intel_pm.c 223.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67 68 69 70

	/* WaEnableChickenDCPR:skl,bxt,kbl */
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 74 75 76
	/* WaFbcWakeMemOn:skl,bxt,kbl */
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101 102 103 104

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
105 106
}

107
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

145
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

172
	dev_priv->ips.r_t = dev_priv->mem_freq;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
204
		dev_priv->ips.c_m = 0;
205
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206
		dev_priv->ips.c_m = 1;
207
	} else {
208
		dev_priv->ips.c_m = 2;
209 210 211
	}
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

250 251
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

312 313 314
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

315
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316
{
317
	u32 val;
318

319
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321
		POSTING_READ(FW_BLC_SELF_VLV);
322
		dev_priv->wm.vlv.cxsr = enable;
323
	} else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325
		POSTING_READ(FW_BLC_SELF);
326
	} else if (IS_PINEVIEW(dev_priv)) {
327 328 329
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
330
		POSTING_READ(DSPFW3);
331
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 333 334
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
335
		POSTING_READ(FW_BLC_SELF);
336
	} else if (IS_I915GM(dev_priv)) {
337 338 339 340 341
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
342 343 344
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
345
		POSTING_READ(INSTPM);
346 347 348
	} else {
		return;
	}
349

350
	DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
351 352
}

353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
368
static const int pessimal_latency_ns = 5000;
369

370 371 372
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

373
static int vlv_get_fifo_size(struct intel_plane *plane)
374
{
375
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
376 377
	int sprite0_start, sprite1_start, size;

378 379 380 381
	if (plane->id == PLANE_CURSOR)
		return 63;

	switch (plane->pipe) {
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

405 406
	switch (plane->id) {
	case PLANE_PRIMARY:
407 408
		size = sprite0_start;
		break;
409
	case PLANE_SPRITE0:
410 411
		size = sprite1_start - sprite0_start;
		break;
412
	case PLANE_SPRITE1:
413 414 415 416 417 418
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

419
	DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
420 421 422 423

	return size;
}

424
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

439
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

455
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
472 473 474 475 476
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
477 478
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
479 480 481 482 483
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 485
};
static const struct intel_watermark_params pineview_cursor_wm = {
486 487 488 489 490
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 492
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
493 494 495 496 497
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 499
};
static const struct intel_watermark_params g4x_wm_info = {
500 501 502 503 504
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
505 506
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
507 508 509 510 511
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
512 513
};
static const struct intel_watermark_params i965_cursor_wm_info = {
514 515 516 517 518
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params i945_wm_info = {
521 522 523 524 525
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params i915_wm_info = {
528 529 530 531 532
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
533
};
534
static const struct intel_watermark_params i830_a_wm_info = {
535 536 537 538 539
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
540
};
541 542 543 544 545 546 547
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
548
static const struct intel_watermark_params i845_wm_info = {
549 550 551 552 553
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
554 555 556 557 558 559
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
560
 * @cpp: bytes per pixel
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
576
					int fifo_size, int cpp,
577 578 579 580 581 582 583 584 585 586
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
587
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
588 589 590 591 592 593 594 595 596 597 598 599 600 601
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
602 603 604 605 606 607 608 609 610 611 612

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

613 614 615
	return wm_size;
}

616
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617
{
618
	struct intel_crtc *crtc, *enabled = NULL;
619

620
	for_each_intel_crtc(&dev_priv->drm, crtc) {
621
		if (intel_crtc_active(crtc)) {
622 623 624 625 626 627 628 629 630
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

631
static void pineview_update_wm(struct intel_crtc *unused_crtc)
632
{
633
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
634
	struct intel_crtc *crtc;
635 636 637 638
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

639 640 641 642
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
643 644
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645
		intel_set_memory_cxsr(dev_priv, false);
646 647 648
		return;
	}

649
	crtc = single_enabled_crtc(dev_priv);
650
	if (crtc) {
651 652 653 654 655
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
656
		int clock = adjusted_mode->crtc_clock;
657 658 659 660

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
661
					cpp, latency->display_sr);
662 663
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
664
		reg |= FW_WM(wm, SR);
665 666 667 668 669 670
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
671
					cpp, latency->cursor_sr);
672 673
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
674
		reg |= FW_WM(wm, CURSOR_SR);
675 676 677 678 679
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
680
					cpp, latency->display_hpll_disable);
681 682
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
683
		reg |= FW_WM(wm, HPLL_SR);
684 685 686 687 688
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
689
					cpp, latency->cursor_hpll_disable);
690 691
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
692
		reg |= FW_WM(wm, HPLL_CURSOR);
693 694 695
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

696
		intel_set_memory_cxsr(dev_priv, true);
697
	} else {
698
		intel_set_memory_cxsr(dev_priv, false);
699 700 701
	}
}

702
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
703 704 705 706 707 708 709 710
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
711
	struct intel_crtc *crtc;
712
	const struct drm_display_mode *adjusted_mode;
713
	const struct drm_framebuffer *fb;
714
	int htotal, hdisplay, clock, cpp;
715 716 717
	int line_time_us, line_count;
	int entries, tlb_miss;

718
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
719
	if (!intel_crtc_active(crtc)) {
720 721 722 723 724
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

725 726
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
727
	clock = adjusted_mode->crtc_clock;
728
	htotal = adjusted_mode->crtc_htotal;
729 730
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
731 732

	/* Use the small buffer method to calculate plane watermark */
733
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 735 736 737 738 739 740 741 742
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
743
	line_time_us = max(htotal * 1000 / clock, 1);
744
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
764
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
765 766 767 768 769 770 771 772
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
773
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
774 775 776 777 778
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
779
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
780 781 782 783 784 785 786 787 788 789 790 791
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

792
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
793 794 795 796 797 798
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
799
	struct intel_crtc *crtc;
800
	const struct drm_display_mode *adjusted_mode;
801
	const struct drm_framebuffer *fb;
802
	int hdisplay, htotal, cpp, clock;
803 804 805 806 807 808 809 810 811 812
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

813
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
814 815
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
816
	clock = adjusted_mode->crtc_clock;
817
	htotal = adjusted_mode->crtc_htotal;
818 819
	hdisplay = crtc->config->pipe_src_w;
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
820

821
	line_time_us = max(htotal * 1000 / clock, 1);
822
	line_count = (latency_ns / line_time_us + 1000) / 1000;
823
	line_size = hdisplay * cpp;
824 825

	/* Use the minimum of the small and large buffer method for primary */
826
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
827 828 829 830 831 832
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
833
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
834 835 836
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

837
	return g4x_check_srwm(dev_priv,
838 839 840 841
			      *display_wm, *cursor_wm,
			      display, cursor);
}

842 843 844
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

845 846 847 848 849 850 851 852 853 854 855 856
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

857
	I915_WRITE(DSPFW1,
858 859 860 861
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
862
	I915_WRITE(DSPFW2,
863 864 865
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
866
	I915_WRITE(DSPFW3,
867
		   FW_WM(wm->sr.cursor, CURSOR_SR));
868 869 870

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
871 872
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873
		I915_WRITE(DSPFW8_CHV,
874 875
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
876
		I915_WRITE(DSPFW9_CHV,
877 878
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
879
		I915_WRITE(DSPHOWM,
880 881 882 883 884 885 886 887 888 889
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890 891
	} else {
		I915_WRITE(DSPFW7,
892 893
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
894
		I915_WRITE(DSPHOWM,
895 896 897 898 899 900 901
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
902 903
	}

904 905 906 907 908 909
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

910
	POSTING_READ(DSPFW1);
911 912
}

913 914
#undef FW_WM_VLV

915 916 917 918 919 920
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

921 922 923 924
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
925
				   unsigned int cpp,
926 927 928 929 930
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
931
	ret = (ret + 1) * horiz_pixels * cpp;
932 933 934 935 936
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

937
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
938 939 940 941
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

942 943
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

944 945 946
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947 948

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 950 951 952 953 954 955 956 957
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958
	int clock, htotal, cpp, width, wm;
959 960 961 962

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

963
	if (!state->base.visible)
964 965
		return 0;

966
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
982
		wm = vlv_wm_method2(clock, htotal, width, cpp,
983 984 985 986 987 988
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

1005
		if (state->base.visible) {
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

1021
		if (!state->base.visible) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1056 1057 1058 1059 1060 1061
/* FIXME kill me */
static inline int vlv_sprite_id(enum plane_id plane_id)
{
	return plane_id - PLANE_SPRITE0;
}

1062 1063 1064 1065 1066 1067 1068
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
1069 1070
		const int sr_fifo_size =
			INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
1088
				sprite = vlv_sprite_id(plane->id);
1089 1090 1091 1092 1093 1094 1095 1096
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1097
static void vlv_compute_wm(struct intel_crtc *crtc)
1098 1099
{
	struct drm_device *dev = crtc->base.dev;
1100
	struct drm_i915_private *dev_priv = to_i915(dev);
1101 1102 1103 1104 1105 1106
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1107
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1108
	wm_state->num_levels = dev_priv->wm.max_level + 1;
1109 1110 1111

	wm_state->num_active_planes = 0;

1112
	vlv_compute_fifo(crtc);
1113 1114 1115 1116 1117 1118 1119 1120

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

1121
		if (!state->base.visible)
1122 1123 1124 1125 1126
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1127
			int max_wm = plane->wm.fifo_size;
1128 1129 1130 1131 1132

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

1133
			if (wm > max_wm)
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
1145
				sprite = vlv_sprite_id(plane->id);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1162
					wm_state->wm[level].cursor;
1163 1164 1165 1166
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1167
					max(wm_state->sr[level].plane,
1168 1169 1170
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
1171
			sprite = vlv_sprite_id(plane->id);
1172 1173
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
1174
					max(wm_state->sr[level].plane,
1175 1176 1177 1178 1179 1180
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1181
	for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1182 1183 1184 1185 1186 1187 1188
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1200 1201
		switch (plane->id) {
		case PLANE_PRIMARY:
1202
			sprite0_start = plane->wm.fifo_size;
1203 1204
			break;
		case PLANE_SPRITE0:
1205
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1206 1207
			break;
		case PLANE_SPRITE1:
1208
			fifo_size = sprite1_start + plane->wm.fifo_size;
1209 1210 1211 1212 1213 1214 1215 1216
			break;
		case PLANE_CURSOR:
			WARN_ON(plane->wm.fifo_size != 63);
			break;
		default:
			MISSING_CASE(plane->id);
			break;
		}
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1285 1286 1287 1288 1289 1290
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1291
	wm->level = to_i915(dev)->wm.max_level;
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1310 1311 1312
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

1331
static void vlv_update_wm(struct intel_crtc *crtc)
1332
{
1333
	struct drm_device *dev = crtc->base.dev;
1334
	struct drm_i915_private *dev_priv = to_i915(dev);
1335
	enum pipe pipe = crtc->pipe;
1336 1337
	struct vlv_wm_values wm = {};

1338
	vlv_compute_wm(crtc);
1339 1340
	vlv_merge_wm(dev, &wm);

1341 1342
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
1343
		vlv_pipe_set_fifo_size(crtc);
1344
		return;
1345
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1355
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356 1357
		intel_set_memory_cxsr(dev_priv, false);

1358
	/* FIXME should be part of crtc atomic commit */
1359
	vlv_pipe_set_fifo_size(crtc);
1360

1361
	vlv_write_wm_values(crtc, &wm);
1362 1363 1364 1365 1366 1367 1368

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1369
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1381 1382
}

1383 1384
#define single_plane_enabled(mask) is_power_of_2(mask)

1385
static void g4x_update_wm(struct intel_crtc *crtc)
1386
{
1387
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1388 1389 1390 1391
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1392
	bool cxsr_enabled;
1393

