intel_pm.c 200.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56 57
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
58
 *
59 60
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
61
 *
62 63
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
64 65
 */

66 67
static void gen9_init_clock_gating(struct drm_device *dev)
{
68 69 70 71 72 73 74 75
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * WaDisableSDEUnitClockGating:skl
	 * This seems to be a pre-production w/a.
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
76

77 78 79 80 81 82 83 84
	/*
	 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
	 * This is a pre-production w/a.
	 */
	I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
		   I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
		   ~GEN9_DG_MIRROR_FIX_ENABLE);

85 86 87
	/* Wa4x4STCOptimizationDisable:skl */
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
88 89
}

90
static void i8xx_disable_fbc(struct drm_device *dev)
91 92 93 94
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

95 96
	dev_priv->fbc.enabled = false;

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

114
static void i8xx_enable_fbc(struct drm_crtc *crtc)
115 116 117
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
118
	struct drm_framebuffer *fb = crtc->primary->fb;
119
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
120 121
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
122
	int i;
123
	u32 fbc_ctl;
124

125 126
	dev_priv->fbc.enabled = true;

127
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
128 129 130
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

131 132 133 134 135
	/* FBC_CTL wants 32B or 64B units */
	if (IS_GEN2(dev))
		cfb_pitch = (cfb_pitch / 32) - 1;
	else
		cfb_pitch = (cfb_pitch / 64) - 1;
136 137 138 139 140

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

141 142 143 144 145
	if (IS_GEN4(dev)) {
		u32 fbc_ctl2;

		/* Set it up... */
		fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
146
		fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
147 148 149
		I915_WRITE(FBC_CONTROL2, fbc_ctl2);
		I915_WRITE(FBC_FENCE_OFF, crtc->y);
	}
150 151

	/* enable it... */
152 153 154
	fbc_ctl = I915_READ(FBC_CONTROL);
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
155 156 157 158 159 160
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

161
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
162
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
163 164
}

165
static bool i8xx_fbc_enabled(struct drm_device *dev)
166 167 168 169 170 171
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

172
static void g4x_enable_fbc(struct drm_crtc *crtc)
173 174 175
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
176
	struct drm_framebuffer *fb = crtc->primary->fb;
177
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
178 179 180
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

181 182
	dev_priv->fbc.enabled = true;

183 184 185 186 187
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
	else
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
188 189 190 191 192
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;

	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
193
	I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
194

195
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
196 197
}

198
static void g4x_disable_fbc(struct drm_device *dev)
199 200 201 202
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

203 204
	dev_priv->fbc.enabled = false;

205 206 207 208 209 210 211 212 213 214
	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

215
static bool g4x_fbc_enabled(struct drm_device *dev)
216 217 218 219 220 221 222 223 224 225 226 227
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
228 229 230 231

	/* Blitter is part of Media powerwell on VLV. No impact of
	 * his param in other platforms for now */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
232

233 234 235 236 237 238 239 240 241 242
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
243

244
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
245 246
}

247
static void ironlake_enable_fbc(struct drm_crtc *crtc)
248 249 250
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
251
	struct drm_framebuffer *fb = crtc->primary->fb;
252
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
253 254 255
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	u32 dpfc_ctl;

256 257
	dev_priv->fbc.enabled = true;

258
	dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
259
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
260 261 262 263 264 265 266 267
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
268
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
269 270
		break;
	case 1:
271
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
272 273
		break;
	}
274 275 276
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
	if (IS_GEN5(dev))
		dpfc_ctl |= obj->fence_reg;
277 278

	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
279
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
280 281 282 283 284 285 286 287 288 289
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

290
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
291 292
}

293
static void ironlake_disable_fbc(struct drm_device *dev)
294 295 296 297
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

298 299
	dev_priv->fbc.enabled = false;

300 301 302 303 304 305 306 307 308 309
	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

310
static bool ironlake_fbc_enabled(struct drm_device *dev)
311 312 313 314 315 316
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

317
static void gen7_enable_fbc(struct drm_crtc *crtc)
318 319 320
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
321
	struct drm_framebuffer *fb = crtc->primary->fb;
322
	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
323
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
324
	u32 dpfc_ctl;
325

326 327
	dev_priv->fbc.enabled = true;

328 329
	dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
	if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
B
Ben Widawsky 已提交
330 331 332 333 334 335 336 337
		dev_priv->fbc.threshold++;

	switch (dev_priv->fbc.threshold) {
	case 4:
	case 3:
		dpfc_ctl |= DPFC_CTL_LIMIT_4X;
		break;
	case 2:
338
		dpfc_ctl |= DPFC_CTL_LIMIT_2X;
B
Ben Widawsky 已提交
339 340
		break;
	case 1:
341
		dpfc_ctl |= DPFC_CTL_LIMIT_1X;
B
Ben Widawsky 已提交
342 343 344
		break;
	}

345 346
	dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;

347 348 349
	if (dev_priv->fbc.false_color)
		dpfc_ctl |= FBC_CTL_FALSE_COLOR;

350
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
351

R
Rodrigo Vivi 已提交
352
	if (IS_IVYBRIDGE(dev)) {
353
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
354 355 356
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
357
	} else {
358
		/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
359 360 361
		I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
			   I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
			   HSW_FBCQ_DIS);
R
Rodrigo Vivi 已提交
362
	}
363

364 365 366 367 368 369
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

370
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
371 372
}

373 374 375 376
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

377
	return dev_priv->fbc.enabled;
378 379
}

380
void bdw_fbc_sw_flush(struct drm_device *dev, u32 value)
R
Rodrigo Vivi 已提交
381 382 383 384 385 386
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!IS_GEN8(dev))
		return;

387 388 389
	if (!intel_fbc_enabled(dev))
		return;

R
Rodrigo Vivi 已提交
390 391 392
	I915_WRITE(MSG_FBC_REND_STATE, value);
}

393 394 395 396 397 398 399 400 401
static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
402
	if (work == dev_priv->fbc.fbc_work) {
403 404 405
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
406
		if (work->crtc->primary->fb == work->fb) {
407
			dev_priv->display.enable_fbc(work->crtc);
408

409
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
410
			dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
411
			dev_priv->fbc.y = work->crtc->y;
412 413
		}

414
		dev_priv->fbc.fbc_work = NULL;
415 416 417 418 419 420 421 422
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
423
	if (dev_priv->fbc.fbc_work == NULL)
424 425 426 427 428
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
429
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
430 431
	 * entirely asynchronously.
	 */
432
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
433
		/* tasklet was killed before being run, clean up */
434
		kfree(dev_priv->fbc.fbc_work);
435 436 437 438 439 440

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
441
	dev_priv->fbc.fbc_work = NULL;
442 443
}

444
static void intel_enable_fbc(struct drm_crtc *crtc)
445 446 447 448 449 450 451 452 453 454
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

455
	work = kzalloc(sizeof(*work), GFP_KERNEL);
456
	if (work == NULL) {
457
		DRM_ERROR("Failed to allocate FBC work structure\n");
458
		dev_priv->display.enable_fbc(crtc);
459 460 461 462
		return;
	}

	work->crtc = crtc;
463
	work->fb = crtc->primary->fb;
464 465
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

466
	dev_priv->fbc.fbc_work = work;
467 468 469 470 471 472 473 474 475 476 477

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
478 479
	 *
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
480 481 482 483 484 485 486 487 488 489 490 491 492 493
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
494
	dev_priv->fbc.plane = -1;
495 496
}

497 498 499 500 501 502 503 504 505 506
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
			      enum no_fbc_reason reason)
{
	if (dev_priv->fbc.no_fbc_reason == reason)
		return false;

	dev_priv->fbc.no_fbc_reason = reason;
	return true;
}

507 508 509 510 511 512 513 514 515 516
/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
517
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct drm_i915_gem_object *obj;
533
	const struct drm_display_mode *adjusted_mode;
534
	unsigned int max_width, max_height;
535

536
	if (!HAS_FBC(dev)) {
537
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
538
		return;
539
	}
540

541
	if (!i915.powersave) {
542 543
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
544
		return;
545
	}
546 547 548 549 550 551 552 553 554 555

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
556
	for_each_crtc(dev, tmp_crtc) {
557
		if (intel_crtc_active(tmp_crtc) &&
558
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
559
			if (crtc) {
560 561
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
					DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
562 563 564 565 566 567
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

