intel_pm.c 185.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void gen9_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
}
63

64
static void skl_init_clock_gating(struct drm_device *dev)
65
{
66
	struct drm_i915_private *dev_priv = dev->dev_private;
67

68 69
	gen9_init_clock_gating(dev);

70 71 72
	if (INTEL_REVID(dev) == SKL_REVID_A0) {
		/*
		 * WaDisableSDEUnitClockGating:skl
73
		 * WaSetGAPSunitClckGateDisable:skl
74 75
		 */
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76
			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 78
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
	}
79

80
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 82 83 84
		/* WaDisableHDCInvalidation:skl */
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
			   BDW_DISABLE_HDC_INVALIDATION);

85 86 87 88 89
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   I915_READ(FF_SLICE_CS_CHICKEN2) |
			   GEN9_TSG_BARRIER_ACK_DISABLE);
	}
90

91 92 93 94
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);
95 96
}

97 98
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
99
	struct drm_i915_private *dev_priv = dev->dev_private;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
138
	struct drm_i915_private *dev_priv = dev->dev_private;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

164
	dev_priv->ips.r_t = dev_priv->mem_freq;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
196
		dev_priv->ips.c_m = 0;
197
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198
		dev_priv->ips.c_m = 1;
199
	} else {
200
		dev_priv->ips.c_m = 2;
201 202 203
	}
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

242
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

266
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
267
{
268 269
	struct drm_device *dev = dev_priv->dev;
	u32 val;
270

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
290

291 292
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
309
static const int pessimal_latency_ns = 5000;
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

366
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

382
static int i830_get_fifo_size(struct drm_device *dev, int plane)
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

399
static int i845_get_fifo_size(struct drm_device *dev, int plane)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
417 418 419 420 421
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
422 423
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
424 425 426 427 428
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
429 430
};
static const struct intel_watermark_params pineview_cursor_wm = {
431 432 433 434 435
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
436 437
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
438 439 440 441 442
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
443 444
};
static const struct intel_watermark_params g4x_wm_info = {
445 446 447 448 449
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
450 451
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
452 453 454 455 456
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
457 458
};
static const struct intel_watermark_params valleyview_wm_info = {
459 460 461 462 463
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
464 465
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
466 467 468 469 470
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
471 472
};
static const struct intel_watermark_params i965_cursor_wm_info = {
473 474 475 476 477
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
478 479
};
static const struct intel_watermark_params i945_wm_info = {
480 481 482 483 484
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
485 486
};
static const struct intel_watermark_params i915_wm_info = {
487 488 489 490 491
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
492
};
493
static const struct intel_watermark_params i830_a_wm_info = {
494 495 496 497 498
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
499
};
500 501 502 503 504 505 506
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
507
static const struct intel_watermark_params i845_wm_info = {
508 509 510 511 512
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
562 563 564 565 566 567 568 569 570 571 572

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

573 574 575 576 577 578 579
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

580
	for_each_crtc(dev, crtc) {
581
		if (intel_crtc_active(crtc)) {
582 583 584 585 586 587 588 589 590
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

591
static void pineview_update_wm(struct drm_crtc *unused_crtc)
592
{
593
	struct drm_device *dev = unused_crtc->dev;
594 595 596 597 598 599 600 601 602 603
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
604
		intel_set_memory_cxsr(dev_priv, false);
605 606 607 608 609
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
610
		const struct drm_display_mode *adjusted_mode;
611
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
612 613
		int clock;

614
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
615
		clock = adjusted_mode->crtc_clock;
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

655
		intel_set_memory_cxsr(dev_priv, true);
656
	} else {
657
		intel_set_memory_cxsr(dev_priv, false);
658 659 660 661 662 663 664 665 666 667 668 669 670
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
671
	const struct drm_display_mode *adjusted_mode;
672 673 674 675 676
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
677
	if (!intel_crtc_active(crtc)) {
678 679 680 681 682
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

683
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
684
	clock = adjusted_mode->crtc_clock;
685
	htotal = adjusted_mode->crtc_htotal;
686
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
687
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
688 689 690 691 692 693 694 695 696 697 698 699

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
700
	line_time_us = max(htotal * 1000 / clock, 1);
701
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
702
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
757
	const struct drm_display_mode *adjusted_mode;
758 759 760 761 762 763 764 765 766 767 768 769
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
770
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
771
	clock = adjusted_mode->crtc_clock;
772
	htotal = adjusted_mode->crtc_htotal;
773
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
774
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
775

776
	line_time_us = max(htotal * 1000 / clock, 1);
777 778 779 780 781 782 783 784 785 786 787
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
788
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
789 790 791 792 793 794 795 796
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

	dev_priv->wm.vlv = *wm;
}

812
static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
813
					 struct drm_plane *plane)
814
{
815
	struct drm_device *dev = crtc->dev;
816 817 818
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int entries, prec_mult, drain_latency, pixel_size;
	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
819
	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
820

821 822 823 824 825 826 827
	/*
	 * FIXME the plane might have an fb
	 * but be invisible (eg. due to clipping)
	 */
	if (!intel_crtc->active || !plane->state->fb)
		return 0;

828
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
829
		return 0;
830

831 832
	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);

833
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
834
		return 0;
835

836
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
837

838 839
	prec_mult = high_precision;
	drain_latency = 64 * prec_mult * 4 / entries;
840

841 842 843
	if (drain_latency > DRAIN_LATENCY_MASK) {
		prec_mult /= 2;
		drain_latency = 64 * prec_mult * 4 / entries;
844 845
	}

846 847
	if (drain_latency > DRAIN_LATENCY_MASK)
		drain_latency = DRAIN_LATENCY_MASK;
848

849 850
	return drain_latency | (prec_mult == high_precision ?
				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
851 852 853 854 855 856 857 858 859 860
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

861
static void vlv_update_drain_latency(struct drm_crtc *crtc)
862
{
863 864
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
865 866
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
867
	struct vlv_wm_values wm = dev_priv->wm.vlv;
868

869 870
	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
871

872
	vlv_write_wm_values(intel_crtc, &wm);
873 874 875 876
}

#define single_plane_enabled(mask) is_power_of_2(mask)

877
static void valleyview_update_wm(struct drm_crtc *crtc)
878
{
879
	struct drm_device *dev = crtc->dev;
880 881 882 883
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
884
	int ignore_plane_sr, ignore_cursor_sr;
885
	unsigned int enabled = 0;
886
	bool cxsr_enabled;
887

888
	vlv_update_drain_latency(crtc);
889

890
	if (g4x_compute_wm0(dev, PIPE_A,
891 892
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
893
			    &planea_wm, &cursora_wm))
894
		enabled |= 1 << PIPE_A;
895

896
	if (g4x_compute_wm0(dev, PIPE_B,
897 898
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
899
			    &planeb_wm, &cursorb_wm))
900
		enabled |= 1 << PIPE_B;
901 902 903 904 905 906

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
907 908 909 910 911
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
912
			     &ignore_plane_sr, &cursor_sr)) {
913
		cxsr_enabled = true;
914
	} else {
915
		cxsr_enabled = false;
916
		intel_set_memory_cxsr(dev_priv, false);
917 918
		plane_sr = cursor_sr = 0;
	}
919

920 921
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
922 923 924 925 926 927 928 929
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
930
		   (planea_wm << DSPFW_PLANEA_SHIFT));
931
	I915_WRITE(DSPFW2,
932
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
933 934
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
935 936
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
937 938 939

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
940 941
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
957 958
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
959 960 961 962
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
963 964
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
965 966 967 968
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
969 970
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1021 1022 1023 1024 1025 1026 1027 1028 1029
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1030 1031
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
1032
	int sprite = to_intel_plane(plane)->plane;
1033
	struct vlv_wm_values wm = dev_priv->wm.vlv;
1034

1035
	if (enabled)
1036
		wm.ddl[pipe].sprite[sprite] =
1037
			vlv_compute_drain_latency(crtc, plane);
1038 1039
	else
		wm.ddl[pipe].sprite[sprite] = 0;
1040

1041
	vlv_write_wm_values(intel_crtc, &wm);
1042 1043
}

1044
static void g4x_update_wm(struct drm_crtc *crtc)
1045
{
1046
	struct drm_device *dev = crtc->dev;
1047 1048 1049 1050 1051
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1052
	bool cxsr_enabled;
1053

