = RP0 until we check for overclocking */
5258
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5259

5260
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5261 5262
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5263 5264 5265 5266 5267
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5268
			dev_priv->rps.efficient_freq =
5269 5270 5271 5272
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5273 5274
	}

5275
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5276
		/* Store the frequency values in 16.66 MHZ units, which is
5277 5278
		 * the natural hardware unit for SKL
		 */
5279 5280 5281 5282 5283 5284
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5285 5286
}

5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5299
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5300
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5301 5302 5303
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5304
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5305
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5306 5307 5308 5309 5310 5311 5312 5313 5314
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5315
		gen9_disable_rps(dev_priv);
5316 5317 5318 5319
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5320 5321 5322 5323 5324 5325 5326 5327
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5328 5329
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5330 5331 5332
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5333
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5334 5335 5336 5337

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5338
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5339
{
5340
	struct intel_engine_cs *engine;
5341
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5342 5343 5344 5345 5346 5347 5348
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5349
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5350 5351 5352 5353 5354

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5355 5356

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5357
	if (IS_SKYLAKE(dev_priv))
5358 5359 5360
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5361 5362
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5363
	for_each_engine(engine, dev_priv, id)
5364
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5365

5366
	if (HAS_GUC(dev_priv))
5367 5368
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5369 5370
	I915_WRITE(GEN6_RC_SLEEP, 0);

5371 5372 5373 5374
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5375
	/* 3a: Enable RC6 */
5376
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5377
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5378
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5379
	/* WaRsUseTimeoutMode:bxt */
5380
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5381
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5382 5383 5384
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5385 5386
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5387 5388 5389
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5390
	}
Z
Zhe Wang 已提交
5391

5392 5393
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5394
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5395
	 */
5396
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5397 5398 5399 5400
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5401

5402
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5403 5404
}

5405
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5406
{
5407
	struct intel_engine_cs *engine;
5408
	enum intel_engine_id id;
5409
	uint32_t rc6_mask = 0;
5410 5411 5412 5413 5414 5415

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5416
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5417 5418 5419 5420 5421 5422 5423 5424

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5425
	for_each_engine(engine, dev_priv, id)
5426
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5427
	I915_WRITE(GEN6_RC_SLEEP, 0);
5428
	if (IS_BROADWELL(dev_priv))
5429 5430 5431
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5432 5433

	/* 3: Enable RC6 */
5434
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5435
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5436 5437
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5438 5439 5440 5441 5442 5443 5444
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5445 5446

	/* 4 Program defaults and thresholds for RPS*/
5447 5448 5449 5450
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5465 5466

	/* 5: Enable RPS */
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5477
	reset_rps(dev_priv, gen6_set_rps);
5478

5479
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5480 5481
}

5482
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5483
{
5484
	struct intel_engine_cs *engine;
5485
	enum intel_engine_id id;
5486
	u32 rc6vids, rc6_mask = 0;
5487 5488
	u32 gtfifodbg;
	int rc6_mode;
5489
	int ret;
5490

5491
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5492

5493 5494 5495 5496 5497 5498 5499 5500 5501
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5502 5503
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5504 5505 5506 5507
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5508
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5519
	for_each_engine(engine, dev_priv, id)
5520
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5521 5522 5523

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5524
	if (IS_IVYBRIDGE(dev_priv))
5525 5526 5527
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5528
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5529 5530
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5531
	/* Check if we are enabling RC6 */
5532
	rc6_mode = intel_enable_rc6();
5533 5534 5535
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5536
	/* We don't use those on Haswell */
5537
	if (!IS_HASWELL(dev_priv)) {
5538 5539
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5540

5541 5542 5543
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5544

5545
	intel_print_rc6_info(dev_priv, rc6_mask);
5546 5547 5548 5549 5550 5551

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5552 5553
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5554 5555
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5556
	reset_rps(dev_priv, gen6_set_rps);
5557

5558 5559
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5560
	if (IS_GEN6(dev_priv) && ret) {
5561
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5562
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5563 5564 5565 5566 5567 5568 5569 5570 5571
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5572
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5573 5574
}

5575
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5576 5577
{
	int min_freq = 15;
5578 5579
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5580
	unsigned int max_gpu_freq, min_gpu_freq;
5581
	int scaling_factor = 180;
5582
	struct cpufreq_policy *policy;
5583