568
	if (!crtc || crtc->primary->fb == NULL) {
569 570
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
			DRM_DEBUG_KMS("no output, disabling\n");
571 572 573 574
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
575
	fb = crtc->primary->fb;
576
	obj = intel_fb_obj(fb);
577
	adjusted_mode = &intel_crtc->config.adjusted_mode;
578

579
	if (i915.enable_fbc < 0) {
580 581
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
			DRM_DEBUG_KMS("disabled per chip default\n");
582
		goto out_disable;
583
	}
584
	if (!i915.enable_fbc) {
585 586
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
			DRM_DEBUG_KMS("fbc disabled per module param\n");
587 588
		goto out_disable;
	}
589 590
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
591 592 593
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("mode incompatible with compression, "
				      "disabling\n");
594 595
		goto out_disable;
	}
596

597 598 599 600
	if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
		max_width = 4096;
		max_height = 4096;
	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
601 602
		max_width = 4096;
		max_height = 2048;
603
	} else {
604 605
		max_width = 2048;
		max_height = 1536;
606
	}
607 608
	if (intel_crtc->config.pipe_src_w > max_width ||
	    intel_crtc->config.pipe_src_h > max_height) {
609 610
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
			DRM_DEBUG_KMS("mode too large for compression, disabling\n");
611 612
		goto out_disable;
	}
B
Ben Widawsky 已提交
613
	if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
614
	    intel_crtc->plane != PLANE_A) {
615
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
616
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
617 618 619 620 621 622 623 624
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
625 626
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
			DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
627 628
		goto out_disable;
	}
629 630 631 632 633 634
	if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
	    to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
			DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
		goto out_disable;
	}
635 636 637 638 639

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

640
	if (i915_gem_stolen_setup_compression(dev, obj->base.size,
B
Ben Widawsky 已提交
641
					      drm_format_plane_cpp(fb->pixel_format, 0))) {
642 643
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
			DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
644 645 646
		goto out_disable;
	}

647 648 649 650 651
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
652 653 654
	if (dev_priv->fbc.plane == intel_crtc->plane &&
	    dev_priv->fbc.fb_id == fb->base.id &&
	    dev_priv->fbc.y == crtc->y)
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

685
	intel_enable_fbc(crtc);
686
	dev_priv->fbc.no_fbc_reason = FBC_OK;
687 688 689 690 691 692 693 694
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
695
	i915_gem_stolen_cleanup_compression(dev);
696 697
}

698 699
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
700
	struct drm_i915_private *dev_priv = dev->dev_private;
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
739
	struct drm_i915_private *dev_priv = dev->dev_private;
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

765
	dev_priv->ips.r_t = dev_priv->mem_freq;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
797
		dev_priv->ips.c_m = 0;
798
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
799
		dev_priv->ips.c_m = 1;
800
	} else {
801
		dev_priv->ips.c_m = 2;
802 803 804
	}
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

843
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

867
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
868
{
869 870
	struct drm_device *dev = dev_priv->dev;
	u32 val;
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
	} else {
		return;
	}
891

892 893
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
910
static const int pessimal_latency_ns = 5000;
911

912
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

928
static int i830_get_fifo_size(struct drm_device *dev, int plane)
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

945
static int i845_get_fifo_size(struct drm_device *dev, int plane)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
963 964 965 966 967
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
968 969
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
970 971 972 973 974
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
975 976
};
static const struct intel_watermark_params pineview_cursor_wm = {
977 978 979 980 981
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
982 983
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
984 985 986 987 988
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
989 990
};
static const struct intel_watermark_params g4x_wm_info = {
991 992 993 994 995
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
996 997
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
998 999 1000 1001 1002
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1003 1004
};
static const struct intel_watermark_params valleyview_wm_info = {
1005 1006 1007 1008 1009
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1010 1011
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
1012 1013 1014 1015 1016
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
1017 1018
};
static const struct intel_watermark_params i965_cursor_wm_info = {
1019 1020 1021 1022 1023
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1024 1025
};
static const struct intel_watermark_params i945_wm_info = {
1026 1027 1028 1029 1030
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1031 1032
};
static const struct intel_watermark_params i915_wm_info = {
1033 1034 1035 1036 1037
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
1038
};
1039
static const struct intel_watermark_params i830_a_wm_info = {
1040 1041 1042 1043 1044
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1045
};
1046 1047 1048 1049 1050 1051 1052
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
1053
static const struct intel_watermark_params i845_wm_info = {
1054 1055 1056 1057 1058
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

1119 1120 1121 1122 1123 1124 1125
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

1126
	for_each_crtc(dev, crtc) {
1127
		if (intel_crtc_active(crtc)) {
1128 1129 1130 1131 1132 1133 1134 1135 1136
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1137
static void pineview_update_wm(struct drm_crtc *unused_crtc)
1138
{
1139
	struct drm_device *dev = unused_crtc->dev;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1150
		intel_set_memory_cxsr(dev_priv, false);
1151 1152 1153 1154 1155
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
1156
		const struct drm_display_mode *adjusted_mode;
1157
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1158 1159 1160 1161
		int clock;

		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		clock = adjusted_mode->crtc_clock;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

1201
		intel_set_memory_cxsr(dev_priv, true);
1202
	} else {
1203
		intel_set_memory_cxsr(dev_priv, false);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
1217
	const struct drm_display_mode *adjusted_mode;
1218 1219 1220 1221 1222
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1223
	if (!intel_crtc_active(crtc)) {
1224 1225 1226 1227 1228
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

1229
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1230
	clock = adjusted_mode->crtc_clock;
1231
	htotal = adjusted_mode->crtc_htotal;
1232
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1233
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
1246
	line_time_us = max(htotal * 1000 / clock, 1);
1247
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1248
	entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
1303
	const struct drm_display_mode *adjusted_mode;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
1316
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1317
	clock = adjusted_mode->crtc_clock;
1318
	htotal = adjusted_mode->crtc_htotal;
1319
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1320
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1321

1322
	line_time_us = max(htotal * 1000 / clock, 1);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
1334
	entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1335 1336 1337 1338 1339 1340 1341 1342
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

1343 1344 1345 1346
static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
				      int pixel_size,
				      int *prec_mult,
				      int *drain_latency)
1347
{
1348
	struct drm_device *dev = crtc->dev;
1349
	int entries;
1350
	int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1351

1352
	if (WARN(clock == 0, "Pixel clock is zero!\n"))
1353 1354
		return false;

1355 1356
	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
		return false;
1357

1358
	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1359 1360 1361 1362 1363 1364
	if (IS_CHERRYVIEW(dev))
		*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
					       DRAIN_LATENCY_PRECISION_16;
	else
		*prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
					       DRAIN_LATENCY_PRECISION_32;
1365
	*drain_latency = (64 * (*prec_mult) * 4) / entries;
1366

1367 1368
	if (*drain_latency > DRAIN_LATENCY_MASK)
		*drain_latency = DRAIN_LATENCY_MASK;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

1381
static void vlv_update_drain_latency(struct drm_crtc *crtc)
1382
{
1383 1384
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1385 1386 1387 1388 1389
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pixel_size;
	int drain_latency;
	enum pipe pipe = intel_crtc->pipe;
	int plane_prec, prec_mult, plane_dl;
1390 1391
	const int high_precision = IS_CHERRYVIEW(dev) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
1392

1393 1394
	plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
		   DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
1395 1396 1397 1398 1399 1400
		   (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));

	if (!intel_crtc_active(crtc)) {
		I915_WRITE(VLV_DDL(pipe), plane_dl);
		return;
	}
1401

1402 1403 1404
	/* Primary plane Drain Latency */
	pixel_size = crtc->primary->fb->bits_per_pixel / 8;	/* BPP */
	if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1405 1406 1407
		plane_prec = (prec_mult == high_precision) ?
					   DDL_PLANE_PRECISION_HIGH :
					   DDL_PLANE_PRECISION_LOW;
1408
		plane_dl |= plane_prec | drain_latency;
1409 1410
	}

1411 1412 1413 1414
	/* Cursor Drain Latency
	 * BPP is always 4 for cursor
	 */
	pixel_size = 4;
1415

1416 1417 1418
	/* Program cursor DL only if it is enabled */
	if (intel_crtc->cursor_base &&
	    vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1419 1420 1421
		plane_prec = (prec_mult == high_precision) ?
					   DDL_CURSOR_PRECISION_HIGH :
					   DDL_CURSOR_PRECISION_LOW;
1422
		plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1423
	}
1424 1425