1054
	if (g4x_compute_wm0(dev, PIPE_A,
1055 1056
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1057
			    &planea_wm, &cursora_wm))
1058
		enabled |= 1 << PIPE_A;
1059

1060
	if (g4x_compute_wm0(dev, PIPE_B,
1061 1062
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1063
			    &planeb_wm, &cursorb_wm))
1064
		enabled |= 1 << PIPE_B;
1065 1066 1067 1068 1069 1070

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1071
			     &plane_sr, &cursor_sr)) {
1072
		cxsr_enabled = true;
1073
	} else {
1074
		cxsr_enabled = false;
1075
		intel_set_memory_cxsr(dev_priv, false);
1076 1077
		plane_sr = cursor_sr = 0;
	}
1078

1079 1080
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1081 1082 1083 1084 1085 1086 1087 1088
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1089
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1090
	I915_WRITE(DSPFW2,
1091
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1092 1093 1094
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1095
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1096
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1097 1098 1099

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1100 1101
}

1102
static void i965_update_wm(struct drm_crtc *unused_crtc)
1103
{
1104
	struct drm_device *dev = unused_crtc->dev;
1105 1106 1107 1108
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1109
	bool cxsr_enabled;
1110 1111 1112 1113 1114 1115

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1116
		const struct drm_display_mode *adjusted_mode =
1117
			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1118
		int clock = adjusted_mode->crtc_clock;
1119
		int htotal = adjusted_mode->crtc_htotal;
1120
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1121
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1122 1123 1124
		unsigned long line_time_us;
		int entries;

1125
		line_time_us = max(htotal * 1000 / clock, 1);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1139
			pixel_size * crtc->cursor->state->crtc_w;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1151
		cxsr_enabled = true;
1152
	} else {
1153
		cxsr_enabled = false;
1154
		/* Turn off self refresh if both pipes are enabled */
1155
		intel_set_memory_cxsr(dev_priv, false);
1156 1157 1158 1159 1160 1161 1162
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1163 1164 1165 1166 1167
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1168 1169
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1170 1171 1172

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1173 1174
}

1175
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1176
{
1177
	struct drm_device *dev = unused_crtc->dev;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1192
		wm_info = &i830_a_wm_info;
1193 1194 1195

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1196
	if (intel_crtc_active(crtc)) {
1197
		const struct drm_display_mode *adjusted_mode;
1198
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1199 1200 1201
		if (IS_GEN2(dev))
			cpp = 4;

1202
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1203
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1204
					       wm_info, fifo_size, cpp,
1205
					       pessimal_latency_ns);
1206
		enabled = crtc;
1207
	} else {
1208
		planea_wm = fifo_size - wm_info->guard_size;
1209 1210 1211 1212 1213 1214
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1215 1216 1217

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1218
	if (intel_crtc_active(crtc)) {
1219
		const struct drm_display_mode *adjusted_mode;
1220
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1221 1222 1223
		if (IS_GEN2(dev))
			cpp = 4;

1224
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1225
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1226
					       wm_info, fifo_size, cpp,
1227
					       pessimal_latency_ns);
1228 1229 1230 1231
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1232
	} else {
1233
		planeb_wm = fifo_size - wm_info->guard_size;
1234 1235 1236
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1237 1238 1239

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1240
	if (IS_I915GM(dev) && enabled) {
1241
		struct drm_i915_gem_object *obj;
1242

1243
		obj = intel_fb_obj(enabled->primary->state->fb);
1244 1245

		/* self-refresh seems busted with untiled */
1246
		if (obj->tiling_mode == I915_TILING_NONE)
1247 1248 1249
			enabled = NULL;
	}

1250 1251 1252 1253 1254 1255
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1256
	intel_set_memory_cxsr(dev_priv, false);
1257 1258 1259 1260 1261

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1262
		const struct drm_display_mode *adjusted_mode =
1263
			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1264
		int clock = adjusted_mode->crtc_clock;
1265
		int htotal = adjusted_mode->crtc_htotal;
1266
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1267
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1268 1269 1270
		unsigned long line_time_us;
		int entries;

1271
		line_time_us = max(htotal * 1000 / clock, 1);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1302 1303
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1304 1305
}

1306
static void i845_update_wm(struct drm_crtc *unused_crtc)
1307
{
1308
	struct drm_device *dev = unused_crtc->dev;
1309 1310
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1311
	const struct drm_display_mode *adjusted_mode;
1312 1313 1314 1315 1316 1317 1318
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1319
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1320
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1321
				       &i845_wm_info,
1322
				       dev_priv->display.get_fifo_size(dev, 0),
1323
				       4, pessimal_latency_ns);
1324 1325 1326 1327 1328 1329 1330 1331
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1332 1333
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1334 1335
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1336
	uint32_t pixel_rate;
1337

1338
	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1339 1340 1341 1342

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1343
	if (intel_crtc->config->pch_pfit.enabled) {
1344
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1345
		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1346

1347 1348
		pipe_w = intel_crtc->config->pipe_src_w;
		pipe_h = intel_crtc->config->pipe_src_h;
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1363
/* latency must be in 0.1us units. */
1364
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1365 1366 1367 1368
			       uint32_t latency)
{
	uint64_t ret;

1369 1370 1371
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1372 1373 1374 1375 1376 1377
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1378
/* latency must be in 0.1us units. */
1379
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1380 1381 1382 1383 1384
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1385 1386 1387
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1388 1389 1390 1391 1392 1393
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1394
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1395 1396 1397 1398 1399
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1400 1401 1402 1403 1404 1405 1406 1407
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1408
struct ilk_pipe_wm_parameters {
1409 1410 1411
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1412 1413 1414
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1415 1416
};

1417
struct ilk_wm_maximums {
1418 1419 1420 1421 1422 1423
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1424 1425 1426 1427 1428 1429 1430
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1431 1432 1433 1434
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1435
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1436 1437
				   uint32_t mem_value,
				   bool is_lp)
1438
{
1439 1440
	uint32_t method1, method2;

1441
	if (!params->active || !params->pri.enabled)
1442 1443
		return 0;

1444
	method1 = ilk_wm_method1(params->pixel_rate,
1445
				 params->pri.bytes_per_pixel,
1446 1447 1448 1449 1450
				 mem_value);

	if (!is_lp)
		return method1;

1451
	method2 = ilk_wm_method2(params->pixel_rate,
1452
				 params->pipe_htotal,
1453 1454
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
1455 1456 1457
				 mem_value);

	return min(method1, method2);
1458 1459
}

1460 1461 1462 1463
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1464
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1465 1466 1467 1468
				   uint32_t mem_value)
{
	uint32_t method1, method2;

1469
	if (!params->active || !params->spr.enabled)
1470 1471
		return 0;

1472
	method1 = ilk_wm_method1(params->pixel_rate,
1473
				 params->spr.bytes_per_pixel,
1474
				 mem_value);
1475
	method2 = ilk_wm_method2(params->pixel_rate,
1476
				 params->pipe_htotal,
1477 1478
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
1479 1480 1481 1482
				 mem_value);
	return min(method1, method2);
}

1483 1484 1485 1486
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1487
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1488 1489
				   uint32_t mem_value)
{
1490
	if (!params->active || !params->cur.enabled)
1491 1492
		return 0;

1493
	return ilk_wm_method2(params->pixel_rate,
1494
			      params->pipe_htotal,
1495 1496
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
1497 1498 1499
			      mem_value);
}

1500
/* Only for WM_LP. */
1501
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1502
				   uint32_t pri_val)
1503
{
1504
	if (!params->active || !params->pri.enabled)
1505 1506
		return 0;

1507
	return ilk_wm_fbc(pri_val,
1508 1509
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
1510 1511
}

1512 1513
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1514 1515 1516
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1517 1518 1519 1520 1521
		return 768;
	else
		return 512;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1556 1557 1558
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1559
				     const struct intel_wm_config *config,
1560 1561 1562 1563 1564 1565
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1566
	if (is_sprite && !config->sprites_enabled)
1567 1568 1569
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1570
	if (level == 0 || config->num_pipes_active > 1) {
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1582
	if (config->sprites_enabled) {
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1594
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1595 1596 1597 1598
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1599 1600
				      int level,
				      const struct intel_wm_config *config)
1601 1602
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1603
	if (level > 0 && config->num_pipes_active > 1)
1604 1605 1606
		return 64;