1394
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1395 1396
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1397
			    &planea_wm, &cursora_wm))
1398
		enabled |= 1 << PIPE_A;
1399

1400
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1401 1402
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1403
			    &planeb_wm, &cursorb_wm))
1404
		enabled |= 1 << PIPE_B;
1405 1406

	if (single_plane_enabled(enabled) &&
1407
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1408 1409 1410
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1411
			     &plane_sr, &cursor_sr)) {
1412
		cxsr_enabled = true;
1413
	} else {
1414
		cxsr_enabled = false;
1415
		intel_set_memory_cxsr(dev_priv, false);
1416 1417
		plane_sr = cursor_sr = 0;
	}
1418

1419 1420
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1421 1422 1423 1424 1425
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1426 1427 1428 1429
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1430
	I915_WRITE(DSPFW2,
1431
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1432
		   FW_WM(cursora_wm, CURSORA));
1433 1434
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1435
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1436
		   FW_WM(cursor_sr, CURSOR_SR));
1437 1438 1439

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1440 1441
}

1442
static void i965_update_wm(struct intel_crtc *unused_crtc)
1443
{
1444
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1445
	struct intel_crtc *crtc;
1446 1447
	int srwm = 1;
	int cursor_sr = 16;
1448
	bool cxsr_enabled;
1449 1450

	/* Calc sr entries for one plane configs */
1451
	crtc = single_enabled_crtc(dev_priv);
1452 1453 1454
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1455 1456 1457 1458
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1459
		int clock = adjusted_mode->crtc_clock;
1460
		int htotal = adjusted_mode->crtc_htotal;
1461 1462
		int hdisplay = crtc->config->pipe_src_w;
		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1463 1464 1465
		unsigned long line_time_us;
		int entries;

1466
		line_time_us = max(htotal * 1000 / clock, 1);
1467 1468 1469

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1470
			cpp * hdisplay;
1471 1472 1473 1474 1475 1476 1477 1478 1479
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1480
			cpp * crtc->base.cursor->state->crtc_w;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1492
		cxsr_enabled = true;
1493
	} else {
1494
		cxsr_enabled = false;
1495
		/* Turn off self refresh if both pipes are enabled */
1496
		intel_set_memory_cxsr(dev_priv, false);
1497 1498 1499 1500 1501 1502
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1503 1504 1505 1506 1507 1508
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1509
	/* update cursor SR watermark */
1510
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1511 1512 1513

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1514 1515
}

1516 1517
#undef FW_WM

1518
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1519
{
1520
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1521 1522 1523 1524 1525 1526
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1527
	struct intel_crtc *crtc, *enabled = NULL;
1528

1529
	if (IS_I945GM(dev_priv))
1530
		wm_info = &i945_wm_info;
1531
	else if (!IS_GEN2(dev_priv))
1532 1533
		wm_info = &i915_wm_info;
	else
1534
		wm_info = &i830_a_wm_info;
1535

1536
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1537
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1538 1539 1540 1541 1542 1543 1544
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1545
		if (IS_GEN2(dev_priv))
1546
			cpp = 4;
1547 1548
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1549

1550
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1551
					       wm_info, fifo_size, cpp,
1552
					       pessimal_latency_ns);
1553
		enabled = crtc;
1554
	} else {
1555
		planea_wm = fifo_size - wm_info->guard_size;
1556 1557 1558 1559
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1560
	if (IS_GEN2(dev_priv))
1561
		wm_info = &i830_bc_wm_info;
1562

1563
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1564
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1565 1566 1567 1568 1569 1570 1571
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1572
		if (IS_GEN2(dev_priv))
1573
			cpp = 4;
1574 1575
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1576

1577
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1578
					       wm_info, fifo_size, cpp,
1579
					       pessimal_latency_ns);
1580 1581 1582 1583
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1584
	} else {
1585
		planeb_wm = fifo_size - wm_info->guard_size;
1586 1587 1588
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1589 1590 1591

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1592
	if (IS_I915GM(dev_priv) && enabled) {
1593
		struct drm_i915_gem_object *obj;
1594

1595
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1596 1597

		/* self-refresh seems busted with untiled */
1598
		if (!i915_gem_object_is_tiled(obj))
1599 1600 1601
			enabled = NULL;
	}

1602 1603 1604 1605 1606 1607
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1608
	intel_set_memory_cxsr(dev_priv, false);
1609 1610

	/* Calc sr entries for one plane configs */
1611
	if (HAS_FW_BLC(dev_priv) && enabled) {
1612 1613
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1614 1615 1616 1617
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1618
		int clock = adjusted_mode->crtc_clock;
1619
		int htotal = adjusted_mode->crtc_htotal;
1620 1621
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1622 1623 1624
		unsigned long line_time_us;
		int entries;

1625
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1626
			cpp = 4;
1627 1628
		else
			cpp = drm_format_plane_cpp(fb->pixel_format, 0);
1629

1630
		line_time_us = max(htotal * 1000 / clock, 1);
1631 1632 1633

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1634
			cpp * hdisplay;
1635 1636 1637 1638 1639 1640
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1641
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1642 1643
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1644
		else
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1661 1662
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1663 1664
}

1665
static void i845_update_wm(struct intel_crtc *unused_crtc)
1666
{
1667
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1668
	struct intel_crtc *crtc;
1669
	const struct drm_display_mode *adjusted_mode;
1670 1671 1672
	uint32_t fwater_lo;
	int planea_wm;

1673
	crtc = single_enabled_crtc(dev_priv);
1674 1675 1676
	if (crtc == NULL)
		return;

1677
	adjusted_mode = &crtc->config->base.adjusted_mode;
1678
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1679
				       &i845_wm_info,
1680
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1681
				       4, pessimal_latency_ns);
1682 1683 1684 1685 1686 1687 1688 1689
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1690
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1691
{
1692
	uint32_t pixel_rate;
1693

1694
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1695 1696 1697 1698

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1699
	if (pipe_config->pch_pfit.enabled) {
1700
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1701 1702 1703 1704
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1705 1706 1707 1708 1709 1710 1711 1712

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1713 1714 1715
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1716 1717 1718 1719 1720 1721 1722
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1723
/* latency must be in 0.1us units. */
1724
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1725 1726 1727
{
	uint64_t ret;

1728 1729 1730
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1731
	ret = (uint64_t) pixel_rate * cpp * latency;
1732 1733 1734 1735 1736
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1737
/* latency must be in 0.1us units. */
1738
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1739
			       uint32_t horiz_pixels, uint8_t cpp,
1740 1741 1742 1743
			       uint32_t latency)
{
	uint32_t ret;

1744 1745
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1746 1747
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1748

1749
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1750
	ret = (ret + 1) * horiz_pixels * cpp;
1751 1752 1753 1754
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1755
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1756
			   uint8_t cpp)
1757
{
1758 1759 1760 1761 1762 1763
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1764
	if (WARN_ON(!cpp))
1765 1766 1767 1768
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1769
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1770 1771
}

1772
struct ilk_wm_maximums {
1773 1774 1775 1776 1777 1778
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1779 1780 1781 1782
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1783
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1784
				   const struct intel_plane_state *pstate,
1785 1786
				   uint32_t mem_value,
				   bool is_lp)
1787
{
1788 1789
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1790 1791
	uint32_t method1, method2;

1792
	if (!cstate->base.active || !pstate->base.visible)
1793 1794
		return 0;

1795
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1796 1797 1798 1799

	if (!is_lp)
		return method1;

1800 1801
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1802
				 drm_rect_width(&pstate->base.dst),
1803
				 cpp, mem_value);
1804 1805

	return min(method1, method2);
1806 1807
}

1808 1809 1810 1811
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1812
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1813
				   const struct intel_plane_state *pstate,
1814 1815
				   uint32_t mem_value)
{
1816 1817
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1818 1819
	uint32_t method1, method2;

1820
	if (!cstate->base.active || !pstate->base.visible)
1821 1822
		return 0;

1823
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1824 1825
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1826
				 drm_rect_width(&pstate->base.dst),
1827
				 cpp, mem_value);
1828 1829 1830
	return min(method1, method2);
}

1831 1832 1833 1834
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1835
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1836
				   const struct intel_plane_state *pstate,
1837 1838
				   uint32_t mem_value)
{
1839 1840 1841 1842 1843 1844
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
1845
	int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1846

1847
	if (!cstate->base.active)
1848 1849
		return 0;

1850 1851
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1852
			      width, cpp, mem_value);
1853 1854
}

1855
/* Only for WM_LP. */
1856
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1857
				   const struct intel_plane_state *pstate,
1858
				   uint32_t pri_val)
1859
{
1860 1861
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1862

1863
	if (!cstate->base.active || !pstate->base.visible)
1864 1865
		return 0;

1866
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1867 1868
}

1869 1870
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1871
{
1872
	if (INTEL_GEN(dev_priv) >= 8)
1873
		return 3072;
1874
	else if (INTEL_GEN(dev_priv) >= 7)
1875 1876 1877 1878 1879
		return 768;
	else
		return 512;
}

1880 1881 1882
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
1883
{
1884
	if (INTEL_GEN(dev_priv) >= 8)
1885 1886
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
1887
	else if (INTEL_GEN(dev_priv) >= 7)
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

1898 1899
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1900
{
1901
	if (INTEL_GEN(dev_priv) >= 7)
1902 1903 1904 1905 1906
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

1907
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1908
{
1909
	if (INTEL_GEN(dev_priv) >= 8)
1910 1911 1912 1913 1914
		return 31;
	else
		return 15;
}

1915 1916 1917
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1918
				     const struct intel_wm_config *config,
1919 1920 1921
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
1922 1923
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1924 1925

	/* if sprites aren't enabled, sprites get nothing */
1926
	if (is_sprite && !config->sprites_enabled)
1927 1928 1929
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1930
	if (level == 0 || config->num_pipes_active > 1) {
1931
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1932 1933 1934 1935 1936 1937

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
1938
		if (INTEL_GEN(dev_priv) <= 6)
1939 1940 1941
			fifo_size /= 2;
	}

1942
	if (config->sprites_enabled) {
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1954
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1955 1956 1957 1958
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1959 1960
				      int level,
				      const struct intel_wm_config *config)
1961 1962
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1963
	if (level > 0 && config->num_pipes_active > 1)
1964 1965 1966
		return 64;

	/* otherwise just report max that registers can hold */
1967
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
1968 1969
}

1970
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1971 1972 1973
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1974
				    struct ilk_wm_maximums *max)
1975
{
1976 1977 1978
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1979
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1980 1981
}

1982
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1983 1984 1985
					int level,
					struct ilk_wm_maximums *max)
{
1986 1987 1988 1989
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1990 1991
}

1992
static bool ilk_validate_wm_level(int level,
1993
				  const struct ilk_wm_maximums *max,
1994
				  struct intel_wm_level *result)
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2033
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2034
				 const struct intel_crtc *intel_crtc,
2035
				 int level,
2036
				 struct intel_crtc_state *cstate,
2037 2038 2039
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2040
				 struct intel_wm_level *result)
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2065 2066 2067
	result->enable = true;
}

2068
static uint32_t
2069
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2070
{
2071 2072
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2073 2074
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2075
	u32 linetime, ips_linetime;
2076

2077 2078 2079 2080
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2081
	if (WARN_ON(intel_state->cdclk == 0))
2082
		return 0;
2083

2084 2085 2086
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2087 2088 2089
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2090
					 intel_state->cdclk);
2091

2092 2093
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2094 2095
}

2096 2097
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2098
{
2099
	if (IS_GEN9(dev_priv)) {
2100
		uint32_t val;
2101
		int ret, i;
2102
		int level, max_level = ilk_wm_max_level(dev_priv);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2158
		/*
2159 2160
		 * WaWmMemoryReadLatency:skl
		 *
2161
		 * punit doesn't take into account the read latency so we need
2162 2163
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2164
		 */
2165 2166 2167 2168 2169
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2170
				wm[level] += 2;
2171
			}
2172 2173
		}