	I915_WRITE(VLV_DDL(pipe), plane_dl);
1426 1427 1428 1429
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1430
static void valleyview_update_wm(struct drm_crtc *crtc)
1431
{
1432
	struct drm_device *dev = crtc->dev;
1433 1434 1435 1436
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1437
	int ignore_plane_sr, ignore_cursor_sr;
1438
	unsigned int enabled = 0;
1439
	bool cxsr_enabled;
1440

1441
	vlv_update_drain_latency(crtc);
1442

1443
	if (g4x_compute_wm0(dev, PIPE_A,
1444 1445
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1446
			    &planea_wm, &cursora_wm))
1447
		enabled |= 1 << PIPE_A;
1448

1449
	if (g4x_compute_wm0(dev, PIPE_B,
1450 1451
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1452
			    &planeb_wm, &cursorb_wm))
1453
		enabled |= 1 << PIPE_B;
1454 1455 1456 1457 1458 1459

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1460 1461 1462 1463 1464
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1465
			     &ignore_plane_sr, &cursor_sr)) {
1466
		cxsr_enabled = true;
1467
	} else {
1468
		cxsr_enabled = false;
1469
		intel_set_memory_cxsr(dev_priv, false);
1470 1471
		plane_sr = cursor_sr = 0;
	}
1472

1473 1474
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1475 1476 1477 1478 1479 1480 1481 1482
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1483
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1484
	I915_WRITE(DSPFW2,
1485
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1486 1487
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1488 1489
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 1491 1492

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static void cherryview_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, planec_wm;
	int cursora_wm, cursorb_wm, cursorc_wm;
	int plane_sr, cursor_sr;
	int ignore_plane_sr, ignore_cursor_sr;
	unsigned int enabled = 0;
	bool cxsr_enabled;

	vlv_update_drain_latency(crtc);

	if (g4x_compute_wm0(dev, PIPE_A,
1510 1511
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1512 1513 1514 1515
			    &planea_wm, &cursora_wm))
		enabled |= 1 << PIPE_A;

	if (g4x_compute_wm0(dev, PIPE_B,
1516 1517
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1518 1519 1520 1521
			    &planeb_wm, &cursorb_wm))
		enabled |= 1 << PIPE_B;

	if (g4x_compute_wm0(dev, PIPE_C,
1522 1523
			    &valleyview_wm_info, pessimal_latency_ns,
			    &valleyview_cursor_wm_info, pessimal_latency_ns,
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
			    &planec_wm, &cursorc_wm))
		enabled |= 1 << PIPE_C;

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
			     &ignore_plane_sr, &cursor_sr)) {
		cxsr_enabled = true;
	} else {
		cxsr_enabled = false;
		intel_set_memory_cxsr(dev_priv, false);
		plane_sr = cursor_sr = 0;
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
		      "SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      planec_wm, cursorc_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   (planea_wm << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2,
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
	I915_WRITE(DSPFW9_CHV,
		   (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
					      DSPFW_CURSORC_MASK)) |
		   (planec_wm << DSPFW_PLANEC_SHIFT) |
		   (cursorc_wm << DSPFW_CURSORC_SHIFT));

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static void valleyview_update_sprite_wm(struct drm_plane *plane,
					struct drm_crtc *crtc,
					uint32_t sprite_width,
					uint32_t sprite_height,
					int pixel_size,
					bool enabled, bool scaled)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe = to_intel_plane(plane)->pipe;
	int sprite = to_intel_plane(plane)->plane;
	int drain_latency;
	int plane_prec;
	int sprite_dl;
	int prec_mult;
1589 1590
	const int high_precision = IS_CHERRYVIEW(dev) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
1591

1592
	sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
1593 1594 1595 1596
		    (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));

	if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
						 &drain_latency)) {
1597 1598 1599
		plane_prec = (prec_mult == high_precision) ?
					   DDL_SPRITE_PRECISION_HIGH(sprite) :
					   DDL_SPRITE_PRECISION_LOW(sprite);
1600 1601 1602 1603 1604 1605 1606
		sprite_dl |= plane_prec |
			     (drain_latency << DDL_SPRITE_SHIFT(sprite));
	}

	I915_WRITE(VLV_DDL(pipe), sprite_dl);
}

1607
static void g4x_update_wm(struct drm_crtc *crtc)
1608
{
1609
	struct drm_device *dev = crtc->dev;
1610 1611 1612 1613 1614
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1615
	bool cxsr_enabled;
1616

1617
	if (g4x_compute_wm0(dev, PIPE_A,
1618 1619
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1620
			    &planea_wm, &cursora_wm))
1621
		enabled |= 1 << PIPE_A;
1622

1623
	if (g4x_compute_wm0(dev, PIPE_B,
1624 1625
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1626
			    &planeb_wm, &cursorb_wm))
1627
		enabled |= 1 << PIPE_B;
1628 1629 1630 1631 1632 1633

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1634
			     &plane_sr, &cursor_sr)) {
1635
		cxsr_enabled = true;
1636
	} else {
1637
		cxsr_enabled = false;
1638
		intel_set_memory_cxsr(dev_priv, false);
1639 1640
		plane_sr = cursor_sr = 0;
	}
1641

1642 1643
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1644 1645 1646 1647 1648 1649 1650 1651
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1652
		   (planea_wm << DSPFW_PLANEA_SHIFT));
1653
	I915_WRITE(DSPFW2,
1654
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1655 1656 1657
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1658
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1659
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1660 1661 1662

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1663 1664
}

1665
static void i965_update_wm(struct drm_crtc *unused_crtc)
1666
{
1667
	struct drm_device *dev = unused_crtc->dev;
1668 1669 1670 1671
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1672
	bool cxsr_enabled;
1673 1674 1675 1676 1677 1678

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1679 1680
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(crtc)->config.adjusted_mode;
1681
		int clock = adjusted_mode->crtc_clock;
1682
		int htotal = adjusted_mode->crtc_htotal;
1683
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1684
		int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1685 1686 1687
		unsigned long line_time_us;
		int entries;

1688
		line_time_us = max(htotal * 1000 / clock, 1);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1702
			pixel_size * to_intel_crtc(crtc)->cursor_width;
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1714
		cxsr_enabled = true;
1715
	} else {
1716
		cxsr_enabled = false;
1717
		/* Turn off self refresh if both pipes are enabled */
1718
		intel_set_memory_cxsr(dev_priv, false);
1719 1720 1721 1722 1723 1724 1725
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1726 1727 1728 1729 1730
		   (8 << DSPFW_CURSORB_SHIFT) |
		   (8 << DSPFW_PLANEB_SHIFT) |
		   (8 << DSPFW_PLANEA_SHIFT));
	I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
		   (8 << DSPFW_PLANEC_SHIFT_OLD));
1731 1732
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1733 1734 1735

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1736 1737
}

1738
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1739
{
1740
	struct drm_device *dev = unused_crtc->dev;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1755
		wm_info = &i830_a_wm_info;
1756 1757 1758

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1759
	if (intel_crtc_active(crtc)) {
1760
		const struct drm_display_mode *adjusted_mode;
1761
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1762 1763 1764
		if (IS_GEN2(dev))
			cpp = 4;

1765 1766
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1767
					       wm_info, fifo_size, cpp,
1768
					       pessimal_latency_ns);
1769
		enabled = crtc;
1770
	} else {
1771
		planea_wm = fifo_size - wm_info->guard_size;
1772 1773 1774 1775 1776 1777
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1778 1779 1780

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1781
	if (intel_crtc_active(crtc)) {
1782
		const struct drm_display_mode *adjusted_mode;
1783
		int cpp = crtc->primary->fb->bits_per_pixel / 8;
1784 1785 1786
		if (IS_GEN2(dev))
			cpp = 4;

1787 1788
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1789
					       wm_info, fifo_size, cpp,
1790
					       pessimal_latency_ns);
1791 1792 1793 1794
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1795
	} else {
1796
		planeb_wm = fifo_size - wm_info->guard_size;
1797 1798 1799
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1800 1801 1802

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1803
	if (IS_I915GM(dev) && enabled) {
1804
		struct drm_i915_gem_object *obj;
1805

1806
		obj = intel_fb_obj(enabled->primary->fb);
1807 1808

		/* self-refresh seems busted with untiled */
1809
		if (obj->tiling_mode == I915_TILING_NONE)
1810 1811 1812
			enabled = NULL;
	}