	/* otherwise just report max that registers can hold */
1607
	return ilk_cursor_wm_reg_max(dev, level);
1608 1609
}

1610
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1611 1612 1613
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1614
				    struct ilk_wm_maximums *max)
1615
{
1616 1617 1618
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1619
	max->fbc = ilk_fbc_wm_reg_max(dev);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1632
static bool ilk_validate_wm_level(int level,
1633
				  const struct ilk_wm_maximums *max,
1634
				  struct intel_wm_level *result)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1673
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1674
				 int level,
1675
				 const struct ilk_pipe_wm_parameters *p,
1676
				 struct intel_wm_level *result)
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

1696 1697
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1698 1699
{
	struct drm_i915_private *dev_priv = dev->dev_private;
1700
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1701
	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1702
	u32 linetime, ips_linetime;
1703

1704
	if (!intel_crtc->active)
1705
		return 0;
1706

1707 1708 1709
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
1710 1711 1712
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1713
					 intel_ddi_get_cdclk_freq(dev_priv));
1714

1715 1716
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
1717 1718
}

1719
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1720 1721 1722
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1723 1724
	if (IS_GEN9(dev)) {
		uint32_t val;
1725
		int ret, i;
1726
		int level, max_level = ilk_wm_max_level(dev);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

1769
		/*
1770 1771
		 * WaWmMemoryReadLatency:skl
		 *
1772 1773 1774 1775 1776 1777 1778 1779
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
1780 1781 1782 1783 1784
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
1785 1786 1787 1788 1789
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
1790 1791 1792
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
1793

1794 1795
				break;
			}
1796
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1797 1798 1799 1800 1801
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
1802 1803 1804 1805
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
1806 1807 1808 1809 1810 1811 1812
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1813 1814 1815 1816 1817 1818 1819
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1820 1821 1822
	}
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

1841
int ilk_wm_max_level(const struct drm_device *dev)
1842 1843
{
	/* how many WM levels are we expecting */
1844 1845 1846
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1847
		return 4;
1848
	else if (INTEL_INFO(dev)->gen >= 6)
1849
		return 3;
1850
	else
1851 1852
		return 2;
}
1853

1854 1855
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
1856
				   const uint16_t wm[8])
1857 1858
{
	int level, max_level = ilk_wm_max_level(dev);
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

1869 1870 1871 1872 1873 1874 1875
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
1876 1877 1878 1879 1880 1881 1882 1883
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

1921
static void ilk_setup_wm_latency(struct drm_device *dev)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1934 1935 1936 1937

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1938 1939 1940

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

1951
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1952
				      struct ilk_pipe_wm_parameters *p)
1953
{
1954 1955 1956 1957
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
1958

1959
	if (!intel_crtc->active)
1960
		return;
1961

1962
	p->active = true;
1963
	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1964
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1965
	p->pri.bytes_per_pixel = crtc->primary->state->fb->bits_per_pixel / 8;
1966
	p->cur.bytes_per_pixel = 4;
1967
	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1968
	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
1969 1970 1971
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
1972

1973
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1974 1975
		struct intel_plane *intel_plane = to_intel_plane(plane);

1976
		if (intel_plane->pipe == pipe) {
1977
			p->spr = intel_plane->wm;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
1989
	for_each_intel_crtc(dev, intel_crtc) {
1990
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1991

1992 1993
		if (!wm->pipe_enabled)
			continue;
1994

1995 1996 1997
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
1998
	}
1999 2000
}

2001 2002
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2003
				  const struct ilk_pipe_wm_parameters *params,
2004 2005 2006
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2007
	const struct drm_i915_private *dev_priv = dev->dev_private;
2008 2009 2010 2011 2012 2013 2014
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2015
	struct ilk_wm_maximums max;
2016

2017 2018 2019 2020
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2021 2022 2023 2024 2025 2026 2027 2028
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2029
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2030

2031
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2032
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2033

2034 2035 2036
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2037
	/* At least LP0 must be valid */
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2071 2072
	ret_wm->enable = true;

2073
	for_each_intel_crtc(dev, intel_crtc) {
2074 2075 2076 2077 2078
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2079

2080 2081 2082 2083 2084
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2085
		if (!wm->enable)
2086
			ret_wm->enable = false;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2099
			 const struct intel_wm_config *config,
2100
			 const struct ilk_wm_maximums *max,
2101 2102 2103
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2104
	int last_enabled_level = max_level;
2105

2106 2107 2108 2109 2110
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2111 2112
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2113 2114 2115 2116 2117 2118 2119

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2120 2121 2122 2123 2124
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2125 2126 2127 2128 2129 2130

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2131 2132
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2133 2134 2135
			wm->fbc_val = 0;
		}
	}
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2150 2151
}

2152 2153 2154 2155 2156 2157
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2158 2159 2160 2161 2162
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2163
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2164 2165 2166 2167 2168
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2169
static void ilk_compute_wm_results(struct drm_device *dev,
2170
				   const struct intel_pipe_wm *merged,
2171
				   enum intel_ddb_partitioning partitioning,
2172
				   struct ilk_wm_values *results)
2173
{
2174 2175
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2176

2177
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2178
	results->partitioning = partitioning;
2179

2180
	/* LP1+ register values */
2181
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2182
		const struct intel_wm_level *r;
2183

2184
		level = ilk_wm_lp_to_level(wm_lp, merged);
2185

2186
		r = &merged->wm[level];
2187

2188 2189 2190 2191 2192
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2193
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2194 2195 2196
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2197 2198 2199
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2200 2201 2202 2203 2204 2205 2206
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2207 2208 2209 2210
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2211 2212 2213 2214 2215
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2216
	}
2217

2218
	/* LP0 register values */
2219
	for_each_intel_crtc(dev, intel_crtc) {
2220 2221 2222 2223 2224 2225 2226 2227
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2228

2229 2230 2231 2232
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2233 2234 2235
	}
}

2236 2237
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2238
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2239 2240
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2241
{
2242 2243
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2244

2245 2246 2247 2248 2249
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2250 2251
	}

2252 2253
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2254 2255 2256
			return r2;
		else
			return r1;
2257
	} else if (level1 > level2) {
2258 2259 2260 2261 2262 2263
		return r1;
	} else {
		return r2;
	}
}

2264 2265 2266 2267 2268 2269 2270 2271
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2272
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2273 2274
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2275 2276 2277 2278 2279
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2280
	for_each_pipe(dev_priv, pipe) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2324 2325
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2326
{
2327
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2328
	bool changed = false;
2329

2330 2331 2332
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2333
		changed = true;
2334 2335 2336 2337
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2338
		changed = true;
2339 2340 2341 2342
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2343
		changed = true;
2344
	}
2345

2346 2347 2348 2349
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2350

2351 2352 2353 2354 2355 2356 2357
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2358 2359
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2360 2361
{
	struct drm_device *dev = dev_priv->dev;
2362
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2363 2364 2365
	unsigned int dirty;
	uint32_t val;

2366
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2367 2368 2369 2370 2371
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2372
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2373
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2374
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2375
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2376
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2377 2378
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2379
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2380
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2381
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2382
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2383
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2384 2385
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2386
	if (dirty & WM_DIRTY_DDB) {
2387
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2402 2403
	}

2404
	if (dirty & WM_DIRTY_FBC) {
2405 2406 2407 2408 2409 2410 2411 2412
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2413 2414 2415 2416 2417
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2418 2419 2420 2421 2422
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2423

2424
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2425
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2426
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2427
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2428
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2429
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2430 2431

	dev_priv->wm.hw = *results;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

	ddb_size = SKL_DDB_SIZE;

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2471
		if (!to_intel_crtc(crtc)->active)
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2482
	alloc->end = alloc->start + pipe_size;
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2493 2494 2495 2496
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2497 2498
	if (entry->end)
		entry->end += 1;
2499 2500
}

2501 2502
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2503 2504 2505 2506 2507 2508
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2509
		for_each_plane(dev_priv, pipe, plane) {
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2558
	struct drm_i915_private *dev_priv = dev->dev_private;
2559 2560
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2561
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2562
	uint16_t alloc_size, start, cursor_blocks;
2563
	uint16_t minimum[I915_MAX_PLANES];
2564 2565 2566
	unsigned int total_data_rate;
	int plane;