2174
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2175 2176 2177 2178 2179
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2180 2181 2182 2183
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2184
	} else if (INTEL_GEN(dev_priv) >= 6) {
2185 2186 2187 2188 2189 2190
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2191
	} else if (INTEL_GEN(dev_priv) >= 5) {
2192 2193 2194 2195 2196 2197
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2198 2199 2200
	}
}

2201 2202
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2203 2204
{
	/* ILK sprite LP0 latency is 1300 ns */
2205
	if (IS_GEN5(dev_priv))
2206 2207 2208
		wm[0] = 13;
}

2209 2210
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2211 2212
{
	/* ILK cursor LP0 latency is 1300 ns */
2213
	if (IS_GEN5(dev_priv))
2214 2215 2216
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2217
	if (IS_IVYBRIDGE(dev_priv))
2218 2219 2220
		wm[3] *= 2;
}

2221
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2222 2223
{
	/* how many WM levels are we expecting */
2224
	if (INTEL_GEN(dev_priv) >= 9)
2225
		return 7;
2226
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2227
		return 4;
2228
	else if (INTEL_GEN(dev_priv) >= 6)
2229
		return 3;
2230
	else
2231 2232
		return 2;
}
2233

2234
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2235
				   const char *name,
2236
				   const uint16_t wm[8])
2237
{
2238
	int level, max_level = ilk_wm_max_level(dev_priv);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2249 2250 2251 2252
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2253
		if (IS_GEN9(dev_priv))
2254 2255
			latency *= 10;
		else if (level > 0)
2256 2257 2258 2259 2260 2261 2262 2263
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2264 2265 2266
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2267
	int level, max_level = ilk_wm_max_level(dev_priv);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2279
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2295 2296 2297
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2298 2299
}

2300
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2301
{
2302
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2303 2304 2305 2306 2307 2308

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2309
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2310
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2311

2312 2313 2314
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2315

2316
	if (IS_GEN6(dev_priv))
2317
		snb_wm_latency_quirk(dev_priv);
2318 2319
}

2320
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2321
{
2322
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2323
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2349
/* Compute new watermarks for the pipe */
2350
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2351
{
2352 2353
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2354
	struct intel_pipe_wm *pipe_wm;
2355
	struct drm_device *dev = state->dev;
2356
	const struct drm_i915_private *dev_priv = to_i915(dev);
2357
	struct intel_plane *intel_plane;
2358
	struct intel_plane_state *pristate = NULL;
2359
	struct intel_plane_state *sprstate = NULL;
2360
	struct intel_plane_state *curstate = NULL;
2361
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2362
	struct ilk_wm_maximums max;
2363

2364
	pipe_wm = &cstate->wm.ilk.optimal;
2365

2366
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2367 2368 2369 2370 2371 2372
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2373 2374

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2375
			pristate = ps;
2376
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2377
			sprstate = ps;
2378
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2379
			curstate = ps;
2380 2381
	}

2382
	pipe_wm->pipe_enabled = cstate->base.active;
2383
	if (sprstate) {
2384 2385 2386 2387
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2388 2389
	}

2390 2391
	usable_level = max_level;

2392
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2393
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2394
		usable_level = 1;
2395 2396

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2397
	if (pipe_wm->sprites_scaled)
2398
		usable_level = 0;
2399

2400
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2401 2402 2403 2404
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2405

2406
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2407
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2408

2409
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2410
		return -EINVAL;
2411

2412
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2413 2414

	for (level = 1; level <= max_level; level++) {
2415
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2416

2417
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2418
				     pristate, sprstate, curstate, wm);
2419 2420 2421 2422 2423 2424

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2425 2426 2427 2428 2429 2430
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2431
			usable_level = level;
2432 2433
	}

2434
	return 0;
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2446
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2447
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2448
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2449 2450 2451 2452 2453 2454

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2455
	*a = newstate->wm.ilk.optimal;
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2484
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2485 2486 2487 2488 2489
		newstate->wm.need_postvbl_update = false;

	return 0;
}

2490 2491 2492 2493 2494 2495 2496 2497 2498
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2499 2500
	ret_wm->enable = true;

2501
	for_each_intel_crtc(dev, intel_crtc) {
2502
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2503 2504 2505 2506
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2507

2508 2509 2510 2511 2512
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2513
		if (!wm->enable)
2514
			ret_wm->enable = false;
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2527
			 const struct intel_wm_config *config,
2528
			 const struct ilk_wm_maximums *max,
2529 2530
			 struct intel_pipe_wm *merged)
{
2531
	struct drm_i915_private *dev_priv = to_i915(dev);
2532
	int level, max_level = ilk_wm_max_level(dev_priv);
2533
	int last_enabled_level = max_level;
2534

2535
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2536
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2537
	    config->num_pipes_active > 1)
2538
		last_enabled_level = 0;
2539

2540
	/* ILK: FBC WM must be disabled always */
2541
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2542 2543 2544 2545 2546 2547 2548

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2549 2550 2551 2552 2553
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2554 2555 2556 2557 2558 2559

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2560 2561
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2562 2563 2564
			wm->fbc_val = 0;
		}
	}
2565 2566 2567 2568 2569 2570 2571

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2572
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2573
	    intel_fbc_is_active(dev_priv)) {
2574 2575 2576 2577 2578 2579
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2580 2581
}

2582 2583 2584 2585 2586 2587
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2588 2589 2590
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2591
	struct drm_i915_private *dev_priv = to_i915(dev);
2592

2593
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2594 2595 2596 2597 2598
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2599
static void ilk_compute_wm_results(struct drm_device *dev,
2600
				   const struct intel_pipe_wm *merged,
2601
				   enum intel_ddb_partitioning partitioning,
2602
				   struct ilk_wm_values *results)
2603
{
2604
	struct drm_i915_private *dev_priv = to_i915(dev);
2605 2606
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2607

2608
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2609
	results->partitioning = partitioning;
2610

2611
	/* LP1+ register values */
2612
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2613
		const struct intel_wm_level *r;
2614

2615
		level = ilk_wm_lp_to_level(wm_lp, merged);
2616

2617
		r = &merged->wm[level];
2618

2619 2620 2621 2622 2623
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2624
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2625 2626 2627
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2628 2629 2630
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2631
		if (INTEL_GEN(dev_priv) >= 8)
2632 2633 2634 2635 2636 2637
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2638 2639 2640 2641
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2642
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2643 2644 2645 2646
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2647
	}
2648

2649
	/* LP0 register values */
2650
	for_each_intel_crtc(dev, intel_crtc) {
2651
		enum pipe pipe = intel_crtc->pipe;
2652 2653
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2654 2655 2656 2657

		if (WARN_ON(!r->enable))
			continue;

2658
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2659

2660 2661 2662 2663
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2664 2665 2666
	}
}

2667 2668
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2669
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2670 2671
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2672
{
2673
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2674
	int level1 = 0, level2 = 0;
2675

2676 2677 2678 2679 2680
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2681 2682
	}

2683 2684
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2685 2686 2687
			return r2;
		else
			return r1;
2688
	} else if (level1 > level2) {
2689 2690 2691 2692 2693 2694
		return r1;
	} else {
		return r2;
	}
}

2695 2696 2697 2698 2699 2700 2701 2702
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2703
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2704 2705
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2706 2707 2708 2709 2710
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2711
	for_each_pipe(dev_priv, pipe) {
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2755 2756
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2757
{
2758
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2759
	bool changed = false;
2760

2761 2762 2763
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2764
		changed = true;
2765 2766 2767 2768
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2769
		changed = true;
2770 2771 2772 2773
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2774
		changed = true;
2775
	}
2776

2777 2778 2779 2780
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2781

2782 2783 2784 2785 2786 2787 2788
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2789 2790
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2791
{
2792
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2793 2794 2795
	unsigned int dirty;
	uint32_t val;

2796
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2797 2798 2799 2800 2801
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2802
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2803
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2804
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2805
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2806
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2807 2808
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2809
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2810
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2811
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2812
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2813
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2814 2815
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2816
	if (dirty & WM_DIRTY_DDB) {
2817
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2832 2833
	}

2834
	if (dirty & WM_DIRTY_FBC) {
2835 2836 2837 2838 2839 2840 2841 2842
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2843 2844 2845 2846
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

2847
	if (INTEL_GEN(dev_priv) >= 7) {
2848 2849 2850 2851 2852
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2853

2854
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2855
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2856
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2857
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2858
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2859
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2860 2861

	dev_priv->wm.hw = *results;
2862 2863
}

2864
bool ilk_disable_lp_wm(struct drm_device *dev)
2865
{
2866
	struct drm_i915_private *dev_priv = to_i915(dev);
2867 2868 2869 2870

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2871
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
2872

2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv))
		return true;

	return false;
}

2888 2889 2890
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
2891 2892 2893 2894 2895 2896 2897 2898
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
2899 2900
}

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
2913
intel_enable_sagv(struct drm_i915_private *dev_priv)
2914 2915 2916
{
	int ret;

2917 2918 2919 2920
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2936
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2937
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2938
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2939 2940 2941 2942 2943 2944
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

2945
	dev_priv->sagv_status = I915_SAGV_ENABLED;
2946 2947 2948 2949
	return 0;
}

static int
2950
intel_do_sagv_disable(struct drm_i915_private *dev_priv)
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
{
	int ret;
	uint32_t temp = GEN9_SAGV_DISABLE;

	ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				     &temp);
	if (ret)
		return ret;
	else
		return temp & GEN9_SAGV_IS_DISABLED;
}

int
2964
intel_disable_sagv(struct drm_i915_private *dev_priv)
2965 2966 2967
{
	int ret, result;

2968 2969 2970 2971
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2972 2973 2974 2975 2976 2977
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
2978
	ret = wait_for(result = intel_do_sagv_disable(dev_priv), 1);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	mutex_unlock(&dev_priv->rps.hw_lock);

	if (ret == -ETIMEDOUT) {
		DRM_ERROR("Request to disable SAGV timed out\n");
		return -ETIMEDOUT;
	}

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
2990
	if (IS_SKYLAKE(dev_priv) && result == -ENXIO) {
2991
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2992
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2993 2994 2995 2996 2997 2998
		return 0;
	} else if (result < 0) {
		DRM_ERROR("Failed to disable the SAGV\n");
		return result;
	}

2999
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3000 3001 3002
	return 0;
}

3003
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3004 3005 3006 3007
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3008 3009
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3010
	struct intel_crtc_state *cstate;
3011
	enum pipe pipe;
3012
	int level, latency;
3013

3014 3015 3016
	if (!intel_has_sagv(dev_priv))
		return false;

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3030
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3031
	cstate = to_intel_crtc_state(crtc->base.state);
3032

3033
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3034 3035
		return false;

3036
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3037 3038
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3039

3040
		/* Skip this plane if it's not enabled */
3041
		if (!wm->wm[0].plane_en)
3042 3043 3044
			continue;

		/* Find the highest enabled wm level for this plane */
3045
		for (level = ilk_wm_max_level(dev_priv);
3046
		     !wm->wm[level].plane_en; --level)
3047 3048
		     { }

3049 3050 3051
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3052
		    plane->base.state->fb->modifier ==
3053 3054 3055
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3056 3057 3058 3059 3060
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3061
		if (latency < SKL_SAGV_BLOCK_TIME)
3062 3063 3064 3065 3066 3067
			return false;
	}

	return true;
}

3068 3069
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3070
				   const struct intel_crtc_state *cstate,
3071 3072
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3073
{
3074 3075 3076
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3077
	struct drm_crtc *for_crtc = cstate->base.crtc;
3078 3079
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3080