5584
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5585

5586 5587 5588 5589 5590 5591 5592 5593 5594
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5595
		max_ia_freq = tsc_khz;
5596
	}
5597 5598 5599 5600

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5601
	min_ring_freq = I915_READ(DCLK) & 0xf;
5602 5603
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5604

5605
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5606 5607 5608 5609 5610 5611 5612 5613
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5614 5615 5616 5617 5618
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5619 5620
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5621 5622
		unsigned int ia_freq = 0, ring_freq = 0;

5623
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5624 5625 5626 5627 5628
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5629
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5630 5631
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5632
		} else if (IS_HASWELL(dev_priv)) {
5633
			ring_freq = mult_frac(gpu_freq, 5, 4);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5650

B
Ben Widawsky 已提交
5651 5652
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5653 5654 5655
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5656 5657 5658
	}
}

5659
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5660 5661 5662
{
	u32 val, rp0;

5663
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5664

5665
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5680
	}
5681 5682 5683

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5697 5698 5699 5700
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5701 5702 5703
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5704 5705 5706
	return rp1;
}

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5718
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5719 5720 5721
{
	u32 val, rp0;

5722
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5735
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5736
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5737
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5738 5739 5740 5741 5742
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5743
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5744
{
5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5756 5757
}

5758 5759 5760 5761 5762 5763 5764 5765 5766
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5767 5768 5769 5770 5771 5772 5773 5774 5775

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5776
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5777
{
5778
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5779
	unsigned long pctx_paddr, paddr;
5780 5781 5782 5783 5784
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5785
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5786
		paddr = (dev_priv->mm.stolen_base +
5787
			 (ggtt->stolen_size - pctx_size));
5788 5789 5790 5791

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5792 5793

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5794 5795
}

5796
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5809
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5810
								      pcbr_offset,
5811
								      I915_GTT_OFFSET_NONE,
5812 5813 5814 5815
								      pctx_size);
		goto out;
	}

5816 5817
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5818 5819 5820 5821 5822 5823 5824 5825
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5826
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5827 5828
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5829
		goto out;
5830 5831 5832 5833 5834 5835
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5836
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5837 5838 5839
	dev_priv->vlv_pctx = pctx;
}

5840
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5841 5842 5843 5844
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5845
	i915_gem_object_put(dev_priv->vlv_pctx);
5846 5847 5848
	dev_priv->vlv_pctx = NULL;
}

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5860
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5861
{
5862
	u32 val;
5863

5864
	valleyview_setup_pctx(dev_priv);
5865

5866 5867
	vlv_init_gpll_ref_freq(dev_priv);

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5881
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5882

5883 5884 5885
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5886
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5887 5888 5889 5890
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5891
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5892 5893
			 dev_priv->rps.efficient_freq);

5894 5895
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5896
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5897 5898
			 dev_priv->rps.rp1_freq);

5899 5900
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5901
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5902 5903 5904
			 dev_priv->rps.min_freq);
}

5905
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5906
{
5907
	u32 val;
5908

5909
	cherryview_setup_pctx(dev_priv);
5910

5911 5912
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5913
	mutex_lock(&dev_priv->sb_lock);
5914
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5915
	mutex_unlock(&dev_priv->sb_lock);
5916

5917 5918 5919 5920
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5921
	default:
5922 5923 5924
		dev_priv->mem_freq = 1600;
		break;
	}
5925
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5926

5927 5928 5929
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5930
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5931 5932 5933 5934
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5935
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5936 5937
			 dev_priv->rps.efficient_freq);

5938 5939
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5940
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5941 5942
			 dev_priv->rps.rp1_freq);

5943 5944
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5945
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5946
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5947 5948
			 dev_priv->rps.min_freq);

5949 5950 5951 5952 5953
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5954 5955
}

5956
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5957
{
5958
	valleyview_cleanup_pctx(dev_priv);
5959 5960
}

5961
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5962
{
5963
	struct intel_engine_cs *engine;
5964
	enum intel_engine_id id;
5965
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5966 5967 5968

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5969 5970
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5981
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5982

5983 5984 5985
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5986 5987 5988 5989 5990
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5991
	for_each_engine(engine, dev_priv, id)
5992
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5993 5994
	I915_WRITE(GEN6_RC_SLEEP, 0);

5995 5996
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6008 6009
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6010
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6011 6012 6013