2567 2568
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
	alloc_size = skl_ddb_entry_size(alloc);
2569 2570 2571 2572 2573 2574 2575
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2576 2577
	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
	ddb->cursor[pipe].end = alloc->end;
2578 2579

	alloc_size -= cursor_blocks;
2580
	alloc->end -= cursor_blocks;
2581

2582
	/* 1. Allocate the mininum required blocks for each active plane */
2583
	for_each_plane(dev_priv, pipe, plane) {
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		minimum[plane] = 8;
		alloc_size -= minimum[plane];
	}

2594
	/*
2595 2596
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2597 2598 2599 2600 2601
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

2602
	start = alloc->start;
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2618 2619 2620
		plane_blocks = minimum[plane];
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2621 2622

		ddb->plane[pipe][plane].start = start;
2623
		ddb->plane[pipe][plane].end = start + plane_blocks;
2624 2625 2626 2627 2628 2629

		start += plane_blocks;
	}

}

2630
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2631 2632
{
	/* TODO: Take into account the scalers once we support them */
2633
	return config->base.adjusted_mode.crtc_clock;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2650
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2651 2652 2653 2654 2655 2656 2657
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2658
			       uint64_t tiling, uint32_t latency)
2659
{
2660 2661 2662
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
2663 2664 2665 2666 2667

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

2678 2679
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2680
				plane_blocks_per_line;
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2711
		config->num_pipes_active += to_intel_crtc(crtc)->active;
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2729
	struct drm_framebuffer *fb;
2730 2731
	int i = 1; /* Index for sprite planes start */

2732
	p->active = intel_crtc->active;
2733
	if (p->active) {
2734 2735
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2736 2737 2738 2739 2740 2741

		/*
		 * For now, assume primary and cursor planes are always enabled.
		 */
		p->plane[0].enabled = true;
		p->plane[0].bytes_per_pixel =
2742
			crtc->primary->state->fb->bits_per_pixel / 8;
2743 2744
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2745 2746 2747 2748 2749 2750 2751 2752
		p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		fb = crtc->primary->state->fb;
		/*
		 * Framebuffer can be NULL on plane disable, but it does not
		 * matter for watermarks if we assume no tiling in that case.
		 */
		if (fb)
			p->plane[0].tiling = fb->modifier[0];
2753 2754 2755

		p->cursor.enabled = true;
		p->cursor.bytes_per_pixel = 4;
2756 2757
		p->cursor.horiz_pixels = intel_crtc->base.cursor->state->crtc_w ?
					 intel_crtc->base.cursor->state->crtc_w : 64;
2758 2759 2760 2761 2762
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

2763 2764
		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
2765 2766 2767 2768
			p->plane[i++] = intel_plane->wm;
	}
}

2769 2770
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				 struct skl_pipe_wm_parameters *p,
2771 2772
				 struct intel_plane_wm_parameters *p_params,
				 uint16_t ddb_allocation,
2773
				 int level,
2774 2775
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
2776
{
2777 2778 2779 2780 2781
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
2782

2783
	if (latency == 0 || !p->active || !p_params->enabled)
2784 2785 2786 2787
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
2788
				 latency);
2789 2790 2791 2792
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
2793
				 p_params->tiling,
2794
				 latency);
2795 2796 2797

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;
2798
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
		uint32_t y_tile_minimum = plane_blocks_per_line * 4;
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
2810

2811 2812
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2813

2814 2815 2816 2817 2818 2819 2820
	if (level >= 1 && level <= 7) {
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
			res_lines += 4;
		else
			res_blocks++;
	}
2821

2822
	if (res_blocks >= ddb_allocation || res_lines > 31)
2823 2824 2825 2826
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

2845 2846
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
						p, &p->plane[i],
2847
						ddb_blocks,
2848
						level,
2849 2850 2851 2852 2853
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2854 2855 2856
	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
						 ddb_blocks, level,
						 &result->cursor_res_b,
2857 2858 2859
						 &result->cursor_res_l);
}

2860 2861 2862
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
2863
	if (!to_intel_crtc(crtc)->active)
2864 2865 2866 2867 2868 2869 2870 2871
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
2872
				      struct skl_wm_level *trans_wm /* out */)
2873
{
2874 2875 2876
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

2877 2878
	if (!params->active)
		return;
2879 2880 2881 2882 2883

	/* Until we know more, just disable transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		trans_wm->plane_en[i] = false;
	trans_wm->cursor_en = false;
2884 2885
}

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

2903
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
2914 2915
	uint32_t temp;
	int i;
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;

	}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.cursor_res_b;
	if (p_wm->trans_wm.cursor_en)
		temp |= PLANE_WM_EN;

	r->cursor_trans[pipe] = temp;

2961 2962 2963
	r->wm_linetime[pipe] = p_wm->linetime;
}

2964 2965 2966 2967 2968 2969 2970 2971 2972
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

2983 2984
		if (!new->dirty[pipe])
			continue;
2985

2986
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2987

2988 2989 2990 2991 2992 2993
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
				   new->cursor[pipe][level]);
2994
		}
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);

		for (i = 0; i < intel_num_planes(crtc); i++)
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
				    &new->ddb.cursor[pipe]);
3007 3008 3009
	}
}

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3034 3035
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3036 3037 3038
{
	int plane;

3039 3040
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3041
	for_each_plane(dev_priv, pipe, plane) {
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
	bool reallocated[I915_MAX_PIPES] = {false, false, false};
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3091
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3116
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3117
			intel_wait_for_vblank(dev, pipe);
3118
			reallocated[pipe] = true;
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3141
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3142 3143 3144
	}
}

3145 3146 3147 3148 3149 3150 3151 3152 3153
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3154
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3236
	skl_flush_wm_values(dev_priv, results);
3237 3238 3239

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3240 3241 3242 3243 3244 3245 3246 3247
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
3248
	struct drm_framebuffer *fb = plane->state->fb;
3249 3250 3251 3252 3253 3254

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;
3255 3256 3257 3258 3259 3260 3261
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
3262 3263 3264 3265

	skl_update_wm(crtc);
}

3266
static void ilk_update_wm(struct drm_crtc *crtc)
3267
{
3268
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3269
	struct drm_device *dev = crtc->dev;
3270
	struct drm_i915_private *dev_priv = dev->dev_private;
3271 3272 3273
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3274
	enum intel_ddb_partitioning partitioning;
3275
	struct intel_pipe_wm pipe_wm = {};
3276
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3277
	struct intel_wm_config config = {};
3278

3279
	ilk_compute_wm_parameters(crtc, &params);
3280 3281 3282 3283 3284

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3285

3286
	intel_crtc->wm.active = pipe_wm;
3287

3288 3289
	ilk_compute_wm_config(dev, &config);

3290
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3291
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3292 3293

	/* 5/6 split only in single pipe config on IVB+ */
3294 3295
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3296
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3297
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3298

3299
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3300
	} else {
3301
		best_lp_wm = &lp_wm_1_2;
3302 3303
	}

3304
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3305
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3306

3307
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3308

3309
	ilk_write_wm_values(dev_priv, &results);
3310 3311
}

3312 3313 3314 3315 3316
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3317
{
3318
	struct drm_device *dev = plane->dev;
3319
	struct intel_plane *intel_plane = to_intel_plane(plane);
3320

3321 3322 3323
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3324
	intel_plane->wm.vert_pixels = sprite_width;
3325
	intel_plane->wm.bytes_per_pixel = pixel_size;
3326

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3337
	ilk_update_wm(crtc);
3338 3339
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

3410
	if (!intel_crtc->active)
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3438 3439
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3440 3441
	struct drm_crtc *crtc;

3442
	skl_ddb_get_hw_state(dev_priv, ddb);
3443 3444 3445 3446
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3447 3448 3449 3450
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3451
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3462
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3463
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3464

3465
	active->pipe_enabled = intel_crtc->active;
3466 3467

	if (active->pipe_enabled) {
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3497
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3498 3499
	struct drm_crtc *crtc;

3500
	for_each_crtc(dev, crtc)
3501 3502 3503 3504 3505 3506 3507
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3508 3509 3510 3511
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3512

3513
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3514 3515 3516 3517 3518
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3519 3520 3521 3522 3523

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3556
void intel_update_watermarks(struct drm_crtc *crtc)
3557
{
3558
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3559 3560

	if (dev_priv->display.update_wm)
3561
		dev_priv->display.update_wm(crtc);
3562 3563
}