3081
	if (WARN_ON(!state) || !cstate->base.active) {
3082 3083
		alloc->start = 0;
		alloc->end = 0;
3084
		*num_active = hweight32(dev_priv->active_crtcs);
3085 3086 3087
		return;
	}

3088 3089 3090 3091 3092
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3093 3094
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3095 3096 3097

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3098
	/*
3099 3100 3101 3102 3103 3104
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3105
	 */
3106
	if (!intel_state->active_pipe_changes) {
3107 3108 3109 3110 3111
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3112
		return;
3113
	}
3114 3115 3116 3117 3118 3119

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3120 3121
}

3122
static unsigned int skl_cursor_allocation(int num_active)
3123
{
3124
	if (num_active == 1)
3125 3126 3127 3128 3129
		return 32;

	return 8;
}

3130 3131 3132 3133
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3134 3135
	if (entry->end)
		entry->end += 1;
3136 3137
}

3138 3139
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3140
{
3141
	struct intel_crtc *crtc;
3142

3143 3144
	memset(ddb, 0, sizeof(*ddb));

3145
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3146
		enum intel_display_power_domain power_domain;
3147 3148
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3149 3150 3151

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3152 3153
			continue;

3154 3155 3156 3157 3158 3159 3160
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3161

3162 3163
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3164 3165

		intel_display_power_put(dev_priv, power_domain);
3166 3167 3168
	}
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3191
	if (WARN_ON(!pstate->base.visible))
3192 3193 3194
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3195 3196 3197 3198
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3199
	if (drm_rotation_90_or_270(pstate->base.rotation))
3200 3201 3202 3203 3204 3205 3206 3207 3208
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3209
static unsigned int
3210 3211 3212
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3213
{
3214
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3215
	struct drm_framebuffer *fb = pstate->fb;
3216
	uint32_t down_scale_amount, data_rate;
3217
	uint32_t width = 0, height = 0;
3218 3219
	unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;

3220
	if (!intel_pstate->base.visible)
3221 3222 3223 3224 3225
		return 0;
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3226

3227 3228
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3229

3230
	if (drm_rotation_90_or_270(pstate->rotation))
3231
		swap(width, height);
3232 3233

	/* for planar format */
3234
	if (format == DRM_FORMAT_NV12) {
3235
		if (y)  /* y-plane data rate */
3236
			data_rate = width * height *
3237
				drm_format_plane_cpp(format, 0);
3238
		else    /* uv-plane data rate */
3239
			data_rate = (width / 2) * (height / 2) *
3240
				drm_format_plane_cpp(format, 1);
3241 3242 3243
	} else {
		/* for packed formats */
		data_rate = width * height * drm_format_plane_cpp(format, 0);
3244 3245
	}

3246 3247 3248
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3249 3250 3251 3252 3253 3254 3255 3256
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3257 3258 3259
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3260
{
3261 3262
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3263 3264
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3265
	unsigned int total_data_rate = 0;
3266 3267 3268

	if (WARN_ON(!state))
		return 0;
3269

3270
	/* Calculate and cache data rate for each plane */
3271
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3272 3273
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3274 3275 3276 3277

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3278
		plane_data_rate[plane_id] = rate;
3279 3280

		total_data_rate += rate;
3281 3282 3283 3284

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3285
		plane_y_data_rate[plane_id] = rate;
3286

3287
		total_data_rate += rate;
3288 3289 3290 3291 3292
	}

	return total_data_rate;
}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
	if (y && fb->pixel_format != DRM_FORMAT_NV12)
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3311 3312
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3313 3314
		return 8;

3315 3316
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3317

3318
	if (drm_rotation_90_or_270(pstate->rotation))
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
	if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
		src_w /= 2;
		src_h /= 2;
	}

	if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
	else
		plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);

3332
	if (drm_rotation_90_or_270(pstate->rotation)) {
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3356 3357 3358 3359 3360 3361 3362 3363
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3364
		enum plane_id plane_id = to_intel_plane(plane)->id;
3365

3366
		if (plane_id == PLANE_CURSOR)
3367 3368 3369 3370 3371
			continue;

		if (!pstate->visible)
			continue;

3372 3373
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3374 3375 3376 3377 3378
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3379
static int
3380
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3381 3382
		      struct skl_ddb_allocation *ddb /* out */)
{
3383
	struct drm_atomic_state *state = cstate->base.state;
3384
	struct drm_crtc *crtc = cstate->base.crtc;
3385 3386 3387
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3388
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3389
	uint16_t alloc_size, start;
3390 3391
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3392
	unsigned int total_data_rate;
3393
	enum plane_id plane_id;
3394
	int num_active;
3395 3396
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3397

3398 3399 3400 3401
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3402 3403 3404
	if (WARN_ON(!state))
		return 0;

3405
	if (!cstate->base.active) {
3406
		alloc->start = alloc->end = 0;
3407 3408 3409
		return 0;
	}

3410
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3411
	alloc_size = skl_ddb_entry_size(alloc);
3412 3413
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3414
		return 0;
3415 3416
	}

3417
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3418

3419 3420 3421 3422 3423
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3424

3425 3426 3427
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3428 3429
	}

3430 3431 3432
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3433
	/*
3434 3435
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3436 3437 3438
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3439 3440 3441
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3442
	if (total_data_rate == 0)
3443
		return 0;
3444

3445
	start = alloc->start;
3446
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3447 3448
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3449

3450
		if (plane_id == PLANE_CURSOR)
3451 3452
			continue;

3453
		data_rate = plane_data_rate[plane_id];
3454 3455

		/*
3456
		 * allocation for (packed formats) or (uv-plane part of planar format):
3457 3458 3459
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3460
		plane_blocks = minimum[plane_id];
3461 3462
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3463

3464 3465
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3466 3467
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3468
		}
3469 3470

		start += plane_blocks;
3471 3472 3473 3474

		/*
		 * allocation for y_plane part of planar format:
		 */
3475
		y_data_rate = plane_y_data_rate[plane_id];
3476

3477
		y_plane_blocks = y_minimum[plane_id];
3478 3479
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3480

3481
		if (y_data_rate) {
3482 3483
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3484
		}
3485 3486

		start += y_plane_blocks;
3487 3488
	}

3489
	return 0;
3490 3491
}

3492 3493
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3494
 * for the read latency) and cpp should always be <= 8, so that
3495 3496 3497
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3498
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3499 3500 3501 3502 3503 3504
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3505
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3506 3507 3508 3509 3510 3511
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3512
			       uint32_t latency, uint32_t plane_blocks_per_line)
3513
{
3514 3515
	uint32_t ret;
	uint32_t wm_intermediate_val;
3516 3517 3518 3519 3520 3521

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3522
				plane_blocks_per_line;
3523 3524 3525 3526

	return ret;
}

3527 3528 3529 3530 3531 3532 3533 3534
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3535
	if (WARN_ON(!pstate->base.visible))
3536 3537 3538 3539 3540 3541
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3542
	adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3543 3544 3545 3546 3547 3548 3549 3550
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3551 3552 3553 3554 3555 3556 3557 3558
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3559
{
3560 3561
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3562 3563 3564 3565 3566
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3567
	uint8_t cpp;
3568
	uint32_t width = 0, height = 0;
3569
	uint32_t plane_pixel_rate;
3570
	uint32_t y_tile_minimum, y_min_scanlines;
3571 3572 3573
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3574

3575
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3576 3577 3578
		*enabled = false;
		return 0;
	}
3579

V
Ville Syrjälä 已提交
3580
	if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3581 3582
		latency += 15;

3583 3584
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3585

3586
	if (drm_rotation_90_or_270(pstate->rotation))
3587 3588
		swap(width, height);

3589
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3590 3591
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3592
	if (drm_rotation_90_or_270(pstate->rotation)) {
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
			drm_format_plane_cpp(fb->pixel_format, 1) :
			drm_format_plane_cpp(fb->pixel_format, 0);

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3607 3608 3609
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3610 3611 3612 3613 3614
		}
	} else {
		y_min_scanlines = 4;
	}

3615 3616 3617
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3618
	plane_bytes_per_line = width * cpp;
V
Ville Syrjälä 已提交
3619 3620
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3621 3622 3623
		plane_blocks_per_line =
		      DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
		plane_blocks_per_line /= y_min_scanlines;
V
Ville Syrjälä 已提交
3624
	} else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3625 3626 3627 3628 3629 3630
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
					+ 1;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3631 3632
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3633
				 cstate->base.adjusted_mode.crtc_htotal,
3634
				 latency,
3635
				 plane_blocks_per_line);
3636

3637 3638
	y_tile_minimum = plane_blocks_per_line * y_min_scanlines;

V
Ville Syrjälä 已提交
3639 3640
	if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3641 3642
		selected_result = max(method2, y_tile_minimum);
	} else {
3643 3644 3645 3646
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
		else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3647 3648 3649 3650
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3651

3652 3653
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3654

3655
	if (level >= 1 && level <= 7) {
V
Ville Syrjälä 已提交
3656 3657
		if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3658
			res_blocks += y_tile_minimum;
3659
			res_lines += y_min_scanlines;
3660
		} else {
3661
			res_blocks++;
3662
		}
3663
	}
3664

3665 3666
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3667 3668 3669 3670 3671 3672 3673 3674

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3675 3676
			struct drm_plane *plane = pstate->plane;

3677
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3678 3679
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3680 3681 3682
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3683
	}
3684 3685 3686

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3687
	*enabled = true;
3688

3689
	return 0;
3690 3691
}

3692 3693 3694 3695
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3696
		     struct intel_plane *intel_plane,
3697 3698
		     int level,
		     struct skl_wm_level *result)
3699
{
3700
	struct drm_atomic_state *state = cstate->base.state;
3701
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3702 3703
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3704
	uint16_t ddb_blocks;
3705
	enum pipe pipe = intel_crtc->pipe;
3706
	int ret;
L
Lyude 已提交
3707 3708 3709 3710 3711

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3712

3713
	/*
L
Lyude 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3723
	 */
L
Lyude 已提交
3724 3725
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3726

L
Lyude 已提交
3727
	WARN_ON(!intel_pstate->base.fb);
3728

3729
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3730

L
Lyude 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3741 3742

	return 0;
3743 3744
}

3745
static uint32_t
3746
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3747
{
3748 3749
	uint32_t pixel_rate;

3750
	if (!cstate->base.active)
3751 3752
		return 0;

3753 3754 3755
	pixel_rate = ilk_pipe_pixel_rate(cstate);

	if (WARN_ON(pixel_rate == 0))
3756
		return 0;
3757

3758
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3759
			    pixel_rate);
3760 3761
}

3762
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3763
				      struct skl_wm_level *trans_wm /* out */)
3764
{
3765
	if (!cstate->base.active)
3766
		return;
3767 3768

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3769
	trans_wm->plane_en = false;
3770 3771
}

3772 3773 3774
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3775
{
3776
	struct drm_device *dev = cstate->base.crtc->dev;
3777
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3778 3779
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3780
	int level, max_level = ilk_wm_max_level(dev_priv);
3781
	int ret;
3782

L
Lyude 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3792
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3802
	}
3803
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3804

3805
	return 0;
3806 3807
}

3808 3809
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3810 3811 3812 3813 3814 3815 3816 3817
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

3833 3834 3835
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
3836
			       enum plane_id plane_id)
3837 3838 3839 3840
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3841
	int level, max_level = ilk_wm_max_level(dev_priv);
3842 3843 3844
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3845
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3846
				   &wm->wm[level]);
3847
	}
3848
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3849
			   &wm->trans_wm);
3850

3851 3852 3853 3854
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
3855 3856
}

3857 3858 3859
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
3860 3861 3862 3863
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3864
	int level, max_level = ilk_wm_max_level(dev_priv);
3865 3866 3867
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
3868 3869
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
3870
	}
3871
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3872