1813 1814 1815 1816 1817 1818
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1819
	intel_set_memory_cxsr(dev_priv, false);
1820 1821 1822 1823 1824

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1825 1826
		const struct drm_display_mode *adjusted_mode =
			&to_intel_crtc(enabled)->config.adjusted_mode;
1827
		int clock = adjusted_mode->crtc_clock;
1828
		int htotal = adjusted_mode->crtc_htotal;
1829
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1830
		int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1831 1832 1833
		unsigned long line_time_us;
		int entries;

1834
		line_time_us = max(htotal * 1000 / clock, 1);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1865 1866
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1867 1868
}

1869
static void i845_update_wm(struct drm_crtc *unused_crtc)
1870
{
1871
	struct drm_device *dev = unused_crtc->dev;
1872 1873
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1874
	const struct drm_display_mode *adjusted_mode;
1875 1876 1877 1878 1879 1880 1881
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1882 1883
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1884
				       &i845_wm_info,
1885
				       dev_priv->display.get_fifo_size(dev, 0),
1886
				       4, pessimal_latency_ns);
1887 1888 1889 1890 1891 1892 1893 1894
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1895 1896
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
				    struct drm_crtc *crtc)
1897 1898
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1899
	uint32_t pixel_rate;
1900

1901
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1902 1903 1904 1905

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1906
	if (intel_crtc->config.pch_pfit.enabled) {
1907
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1908
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1909

1910 1911
		pipe_w = intel_crtc->config.pipe_src_w;
		pipe_h = intel_crtc->config.pipe_src_h;
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1926
/* latency must be in 0.1us units. */
1927
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1928 1929 1930 1931
			       uint32_t latency)
{
	uint64_t ret;

1932 1933 1934
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1935 1936 1937 1938 1939 1940
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1941
/* latency must be in 0.1us units. */
1942
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1943 1944 1945 1946 1947
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1948 1949 1950
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1951 1952 1953 1954 1955 1956
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1957
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1958 1959 1960 1961 1962
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1963 1964 1965 1966 1967 1968 1969 1970
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
	struct intel_plane_wm_parameters cursor;
};

1971
struct ilk_pipe_wm_parameters {
1972 1973 1974
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
1975 1976 1977
	struct intel_plane_wm_parameters pri;
	struct intel_plane_wm_parameters spr;
	struct intel_plane_wm_parameters cur;
1978 1979
};

1980
struct ilk_wm_maximums {
1981 1982 1983 1984 1985 1986
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1987 1988 1989 1990 1991 1992 1993
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1994 1995 1996 1997
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1998
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1999 2000
				   uint32_t mem_value,
				   bool is_lp)
2001
{
2002 2003
	uint32_t method1, method2;

2004
	if (!params->active || !params->pri.enabled)
2005 2006
		return 0;

2007
	method1 = ilk_wm_method1(params->pixel_rate,
2008
				 params->pri.bytes_per_pixel,
2009 2010 2011 2012 2013
				 mem_value);

	if (!is_lp)
		return method1;

2014
	method2 = ilk_wm_method2(params->pixel_rate,
2015
				 params->pipe_htotal,
2016 2017
				 params->pri.horiz_pixels,
				 params->pri.bytes_per_pixel,
2018 2019 2020
				 mem_value);

	return min(method1, method2);
2021 2022
}

2023 2024 2025 2026
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2027
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
2028 2029 2030 2031
				   uint32_t mem_value)
{
	uint32_t method1, method2;

2032
	if (!params->active || !params->spr.enabled)
2033 2034
		return 0;

2035
	method1 = ilk_wm_method1(params->pixel_rate,
2036
				 params->spr.bytes_per_pixel,
2037
				 mem_value);
2038
	method2 = ilk_wm_method2(params->pixel_rate,
2039
				 params->pipe_htotal,
2040 2041
				 params->spr.horiz_pixels,
				 params->spr.bytes_per_pixel,
2042 2043 2044 2045
				 mem_value);
	return min(method1, method2);
}

2046 2047 2048 2049
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2050
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
2051 2052
				   uint32_t mem_value)
{
2053
	if (!params->active || !params->cur.enabled)
2054 2055
		return 0;

2056
	return ilk_wm_method2(params->pixel_rate,
2057
			      params->pipe_htotal,
2058 2059
			      params->cur.horiz_pixels,
			      params->cur.bytes_per_pixel,
2060 2061 2062
			      mem_value);
}

2063
/* Only for WM_LP. */
2064
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2065
				   uint32_t pri_val)
2066
{
2067
	if (!params->active || !params->pri.enabled)
2068 2069
		return 0;

2070
	return ilk_wm_fbc(pri_val,
2071 2072
			  params->pri.horiz_pixels,
			  params->pri.bytes_per_pixel);
2073 2074
}

2075 2076
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
2077 2078 2079
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
2080 2081 2082 2083 2084
		return 768;
	else
		return 512;
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

2119 2120 2121
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2122
				     const struct intel_wm_config *config,
2123 2124 2125 2126 2127 2128
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
2129
	if (is_sprite && !config->sprites_enabled)
2130 2131 2132
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2133
	if (level == 0 || config->num_pipes_active > 1) {
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

2145
	if (config->sprites_enabled) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2157
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2158 2159 2160 2161
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2162 2163
				      int level,
				      const struct intel_wm_config *config)
2164 2165
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2166
	if (level > 0 && config->num_pipes_active > 1)
2167 2168 2169
		return 64;

	/* otherwise just report max that registers can hold */
2170
	return ilk_cursor_wm_reg_max(dev, level);
2171 2172
}

2173
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2174 2175 2176
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2177
				    struct ilk_wm_maximums *max)
2178
{
2179 2180 2181
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2182
	max->fbc = ilk_fbc_wm_reg_max(dev);
2183 2184
}

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

2195
static bool ilk_validate_wm_level(int level,
2196
				  const struct ilk_wm_maximums *max,
2197
				  struct intel_wm_level *result)
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2236
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2237
				 int level,
2238
				 const struct ilk_pipe_wm_parameters *p,
2239
				 struct intel_wm_level *result)
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
	result->enable = true;
}

2259 2260
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2261 2262
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2263 2264
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2265
	u32 linetime, ips_linetime;
2266

2267 2268
	if (!intel_crtc_active(crtc))
		return 0;
2269

2270 2271 2272
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2273 2274 2275
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
				     mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2276
					 intel_ddi_get_cdclk_freq(dev_priv));
2277

2278 2279
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2280 2281
}

2282
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2283 2284 2285
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2286 2287
	if (IS_GEN9(dev)) {
		uint32_t val;
2288
		int ret, i;
2289
		int level, max_level = ilk_wm_max_level(dev);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2332 2333 2334 2335 2336 2337 2338 2339 2340
		/*
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2341 2342 2343 2344 2345
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2346 2347 2348 2349 2350
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2351 2352 2353
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2354

2355 2356
				break;
			}
2357
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2358 2359 2360 2361 2362
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2363 2364 2365 2366
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2367 2368 2369 2370 2371 2372 2373
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2374 2375 2376 2377 2378 2379 2380
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2381 2382 2383
	}
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2402
int ilk_wm_max_level(const struct drm_device *dev)
2403 2404
{
	/* how many WM levels are we expecting */
2405 2406 2407
	if (IS_GEN9(dev))
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2408
		return 4;
2409
	else if (INTEL_INFO(dev)->gen >= 6)
2410
		return 3;
2411
	else
2412 2413
		return 2;
}
2414

2415 2416
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2417
				   const uint16_t wm[8])
2418 2419
{
	int level, max_level = ilk_wm_max_level(dev);
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2430 2431 2432 2433 2434 2435 2436
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2437 2438 2439 2440 2441 2442 2443 2444
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2482
static void ilk_setup_wm_latency(struct drm_device *dev)
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2495 2496 2497 2498

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2499 2500 2501

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2502 2503
}

2504 2505 2506 2507 2508 2509 2510 2511
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2512
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2513
				      struct ilk_pipe_wm_parameters *p)
2514
{
2515 2516 2517 2518
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
2519

2520 2521
	if (!intel_crtc_active(crtc))
		return;
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	p->active = true;
	p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
	p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
	p->cur.bytes_per_pixel = 4;
	p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
	p->cur.horiz_pixels = intel_crtc->cursor_width;
	/* TODO: for now, assume primary and cursor planes are always enabled. */
	p->pri.enabled = true;
	p->cur.enabled = true;
2533