3564 3565
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3566 3567 3568
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3569
				    bool enabled, bool scaled)
3570
{
3571
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3572 3573

	if (dev_priv->display.update_sprite_wm)
3574 3575
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3576
						   pixel_size, enabled, scaled);
3577 3578
}

3579 3580 3581 3582 3583 3584 3585 3586 3587
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3588 3589 3590 3591 3592
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3593 3594
	assert_spin_locked(&mchdev_lock);

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3612
static void ironlake_enable_drps(struct drm_device *dev)
3613 3614 3615 3616 3617
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3618 3619
	spin_lock_irq(&mchdev_lock);

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

3643 3644
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
3645

3646 3647 3648
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

3665
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3666
		DRM_ERROR("stuck trying to change perf mode\n");
3667
	mdelay(1);
3668 3669 3670

	ironlake_set_drps(dev, fstart);

3671
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3672
		I915_READ(0x112e0);
3673 3674
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3675
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3676 3677

	spin_unlock_irq(&mchdev_lock);
3678 3679
}

3680
static void ironlake_disable_drps(struct drm_device *dev)
3681 3682
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3683 3684 3685 3686 3687
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
3688 3689 3690 3691 3692 3693 3694 3695 3696

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3697
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3698
	mdelay(1);
3699 3700
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3701
	mdelay(1);
3702

3703
	spin_unlock_irq(&mchdev_lock);
3704 3705
}

3706 3707 3708 3709 3710
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3711
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3712
{
3713
	u32 limits;
3714

3715 3716 3717 3718 3719 3720
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3721 3722 3723
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
3724 3725 3726 3727

	return limits;
}

3728 3729 3730 3731 3732 3733 3734
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
3735
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3736 3737 3738 3739
			new_power = BETWEEN;
		break;

	case BETWEEN:
3740
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3741
			new_power = LOW_POWER;
3742
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3743 3744 3745 3746
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
3747
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3748 3749 3750 3751
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
3752
	if (val == dev_priv->rps.min_freq_softlimit)
3753
		new_power = LOW_POWER;
3754
	if (val == dev_priv->rps.max_freq_softlimit)
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

3820 3821 3822 3823 3824 3825 3826 3827 3828
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

3829 3830 3831
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

3832
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3833 3834
}

3835 3836 3837
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3838
static void gen6_set_rps(struct drm_device *dev, u8 val)
3839 3840
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3841

3842
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3843 3844
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3845

C
Chris Wilson 已提交
3846 3847 3848 3849 3850
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
3851

3852
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
3853 3854 3855 3856 3857 3858 3859
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
3860
	}
3861 3862 3863 3864

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
3865
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3866
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3867

3868 3869
	POSTING_READ(GEN6_RPNSWREQ);

3870
	dev_priv->rps.cur_freq = val;
3871
	trace_intel_gpu_freq_change(val * 50);
3872 3873
}

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

	if (val != dev_priv->rps.cur_freq)
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);

	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
3906 3907
	struct drm_device *dev = dev_priv->dev;

3908 3909
	/* CHV and latest VLV don't need to force the gfx clock */
	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3910 3911 3912 3913
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

3914 3915 3916 3917
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

3918
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3919 3920 3921
		return;

	/* Mask turbo interrupt so that they will not come in between */
3922 3923
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3924

3925
	vlv_force_gfx_clock(dev_priv, true);
3926

3927
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3928 3929

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3930
					dev_priv->rps.min_freq_softlimit);
3931 3932

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3933
				& GENFREQSTATUS) == 0, 100))
3934 3935
		DRM_ERROR("timed out waiting for Punit\n");

3936
	vlv_force_gfx_clock(dev_priv, false);
3937

3938 3939
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3940 3941
}

3942 3943
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
3944 3945
	struct drm_device *dev = dev_priv->dev;

3946
	mutex_lock(&dev_priv->rps.hw_lock);
3947
	if (dev_priv->rps.enabled) {
3948
		if (IS_VALLEYVIEW(dev))
3949
			vlv_set_rps_idle(dev_priv);
3950
		else
3951
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3952 3953
		dev_priv->rps.last_adj = 0;
	}
3954 3955 3956 3957 3958 3959
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
3960
	if (dev_priv->rps.enabled) {
3961
		intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3962 3963
		dev_priv->rps.last_adj = 0;
	}
3964 3965 3966
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3967
void intel_set_rps(struct drm_device *dev, u8 val)
3968
{
3969 3970 3971 3972
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
3973 3974
}

Z
Zhe Wang 已提交
3975 3976 3977 3978 3979
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3980
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
3981 3982
}

3983
static void gen6_disable_rps(struct drm_device *dev)
3984 3985 3986 3987
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
3988 3989 3990
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

3991 3992 3993 3994 3995 3996 3997
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

3998 3999 4000 4001
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4002 4003
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4004
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4005

4006
	I915_WRITE(GEN6_RC_CONTROL, 0);
4007

4008
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4009 4010
}

B
Ben Widawsky 已提交
4011 4012
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4013 4014 4015 4016 4017 4018
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4019 4020 4021 4022 4023 4024 4025 4026 4027
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4028 4029
}

I
Imre Deak 已提交
4030
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4031
{
4032 4033 4034 4035
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4036 4037 4038 4039
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4040
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4041 4042 4043
	if (enable_rc6 >= 0) {
		int mask;

4044
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4045 4046 4047 4048 4049 4050
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4051 4052
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4053 4054 4055

		return enable_rc6 & mask;
	}
4056

4057 4058 4059
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4060

4061
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4062
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4063 4064

	return INTEL_RC6_ENABLE;
4065 4066
}

I
Imre Deak 已提交
4067 4068 4069 4070 4071
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4072
static void gen6_init_rps_frequencies(struct drm_device *dev)
4073
{
4074 4075 4076 4077 4078 4079
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4080 4081
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4082
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4083
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4084
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4085 4086 4087 4088
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4089 4090 4091 4092 4093 4094 4095
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4096 4097 4098 4099
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4100 4101
	}

4102 4103 4104 4105
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4106 4107 4108
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4109 4110
				/* max(RPe, 450 MHz) */
				max(dev_priv->rps.efficient_freq, (u8) 9);
4111 4112 4113 4114
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4115 4116
}

J
Jesse Barnes 已提交
4117
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4118
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4119 4120 4121 4122 4123
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4124 4125
	gen6_init_rps_frequencies(dev);

J
Jesse Barnes 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
	I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
	I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
	I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
	I915_WRITE(GEN6_PMINTRMSK, 0x6);
	I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	gen6_enable_rps_interrupts(dev);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4159
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */

4173 4174 4175 4176
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				   GEN6_RC_CTL_EI_MODE(1) |
				   rc6_mask);

4186 4187 4188
	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);

4189
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4190 4191 4192

}

4193 4194 4195
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4196
	struct intel_engine_cs *ring;
4197
	uint32_t rc6_mask = 0;
4198 4199 4200 4201 4202 4203 4204
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4205
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4206 4207 4208 4209

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4210 4211
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4212 4213 4214 4215 4216 4217 4218 4219

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4220 4221 4222 4223
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4224 4225 4226 4227

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4228
	intel_print_rc6_info(dev, rc6_mask);
4229 4230 4231 4232 4233 4234 4235 4236
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4237 4238

	/* 4 Program defaults and thresholds for RPS*/
4239 4240 4241 4242
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4257 4258

	/* 5: Enable RPS */
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4269 4270
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4271

4272
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4273 4274
}

4275
static void gen6_enable_rps(struct drm_device *dev)
4276
{
4277
	struct drm_i915_private *dev_priv = dev->dev_private;
4278
	struct intel_engine_cs *ring;
4279
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4280 4281
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4282
	int i, ret;
4283

4284
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4285

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4300
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4301

4302 4303
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4304

4305 4306 4307 4308 4309 4310 4311 4312 4313
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4314 4315
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4316 4317 4318

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4319
	if (IS_IVYBRIDGE(dev))
4320 4321 4322
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4323
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4324 4325
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4326
	/* Check if we are enabling RC6 */
4327 4328 4329 4330
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4331 4332 4333 4334
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4335

4336 4337 4338
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4339

B
Ben Widawsky 已提交
4340
	intel_print_rc6_info(dev, rc6_mask);
4341 4342 4343 4344 4345 4346

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4347 4348
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4349 4350
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4351
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4352
	if (ret)
B
Ben Widawsky 已提交
4353
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4354 4355 4356 4357