3873
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3874
			    &ddb->plane[pipe][PLANE_CURSOR]);
3875 3876
}

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

3891 3892
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
3893
{
3894
	return a->start < b->end && b->start < a->end;
3895 3896
}

3897 3898 3899
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
3900
{
3901
	int i;
3902

3903 3904 3905
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
3906
			return true;
3907

3908
	return false;
3909 3910
}

3911
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3912
			      const struct skl_pipe_wm *old_pipe_wm,
3913
			      struct skl_pipe_wm *pipe_wm, /* out */
3914
			      struct skl_ddb_allocation *ddb, /* out */
3915
			      bool *changed /* out */)
3916
{
3917
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3918
	int ret;
3919

3920 3921 3922
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
3923

3924
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3925 3926 3927
		*changed = false;
	else
		*changed = true;
3928

3929
	return 0;
3930 3931
}

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

	for_each_crtc_in_state(state, crtc, cstate, i)
		ret |= drm_crtc_mask(crtc);

	return ret;
}

3945
static int
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

3962
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3963
		enum plane_id plane_id = to_intel_plane(plane)->id;
3964

3965 3966 3967 3968
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

3979 3980 3981 3982 3983 3984 3985
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
3986
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3987
	uint32_t realloc_pipes = pipes_modified(state);
3988 3989 3990 3991 3992 3993 3994 3995
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
3996 3997 3998 3999 4000 4001
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4002 4003
		intel_state->active_pipe_changes = ~0;

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4027
	if (intel_state->active_pipe_changes) {
4028
		realloc_pipes = ~0;
4029 4030
		intel_state->wm_results.dirty_pipes = ~0;
	}
4031

4032 4033 4034 4035 4036 4037
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4038 4039 4040 4041 4042 4043 4044
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4045
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4046 4047
		if (ret)
			return ret;
4048

4049
		ret = skl_ddb_add_affected_planes(cstate);
4050 4051
		if (ret)
			return ret;
4052 4053 4054 4055 4056
	}

	return 0;
}

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4080
	int i;
4081 4082

	for_each_crtc_in_state(state, crtc, cstate, i) {
4083 4084
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4085

4086
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4087
			enum plane_id plane_id = intel_plane->id;
4088 4089
			const struct skl_ddb_entry *old, *new;

4090 4091
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4092 4093 4094 4095

			if (skl_ddb_entry_equal(old, new))
				continue;

4096 4097 4098 4099 4100
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4101 4102 4103 4104
		}
	}
}

4105 4106 4107 4108 4109
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4110 4111 4112
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4113
	bool changed = false;
4114
	int ret, i;
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i)
		changed = true;
	if (!changed)
		return 0;

4129 4130 4131
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4132 4133 4134 4135
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
	for_each_crtc_in_state(state, crtc, cstate, i) {
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4149 4150
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4151 4152

		pipe_wm = &intel_cstate->wm.skl.optimal;
4153 4154
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4168 4169
	skl_print_wm_changes(state);

4170 4171 4172
	return 0;
}

4173 4174 4175 4176 4177 4178
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4179
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4180
	enum pipe pipe = crtc->pipe;
4181
	enum plane_id plane_id;
4182 4183 4184

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4185 4186

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4187

4188 4189 4190 4191 4192 4193 4194 4195
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4196 4197
}

4198 4199
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4200
{
4201
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4202
	struct drm_device *dev = intel_crtc->base.dev;
4203
	struct drm_i915_private *dev_priv = to_i915(dev);
4204
	struct skl_wm_values *results = &state->wm_results;
4205
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4206
	enum pipe pipe = intel_crtc->pipe;
4207

4208
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4209 4210
		return;

4211
	mutex_lock(&dev_priv->wm.wm_mutex);
4212

4213 4214
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4215 4216

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4217 4218

	mutex_unlock(&dev_priv->wm.wm_mutex);
4219 4220
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4239
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4240
{
4241
	struct drm_device *dev = &dev_priv->drm;
4242
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4243
	struct ilk_wm_maximums max;
4244
	struct intel_wm_config config = {};
4245
	struct ilk_wm_values results = {};
4246
	enum intel_ddb_partitioning partitioning;
4247

4248 4249 4250 4251
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4252 4253

	/* 5/6 split only in single pipe config on IVB+ */
4254
	if (INTEL_GEN(dev_priv) >= 7 &&
4255 4256 4257
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4258

4259
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4260
	} else {
4261
		best_lp_wm = &lp_wm_1_2;
4262 4263
	}

4264
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4265
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4266

4267
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4268

4269
	ilk_write_wm_values(dev_priv, &results);
4270 4271
}

4272 4273
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4274
{
4275 4276
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4277

4278
	mutex_lock(&dev_priv->wm.wm_mutex);
4279
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4280 4281 4282
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4283

4284 4285
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4286 4287 4288
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4289

4290 4291
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4292
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4293 4294 4295
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4296 4297
}

4298 4299
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4300
{
4301 4302 4303 4304
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4305 4306
}

4307 4308
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4309
{
4310
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4311 4312
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4313 4314
	int level, max_level;
	enum plane_id plane_id;
4315
	uint32_t val;
4316

4317
	max_level = ilk_wm_max_level(dev_priv);
4318

4319 4320
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4321

4322
		for (level = 0; level <= max_level; level++) {
4323 4324
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4325 4326
			else
				val = I915_READ(CUR_WM(pipe, level));
4327

4328
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4329 4330
		}

4331 4332
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4333 4334 4335 4336
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4337 4338
	}

4339 4340
	if (!intel_crtc->active)
		return;
4341

4342
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4343 4344 4345 4346
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4347
	struct drm_i915_private *dev_priv = to_i915(dev);
4348
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4349
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4350
	struct drm_crtc *crtc;
4351 4352
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4353

4354
	skl_ddb_get_hw_state(dev_priv, ddb);
4355 4356 4357 4358 4359 4360
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4361
		if (intel_crtc->active)
4362 4363
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4364

4365 4366 4367 4368 4369 4370 4371
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4372 4373
}

4374 4375 4376
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4377
	struct drm_i915_private *dev_priv = to_i915(dev);
4378
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4379
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4380
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4381
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4382
	enum pipe pipe = intel_crtc->pipe;
4383
	static const i915_reg_t wm0_pipe_reg[] = {
4384 4385 4386 4387 4388 4389
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4390
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4391
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4392

4393 4394
	memset(active, 0, sizeof(*active));

4395
	active->pipe_enabled = intel_crtc->active;
4396 4397

	if (active->pipe_enabled) {
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4412
		int level, max_level = ilk_wm_max_level(dev_priv);
4413 4414 4415 4416 4417 4418 4419 4420 4421

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4422 4423

	intel_crtc->wm.active.ilk = *active;
4424 4425
}

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

4517 4518
	for_each_intel_plane(dev, plane)
		plane->wm.fifo_size = vlv_get_fifo_size(plane);
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4530 4531 4532 4533 4534 4535 4536 4537 4538
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4539
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4566 4567
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4568
	struct drm_i915_private *dev_priv = to_i915(dev);
4569
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4570 4571
	struct drm_crtc *crtc;

4572
	for_each_crtc(dev, crtc)
4573 4574 4575 4576 4577 4578 4579
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4580
	if (INTEL_GEN(dev_priv) >= 7) {
4581 4582 4583
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4584

4585
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4586 4587
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4588
	else if (IS_IVYBRIDGE(dev_priv))
4589 4590
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4591 4592 4593 4594 4595

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4628
void intel_update_watermarks(struct intel_crtc *crtc)
4629
{
4630
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4631 4632

	if (dev_priv->display.update_wm)
4633
		dev_priv->display.update_wm(crtc);
4634 4635
}

4636
/*
4637 4638 4639 4640 4641 4642 4643 4644
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4645
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4646 4647 4648
{
	u16 rgvswctl;

4649 4650
	assert_spin_locked(&mchdev_lock);

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4668
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4669
{
4670
	u32 rgvmodectl;
4671 4672
	u8 fmax, fmin, fstart, vstart;

4673 4674
	spin_lock_irq(&mchdev_lock);

4675 4676
	rgvmodectl = I915_READ(MEMMODECTL);

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4697
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4698 4699
		PXVFREQ_PX_SHIFT;

4700 4701
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4702

4703 4704 4705
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4722
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4723
		DRM_ERROR("stuck trying to change perf mode\n");
4724
	mdelay(1);
4725

4726
	ironlake_set_drps(dev_priv, fstart);
4727

4728 4729
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4730
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4731
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4732
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4733 4734

	spin_unlock_irq(&mchdev_lock);
4735 4736
}

4737
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4738
{
4739 4740 4741 4742 4743
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4744 4745 4746 4747 4748 4749 4750 4751 4752

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4753
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4754
	mdelay(1);
4755 4756
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4757
	mdelay(1);
4758

4759
	spin_unlock_irq(&mchdev_lock);
4760 4761
}

4762 4763 4764 4765 4766
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4767
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4768
{
4769
	u32 limits;
4770

4771 4772 4773 4774 4775 4776
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4777
	if (IS_GEN9(dev_priv)) {
4778 4779 4780 4781 4782 4783 4784 4785
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4786 4787 4788 4789

	return limits;
}

4790 4791 4792
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4793 4794
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4795 4796 4797 4798

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4799 4800
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
4801 4802 4803 4804
			new_power = BETWEEN;
		break;

	case BETWEEN:
4805 4806
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
4807
			new_power = LOW_POWER;
4808 4809
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
4810 4811 4812 4813
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4814 4815
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
4816 4817 4818 4819
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4820
	if (val <= dev_priv->rps.min_freq_softlimit)
4821
		new_power = LOW_POWER;
4822
	if (val >= dev_priv->rps.max_freq_softlimit)
4823 4824 4825 4826 4827 4828 4829 4830
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4831 4832
		ei_up = 16000;
		threshold_up = 95;
4833 4834

		/* Downclock if less than 85% busy over 32ms */
4835 4836
		ei_down = 32000;
		threshold_down = 85;
4837 4838 4839 4840
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4841 4842
		ei_up = 13000;
		threshold_up = 90;
4843 4844

		/* Downclock if less than 75% busy over 32ms */
4845 4846
		ei_down = 32000;
		threshold_down = 75;
4847 4848 4849 4850
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4851 4852
		ei_up = 10000;
		threshold_up = 85;
4853 4854

		/* Downclock if less than 60% busy over 32ms */
4855 4856
		ei_down = 32000;
		threshold_down = 60;
4857 4858 4859
		break;
	}

4860
	I915_WRITE(GEN6_RP_UP_EI,
4861
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
4862
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4863 4864
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
4865 4866

	I915_WRITE(GEN6_RP_DOWN_EI,
4867
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
4868
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
4879

4880
	dev_priv->rps.power = new_power;
4881 4882
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4883 4884 4885
	dev_priv->rps.last_adj = 0;
}

4886 4887 4888 4889 4890
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4891
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4892
	if (val < dev_priv->rps.max_freq_softlimit)
4893
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4894

4895 4896
	mask &= dev_priv->pm_rps_events;

4897
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4898 4899
}

4900 4901 4902
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4903
static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4904
{
4905
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4906
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4907 4908
		return;

4909
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4910 4911
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4912

C
Chris Wilson 已提交
4913 4914 4915 4916 4917
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4918

4919
		if (IS_GEN9(dev_priv))
4920 4921
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
4922
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
4923 4924 4925 4926 4927 4928 4929
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4930
	}
4931 4932 4933 4934

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4935
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4936
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4937

4938 4939
	POSTING_READ(GEN6_RPNSWREQ);

4940
	dev_priv->rps.cur_freq = val;
4941
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4942 4943
}

4944
static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4945 4946
{
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4947 4948
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4949

4950
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4951 4952 4953
		      "Odd GPU freq value\n"))
		val &= ~1;