2534
	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2535 2536
		struct intel_plane *intel_plane = to_intel_plane(plane);

2537
		if (intel_plane->pipe == pipe) {
2538
			p->spr = intel_plane->wm;
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
			break;
		}
	}
}

static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
2550
	for_each_intel_crtc(dev, intel_crtc) {
2551
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2552

2553 2554
		if (!wm->pipe_enabled)
			continue;
2555

2556 2557 2558
		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
2559
	}
2560 2561
}

2562 2563
/* Compute new watermarks for the pipe */
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2564
				  const struct ilk_pipe_wm_parameters *params,
2565 2566 2567
				  struct intel_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
2568
	const struct drm_i915_private *dev_priv = dev->dev_private;
2569 2570 2571 2572 2573 2574 2575
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = params->spr.enabled,
		.sprites_scaled = params->spr.scaled,
	};
2576
	struct ilk_wm_maximums max;
2577

2578 2579 2580 2581
	pipe_wm->pipe_enabled = params->active;
	pipe_wm->sprites_enabled = params->spr.enabled;
	pipe_wm->sprites_scaled = params->spr.scaled;

2582 2583 2584 2585 2586 2587 2588 2589
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
	if (params->spr.scaled)
		max_level = 0;

2590
	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2591

2592
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2594

2595 2596 2597
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2598
	/* At least LP0 must be valid */
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return false;

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

		ilk_compute_wm_level(dev_priv, level, params, &wm);

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

	return true;
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2632 2633
	ret_wm->enable = true;

2634
	for_each_intel_crtc(dev, intel_crtc) {
2635 2636 2637 2638 2639
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2640

2641 2642 2643 2644 2645
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2646
		if (!wm->enable)
2647
			ret_wm->enable = false;
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2660
			 const struct intel_wm_config *config,
2661
			 const struct ilk_wm_maximums *max,
2662 2663 2664
			 struct intel_pipe_wm *merged)
{
	int level, max_level = ilk_wm_max_level(dev);
2665
	int last_enabled_level = max_level;
2666

2667 2668 2669 2670 2671
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2672 2673
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2674 2675 2676 2677 2678 2679 2680

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2681 2682 2683 2684 2685
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2686 2687 2688 2689 2690 2691

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2692 2693
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2694 2695 2696
			wm->fbc_val = 0;
		}
	}
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2711 2712
}

2713 2714 2715 2716 2717 2718
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2719 2720 2721 2722 2723
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2724
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2725 2726 2727 2728 2729
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2730
static void ilk_compute_wm_results(struct drm_device *dev,
2731
				   const struct intel_pipe_wm *merged,
2732
				   enum intel_ddb_partitioning partitioning,
2733
				   struct ilk_wm_values *results)
2734
{
2735 2736
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2737

2738
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2739
	results->partitioning = partitioning;
2740

2741
	/* LP1+ register values */
2742
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2743
		const struct intel_wm_level *r;
2744

2745
		level = ilk_wm_lp_to_level(wm_lp, merged);
2746

2747
		r = &merged->wm[level];
2748

2749 2750 2751 2752 2753
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2754
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2755 2756 2757
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2758 2759 2760
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2761 2762 2763 2764 2765 2766 2767
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2768 2769 2770 2771
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2772 2773 2774 2775 2776
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2777
	}
2778

2779
	/* LP0 register values */
2780
	for_each_intel_crtc(dev, intel_crtc) {
2781 2782 2783 2784 2785 2786 2787 2788
		enum pipe pipe = intel_crtc->pipe;
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];

		if (WARN_ON(!r->enable))
			continue;

		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2789

2790 2791 2792 2793
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2794 2795 2796
	}
}

2797 2798
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2799
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2800 2801
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2802
{
2803 2804
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2805

2806 2807 2808 2809 2810
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2811 2812
	}

2813 2814
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2815 2816 2817
			return r2;
		else
			return r1;
2818
	} else if (level1 > level2) {
2819 2820 2821 2822 2823 2824
		return r1;
	} else {
		return r2;
	}
}

2825 2826 2827 2828 2829 2830 2831 2832
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2833
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2834 2835
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2836 2837 2838 2839 2840
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2841
	for_each_pipe(dev_priv, pipe) {
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2885 2886
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2887
{
2888
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2889
	bool changed = false;
2890

2891 2892 2893
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2894
		changed = true;
2895 2896 2897 2898
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2899
		changed = true;
2900 2901 2902 2903
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2904
		changed = true;
2905
	}
2906

2907 2908 2909 2910
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2911

2912 2913 2914 2915 2916 2917 2918
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2919 2920
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2921 2922
{
	struct drm_device *dev = dev_priv->dev;
2923
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2924 2925 2926
	unsigned int dirty;
	uint32_t val;

2927
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2928 2929 2930 2931 2932
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2933
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2934
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2935
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2936
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2937
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2938 2939
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2940
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2941
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2942
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2943
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2944
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2945 2946
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2947
	if (dirty & WM_DIRTY_DDB) {
2948
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2963 2964
	}

2965
	if (dirty & WM_DIRTY_FBC) {
2966 2967 2968 2969 2970 2971 2972 2973
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2974 2975 2976 2977 2978
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2979 2980 2981 2982 2983
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2984

2985
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2986
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2987
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2988
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2989
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2990
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2991 2992

	dev_priv->wm.hw = *results;
2993 2994
}

2995 2996 2997 2998 2999 3000 3001
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
				   struct drm_crtc *for_crtc,
				   const struct intel_wm_config *config,
				   const struct skl_pipe_wm_parameters *params,
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

	if (!params->active) {
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

	ddb_size = SKL_DDB_SIZE;

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
		if (!intel_crtc_active(crtc))
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
3043
	alloc->end = alloc->start + pipe_size;
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

3054 3055 3056 3057
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3058 3059
	if (entry->end)
		entry->end += 1;
3060 3061
}

3062 3063
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
{
	struct drm_device *dev = dev_priv->dev;
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
		for_each_plane(pipe, plane) {
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
	}
}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
{
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
{
	unsigned int total_data_rate = 0;
	int plane;

	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		total_data_rate += skl_plane_relative_data_rate(p);
	}

	return total_data_rate;
}

static void
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
		      const struct intel_wm_config *config,
		      const struct skl_pipe_wm_parameters *params,
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct skl_ddb_entry alloc;
	uint16_t alloc_size, start, cursor_blocks;
	unsigned int total_data_rate;
	int plane;

	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, &alloc);
	alloc_size = skl_ddb_entry_size(&alloc);
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
3136
	ddb->cursor[pipe].start = alloc.end - cursor_blocks;
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	ddb->cursor[pipe].end = alloc.end;

	alloc_size -= cursor_blocks;
	alloc.end -= cursor_blocks;

	/*
	 * Each active plane get a portion of the remaining space, in
	 * proportion to the amount of data they need to fetch from memory.
	 *
	 * FIXME: we may not allocate every single block here.
	 */
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);

	start = alloc.start;
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
		unsigned int data_rate;
		uint16_t plane_blocks;

		p = &params->plane[plane];
		if (!p->enabled)
			continue;

		data_rate = skl_plane_relative_data_rate(p);

		/*
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
		plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
				       total_data_rate);

		ddb->plane[pipe][plane].start = start;
3170
		ddb->plane[pipe][plane].end = start + plane_blocks;
3171 3172 3173 3174 3175 3176

		start += plane_blocks;
	}

}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_config *config)
{
	/* TODO: Take into account the scalers once we support them */
	return config->adjusted_mode.crtc_clock;
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret, plane_bytes_per_line, wm_intermediate_val;

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
				plane_bytes_per_line;

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
		    sizeof(new_ddb->cursor[pipe])))
		return true;

	return false;
}

static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
	struct drm_plane *plane;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += intel_crtc_active(crtc);

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
	int i = 1; /* Index for sprite planes start */

	p->active = intel_crtc_active(crtc);
	if (p->active) {
		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(&intel_crtc->config);