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4358
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4359
				 (pcu_mbox & 0xff) * 50);
4360
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4361 4362
	}

4363
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4364
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4380
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4381 4382
}

4383
static void __gen6_update_ring_freq(struct drm_device *dev)
4384
{
4385
	struct drm_i915_private *dev_priv = dev->dev_private;
4386
	int min_freq = 15;
4387 4388
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4389
	int scaling_factor = 180;
4390
	struct cpufreq_policy *policy;
4391

4392
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4393

4394 4395 4396 4397 4398 4399 4400 4401 4402
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4403
		max_ia_freq = tsc_khz;
4404
	}
4405 4406 4407 4408

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4409
	min_ring_freq = I915_READ(DCLK) & 0xf;
4410 4411
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4412

4413 4414 4415 4416 4417
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4418
	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4419
	     gpu_freq--) {
4420
		int diff = dev_priv->rps.max_freq - gpu_freq;
4421 4422
		unsigned int ia_freq = 0, ring_freq = 0;

4423 4424 4425 4426
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4427
			ring_freq = mult_frac(gpu_freq, 5, 4);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4444

B
Ben Widawsky 已提交
4445 4446
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4447 4448 4449
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4450 4451 4452
	}
}

4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4465
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4466
{
4467
	struct drm_device *dev = dev_priv->dev;
4468 4469
	u32 val, rp0;

4470 4471
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4472

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
		switch (INTEL_INFO(dev)->eu_total) {
		case 8:
				/* (2 * 4) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
				break;
		case 12:
				/* (2 * 6) config */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
				break;
		case 16:
				/* (2 * 8) config */
		default:
				/* Setting (2 * 8) Min RP0 for any other combination */
				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
				break;
		}
		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
	}
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4509 4510
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
4511
	struct drm_device *dev = dev_priv->dev;
4512 4513
	u32 val, rp1;

4514 4515 4516 4517 4518 4519 4520 4521 4522
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
	} else {
		/* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
	}
4523 4524 4525
	return rp1;
}

4526
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4527
{
4528
	struct drm_device *dev = dev_priv->dev;
4529 4530
	u32 val, rpn;

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	if (dev->pdev->revision >= 0x20) {
		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);
	} else { /* For pre-production hardware */
		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
	}

4541 4542 4543
	return rpn;
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4555
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4556 4557 4558
{
	u32 val, rp0;

4559
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4572
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4573
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4574
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4575 4576 4577 4578 4579
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4580
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4581
{
4582
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4583 4584
}

4585 4586 4587 4588 4589 4590 4591 4592 4593
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4615
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4616 4617 4618 4619 4620 4621
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
4622 4623

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4624 4625
}

4626 4627 4628 4629 4630 4631 4632 4633
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4634 4635
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4636 4637 4638 4639 4640 4641 4642 4643
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4644
								      I915_GTT_OFFSET_NONE,
4645 4646 4647 4648
								      pctx_size);
		goto out;
	}

4649 4650
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
4669
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4670 4671 4672
	dev_priv->vlv_pctx = pctx;
}

4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4684 4685 4686
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4687
	u32 val;
4688 4689 4690 4691 4692

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
4706
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4707

4708 4709 4710
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4711
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4712 4713 4714 4715
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4716
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4717 4718
			 dev_priv->rps.efficient_freq);

4719 4720
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4721
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4722 4723
			 dev_priv->rps.rp1_freq);

4724 4725
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4726
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

4739 4740
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
4741
	struct drm_i915_private *dev_priv = dev->dev_private;
4742
	u32 val;
4743

4744
	cherryview_setup_pctx(dev);
4745 4746 4747

	mutex_lock(&dev_priv->rps.hw_lock);

4748 4749 4750 4751
	mutex_lock(&dev_priv->dpio_lock);
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
	mutex_unlock(&dev_priv->dpio_lock);

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
4775
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4776

4777 4778 4779
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4780
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4781 4782 4783 4784
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4785
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4786 4787
			 dev_priv->rps.efficient_freq);

4788 4789
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4790
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4791 4792
			 dev_priv->rps.rp1_freq);

4793 4794
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4795
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4796 4797
			 dev_priv->rps.min_freq);

4798 4799 4800 4801 4802 4803
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

4804 4805 4806 4807 4808 4809 4810 4811
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
4812 4813
}

4814 4815 4816 4817 4818
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

4819 4820 4821 4822
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
4823
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4839
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840

4841 4842 4843
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4844 4845 4846 4847 4848 4849 4850 4851 4852
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

4853 4854
	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
4868
		rc6_mode = GEN7_RC_CTL_TO_MODE;
4869 4870 4871

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

4872
	/* 4 Program defaults and thresholds for RPS*/
4873
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4884
		   GEN6_RP_MEDIA_IS_GFX |
4885 4886 4887 4888 4889 4890
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

4891 4892 4893
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4894
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4895 4896 4897 4898
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4899
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4900 4901 4902
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4903
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4904 4905 4906 4907
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

4908
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4909 4910
}

4911 4912 4913
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4914
	struct intel_engine_cs *ring;
4915
	u32 gtfifodbg, val, rc6_mode = 0;
4916 4917 4918 4919
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

4920 4921
	valleyview_check_pctx(dev_priv);

4922
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4923 4924
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
4925 4926 4927
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4928
	/* If VLV, Forcewake all wells, else re-direct to regular path */
4929
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4930

4931 4932 4933
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4934
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

4957
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4958 4959

	/* allows RC6 residency counter to work */
4960
	I915_WRITE(VLV_COUNTER_CONTROL,
4961 4962
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
4963 4964
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
4965

4966
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4967
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
4968 4969 4970

	intel_print_rc6_info(dev, rc6_mode);

4971
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4972

4973
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4974

4975 4976 4977
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

4978
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4979 4980
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

4981
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4982
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4983
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4984
			 dev_priv->rps.cur_freq);
4985

4986
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4987
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4988
			 dev_priv->rps.efficient_freq);
4989

4990
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4991

4992
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4993 4994
}

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5024
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5025 5026 5027 5028 5029 5030
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5031 5032
	assert_spin_locked(&mchdev_lock);

5033
	diff1 = now - dev_priv->ips.last_time1;
5034 5035 5036 5037 5038 5039 5040

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5041
		return dev_priv->ips.chipset_power;
5042 5043 5044 5045 5046 5047 5048 5049

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5050 5051
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5052 5053
		diff += total_count;
	} else {
5054
		diff = total_count - dev_priv->ips.last_count1;
5055 5056 5057
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5058 5059
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5070 5071
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5072

5073
	dev_priv->ips.chipset_power = ret;
5074 5075 5076 5077

	return ret;
}

5078 5079
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5080
	struct drm_device *dev = dev_priv->dev;
5081 5082
	unsigned long val;

5083
	if (INTEL_INFO(dev)->gen != 5)
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5122
{
5123
	struct drm_device *dev = dev_priv->dev;
5124 5125 5126
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5127
	if (INTEL_INFO(dev)->is_mobile)
5128 5129 5130
		return vm > 0 ? vm : 0;

	return vd;
5131 5132
}

5133
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5134
{
5135
	u64 now, diff, diffms;
5136 5137
	u32 count;

5138
	assert_spin_locked(&mchdev_lock);
5139

5140 5141 5142
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5143 5144 5145 5146 5147 5148 5149

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5150 5151
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5152 5153
		diff += count;
	} else {
5154
		diff = count - dev_priv->ips.last_count2;
5155 5156
	}

5157 5158
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5159 5160 5161 5162

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5163
	dev_priv->ips.gfx_power = diff;
5164 5165
}

5166 5167
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5168 5169 5170
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5171 5172
		return;

5173
	spin_lock_irq(&mchdev_lock);
5174 5175 5176

	__i915_update_gfx_val(dev_priv);

5177
	spin_unlock_irq(&mchdev_lock);
5178 5179
}

5180
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5181 5182 5183 5184
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5185 5186
	assert_spin_locked(&mchdev_lock);

5187
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5207
	corr2 = (corr * dev_priv->ips.corr);
5208 5209 5210 5211

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5212
	__i915_update_gfx_val(dev_priv);
5213

5214
	return dev_priv->ips.gfx_power + state2;
5215 5216
}

5217 5218
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5219
	struct drm_device *dev = dev_priv->dev;
5220 5221
	unsigned long val;