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6014
	/* 4 Program defaults and thresholds for RPS*/
6015
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6026
		   GEN6_RP_MEDIA_IS_GFX |
6027 6028 6029 6030
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6031 6032 6033 6034 6035 6036
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6037 6038
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6039 6040 6041
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6042
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6043 6044
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6045
	reset_rps(dev_priv, valleyview_set_rps);
6046

6047
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6048 6049
}

6050
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6051
{
6052
	struct intel_engine_cs *engine;
6053
	enum intel_engine_id id;
6054
	u32 gtfifodbg, val, rc6_mode = 0;
6055 6056 6057

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6058 6059
	valleyview_check_pctx(dev_priv);

6060 6061
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6062 6063
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6064 6065 6066
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6067
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6068
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6069

6070 6071 6072
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6073
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6093
	for_each_engine(engine, dev_priv, id)
6094
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6095

6096
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6097 6098

	/* allows RC6 residency counter to work */
6099
	I915_WRITE(VLV_COUNTER_CONTROL,
6100 6101
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6102 6103
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6104

6105
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6106
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6107

6108
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6109

6110
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6111

D
Deepak S 已提交
6112 6113 6114 6115 6116 6117
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6118
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6119

6120 6121 6122
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6123
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6124 6125
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6126
	reset_rps(dev_priv, valleyview_set_rps);
6127

6128
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6129 6130
}

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6160
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6161 6162 6163 6164 6165 6166
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6167 6168
	assert_spin_locked(&mchdev_lock);

6169
	diff1 = now - dev_priv->ips.last_time1;
6170 6171 6172 6173 6174 6175 6176

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6177
		return dev_priv->ips.chipset_power;
6178 6179 6180 6181 6182 6183 6184 6185

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6186 6187
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6188 6189
		diff += total_count;
	} else {
6190
		diff = total_count - dev_priv->ips.last_count1;
6191 6192 6193
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6194 6195
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6206 6207
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6208

6209
	dev_priv->ips.chipset_power = ret;
6210 6211 6212 6213

	return ret;
}

6214 6215 6216 6217
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6218
	if (INTEL_INFO(dev_priv)->gen != 5)
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6257
{
6258 6259 6260
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6261
	if (INTEL_INFO(dev_priv)->is_mobile)
6262 6263 6264
		return vm > 0 ? vm : 0;

	return vd;
6265 6266
}

6267
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6268
{
6269
	u64 now, diff, diffms;
6270 6271
	u32 count;

6272
	assert_spin_locked(&mchdev_lock);
6273

6274 6275 6276
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6277 6278 6279 6280 6281 6282 6283

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6284 6285
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6286 6287
		diff += count;
	} else {
6288
		diff = count - dev_priv->ips.last_count2;
6289 6290
	}

6291 6292
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6293 6294 6295 6296

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6297
	dev_priv->ips.gfx_power = diff;
6298 6299
}

6300 6301
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6302
	if (INTEL_INFO(dev_priv)->gen != 5)
6303 6304
		return;

6305
	spin_lock_irq(&mchdev_lock);
6306 6307 6308

	__i915_update_gfx_val(dev_priv);

6309
	spin_unlock_irq(&mchdev_lock);
6310 6311
}

6312
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6313 6314 6315 6316
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6317 6318
	assert_spin_locked(&mchdev_lock);

6319
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6339
	corr2 = (corr * dev_priv->ips.corr);
6340 6341 6342 6343

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6344
	__i915_update_gfx_val(dev_priv);
6345

6346
	return dev_priv->ips.gfx_power + state2;
6347 6348
}

6349 6350 6351 6352
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6353
	if (INTEL_INFO(dev_priv)->gen != 5)
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6376
	spin_lock_irq(&mchdev_lock);
6377 6378 6379 6380
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6381 6382
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6383 6384 6385 6386

	ret = chipset_val + graphics_val;

out_unlock:
6387
	spin_unlock_irq(&mchdev_lock);
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6403
	spin_lock_irq(&mchdev_lock);
6404 6405 6406 6407 6408 6409
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6410 6411
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6412 6413

out_unlock:
6414
	spin_unlock_irq(&mchdev_lock);
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6431
	spin_lock_irq(&mchdev_lock);
6432 6433 6434 6435 6436 6437
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6438 6439
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6440 6441

out_unlock:
6442
	spin_unlock_irq(&mchdev_lock);
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6457
	spin_lock_irq(&mchdev_lock);
6458 6459
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6460
	spin_unlock_irq(&mchdev_lock);
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6477
	spin_lock_irq(&mchdev_lock);
6478 6479 6480 6481 6482 6483
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6484
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6485