4954 4955
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4956
	if (val != dev_priv->rps.cur_freq) {
4957
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4958 4959 4960
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4961 4962 4963 4964 4965

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4966
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4967 4968
 *
 * * If Gfx is Idle, then
4969 4970 4971
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4972 4973 4974
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4975
	u32 val = dev_priv->rps.idle_freq;
4976

4977
	if (dev_priv->rps.cur_freq <= val)
4978 4979
		return;

4980 4981 4982
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4983
	valleyview_set_rps(dev_priv, val);
4984
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4985 4986
}

4987 4988 4989 4990 4991 4992 4993 4994
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4995

4996 4997
		gen6_enable_rps_interrupts(dev_priv);

4998 4999 5000 5001 5002
		/* Ensure we start at the user's desired frequency */
		intel_set_rps(dev_priv,
			      clamp(dev_priv->rps.cur_freq,
				    dev_priv->rps.min_freq_softlimit,
				    dev_priv->rps.max_freq_softlimit));
5003 5004 5005 5006
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5007 5008
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5009 5010 5011 5012 5013 5014 5015
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5016
	mutex_lock(&dev_priv->rps.hw_lock);
5017
	if (dev_priv->rps.enabled) {
5018
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5019
			vlv_set_rps_idle(dev_priv);
5020
		else
5021
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5022
		dev_priv->rps.last_adj = 0;
5023 5024
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5025
	}
5026
	mutex_unlock(&dev_priv->rps.hw_lock);
5027

5028
	spin_lock(&dev_priv->rps.client_lock);
5029 5030
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5031
	spin_unlock(&dev_priv->rps.client_lock);
5032 5033
}

5034
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5035 5036
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5037
{
5038 5039 5040
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5041
	if (!(dev_priv->gt.awake &&
5042
	      dev_priv->rps.enabled &&
5043
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5044
		return;
5045

5046 5047 5048
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5049
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5050 5051
		rps = NULL;

5052 5053 5054 5055 5056
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5057
			schedule_work(&dev_priv->rps.work);
5058 5059
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5060

5061 5062 5063
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5064 5065
		} else
			dev_priv->rps.boosts++;
5066
	}
5067
	spin_unlock(&dev_priv->rps.client_lock);
5068 5069
}

5070
void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5071
{
5072 5073
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		valleyview_set_rps(dev_priv, val);
5074
	else
5075
		gen6_set_rps(dev_priv, val);
5076 5077
}

5078
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5079 5080
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5081
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5082 5083
}

5084
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5085 5086 5087 5088
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5089
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5090 5091
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5092
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5093
	I915_WRITE(GEN6_RP_CONTROL, 0);
5094 5095
}

5096
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5097 5098 5099 5100
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5101
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5102
{
5103 5104
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5105
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5106

5107
	I915_WRITE(GEN6_RC_CONTROL, 0);
5108

5109
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5110 5111
}

5112
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5113
{
5114
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5115 5116 5117 5118 5119
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5120
	if (HAS_RC6p(dev_priv))
5121 5122 5123 5124 5125
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5126 5127

	else
5128 5129
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5130 5131
}

5132
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5133
{
5134
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5135 5136
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5148 5149

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5150
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5151 5152 5153 5154 5155 5156 5157 5158
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5159 5160 5161
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5162
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5163 5164 5165 5166 5167 5168 5169
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5170
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5171 5172 5173
		enable_rc6 = false;
	}

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5188 5189 5190 5191 5192 5193
		enable_rc6 = false;
	}

	return enable_rc6;
}

5194
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5195
{
5196
	/* No RC6 before Ironlake and code is gone for ilk. */
5197
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5198 5199
		return 0;

5200 5201 5202
	if (!enable_rc6)
		return 0;

5203
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5204 5205 5206 5207
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5208
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5209 5210 5211
	if (enable_rc6 >= 0) {
		int mask;

5212
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5213 5214 5215 5216 5217 5218
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5219 5220 5221
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5222 5223 5224

		return enable_rc6 & mask;
	}
5225

5226
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5227
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5228 5229

	return INTEL_RC6_ENABLE;
5230 5231
}

5232
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5233 5234
{
	/* All of these values are in units of 50MHz */
5235

5236
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5237
	if (IS_GEN9_LP(dev_priv)) {
5238
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5239 5240 5241 5242
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5243
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5244 5245 5246 5247
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5248
	/* hw_max = RP0 until we check for overclocking */
5249
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5250

5251
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5252 5253
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
	    IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5254 5255 5256 5257 5258
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5259
			dev_priv->rps.efficient_freq =
5260 5261 5262 5263
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5264 5265
	}

5266
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5267
		/* Store the frequency values in 16.66 MHZ units, which is
5268 5269
		 * the natural hardware unit for SKL
		 */
5270 5271 5272 5273 5274 5275
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5276 5277
}

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
static void reset_rps(struct drm_i915_private *dev_priv,
		      void (*set)(struct drm_i915_private *, u8))
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

	set(dev_priv, freq);
}

J
Jesse Barnes 已提交
5290
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5291
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5292 5293 5294
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5295
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5296
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5297 5298 5299 5300 5301 5302 5303 5304 5305
		/*
		 * BIOS could leave the Hw Turbo enabled, so need to explicitly
		 * clear out the Control register just to avoid inconsitency
		 * with debugfs interface, which will show  Turbo as enabled
		 * only and that is not expected by the User after adding the
		 * WaGsvDisableTurbo. Apart from this there is no problem even
		 * if the Turbo is left enabled in the Control register, as the
		 * Up/Down interrupts would remain masked.
		 */
5306
		gen9_disable_rps(dev_priv);
5307 5308 5309 5310
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

5311 5312 5313 5314 5315 5316 5317 5318
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5319 5320
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5321 5322 5323
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5324
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5325 5326 5327 5328

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5329
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5330
{
5331
	struct intel_engine_cs *engine;
5332
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5333 5334 5335 5336 5337 5338 5339
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5340
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5341 5342 5343 5344 5345

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5346 5347

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5348
	if (IS_SKYLAKE(dev_priv))
5349 5350 5351
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5352 5353
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5354
	for_each_engine(engine, dev_priv, id)
5355
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5356

5357
	if (HAS_GUC(dev_priv))
5358 5359
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5360 5361
	I915_WRITE(GEN6_RC_SLEEP, 0);

5362 5363 5364 5365
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5366
	/* 3a: Enable RC6 */
5367
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5368
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5369
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5370
	/* WaRsUseTimeoutMode:bxt */
5371
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5372
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
5373 5374 5375
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
5376 5377
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
5378 5379 5380
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
5381
	}
Z
Zhe Wang 已提交
5382

5383 5384
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5385
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5386
	 */
5387
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5388 5389 5390 5391
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5392

5393
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5394 5395
}

5396
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5397
{
5398
	struct intel_engine_cs *engine;
5399
	enum intel_engine_id id;
5400
	uint32_t rc6_mask = 0;
5401 5402 5403 5404 5405 5406

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5407
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5408 5409 5410 5411 5412 5413 5414 5415

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5416
	for_each_engine(engine, dev_priv, id)
5417
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5418
	I915_WRITE(GEN6_RC_SLEEP, 0);
5419
	if (IS_BROADWELL(dev_priv))
5420 5421 5422
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5423 5424

	/* 3: Enable RC6 */
5425
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5426
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5427 5428
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5429 5430 5431 5432 5433 5434 5435
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5436 5437

	/* 4 Program defaults and thresholds for RPS*/
5438 5439 5440 5441
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5456 5457

	/* 5: Enable RPS */
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5468
	reset_rps(dev_priv, gen6_set_rps);
5469

5470
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5471 5472
}

5473
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5474
{
5475
	struct intel_engine_cs *engine;
5476
	enum intel_engine_id id;
5477
	u32 rc6vids, rc6_mask = 0;
5478 5479
	u32 gtfifodbg;
	int rc6_mode;
5480
	int ret;
5481

5482
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5483

5484 5485 5486 5487 5488 5489 5490 5491 5492
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5493 5494
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5495 5496 5497 5498
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5499
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5510
	for_each_engine(engine, dev_priv, id)
5511
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5512 5513 5514

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5515
	if (IS_IVYBRIDGE(dev_priv))
5516 5517 5518
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5519
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5520 5521
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5522
	/* Check if we are enabling RC6 */
5523
	rc6_mode = intel_enable_rc6();
5524 5525 5526
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5527
	/* We don't use those on Haswell */
5528
	if (!IS_HASWELL(dev_priv)) {
5529 5530
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5531

5532 5533 5534
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5535

5536
	intel_print_rc6_info(dev_priv, rc6_mask);
5537 5538 5539 5540 5541 5542

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5543 5544
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5545 5546
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5547
	reset_rps(dev_priv, gen6_set_rps);
5548

5549 5550
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5551
	if (IS_GEN6(dev_priv) && ret) {
5552
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5553
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5554 5555 5556 5557 5558 5559 5560 5561 5562
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5563
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5564 5565
}

5566
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5567 5568
{
	int min_freq = 15;
5569 5570
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5571
	unsigned int max_gpu_freq, min_gpu_freq;
5572
	int scaling_factor = 180;
5573
	struct cpufreq_policy *policy;
5574

5575
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5576

5577 5578 5579 5580 5581 5582 5583 5584 5585
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5586
		max_ia_freq = tsc_khz;
5587
	}
5588 5589 5590 5591

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5592
	min_ring_freq = I915_READ(DCLK) & 0xf;
5593 5594
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5595

5596
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5597 5598 5599 5600 5601 5602 5603 5604
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5605 5606 5607 5608 5609
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5610 5611
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5612 5613
		unsigned int ia_freq = 0, ring_freq = 0;

5614
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5615 5616 5617 5618 5619
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5620
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5621 5622
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5623
		} else if (IS_HASWELL(dev_priv)) {
5624
			ring_freq = mult_frac(gpu_freq, 5, 4);
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5641

B
Ben Widawsky 已提交
5642 5643
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5644 5645 5646
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5647 5648 5649
	}
}

5650
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5651 5652 5653
{
	u32 val, rp0;

5654
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5655

5656
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5671
	}
5672 5673 5674

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5688 5689 5690 5691
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5692 5693 5694
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5695 5696 5697
	return rp1;
}

5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5709
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5710 5711 5712
{
	u32 val, rp0;

5713
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5726
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5727
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5728
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5729 5730 5731 5732 5733
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5734
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5735
{
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5747 5748
}

5749 5750 5751 5752 5753 5754 5755 5756 5757
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5758 5759 5760 5761 5762 5763 5764 5765 5766

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

5767
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5768
{
5769
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5770
	unsigned long pctx_paddr, paddr;
5771 5772 5773 5774 5775
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5776
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5777
		paddr = (dev_priv->mm.stolen_base +
5778
			 (ggtt->stolen_size - pctx_size));
5779 5780 5781 5782

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5783 5784

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5785 5786
}

5787
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5800
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5801
								      pcbr_offset,
5802
								      I915_GTT_OFFSET_NONE,
5803 5804 5805 5806
								      pctx_size);
		goto out;
	}

5807 5808
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5809 5810 5811 5812 5813 5814 5815 5816
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
5817
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5818 5819
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5820
		goto out;
5821 5822 5823 5824 5825 5826
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5827
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5828 5829 5830
	dev_priv->vlv_pctx = pctx;
}

5831
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5832 5833 5834 5835
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
5836
	i915_gem_object_put(dev_priv->vlv_pctx);
5837 5838 5839
	dev_priv->vlv_pctx = NULL;
}

5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

5851
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5852
{
5853
	u32 val;
5854

5855
	valleyview_setup_pctx(dev_priv);
5856

5857 5858
	vlv_init_gpll_ref_freq(dev_priv);

5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5872
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5873