5222
	if (INTEL_INFO(dev)->gen != 5)
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5245
	spin_lock_irq(&mchdev_lock);
5246 5247 5248 5249
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5250 5251
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5252 5253 5254 5255

	ret = chipset_val + graphics_val;

out_unlock:
5256
	spin_unlock_irq(&mchdev_lock);
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5272
	spin_lock_irq(&mchdev_lock);
5273 5274 5275 5276 5277 5278
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5279 5280
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5281 5282

out_unlock:
5283
	spin_unlock_irq(&mchdev_lock);
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5300
	spin_lock_irq(&mchdev_lock);
5301 5302 5303 5304 5305 5306
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5307 5308
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5309 5310

out_unlock:
5311
	spin_unlock_irq(&mchdev_lock);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5325
	struct intel_engine_cs *ring;
5326
	bool ret = false;
5327
	int i;
5328

5329
	spin_lock_irq(&mchdev_lock);
5330 5331 5332 5333
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5334 5335
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5336 5337

out_unlock:
5338
	spin_unlock_irq(&mchdev_lock);
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5355
	spin_lock_irq(&mchdev_lock);
5356 5357 5358 5359 5360 5361
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5362
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5363

5364
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5365 5366 5367
		ret = false;

out_unlock:
5368
	spin_unlock_irq(&mchdev_lock);
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5396 5397
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5398
	spin_lock_irq(&mchdev_lock);
5399
	i915_mch_dev = dev_priv;
5400
	spin_unlock_irq(&mchdev_lock);
5401 5402 5403 5404 5405 5406

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5407
	spin_lock_irq(&mchdev_lock);
5408
	i915_mch_dev = NULL;
5409
	spin_unlock_irq(&mchdev_lock);
5410
}
5411

5412
static void intel_init_emon(struct drm_device *dev)
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

5480
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5481 5482
}

5483 5484
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
5485 5486
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

5487 5488 5489
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
5490
		valleyview_init_gt_powersave(dev);
5491 5492 5493 5494
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
5495 5496 5497
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
5498
		valleyview_cleanup_gt_powersave(dev);
5499 5500
}

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	/*
	 * TODO: disable RPS interrupts on GEN9+ too once RPS support
	 * is added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_disable_rps_interrupts(dev);
}

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
5527 5528 5529
	if (INTEL_INFO(dev)->gen < 6)
		return;

5530
	gen6_suspend_rps(dev);
5531 5532 5533

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
5534 5535
}

5536 5537
void intel_disable_gt_powersave(struct drm_device *dev)
{
5538 5539
	struct drm_i915_private *dev_priv = dev->dev_private;

5540
	if (IS_IRONLAKE_M(dev)) {
5541
		ironlake_disable_drps(dev);
5542
	} else if (INTEL_INFO(dev)->gen >= 6) {
5543
		intel_suspend_gt_powersave(dev);
5544

5545
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
5546 5547 5548
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
5549 5550
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
5551 5552 5553
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
5554

5555
		dev_priv->rps.enabled = false;
5556
		mutex_unlock(&dev_priv->rps.hw_lock);
5557
	}
5558 5559
}

5560 5561 5562 5563 5564 5565 5566
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

5567
	mutex_lock(&dev_priv->rps.hw_lock);
5568

I
Imre Deak 已提交
5569 5570 5571 5572 5573 5574 5575
	/*
	 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
	 * added for it.
	 */
	if (INTEL_INFO(dev)->gen < 9)
		gen6_reset_rps_interrupts(dev);

5576 5577 5578
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
5579
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
5580
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
5581
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
5582
		gen9_enable_rps(dev);
J
Jesse Barnes 已提交
5583
		__gen6_update_ring_freq(dev);
5584 5585
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
5586
		__gen6_update_ring_freq(dev);
5587 5588
	} else {
		gen6_enable_rps(dev);
5589
		__gen6_update_ring_freq(dev);
5590
	}
5591
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
5592 5593 5594 5595

	if (INTEL_INFO(dev)->gen < 9)
		gen6_enable_rps_interrupts(dev);

5596
	mutex_unlock(&dev_priv->rps.hw_lock);
5597 5598

	intel_runtime_pm_put(dev_priv);
5599 5600
}

5601 5602
void intel_enable_gt_powersave(struct drm_device *dev)
{
5603 5604
	struct drm_i915_private *dev_priv = dev->dev_private;

5605 5606 5607 5608
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

5609
	if (IS_IRONLAKE_M(dev)) {
5610
		mutex_lock(&dev->struct_mutex);
5611 5612
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
5613
		mutex_unlock(&dev->struct_mutex);
5614
	} else if (INTEL_INFO(dev)->gen >= 6) {
5615 5616 5617 5618
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
5619 5620 5621 5622 5623 5624 5625
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
5626
		 */
5627 5628 5629
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
5630 5631 5632
	}
}

5633 5634 5635 5636
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5637 5638 5639 5640
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
5641 5642 5643
	dev_priv->rps.enabled = false;
}

5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

5656 5657 5658 5659 5660
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

5661
	for_each_pipe(dev_priv, pipe) {
5662 5663 5664
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
5665
		intel_flush_primary_plane(dev_priv, pipe);
5666 5667 5668
	}
}

5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

5683
static void ironlake_init_clock_gating(struct drm_device *dev)
5684 5685
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5686
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5687

5688 5689 5690 5691
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
5692 5693 5694
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5712
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5713 5714 5715
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
5716 5717

	ilk_init_lp_watermarks(dev);
5718 5719 5720 5721 5722 5723 5724 5725 5726

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
5727
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5728 5729 5730 5731 5732 5733 5734 5735
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

5736 5737
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

5738 5739 5740 5741 5742 5743
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
5744

5745
	/* WaDisableRenderCachePipelinedFlush:ilk */
5746 5747
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5748

5749 5750 5751
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5752
	g4x_disable_trickle_feed(dev);
5753

5754 5755 5756 5757 5758 5759 5760
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
5761
	uint32_t val;
5762 5763 5764 5765 5766 5767

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
5768 5769 5770
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5771 5772
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
5773 5774 5775
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
5776
	for_each_pipe(dev_priv, pipe) {
5777 5778 5779
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5780
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5781
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5782 5783 5784
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5785 5786
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
5787
	/* WADP0ClockGatingDisable */
5788
	for_each_pipe(dev_priv, pipe) {
5789 5790 5791
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
5792 5793
}

5794 5795 5796 5797 5798 5799
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
5800 5801 5802
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
5803 5804
}

5805
static void gen6_init_clock_gating(struct drm_device *dev)
5806 5807
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5808
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5809

5810
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5811 5812 5813 5814 5815

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

5816
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5817 5818 5819
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

5820 5821 5822
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

5823 5824 5825
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
5826 5827 5828 5829
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5830 5831
	 */
	I915_WRITE(GEN6_GT_MODE,
5832
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5833

5834
	ilk_init_lp_watermarks(dev);
5835 5836

	I915_WRITE(CACHE_MODE_0,
5837
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
5853
	 *
5854 5855
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
5856 5857 5858 5859 5860
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

5861
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
5862 5863
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5864

5865 5866 5867 5868 5869 5870 5871 5872
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

5873 5874 5875 5876 5877 5878 5879 5880
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
5881 5882
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
5883 5884 5885 5886 5887 5888 5889
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5890 5891 5892 5893
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5894

5895
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
5896

5897
	cpt_init_clock_gating(dev);
5898 5899

	gen6_check_mch_setup(dev);
5900 5901 5902 5903 5904 5905
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

5906
	/*
5907
	 * WaVSThreadDispatchOverride:ivb,vlv
5908 5909 5910 5911
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
5912 5913 5914 5915 5916 5917 5918 5919
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
5932 5933 5934 5935 5936

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5937 5938
}

5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

5951
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
5952 5953
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5954
	enum pipe pipe;
B
Ben Widawsky 已提交
5955 5956 5957 5958

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
5959

5960
	/* WaSwitchSolVfFArbitrationPriority:bdw */
5961
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5962

5963
	/* WaPsrDPAMaskVBlankInSRD:bdw */
5964 5965 5966
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

5967
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5968
	for_each_pipe(dev_priv, pipe) {
5969
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
5970
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
5971
			   BDW_DPRS_MASK_VBLANK_SRD);
5972
	}
5973

5974 5975 5976 5977 5978
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5979