6486
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6487 6488 6489
		ret = false;

out_unlock:
6490
	spin_unlock_irq(&mchdev_lock);
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6518 6519
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6520
	spin_lock_irq(&mchdev_lock);
6521
	i915_mch_dev = dev_priv;
6522
	spin_unlock_irq(&mchdev_lock);
6523 6524 6525 6526 6527 6528

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6529
	spin_lock_irq(&mchdev_lock);
6530
	i915_mch_dev = NULL;
6531
	spin_unlock_irq(&mchdev_lock);
6532
}
6533

6534
static void intel_init_emon(struct drm_i915_private *dev_priv)
6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6551
		I915_WRITE(PEW(i), 0);
6552
	for (i = 0; i < 3; i++)
6553
		I915_WRITE(DEW(i), 0);
6554 6555 6556

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6557
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6578
		I915_WRITE(PXW(i), val);
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6594
		I915_WRITE(PXWL(i), 0);
6595 6596 6597 6598 6599 6600

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6601
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6602 6603
}

6604
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6605
{
6606 6607 6608 6609 6610 6611 6612 6613
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6614

6615
	mutex_lock(&dev_priv->drm.struct_mutex);
6616 6617 6618
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6619 6620 6621 6622
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6623
	else if (INTEL_GEN(dev_priv) >= 6)
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6653 6654 6655
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6656
	mutex_unlock(&dev_priv->rps.hw_lock);
6657
	mutex_unlock(&dev_priv->drm.struct_mutex);
6658 6659

	intel_autoenable_gt_powersave(dev_priv);
6660 6661
}

6662
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6663
{
6664
	if (IS_VALLEYVIEW(dev_priv))
6665
		valleyview_cleanup_gt_powersave(dev_priv);
6666 6667 6668

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6669 6670
}

6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6690 6691 6692 6693
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6694 6695

	gen6_reset_rps_interrupts(dev_priv);
6696 6697
}

6698
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6699
{
6700 6701
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6702

6703
	mutex_lock(&dev_priv->rps.hw_lock);
6704

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6716
	}
6717 6718 6719

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6720 6721
}

6722
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6723
{
6724 6725 6726
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6727 6728
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6729

6730 6731 6732
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6733

6734
	mutex_lock(&dev_priv->rps.hw_lock);
6735 6736 6737 6738 6739

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6740
	} else if (INTEL_GEN(dev_priv) >= 9) {
6741 6742 6743
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6744
			gen6_update_ring_freq(dev_priv);
6745 6746
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6747
		gen6_update_ring_freq(dev_priv);
6748
	} else if (INTEL_GEN(dev_priv) >= 6) {
6749
		gen6_enable_rps(dev_priv);
6750
		gen6_update_ring_freq(dev_priv);
6751 6752 6753
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6754
	}
6755 6756 6757 6758 6759 6760 6761

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6762
	dev_priv->rps.enabled = true;
6763 6764
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6765

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6776
	rcs = dev_priv->engine[RCS];
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6829
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6830 6831 6832 6833 6834 6835 6836 6837 6838
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6839
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6840
{
6841
	enum pipe pipe;
6842

6843
	for_each_pipe(dev_priv, pipe) {
6844 6845 6846
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6847 6848 6849

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6850 6851 6852
	}
}

6853
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6865
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6866
{
6867
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6868

6869 6870 6871 6872
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6873 6874 6875
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6893
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6894 6895 6896
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6897

6898
	ilk_init_lp_watermarks(dev_priv);
6899 6900 6901 6902 6903 6904 6905 6906

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6907
	if (IS_IRONLAKE_M(dev_priv)) {
6908
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6909 6910 6911 6912 6913 6914 6915 6916
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6917 6918
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6919 6920 6921 6922 6923 6924
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6925

6926
	/* WaDisableRenderCachePipelinedFlush:ilk */
6927 6928
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6929

6930 6931 6932
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6933
	g4x_disable_trickle_feed(dev_priv);
6934

6935
	ibx_init_clock_gating(dev_priv);
6936 6937
}

6938
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6939 6940
{
	int pipe;
6941
	uint32_t val;
6942 6943 6944 6945 6946 6947