		/*
		 * For now, assume primary and cursor planes are always enabled.
		 */
		p->plane[0].enabled = true;
		p->plane[0].bytes_per_pixel =
			crtc->primary->fb->bits_per_pixel / 8;
		p->plane[0].horiz_pixels = intel_crtc->config.pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config.pipe_src_h;

		p->cursor.enabled = true;
		p->cursor.bytes_per_pixel = 4;
		p->cursor.horiz_pixels = intel_crtc->cursor_width ?
					 intel_crtc->cursor_width : 64;
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe == pipe)
			p->plane[i++] = intel_plane->wm;
	}
}

static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
				   struct intel_plane_wm_parameters *p_params,
3296
				   uint16_t ddb_allocation,
3297
				   uint32_t mem_value,
3298 3299
				   uint16_t *out_blocks, /* out */
				   uint8_t *out_lines /* out */)
3300
{
3301
	uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
3302 3303
	uint32_t result_bytes;

3304
	if (mem_value == 0 || !p->active || !p_params->enabled)
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		return false;

	method1 = skl_wm_method1(p->pixel_rate,
				 p_params->bytes_per_pixel,
				 mem_value);
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
				 p_params->bytes_per_pixel,
				 mem_value);

	plane_bytes_per_line = p_params->horiz_pixels *
					p_params->bytes_per_pixel;

	/* For now xtile and linear */
3320
	if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
3321 3322 3323 3324
		result_bytes = min(method1, method2);
	else
		result_bytes = method1;

3325 3326 3327 3328 3329 3330 3331 3332
	res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
	res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);

	if (res_blocks > ddb_allocation || res_lines > 31)
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
				 int level,
				 int num_planes,
				 struct skl_wm_level *result)
{
	uint16_t latency = dev_priv->wm.skl_latency[level];
	uint16_t ddb_blocks;
	int i;

	for (i = 0; i < num_planes; i++) {
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

		result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
						ddb_blocks,
						latency,
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}

	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
	result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
						 latency, &result->cursor_res_b,
						 &result->cursor_res_l);
}

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
static uint32_t
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
{
	if (!intel_crtc_active(crtc))
		return 0;

	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);

}

static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
				      struct skl_pipe_wm *pipe_wm)
{
	/*
	 * For now it is suggested to use the LP0 wm val of corresponding
	 * plane as transition wm val.
	 */
	if (!params->active)
		return;
}

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm_parameters *params,
				struct skl_pipe_wm *pipe_wm)
{
	struct drm_device *dev = crtc->dev;
	const struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
	}
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);

	skl_compute_transition_wm(crtc, params, pipe_wm);
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm_parameters *p,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
		uint32_t temp;
		int i;

		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
			/* Use the LP0 WM value for transition WM for now. */
			if (level == 0)
				r->plane_trans[pipe][i] = temp;
		}

		temp = 0;

		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].cursor_res_b;

		if (p_wm->wm[level].cursor_en)
			temp |= PLANE_WM_EN;

		r->cursor[pipe][level] = temp;
		/* Use the LP0 WM value for transition WM for now. */
		if (level == 0)
			r->cursor_trans[pipe] = temp;

	}

	r->wm_linetime[pipe] = p_wm->linetime;
}

3453 3454 3455 3456 3457 3458 3459 3460 3461
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

		if (new->dirty[pipe]) {
			I915_WRITE(PIPE_WM_LINETIME(pipe),
					new->wm_linetime[pipe]);

			for (level = 0; level <= max_level; level++) {
				for (i = 0; i < intel_num_planes(crtc); i++)
					I915_WRITE(PLANE_WM(pipe, i, level),
						new->plane[pipe][i][level]);
				I915_WRITE(CUR_WM(pipe, level),
					new->cursor[pipe][level]);
			}
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM_TRANS(pipe, i),
						new->plane_trans[pipe][i]);
			I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3487 3488

			for (i = 0; i < intel_num_planes(crtc); i++)
3489 3490 3491
				skl_ddb_entry_write(dev_priv,
						    PLANE_BUF_CFG(pipe, i),
						    &new->ddb.plane[pipe][i]);
3492

3493 3494
			skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
					    &new->ddb.cursor[pipe]);
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		}
	}
}

static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_pipe_wm_parameters *params,
			       struct intel_wm_config *config,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	skl_compute_wm_pipe_parameters(crtc, params);
3508
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);

	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
		return false;

	intel_crtc->wm.skl_active = *pipe_wm;
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct intel_wm_config *config,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm_parameters params = {};
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
		r->dirty[intel_crtc->pipe] = true;
	}
}

static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_pipe_wm_parameters params = {};
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};

	memset(results, 0, sizeof(*results));

	skl_compute_wm_global_parameters(dev, &config);

	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
		return;

	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
	results->dirty[intel_crtc->pipe] = true;

	skl_update_other_pipe_wm(dev, crtc, &config, results);
	skl_write_wm_values(dev_priv, results);
3590 3591 3592

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
}

static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.bytes_per_pixel = pixel_size;

	skl_update_wm(crtc);
}

3611
static void ilk_update_wm(struct drm_crtc *crtc)
3612
{
3613
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3614
	struct drm_device *dev = crtc->dev;
3615
	struct drm_i915_private *dev_priv = dev->dev_private;
3616 3617 3618
	struct ilk_wm_maximums max;
	struct ilk_pipe_wm_parameters params = {};
	struct ilk_wm_values results = {};
3619
	enum intel_ddb_partitioning partitioning;
3620
	struct intel_pipe_wm pipe_wm = {};
3621
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3622
	struct intel_wm_config config = {};
3623

3624
	ilk_compute_wm_parameters(crtc, &params);
3625 3626 3627 3628 3629

	intel_compute_pipe_wm(crtc, &params, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;
3630

3631
	intel_crtc->wm.active = pipe_wm;
3632

3633 3634
	ilk_compute_wm_config(dev, &config);

3635
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3636
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3637 3638

	/* 5/6 split only in single pipe config on IVB+ */
3639 3640
	if (INTEL_INFO(dev)->gen >= 7 &&
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3641
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3642
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3643

3644
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3645
	} else {
3646
		best_lp_wm = &lp_wm_1_2;
3647 3648
	}

3649
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3650
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3651

3652
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3653

3654
	ilk_write_wm_values(dev_priv, &results);
3655 3656
}

3657 3658 3659 3660 3661
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
3662
{
3663
	struct drm_device *dev = plane->dev;
3664
	struct intel_plane *intel_plane = to_intel_plane(plane);
3665

3666 3667 3668
	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
3669
	intel_plane->wm.vert_pixels = sprite_width;
3670
	intel_plane->wm.bytes_per_pixel = pixel_size;
3671

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

3682
	ilk_update_wm(crtc);
3683 3684
}

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->wm[level].cursor_en = is_enabled;
			active->wm[level].cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
			active->trans_wm.cursor_en = is_enabled;
			active->trans_wm.cursor_res_b =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.cursor_res_l =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));

	if (!intel_crtc_active(crtc))
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
		temp = hw->cursor[pipe][level];
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

	temp = hw->cursor_trans[pipe];
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3783 3784
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3785 3786
	struct drm_crtc *crtc;

3787
	skl_ddb_get_hw_state(dev_priv, ddb);
3788 3789 3790 3791
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3792 3793 3794 3795
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3796
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3807
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3808
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3809

3810 3811 3812
	active->pipe_enabled = intel_crtc_active(crtc);

	if (active->pipe_enabled) {
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3842
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3843 3844
	struct drm_crtc *crtc;

3845
	for_each_crtc(dev, crtc)
3846 3847 3848 3849 3850 3851 3852
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3853 3854 3855 3856
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
3857

3858
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3859 3860 3861 3862 3863
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3864 3865 3866 3867 3868

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
3901
void intel_update_watermarks(struct drm_crtc *crtc)
3902
{
3903
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3904 3905

	if (dev_priv->display.update_wm)
3906
		dev_priv->display.update_wm(crtc);
3907 3908
}

3909 3910
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
3911 3912 3913
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
3914
				    bool enabled, bool scaled)
3915
{
3916
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3917 3918

	if (dev_priv->display.update_sprite_wm)
3919 3920
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
3921
						   pixel_size, enabled, scaled);
3922 3923
}

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

3938
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
B
Ben Widawsky 已提交
3953
	i915_gem_object_ggtt_unpin(ctx);
3954 3955 3956 3957 3958
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

3959 3960 3961 3962 3963 3964 3965 3966 3967
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

3968 3969 3970 3971 3972
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

3973 3974
	assert_spin_locked(&mchdev_lock);

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

3992
static void ironlake_enable_drps(struct drm_device *dev)
3993 3994 3995 3996 3997
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

3998 3999
	spin_lock_irq(&mchdev_lock);