5874 5875 5876
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5877
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5878 5879 5880 5881
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5882
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5883 5884
			 dev_priv->rps.efficient_freq);

5885 5886
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5887
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5888 5889
			 dev_priv->rps.rp1_freq);

5890 5891
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5892
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5893 5894 5895
			 dev_priv->rps.min_freq);
}

5896
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5897
{
5898
	u32 val;
5899

5900
	cherryview_setup_pctx(dev_priv);
5901

5902 5903
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
5904
	mutex_lock(&dev_priv->sb_lock);
5905
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5906
	mutex_unlock(&dev_priv->sb_lock);
5907

5908 5909 5910 5911
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5912
	default:
5913 5914 5915
		dev_priv->mem_freq = 1600;
		break;
	}
5916
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5917

5918 5919 5920
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5921
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5922 5923 5924 5925
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5926
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5927 5928
			 dev_priv->rps.efficient_freq);

5929 5930
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5931
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5932 5933
			 dev_priv->rps.rp1_freq);

5934 5935
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5936
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5937
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5938 5939
			 dev_priv->rps.min_freq);

5940 5941 5942 5943 5944
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
5945 5946
}

5947
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5948
{
5949
	valleyview_cleanup_pctx(dev_priv);
5950 5951
}

5952
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5953
{
5954
	struct intel_engine_cs *engine;
5955
	enum intel_engine_id id;
5956
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5957 5958 5959

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5960 5961
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5972
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5973

5974 5975 5976
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5977 5978 5979 5980 5981
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

5982
	for_each_engine(engine, dev_priv, id)
5983
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5984 5985
	I915_WRITE(GEN6_RC_SLEEP, 0);

5986 5987
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
5999 6000
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6001
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6002 6003 6004

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6005
	/* 4 Program defaults and thresholds for RPS*/
6006
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6017
		   GEN6_RP_MEDIA_IS_GFX |
6018 6019 6020 6021
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6022 6023 6024 6025 6026 6027
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6028 6029
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6030 6031 6032
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6033
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6034 6035
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6036
	reset_rps(dev_priv, valleyview_set_rps);
6037

6038
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6039 6040
}

6041
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6042
{
6043
	struct intel_engine_cs *engine;
6044
	enum intel_engine_id id;
6045
	u32 gtfifodbg, val, rc6_mode = 0;
6046 6047 6048

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6049 6050
	valleyview_check_pctx(dev_priv);

6051 6052
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6053 6054
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6055 6056 6057
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6058
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6059
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6060

6061 6062 6063
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6064
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6084
	for_each_engine(engine, dev_priv, id)
6085
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6086

6087
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6088 6089

	/* allows RC6 residency counter to work */
6090
	I915_WRITE(VLV_COUNTER_CONTROL,
6091 6092
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6093 6094
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6095

6096
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6097
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6098

6099
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6100

6101
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6102

D
Deepak S 已提交
6103 6104 6105 6106 6107 6108
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6109
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6110

6111 6112 6113
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6114
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6115 6116
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6117
	reset_rps(dev_priv, valleyview_set_rps);
6118

6119
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6120 6121
}

6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6151
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6152 6153 6154 6155 6156 6157
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6158 6159
	assert_spin_locked(&mchdev_lock);

6160
	diff1 = now - dev_priv->ips.last_time1;
6161 6162 6163 6164 6165 6166 6167

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6168
		return dev_priv->ips.chipset_power;
6169 6170 6171 6172 6173 6174 6175 6176

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6177 6178
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6179 6180
		diff += total_count;
	} else {
6181
		diff = total_count - dev_priv->ips.last_count1;
6182 6183 6184
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6185 6186
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6197 6198
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6199

6200
	dev_priv->ips.chipset_power = ret;
6201 6202 6203 6204

	return ret;
}

6205 6206 6207 6208
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6209
	if (INTEL_INFO(dev_priv)->gen != 5)
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6248
{
6249 6250 6251
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6252
	if (INTEL_INFO(dev_priv)->is_mobile)
6253 6254 6255
		return vm > 0 ? vm : 0;

	return vd;
6256 6257
}

6258
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6259
{
6260
	u64 now, diff, diffms;
6261 6262
	u32 count;

6263
	assert_spin_locked(&mchdev_lock);
6264

6265 6266 6267
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6268 6269 6270 6271 6272 6273 6274

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6275 6276
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6277 6278
		diff += count;
	} else {
6279
		diff = count - dev_priv->ips.last_count2;
6280 6281
	}

6282 6283
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6284 6285 6286 6287

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6288
	dev_priv->ips.gfx_power = diff;
6289 6290
}

6291 6292
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6293
	if (INTEL_INFO(dev_priv)->gen != 5)
6294 6295
		return;

6296
	spin_lock_irq(&mchdev_lock);
6297 6298 6299

	__i915_update_gfx_val(dev_priv);

6300
	spin_unlock_irq(&mchdev_lock);
6301 6302
}

6303
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6304 6305 6306 6307
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6308 6309
	assert_spin_locked(&mchdev_lock);

6310
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6330
	corr2 = (corr * dev_priv->ips.corr);
6331 6332 6333 6334

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6335
	__i915_update_gfx_val(dev_priv);
6336

6337
	return dev_priv->ips.gfx_power + state2;
6338 6339
}

6340 6341 6342 6343
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6344
	if (INTEL_INFO(dev_priv)->gen != 5)
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6367
	spin_lock_irq(&mchdev_lock);
6368 6369 6370 6371
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6372 6373
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6374 6375 6376 6377

	ret = chipset_val + graphics_val;

out_unlock:
6378
	spin_unlock_irq(&mchdev_lock);
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6394
	spin_lock_irq(&mchdev_lock);
6395 6396 6397 6398 6399 6400
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6401 6402
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6403 6404

out_unlock:
6405
	spin_unlock_irq(&mchdev_lock);
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6422
	spin_lock_irq(&mchdev_lock);
6423 6424 6425 6426 6427 6428
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6429 6430
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6431 6432

out_unlock:
6433
	spin_unlock_irq(&mchdev_lock);
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6448
	spin_lock_irq(&mchdev_lock);
6449 6450
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6451
	spin_unlock_irq(&mchdev_lock);
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6468
	spin_lock_irq(&mchdev_lock);
6469 6470 6471 6472 6473 6474
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6475
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6476

6477
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6478 6479 6480
		ret = false;

out_unlock:
6481
	spin_unlock_irq(&mchdev_lock);
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6509 6510
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6511
	spin_lock_irq(&mchdev_lock);
6512
	i915_mch_dev = dev_priv;
6513
	spin_unlock_irq(&mchdev_lock);
6514 6515 6516 6517 6518 6519

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6520
	spin_lock_irq(&mchdev_lock);
6521
	i915_mch_dev = NULL;
6522
	spin_unlock_irq(&mchdev_lock);
6523
}
6524

6525
static void intel_init_emon(struct drm_i915_private *dev_priv)
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6542
		I915_WRITE(PEW(i), 0);
6543
	for (i = 0; i < 3; i++)
6544
		I915_WRITE(DEW(i), 0);
6545 6546 6547

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6548
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6569
		I915_WRITE(PXW(i), val);
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6585
		I915_WRITE(PXWL(i), 0);
6586 6587 6588 6589 6590 6591

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6592
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6593 6594
}

6595
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6596
{
6597 6598 6599 6600 6601 6602 6603 6604
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6605

6606
	mutex_lock(&dev_priv->drm.struct_mutex);
6607 6608 6609
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6610 6611 6612 6613
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6614
	else if (INTEL_GEN(dev_priv) >= 6)
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6644 6645 6646
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6647
	mutex_unlock(&dev_priv->rps.hw_lock);
6648
	mutex_unlock(&dev_priv->drm.struct_mutex);
6649 6650

	intel_autoenable_gt_powersave(dev_priv);
6651 6652
}

6653
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6654
{
6655
	if (IS_VALLEYVIEW(dev_priv))
6656
		valleyview_cleanup_gt_powersave(dev_priv);
6657 6658 6659

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6660 6661
}

6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6681 6682 6683 6684
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6685 6686

	gen6_reset_rps_interrupts(dev_priv);
6687 6688
}

6689
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6690
{
6691 6692
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6693

6694
	mutex_lock(&dev_priv->rps.hw_lock);
6695

6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
6707
	}
6708 6709 6710

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
6711 6712
}

6713
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6714
{
6715 6716 6717
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
6718 6719
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
6720

6721 6722 6723
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
6724

6725
	mutex_lock(&dev_priv->rps.hw_lock);
6726 6727 6728 6729 6730

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
6731
	} else if (INTEL_GEN(dev_priv) >= 9) {
6732 6733 6734
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
		if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6735
			gen6_update_ring_freq(dev_priv);
6736 6737
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
6738
		gen6_update_ring_freq(dev_priv);
6739
	} else if (INTEL_GEN(dev_priv) >= 6) {
6740
		gen6_enable_rps(dev_priv);
6741
		gen6_update_ring_freq(dev_priv);
6742 6743 6744
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
6745
	}
6746 6747 6748 6749 6750 6751 6752

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6753
	dev_priv->rps.enabled = true;
6754 6755
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
6756

6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

6767
	rcs = dev_priv->engine[RCS];
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
	if (rcs->last_context)
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

6820
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6821 6822 6823 6824 6825 6826 6827 6828 6829
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6830
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6831
{
6832
	enum pipe pipe;
6833

6834
	for_each_pipe(dev_priv, pipe) {
6835 6836 6837
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6838 6839 6840

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6841 6842 6843
	}
}

6844
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6856
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6857
{
6858
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6859

6860 6861 6862 6863
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6864 6865 6866
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6884
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6885 6886 6887
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6888

6889
	ilk_init_lp_watermarks(dev_priv);
6890 6891 6892 6893 6894 6895 6896 6897

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
6898
	if (IS_IRONLAKE_M(dev_priv)) {
6899
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6900 6901 6902 6903 6904 6905 6906 6907
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6908 6909
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6910 6911 6912 6913 6914 6915
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6916

6917
	/* WaDisableRenderCachePipelinedFlush:ilk */
6918 6919
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6920

6921 6922 6923
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6924
	g4x_disable_trickle_feed(dev_priv);
6925

6926
	ibx_init_clock_gating(dev_priv);
6927 6928
}

6929
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6930 6931
{
	int pipe;
6932
	uint32_t val;
6933 6934 6935 6936 6937 6938

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6939 6940 6941
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6942 6943
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6944 6945 6946
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6947
	for_each_pipe(dev_priv, pipe) {
6948 6949 6950
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6951
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6952
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6953 6954 6955
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6956 6957
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6958
	/* WADP0ClockGatingDisable */
6959
	for_each_pipe(dev_priv, pipe) {
6960 6961 6962
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6963 6964
}

6965
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6966 6967 6968 6969
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6970 6971 6972
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6973 6974
}

6975
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6976
{
6977
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6978

6979
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6980 6981 6982 6983 6984

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6985
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6986 6987 6988
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6989 6990 6991
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6992 6993 6994
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6995 6996 6997 6998
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6999 7000
	 */
	I915_WRITE(GEN6_GT_MODE,
7001
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7002

7003
	ilk_init_lp_watermarks(dev_priv);
7004 7005

	I915_WRITE(CACHE_MODE_0,
7006
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7022
	 *
7023 7024
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7025 7026 7027 7028 7029
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7030
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7031 7032
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7033

7034 7035 7036 7037 7038 7039 7040 7041
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7042 7043 7044 7045 7046 7047 7048 7049
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7050 7051
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7052 7053 7054 7055 7056 7057 7058
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7059 7060 7061 7062
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7063