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6948 6949 6950
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6951 6952
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6953 6954 6955
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6956
	for_each_pipe(dev_priv, pipe) {
6957 6958 6959
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6960
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6961
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6962 6963 6964
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6965 6966
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6967
	/* WADP0ClockGatingDisable */
6968
	for_each_pipe(dev_priv, pipe) {
6969 6970 6971
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6972 6973
}

6974
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6975 6976 6977 6978
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6979 6980 6981
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6982 6983
}

6984
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6985
{
6986
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6987

6988
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6989 6990 6991 6992 6993

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6994
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6995 6996 6997
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6998 6999 7000
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7001 7002 7003
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7004 7005 7006 7007
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7008 7009
	 */
	I915_WRITE(GEN6_GT_MODE,
7010
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7011

7012
	ilk_init_lp_watermarks(dev_priv);
7013 7014

	I915_WRITE(CACHE_MODE_0,
7015
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7031
	 *
7032 7033
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7034 7035 7036 7037 7038
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7039
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7040 7041
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7042

7043 7044 7045 7046 7047 7048 7049 7050
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7051 7052 7053 7054 7055 7056 7057 7058
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7059 7060
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7061 7062 7063 7064 7065 7066 7067
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7068 7069 7070 7071
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7072

7073
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7074

7075
	cpt_init_clock_gating(dev_priv);
7076

7077
	gen6_check_mch_setup(dev_priv);
7078 7079 7080 7081 7082 7083
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7084
	/*
7085
	 * WaVSThreadDispatchOverride:ivb,vlv
7086 7087 7088 7089
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7090 7091 7092 7093 7094 7095 7096 7097
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7098
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7099 7100 7101 7102 7103
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7104
	if (HAS_PCH_LPT_LP(dev_priv))
7105 7106 7107
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7108 7109

	/* WADPOClockGatingDisable:hsw */
7110 7111
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7112
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7113 7114
}

7115
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7116
{
7117
	if (HAS_PCH_LPT_LP(dev_priv)) {
7118 7119 7120 7121 7122 7123 7124
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7148
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7149
{
7150
	gen9_init_clock_gating(dev_priv);
7151 7152 7153 7154 7155

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7156 7157 7158 7159 7160

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7161 7162 7163 7164

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7165 7166
}

7167
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7168
{
7169
	gen9_init_clock_gating(dev_priv);
7170 7171 7172 7173

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7174 7175 7176 7177

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7178 7179
}

7180
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7181
{
7182
	enum pipe pipe;
B
Ben Widawsky 已提交
7183

7184
	ilk_init_lp_watermarks(dev_priv);
7185

7186
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7187
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7188

7189
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7190 7191 7192
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7193
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7194
	for_each_pipe(dev_priv, pipe) {
7195
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7196
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7197
			   BDW_DPRS_MASK_VBLANK_SRD);
7198
	}
7199

7200 7201 7202 7203 7204
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7205

7206 7207
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7208 7209 7210 7211

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7212

7213 7214
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7215

7216 7217 7218 7219 7220 7221 7222
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7223 7224 7225 7226
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7227
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7228 7229
}

7230
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7231
{
7232
	ilk_init_lp_watermarks(dev_priv);
7233

7234 7235 7236 7237 7238
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7239
	/* This is required by WaCatErrorRejectionIssue:hsw */
7240 7241 7242 7243
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7244 7245 7246
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7247

7248 7249 7250
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7251 7252 7253 7254
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7255
	/* WaDisable4x2SubspanOptimization:hsw */
7256 7257
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7258

7259 7260 7261
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7262 7263 7264 7265
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7266 7267
	 */
	I915_WRITE(GEN7_GT_MODE,
7268
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7269

7270 7271 7272 7273
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7274
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7275 7276
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7277 7278 7279
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7280

7281
	lpt_init_clock_gating(dev_priv);
7282 7283
}

7284
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7285
{
7286
	uint32_t snpcr;
7287

7288
	ilk_init_lp_watermarks(dev_priv);
7289

7290
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7291

7292
	/* WaDisableEarlyCull:ivb */
7293 7294 7295
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7296
	/* WaDisableBackToBackFlipFix:ivb */
7297 7298 7299 7300
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7301
	/* WaDisablePSDDualDispatchEnable:ivb */
7302
	if (IS_IVB_GT1(dev_priv))
7303 7304 7305
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7306 7307 7308
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7309
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7310 7311 7312
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7313
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7314 7315 7316
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7317
		   GEN7_WA_L3_CHICKEN_MODE);
7318
	if (IS_IVB_GT1(dev_priv))
7319 7320
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7321 7322 7323 7324
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7325 7326
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7327
	}
7328