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

4023 4024
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4025

4026 4027 4028
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4045
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4046
		DRM_ERROR("stuck trying to change perf mode\n");
4047
	mdelay(1);
4048 4049 4050

	ironlake_set_drps(dev, fstart);

4051
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4052
		I915_READ(0x112e0);
4053 4054
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
4055
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4056 4057

	spin_unlock_irq(&mchdev_lock);
4058 4059
}

4060
static void ironlake_disable_drps(struct drm_device *dev)
4061 4062
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4063 4064 4065 4066 4067
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4068 4069 4070 4071 4072 4073 4074 4075 4076

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4077
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4078
	mdelay(1);
4079 4080
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4081
	mdelay(1);
4082

4083
	spin_unlock_irq(&mchdev_lock);
4084 4085
}

4086 4087 4088 4089 4090
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4091
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4092
{
4093
	u32 limits;
4094

4095 4096 4097 4098 4099 4100
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4101 4102 4103
	limits = dev_priv->rps.max_freq_softlimit << 24;
	if (val <= dev_priv->rps.min_freq_softlimit)
		limits |= dev_priv->rps.min_freq_softlimit << 16;
4104 4105 4106 4107

	return limits;
}

4108 4109 4110 4111 4112 4113 4114
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4115
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4116 4117 4118 4119
			new_power = BETWEEN;
		break;

	case BETWEEN:
4120
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4121
			new_power = LOW_POWER;
4122
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4123 4124 4125 4126
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4127
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4128 4129 4130 4131
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4132
	if (val == dev_priv->rps.min_freq_softlimit)
4133
		new_power = LOW_POWER;
4134
	if (val == dev_priv->rps.max_freq_softlimit)
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
		I915_WRITE(GEN6_RP_UP_EI, 12500);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);

		/* Downclock if less than 85% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
		I915_WRITE(GEN6_RP_UP_EI, 10250);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);

		/* Downclock if less than 75% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
		I915_WRITE(GEN6_RP_UP_EI, 8000);
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);

		/* Downclock if less than 60% busy over 32ms */
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);

		I915_WRITE(GEN6_RP_CONTROL,
			   GEN6_RP_MEDIA_TURBO |
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
			   GEN6_RP_MEDIA_IS_GFX |
			   GEN6_RP_ENABLE |
			   GEN6_RP_UP_BUSY_AVG |
			   GEN6_RP_DOWN_IDLE_AVG);
		break;
	}

	dev_priv->rps.power = new_power;
	dev_priv->rps.last_adj = 0;
}

4200 4201 4202 4203 4204 4205 4206 4207 4208
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
		mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
	if (val < dev_priv->rps.max_freq_softlimit)
		mask |= GEN6_PM_RP_UP_THRESHOLD;

4209 4210 4211
	mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
	mask &= dev_priv->pm_rps_events;

4212 4213 4214 4215 4216 4217
	/* IVB and SNB hard hangs on looping batchbuffer
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
	 */
	if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
		mask |= GEN6_PM_RP_UP_EI_EXPIRED;

4218 4219 4220
	if (IS_GEN8(dev_priv->dev))
		mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;

4221 4222 4223
	return ~mask;
}

4224 4225 4226
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4227 4228 4229
void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4230

4231
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4232 4233
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
4234

C
Chris Wilson 已提交
4235 4236 4237 4238 4239
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4240

4241
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4242 4243 4244 4245 4246 4247 4248
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4249
	}
4250 4251 4252 4253

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
C
Chris Wilson 已提交
4254
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
4255
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4256

4257 4258
	POSTING_READ(GEN6_RPNSWREQ);

4259
	dev_priv->rps.cur_freq = val;
4260
	trace_intel_gpu_freq_change(val * 50);
4261 4262
}

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
 *
 * * If Gfx is Idle, then
 * 1. Mask Turbo interrupts
 * 2. Bring up Gfx clock
 * 3. Change the freq to Rpn and wait till P-Unit updates freq
 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
 * 5. Unmask Turbo interrupts
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4274 4275 4276 4277 4278 4279 4280 4281
	struct drm_device *dev = dev_priv->dev;

	/* Latest VLV doesn't need to force the gfx clock */
	if (dev->pdev->revision >= 0xd) {
		valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		return;
	}

4282 4283 4284 4285
	/*
	 * When we are idle.  Drop to min voltage state.
	 */

4286
	if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
4287 4288 4289 4290 4291
		return;

	/* Mask turbo interrupt so that they will not come in between */
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);

4292
	vlv_force_gfx_clock(dev_priv, true);
4293

4294
	dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
4295 4296

	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
4297
					dev_priv->rps.min_freq_softlimit);
4298 4299 4300 4301 4302

	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
				& GENFREQSTATUS) == 0, 5))
		DRM_ERROR("timed out waiting for Punit\n");

4303
	vlv_force_gfx_clock(dev_priv, false);
4304

4305 4306
	I915_WRITE(GEN6_PMINTRMSK,
		   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4307 4308
}

4309 4310
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4311 4312
	struct drm_device *dev = dev_priv->dev;

4313
	mutex_lock(&dev_priv->rps.hw_lock);
4314
	if (dev_priv->rps.enabled) {
4315 4316 4317
		if (IS_CHERRYVIEW(dev))
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
		else if (IS_VALLEYVIEW(dev))
4318
			vlv_set_rps_idle(dev_priv);
4319
		else
4320
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4321 4322
		dev_priv->rps.last_adj = 0;
	}
4323 4324 4325 4326 4327
	mutex_unlock(&dev_priv->rps.hw_lock);
}

void gen6_rps_boost(struct drm_i915_private *dev_priv)
{
4328 4329
	struct drm_device *dev = dev_priv->dev;

4330
	mutex_lock(&dev_priv->rps.hw_lock);
4331
	if (dev_priv->rps.enabled) {
4332
		if (IS_VALLEYVIEW(dev))
4333
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4334
		else
4335
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
4336 4337
		dev_priv->rps.last_adj = 0;
	}
4338 4339 4340
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4341 4342 4343
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4344

4345
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4346 4347
	WARN_ON(val > dev_priv->rps.max_freq_softlimit);
	WARN_ON(val < dev_priv->rps.min_freq_softlimit);
4348

4349 4350 4351 4352
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4353 4354 4355 4356 4357 4358
	if (val != dev_priv->rps.cur_freq) {
		DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
				 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
				 dev_priv->rps.cur_freq,
				 vlv_gpu_freq(dev_priv, val), val);

4359
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4360
	}
4361

4362
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4363

4364
	dev_priv->rps.cur_freq = val;
4365
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
4366 4367
}

4368 4369 4370
static void gen8_disable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385

	I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
	I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
				   ~dev_priv->pm_rps_events);
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
	 * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
	 * gen8_enable_rps will clean up. */

	spin_lock_irq(&dev_priv->irq_lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->irq_lock);

	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
4386 4387
}

4388
static void gen6_disable_rps_interrupts(struct drm_device *dev)
4389 4390 4391 4392
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4393 4394
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
				~dev_priv->pm_rps_events);
4395 4396 4397 4398 4399
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

4400
	spin_lock_irq(&dev_priv->irq_lock);
4401
	dev_priv->rps.pm_iir = 0;
4402
	spin_unlock_irq(&dev_priv->irq_lock);
4403

4404
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
4405 4406
}

4407
static void gen6_disable_rps(struct drm_device *dev)
4408 4409 4410 4411
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4412
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4413

4414 4415 4416 4417
	if (IS_BROADWELL(dev))
		gen8_disable_rps_interrupts(dev);
	else
		gen6_disable_rps_interrupts(dev);
4418 4419
}

4420 4421 4422 4423 4424
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4425 4426

	gen8_disable_rps_interrupts(dev);
4427 4428
}

4429 4430 4431 4432
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4433 4434 4435 4436
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

4437
	I915_WRITE(GEN6_RC_CONTROL, 0);
4438

4439 4440
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);

4441
	gen6_disable_rps_interrupts(dev);
4442 4443
}

B
Ben Widawsky 已提交
4444 4445
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4446 4447 4448 4449 4450 4451
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4452 4453 4454 4455 4456 4457 4458 4459 4460
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4461 4462
}

I
Imre Deak 已提交
4463
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4464
{
4465 4466 4467 4468
	/* No RC6 before Ironlake */
	if (INTEL_INFO(dev)->gen < 5)
		return 0;

I
Imre Deak 已提交
4469 4470 4471 4472
	/* RC6 is only on Ironlake mobile not on desktop */
	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
		return 0;