7064
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7065

7066
	cpt_init_clock_gating(dev_priv);
7067

7068
	gen6_check_mch_setup(dev_priv);
7069 7070 7071 7072 7073 7074
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7075
	/*
7076
	 * WaVSThreadDispatchOverride:ivb,vlv
7077 7078 7079 7080
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7081 7082 7083 7084 7085 7086 7087 7088
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7089
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7090 7091 7092 7093 7094
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7095
	if (HAS_PCH_LPT_LP(dev_priv))
7096 7097 7098
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7099 7100

	/* WADPOClockGatingDisable:hsw */
7101 7102
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7103
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7104 7105
}

7106
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7107
{
7108
	if (HAS_PCH_LPT_LP(dev_priv)) {
7109 7110 7111 7112 7113 7114 7115
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7139
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7140
{
7141
	gen9_init_clock_gating(dev_priv);
7142 7143 7144 7145 7146

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7147 7148 7149 7150 7151

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7152 7153 7154 7155

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7156 7157
}

7158
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7159
{
7160
	gen9_init_clock_gating(dev_priv);
7161 7162 7163 7164

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7165 7166 7167 7168

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7169 7170
}

7171
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7172
{
7173
	enum pipe pipe;
B
Ben Widawsky 已提交
7174

7175
	ilk_init_lp_watermarks(dev_priv);
7176

7177
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7178
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7179

7180
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7181 7182 7183
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7184
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7185
	for_each_pipe(dev_priv, pipe) {
7186
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7187
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7188
			   BDW_DPRS_MASK_VBLANK_SRD);
7189
	}
7190

7191 7192 7193 7194 7195
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7196

7197 7198
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7199 7200 7201 7202

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7203

7204 7205
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7206

7207 7208 7209 7210 7211 7212 7213
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7214 7215 7216 7217
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7218
	lpt_init_clock_gating(dev_priv);
B
Ben Widawsky 已提交
7219 7220
}

7221
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7222
{
7223
	ilk_init_lp_watermarks(dev_priv);
7224

7225 7226 7227 7228 7229
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7230
	/* This is required by WaCatErrorRejectionIssue:hsw */
7231 7232 7233 7234
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7235 7236 7237
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7238

7239 7240 7241
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7242 7243 7244 7245
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7246
	/* WaDisable4x2SubspanOptimization:hsw */
7247 7248
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7249

7250 7251 7252
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7253 7254 7255 7256
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7257 7258
	 */
	I915_WRITE(GEN7_GT_MODE,
7259
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7260

7261 7262 7263 7264
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7265
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7266 7267
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7268 7269 7270
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7271

7272
	lpt_init_clock_gating(dev_priv);
7273 7274
}

7275
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7276
{
7277
	uint32_t snpcr;
7278

7279
	ilk_init_lp_watermarks(dev_priv);
7280

7281
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7282

7283
	/* WaDisableEarlyCull:ivb */
7284 7285 7286
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7287
	/* WaDisableBackToBackFlipFix:ivb */
7288 7289 7290 7291
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7292
	/* WaDisablePSDDualDispatchEnable:ivb */
7293
	if (IS_IVB_GT1(dev_priv))
7294 7295 7296
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7297 7298 7299
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7300
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7301 7302 7303
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7304
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7305 7306 7307
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7308
		   GEN7_WA_L3_CHICKEN_MODE);
7309
	if (IS_IVB_GT1(dev_priv))
7310 7311
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7312 7313 7314 7315
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7316 7317
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7318
	}
7319

7320
	/* WaForceL3Serialization:ivb */
7321 7322 7323
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7324
	/*
7325
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7326
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7327 7328
	 */
	I915_WRITE(GEN6_UCGCTL2,
7329
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7330

7331
	/* This is required by WaCatErrorRejectionIssue:ivb */
7332 7333 7334 7335
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7336
	g4x_disable_trickle_feed(dev_priv);
7337 7338

	gen7_setup_fixed_func_scheduler(dev_priv);
7339

7340 7341 7342 7343 7344
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7345

7346
	/* WaDisable4x2SubspanOptimization:ivb */
7347 7348
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7349

7350 7351 7352
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7353 7354 7355 7356
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7357 7358
	 */
	I915_WRITE(GEN7_GT_MODE,
7359
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7360

7361 7362 7363 7364
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7365

7366
	if (!HAS_PCH_NOP(dev_priv))
7367
		cpt_init_clock_gating(dev_priv);
7368

7369
	gen6_check_mch_setup(dev_priv);
7370 7371
}

7372
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7373
{
7374
	/* WaDisableEarlyCull:vlv */
7375 7376 7377
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7378
	/* WaDisableBackToBackFlipFix:vlv */
7379 7380 7381 7382
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7383
	/* WaPsdDispatchEnable:vlv */
7384
	/* WaDisablePSDDualDispatchEnable:vlv */
7385
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7386 7387
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7388

7389 7390 7391
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7392
	/* WaForceL3Serialization:vlv */
7393 7394 7395
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7396
	/* WaDisableDopClockGating:vlv */
7397 7398 7399
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7400
	/* This is required by WaCatErrorRejectionIssue:vlv */
7401 7402 7403 7404
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7405 7406
	gen7_setup_fixed_func_scheduler(dev_priv);

7407
	/*
7408
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7409
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7410 7411
	 */
	I915_WRITE(GEN6_UCGCTL2,
7412
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7413

7414 7415 7416 7417 7418
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7419

7420 7421 7422 7423
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7424 7425
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7426

7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7438 7439 7440 7441 7442 7443
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7444
	/*
7445
	 * WaDisableVLVClockGating_VBIIssue:vlv
7446 7447 7448
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7449
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7450 7451
}

7452
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7453
{
7454 7455 7456 7457 7458
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7459 7460 7461 7462

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7463 7464 7465 7466

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7467 7468 7469 7470

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7471

7472 7473 7474 7475 7476 7477 7478
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7479 7480 7481 7482 7483
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7484 7485
}

7486
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7498
	if (IS_GM45(dev_priv))
7499 7500
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7501 7502 7503 7504

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7505

7506 7507 7508
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7509
	g4x_disable_trickle_feed(dev_priv);
7510 7511
}

7512
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7513 7514 7515 7516 7517 7518
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7519 7520
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7521 7522 7523

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7524 7525
}

7526
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7527 7528 7529 7530 7531 7532 7533
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7534 7535
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7536 7537 7538

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7539 7540
}

7541
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7542 7543 7544 7545 7546 7547
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7548

7549
	if (IS_PINEVIEW(dev_priv))
7550
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7551 7552 7553

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7554 7555

	/* interrupts should cause a wake up from C3 */
7556
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7557 7558 7559

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7560 7561 7562

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7563 7564
}

7565
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7566 7567
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7568 7569 7570 7571

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7572 7573 7574

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7575 7576
}

7577
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7578 7579
{
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7580 7581 7582 7583

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7584 7585
}

7586
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7587
{
7588
	dev_priv->display.init_clock_gating(dev_priv);
7589 7590
}

7591
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7592
{
7593 7594
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7595 7596
}

7597
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7614
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7615
	else if (IS_KABYLAKE(dev_priv))
7616
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7617
	else if (IS_GEN9_LP(dev_priv))
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	else if (IS_CRESTLINE(dev_priv))
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
	else if (IS_BROADWATER(dev_priv))
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7651
/* Set up chip specific power management-related functions */
7652
void intel_init_pm(struct drm_i915_private *dev_priv)
7653
{
7654
	intel_fbc_init(dev_priv);
7655

7656
	/* For cxsr */
7657
	if (IS_PINEVIEW(dev_priv))
7658
		i915_pineview_get_mem_freq(dev_priv);
7659
	else if (IS_GEN5(dev_priv))
7660
		i915_ironlake_get_mem_freq(dev_priv);
7661

7662
	/* For FIFO watermark updates */
7663
	if (INTEL_GEN(dev_priv) >= 9) {
7664
		skl_setup_wm_latency(dev_priv);
7665
		dev_priv->display.initial_watermarks = skl_initial_wm;
7666
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7667
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7668
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7669
		ilk_setup_wm_latency(dev_priv);
7670

7671
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7672
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7673
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7674
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7675
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7676 7677 7678 7679 7680 7681
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7682 7683 7684 7685
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7686
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7687
		vlv_setup_wm_latency(dev_priv);
7688
		dev_priv->display.update_wm = vlv_update_wm;
7689
	} else if (IS_PINEVIEW(dev_priv)) {
7690
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7691 7692 7693 7694 7695 7696 7697 7698 7699
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7700
			intel_set_memory_cxsr(dev_priv, false);
7701 7702 7703
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
7704
	} else if (IS_G4X(dev_priv)) {
7705
		dev_priv->display.update_wm = g4x_update_wm;
7706
	} else if (IS_GEN4(dev_priv)) {
7707
		dev_priv->display.update_wm = i965_update_wm;
7708
	} else if (IS_GEN3(dev_priv)) {
7709 7710
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7711
	} else if (IS_GEN2(dev_priv)) {
7712
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7713
			dev_priv->display.update_wm = i845_update_wm;
7714
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7715 7716
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7717
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7718 7719 7720
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7721 7722 7723
	}
}

7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7736
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

7768
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7769
{
7770 7771
	int status;

7772
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7773

7774 7775 7776 7777 7778 7779
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7780 7781 7782 7783
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

7784 7785 7786
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7787

7788 7789 7790
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7791 7792 7793 7794
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7795 7796
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7797

7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7809 7810 7811
	return 0;
}

7812
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7813
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
7814
{
7815 7816
	int status;

7817
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7818

7819 7820 7821 7822 7823 7824
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
7825 7826 7827 7828
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

7829
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
7830
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7831
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
7832

7833 7834 7835
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
7836 7837 7838 7839
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

7840
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
7841

7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
7853 7854
	return 0;
}
7855

7856 7857
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7858 7859 7860 7861 7862
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7863 7864
}

7865
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7866
{
7867
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7868 7869
}

7870
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7871
{
7872 7873 7874 7875 7876
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7877 7878
}

7879
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7880
{
7881
	/* CHV needs even values */
7882
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7883 7884
}

7885
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7886
{
7887
	if (IS_GEN9(dev_priv))
7888 7889
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7890
	else if (IS_CHERRYVIEW(dev_priv))
7891
		return chv_gpu_freq(dev_priv, val);
7892
	else if (IS_VALLEYVIEW(dev_priv))
7893 7894 7895
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7896 7897
}

7898 7899
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7900
	if (IS_GEN9(dev_priv))
7901 7902
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7903
	else if (IS_CHERRYVIEW(dev_priv))
7904
		return chv_freq_opcode(dev_priv, val);
7905
	else if (IS_VALLEYVIEW(dev_priv))
7906 7907
		return byt_freq_opcode(dev_priv, val);
	else
7908
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7909
}
7910

7911 7912
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7913
	struct drm_i915_gem_request *req;
7914 7915 7916 7917 7918
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7919
	struct drm_i915_gem_request *req = boost->req;
7920

7921
	if (!i915_gem_request_completed(req))
7922
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7923

7924
	i915_gem_request_put(req);
7925 7926 7927
	kfree(boost);
}

7928
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7929 7930 7931
{
	struct request_boost *boost;

7932
	if (req == NULL || INTEL_GEN(req->i915) < 6)
7933 7934
		return;

7935
	if (i915_gem_request_completed(req))
7936 7937
		return;

7938 7939 7940 7941
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

7942
	boost->req = i915_gem_request_get(req);
7943 7944

	INIT_WORK(&boost->work, __intel_rps_boost_work);
7945
	queue_work(req->i915->wq, &boost->work);
7946 7947
}

7948
void intel_pm_setup(struct drm_i915_private *dev_priv)
7949
{
D
Daniel Vetter 已提交
7950
	mutex_init(&dev_priv->rps.hw_lock);
7951
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7952

7953 7954
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
7955
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7956

7957
	dev_priv->pm.suspended = false;
7958
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7959
}