7329
	/* WaForceL3Serialization:ivb */
7330 7331 7332
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7333
	/*
7334
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7335
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7336 7337
	 */
	I915_WRITE(GEN6_UCGCTL2,
7338
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7339

7340
	/* This is required by WaCatErrorRejectionIssue:ivb */
7341 7342 7343 7344
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7345
	g4x_disable_trickle_feed(dev_priv);
7346 7347

	gen7_setup_fixed_func_scheduler(dev_priv);
7348

7349 7350 7351 7352 7353
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7354

7355
	/* WaDisable4x2SubspanOptimization:ivb */
7356 7357
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7358

7359 7360 7361
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7362 7363 7364 7365
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7366 7367
	 */
	I915_WRITE(GEN7_GT_MODE,
7368
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7369

7370 7371 7372 7373
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7374

7375
	if (!HAS_PCH_NOP(dev_priv))
7376
		cpt_init_clock_gating(dev_priv);
7377

7378
	gen6_check_mch_setup(dev_priv);
7379 7380
}

7381
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7382
{
7383
	/* WaDisableEarlyCull:vlv */
7384 7385 7386
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7387
	/* WaDisableBackToBackFlipFix:vlv */
7388 7389 7390 7391
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7392
	/* WaPsdDispatchEnable:vlv */
7393
	/* WaDisablePSDDualDispatchEnable:vlv */
7394
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7395 7396
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7397

7398 7399 7400
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7401
	/* WaForceL3Serialization:vlv */
7402 7403 7404
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7405
	/* WaDisableDopClockGating:vlv */
7406 7407 7408
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7409
	/* This is required by WaCatErrorRejectionIssue:vlv */
7410 7411 7412 7413
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7414 7415
	gen7_setup_fixed_func_scheduler(dev_priv);

7416
	/*
7417
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7418
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7419 7420
	 */
	I915_WRITE(GEN6_UCGCTL2,
7421
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7422

7423 7424 7425 7426 7427
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7428

7429 7430 7431 7432
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7433 7434
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7435

7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7447 7448 7449 7450 7451 7452
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7453
	/*
7454
	 * WaDisableVLVClockGating_VBIIssue:vlv
7455 7456 7457
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7458
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7459 7460
}

7461
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7462
{
7463 7464 7465 7466 7467
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7468 7469 7470 7471

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7472 7473 7474 7475

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7476 7477 7478 7479

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7480

7481 7482 7483 7484 7485 7486 7487
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7488 7489 7490 7491 7492
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7493 7494
}

7495
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7507
	if (IS_GM45(dev_priv))
7508 7509
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7510 7511 7512 7513

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7514

7515 7516 7517
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7518
	g4x_disable_trickle_feed(dev_priv);
7519 7520
}

7521
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7522 7523 7524 7525 7526 7527
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7528 7529
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7530 7531 7532

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7533 7534
}

7535
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7536 7537 7538 7539 7540 7541 7542
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7543 7544
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7545 7546 7547

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7548 7549
}

7550
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7551 7552 7553 7554 7555 7556
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7557

7558
	if (IS_PINEVIEW(dev_priv))
7559
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7560 7561 7562

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7563 7564

	/* interrupts should cause a wake up from C3 */
7565
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7566 7567 7568

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7569 7570 7571

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7572 7573
}

7574
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7575 7576
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7577 7578 7579 7580

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7581 7582 7583

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7584 7585
}

7586
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7587 7588
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7589 7590 7591 7592

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7593 7594
}

7595
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7596
{
7597
	dev_priv->display.init_clock_gating(dev_priv);
7598 7599
}

7600
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7601
{
7602 7603
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7604 7605
}

7606
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7623
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7624
	else if (IS_KABYLAKE(dev_priv))
7625
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7626
	else if (IS_GEN9_LP(dev_priv))
7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7660
/* Set up chip specific power management-related functions */
7661
void intel_init_pm(struct drm_i915_private *dev_priv)
7662
{
7663
	intel_fbc_init(dev_priv);
7664