5980 5981
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5982 5983 5984 5985

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5986

5987
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
5988 5989
}

5990 5991 5992 5993
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5994
	ilk_init_lp_watermarks(dev);
5995

5996 5997 5998 5999 6000
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6001
	/* This is required by WaCatErrorRejectionIssue:hsw */
6002 6003 6004 6005
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6006 6007 6008
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6009

6010 6011 6012
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6013 6014 6015 6016
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6017
	/* WaDisable4x2SubspanOptimization:hsw */
6018 6019
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6020

6021 6022 6023
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6024 6025 6026 6027
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6028 6029
	 */
	I915_WRITE(GEN7_GT_MODE,
6030
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6031

6032 6033 6034 6035
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6036
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6037 6038
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6039 6040 6041
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6042

6043
	lpt_init_clock_gating(dev);
6044 6045
}

6046
static void ivybridge_init_clock_gating(struct drm_device *dev)
6047 6048
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6049
	uint32_t snpcr;
6050

6051
	ilk_init_lp_watermarks(dev);
6052

6053
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6054

6055
	/* WaDisableEarlyCull:ivb */
6056 6057 6058
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6059
	/* WaDisableBackToBackFlipFix:ivb */
6060 6061 6062 6063
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6064
	/* WaDisablePSDDualDispatchEnable:ivb */
6065 6066 6067 6068
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6069 6070 6071
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6072
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6073 6074 6075
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6076
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6077 6078 6079
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6080 6081 6082 6083
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6084 6085 6086 6087
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6088 6089
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6090
	}
6091

6092
	/* WaForceL3Serialization:ivb */
6093 6094 6095
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6096
	/*
6097
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6098
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6099 6100
	 */
	I915_WRITE(GEN6_UCGCTL2,
6101
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6102

6103
	/* This is required by WaCatErrorRejectionIssue:ivb */
6104 6105 6106 6107
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6108
	g4x_disable_trickle_feed(dev);
6109 6110

	gen7_setup_fixed_func_scheduler(dev_priv);
6111

6112 6113 6114 6115 6116
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6117

6118
	/* WaDisable4x2SubspanOptimization:ivb */
6119 6120
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6121

6122 6123 6124
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6125 6126 6127 6128
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6129 6130
	 */
	I915_WRITE(GEN7_GT_MODE,
6131
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6132

6133 6134 6135 6136
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6137

6138 6139
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6140 6141

	gen6_check_mch_setup(dev);
6142 6143
}

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6155
static void valleyview_init_clock_gating(struct drm_device *dev)
6156 6157 6158
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6159
	vlv_init_display_clock_gating(dev_priv);
6160

6161
	/* WaDisableEarlyCull:vlv */
6162 6163 6164
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6165
	/* WaDisableBackToBackFlipFix:vlv */
6166 6167 6168 6169
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6170
	/* WaPsdDispatchEnable:vlv */
6171
	/* WaDisablePSDDualDispatchEnable:vlv */
6172
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6173 6174
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6175

6176 6177 6178
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6179
	/* WaForceL3Serialization:vlv */
6180 6181 6182
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6183
	/* WaDisableDopClockGating:vlv */
6184 6185 6186
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6187
	/* This is required by WaCatErrorRejectionIssue:vlv */
6188 6189 6190 6191
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6192 6193
	gen7_setup_fixed_func_scheduler(dev_priv);

6194
	/*
6195
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6196
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6197 6198
	 */
	I915_WRITE(GEN6_UCGCTL2,
6199
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6200

6201 6202 6203 6204 6205
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6206

6207 6208 6209 6210
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6211 6212
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6213

6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6225 6226 6227 6228 6229 6230
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6231
	/*
6232
	 * WaDisableVLVClockGating_VBIIssue:vlv
6233 6234 6235
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6236
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6237 6238
}

6239 6240 6241 6242
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6243
	vlv_init_display_clock_gating(dev_priv);
6244

6245 6246 6247 6248 6249
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6250 6251 6252 6253

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6254 6255 6256 6257

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6258 6259 6260 6261

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6262 6263
}

6264
static void g4x_init_clock_gating(struct drm_device *dev)
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6280 6281 6282 6283

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6284

6285 6286 6287
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6288
	g4x_disable_trickle_feed(dev);
6289 6290
}

6291
static void crestline_init_clock_gating(struct drm_device *dev)
6292 6293 6294 6295 6296 6297 6298 6299
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6300 6301
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6302 6303 6304

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6305 6306
}

6307
static void broadwater_init_clock_gating(struct drm_device *dev)
6308 6309 6310 6311 6312 6313 6314 6315 6316
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6317 6318
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6319 6320 6321

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6322 6323
}

6324
static void gen3_init_clock_gating(struct drm_device *dev)
6325 6326 6327 6328 6329 6330 6331
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6332 6333 6334

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6335 6336 6337

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6338 6339

	/* interrupts should cause a wake up from C3 */
6340
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6341 6342 6343

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6344 6345 6346

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6347 6348
}

6349
static void i85x_init_clock_gating(struct drm_device *dev)
6350 6351 6352 6353
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6354 6355 6356 6357

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6358 6359 6360

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6361 6362
}

6363
static void i830_init_clock_gating(struct drm_device *dev)
6364 6365 6366 6367
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6368 6369 6370 6371

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6372 6373 6374 6375 6376 6377
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6378 6379
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6380 6381
}

6382 6383 6384 6385 6386 6387
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6388 6389 6390 6391 6392
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6393
	intel_fbc_init(dev_priv);
6394

6395 6396 6397 6398 6399 6400
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6401
	/* For FIFO watermark updates */
6402
	if (INTEL_INFO(dev)->gen >= 9) {
6403 6404
		skl_setup_wm_latency(dev);

6405
		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6406 6407
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6408
	} else if (HAS_PCH_SPLIT(dev)) {
6409
		ilk_setup_wm_latency(dev);
6410

6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6423
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6424
		else if (IS_GEN6(dev))
6425
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6426
		else if (IS_IVYBRIDGE(dev))
6427
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6428
		else if (IS_HASWELL(dev))
6429
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6430
		else if (INTEL_INFO(dev)->gen == 8)
6431
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6432
	} else if (IS_CHERRYVIEW(dev)) {
6433
		dev_priv->display.update_wm = cherryview_update_wm;
6434
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6435 6436
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6437 6438
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6439
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6453
			intel_set_memory_cxsr(dev_priv, false);
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6471 6472 6473
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
6474
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6475 6476
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
6477
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6478 6479 6480 6481 6482 6483 6484 6485
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6486 6487 6488
	}
}

6489
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
6490
{
6491
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6492 6493 6494 6495 6496 6497 6498

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
6499
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

6514
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
6515
{
6516
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
6536

6537
static int vlv_gpu_freq_div(unsigned int czclk_freq)
6538
{
6539 6540 6541 6542 6543 6544 6545 6546
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
6547 6548
	case 400:
		return 20;
6549 6550 6551
	default:
		return -1;
	}
6552
}
6553

6554 6555 6556 6557 6558 6559 6560 6561 6562
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6563 6564
}

6565
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6566
{
6567
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6568

6569 6570 6571
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
6572

6573
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6574 6575
}

6576
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6577
{
6578
	int div, czclk_freq = dev_priv->rps.cz_freq;
6579

6580 6581 6582
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
6583

6584
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6585 6586
}

6587
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6588
{
6589
	int mul, czclk_freq = dev_priv->rps.cz_freq;
6590

6591 6592 6593
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
6594

6595
	/* CHV needs even values */
6596
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6597 6598
}

6599
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6600 6601
{
	if (IS_CHERRYVIEW(dev_priv->dev))
6602
		return chv_gpu_freq(dev_priv, val);
6603
	else if (IS_VALLEYVIEW(dev_priv->dev))
6604 6605 6606
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
6607 6608
}

6609 6610
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
6611
	if (IS_CHERRYVIEW(dev_priv->dev))
6612
		return chv_freq_opcode(dev_priv, val);
6613
	else if (IS_VALLEYVIEW(dev_priv->dev))
6614 6615 6616 6617
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
6618

D
Daniel Vetter 已提交
6619
void intel_pm_setup(struct drm_device *dev)
6620 6621 6622
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
6623 6624
	mutex_init(&dev_priv->rps.hw_lock);

6625 6626
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
6627

6628
	dev_priv->pm.suspended = false;
6629
}