7665
	/* For cxsr */
7666
	if (IS_PINEVIEW(dev_priv))
7667
		i915_pineview_get_mem_freq(dev_priv);
7668
	else if (IS_GEN5(dev_priv))
7669
		i915_ironlake_get_mem_freq(dev_priv);
7670

7671
	/* For FIFO watermark updates */
7672
	if (INTEL_GEN(dev_priv) >= 9) {
7673
		skl_setup_wm_latency(dev_priv);
7674
		dev_priv->display.initial_watermarks = skl_initial_wm;
7675
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7676
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7677
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7678
		ilk_setup_wm_latency(dev_priv);
7679

7680
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7681
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7682
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7683
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7684
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7685 7686 7687 7688 7689 7690
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7691 7692 7693 7694
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7695
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7696
		vlv_setup_wm_latency(dev_priv);
7697
		dev_priv->display.update_wm = vlv_update_wm;
7698
	} else if (IS_PINEVIEW(dev_priv)) {
7699
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7700 7701 7702 7703 7704 7705 7706 7707 7708
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7709
			intel_set_memory_cxsr(dev_priv, false);
7710 7711 7712
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7713
	} else if (IS_G4X(dev_priv)) {
7714
		dev_priv->display.update_wm = g4x_update_wm;
7715
	} else if (IS_GEN4(dev_priv)) {
7716
		dev_priv->display.update_wm = i965_update_wm;
7717
	} else if (IS_GEN3(dev_priv)) {
7718 7719
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7720
	} else if (IS_GEN2(dev_priv)) {
7721
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7722
			dev_priv->display.update_wm = i845_update_wm;
7723
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7724 7725
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7726
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7727 7728 7729
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7730 7731 7732
	}
}

7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7745
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7777
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7778
{
7779 7780
	int status;

7781
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7782

7783 7784 7785 7786 7787 7788
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7789 7790 7791 7792
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7793 7794 7795
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7796

7797 7798 7799
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7800 7801 7802 7803
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7804 7805
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7806

7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7818 7819 7820
	return 0;
}

7821
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7822
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7823
{
7824 7825
	int status;

7826
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7827

7828 7829 7830 7831 7832 7833
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7834 7835 7836 7837
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7838
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7839
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7840
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7841

7842 7843 7844
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7845 7846 7847 7848
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7849
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7850

7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7862 7863
	return 0;
}
7864

7865 7866
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7867 7868 7869 7870 7871
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7872 7873
}

7874
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7875
{
7876
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7877 7878
}

7879
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7880
{
7881 7882 7883 7884 7885
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7886 7887
}

7888
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7889
{
7890
	/* CHV needs even values */
7891
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7892 7893
}

7894
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7895
{
7896
	if (IS_GEN9(dev_priv))
7897 7898
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7899
	else if (IS_CHERRYVIEW(dev_priv))
7900
		return chv_gpu_freq(dev_priv, val);
7901
	else if (IS_VALLEYVIEW(dev_priv))
7902 7903 7904
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7905 7906
}

7907 7908
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7909
	if (IS_GEN9(dev_priv))
7910 7911
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7912
	else if (IS_CHERRYVIEW(dev_priv))
7913
		return chv_freq_opcode(dev_priv, val);
7914
	else if (IS_VALLEYVIEW(dev_priv))
7915 7916
		return byt_freq_opcode(dev_priv, val);
	else
7917
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7918
}
7919

7920 7921
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7922
	struct drm_i915_gem_request *req;
7923 7924 7925 7926 7927
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7928
	struct drm_i915_gem_request *req = boost->req;
7929

7930
	if (!i915_gem_request_completed(req))
7931
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7932

7933
	i915_gem_request_put(req);
7934 7935 7936
	kfree(boost);
}

7937
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7938 7939 7940
{
	struct request_boost *boost;

7941
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7942 7943
		return;

7944
	if (i915_gem_request_completed(req))
7945 7946
		return;

7947 7948 7949 7950
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7951
	boost->req = i915_gem_request_get(req);
7952 7953

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7954
	queue_work(req->i915->wq, &boost->work);
7955 7956
}

7957
void intel_pm_setup(struct drm_i915_private *dev_priv)
7958
{
D
Daniel Vetter 已提交
7959
	mutex_init(&dev_priv->rps.hw_lock);
7960
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7961

7962 7963
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7964
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7965

7966
	dev_priv->pm.suspended = false;
7967
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7968
}