4473
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4474 4475 4476
	if (enable_rc6 >= 0) {
		int mask;

4477
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4478 4479 4480 4481 4482 4483
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4484 4485
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4486 4487 4488

		return enable_rc6 & mask;
	}
4489

4490 4491 4492
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
4493

4494
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4495
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4496 4497

	return INTEL_RC6_ENABLE;
4498 4499
}

I
Imre Deak 已提交
4500 4501 4502 4503 4504
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4505 4506 4507 4508 4509 4510
static void gen8_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
	WARN_ON(dev_priv->rps.pm_iir);
4511
	gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
4512 4513 4514 4515
	I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
	spin_unlock_irq(&dev_priv->irq_lock);
}

4516 4517 4518 4519 4520
static void gen6_enable_rps_interrupts(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_irq(&dev_priv->irq_lock);
4521
	WARN_ON(dev_priv->rps.pm_iir);
4522
	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
4523
	I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
4524 4525 4526
	spin_unlock_irq(&dev_priv->irq_lock);
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
{
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
	/* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
	/* XXX: only BYT has a special efficient freq */
	dev_priv->rps.efficient_freq	= dev_priv->rps.rp1_freq;
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
}

4548 4549 4550
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4551
	struct intel_engine_cs *ring;
4552 4553 4554 4555 4556 4557 4558 4559
	uint32_t rc6_mask = 0, rp_state_cap;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4560
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4561 4562 4563 4564 4565

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4566
	parse_rp_state_cap(dev_priv, rp_state_cap);
4567 4568 4569 4570 4571 4572 4573 4574

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4575 4576 4577 4578
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4579 4580 4581 4582

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4583
	intel_print_rc6_info(dev, rc6_mask);
4584 4585 4586 4587 4588 4589 4590 4591
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4592 4593

	/* 4 Program defaults and thresholds for RPS*/
4594 4595 4596 4597
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4612 4613

	/* 5: Enable RPS */
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4624
	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
4625 4626

	gen8_enable_rps_interrupts(dev);
4627

4628
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4629 4630
}

4631
static void gen6_enable_rps(struct drm_device *dev)
4632
{
4633
	struct drm_i915_private *dev_priv = dev->dev_private;
4634
	struct intel_engine_cs *ring;
4635
	u32 rp_state_cap;
4636
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4637 4638
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4639
	int i, ret;
4640

4641
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4642

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4657
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4658

4659 4660
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);

4661
	parse_rp_state_cap(dev_priv, rp_state_cap);
J
Jeff McGee 已提交
4662

4663 4664 4665 4666 4667 4668 4669 4670 4671
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4672 4673
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4674 4675 4676

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4677
	if (IS_IVYBRIDGE(dev))
4678 4679 4680
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4681
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4682 4683
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4684
	/* Check if we are enabling RC6 */
4685 4686 4687 4688
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4689 4690 4691 4692
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4693

4694 4695 4696
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4697

B
Ben Widawsky 已提交
4698
	intel_print_rc6_info(dev, rc6_mask);
4699 4700 4701 4702 4703 4704

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4705 4706
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4707 4708
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4709
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4710
	if (ret)
B
Ben Widawsky 已提交
4711
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4712 4713 4714 4715

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4716
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4717
				 (pcu_mbox & 0xff) * 50);
4718
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4719 4720
	}

4721
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4722
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4723

4724
	gen6_enable_rps_interrupts(dev);
4725

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4740
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4741 4742
}

4743
static void __gen6_update_ring_freq(struct drm_device *dev)
4744
{
4745
	struct drm_i915_private *dev_priv = dev->dev_private;
4746
	int min_freq = 15;
4747 4748
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4749
	int scaling_factor = 180;
4750
	struct cpufreq_policy *policy;
4751

4752
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4753

4754 4755 4756 4757 4758 4759 4760 4761 4762
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4763
		max_ia_freq = tsc_khz;
4764
	}
4765 4766 4767 4768

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4769
	min_ring_freq = I915_READ(DCLK) & 0xf;
4770 4771
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4772

4773 4774 4775 4776 4777
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4778
	for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4779
	     gpu_freq--) {
4780
		int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4781 4782
		unsigned int ia_freq = 0, ring_freq = 0;

4783 4784 4785 4786
		if (INTEL_INFO(dev)->gen >= 8) {
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
4787
			ring_freq = mult_frac(gpu_freq, 5, 4);
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
4804

B
Ben Widawsky 已提交
4805 4806
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4807 4808 4809
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
4810 4811 4812
	}
}

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4825
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
{
	u32 val, rp0;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;

	return rp1;
}

4855
static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4856 4857 4858 4859 4860 4861 4862 4863
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
	rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
	return rpn;
}

4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

4875
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4876 4877 4878
{
	u32 val, rp0;

4879
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

4892
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4893
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4894
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4895 4896 4897 4898 4899
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

4900
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4901
{
4902
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4903 4904
}

4905 4906 4907 4908 4909 4910 4911 4912 4913
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
}

4943 4944 4945 4946 4947 4948 4949 4950
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

4951 4952
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

4953 4954 4955 4956 4957 4958 4959 4960
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
4961
								      I915_GTT_OFFSET_NONE,
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

4998 4999 5000
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5001
	u32 val;
5002 5003 5004 5005 5006

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

5033 5034 5035 5036 5037
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5053 5054
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5055
	struct drm_i915_private *dev_priv = dev->dev_private;
5056
	u32 val;
5057

5058
	cherryview_setup_pctx(dev);
5059 5060 5061

	mutex_lock(&dev_priv->rps.hw_lock);

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
	val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
	switch ((val >> 2) & 0x7) {
	case 0:
	case 1:
		dev_priv->rps.cz_freq = 200;
		dev_priv->mem_freq = 1600;
		break;
	case 2:
		dev_priv->rps.cz_freq = 267;
		dev_priv->mem_freq = 1600;
		break;
	case 3:
		dev_priv->rps.cz_freq = 333;
		dev_priv->mem_freq = 2000;
		break;
	case 4:
		dev_priv->rps.cz_freq = 320;
		dev_priv->mem_freq = 1600;
		break;
	case 5:
		dev_priv->rps.cz_freq = 400;
		dev_priv->mem_freq = 1600;
		break;
	}
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

5099 5100 5101 5102 5103
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
			 dev_priv->rps.rp1_freq);

5104 5105 5106 5107 5108
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
			 dev_priv->rps.min_freq);

5109 5110 5111 5112 5113 5114
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5115 5116 5117 5118 5119 5120 5121 5122
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5123 5124
}

5125 5126 5127 5128 5129
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5130 5131 5132 5133
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5134
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);

	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
		rc6_mode = GEN6_RC_CTL_EI_MODE(1);

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5181 5182 5183 5184 5185 5186 5187 5188
	/* 4 Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5189 5190 5191 5192
	/* WaDisablePwrmtrEvent:chv (pre-production hw) */
	I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
	I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);

5193 5194 5195
	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5196
		   GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5217 5218
	gen8_enable_rps_interrupts(dev);

5219 5220 5221
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
}

5222 5223 5224
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5225
	struct intel_engine_cs *ring;
5226
	u32 gtfifodbg, val, rc6_mode = 0;
5227 5228 5229 5230
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5231 5232
	valleyview_check_pctx(dev_priv);

5233
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5234 5235
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5236 5237 5238
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5239 5240
	/* If VLV, Forcewake all wells, else re-direct to regular path */
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
5241 5242 5243 5244 5245 5246 5247

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5248
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5265
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5266 5267

	/* allows RC6 residency counter to work */
5268
	I915_WRITE(VLV_COUNTER_CONTROL,
5269 5270
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5271 5272
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5273

5274
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5275
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5276 5277 5278

	intel_print_rc6_info(dev, rc6_mode);

5279
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5280

5281
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5282 5283 5284 5285

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5286
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5287
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5288 5289
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
			 dev_priv->rps.cur_freq);
5290

5291
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5292 5293
			 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
			 dev_priv->rps.efficient_freq);
5294

5295
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5296

5297
	gen6_enable_rps_interrupts(dev);
5298

5299
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
5300 5301
}

5302
void ironlake_teardown_rc6(struct drm_device *dev)
5303 5304 5305
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5306
	if (dev_priv->ips.renderctx) {
B
Ben Widawsky 已提交
5307
		i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
5308 5309
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
5310 5311
	}

5312
	if (dev_priv->ips.pwrctx) {
B
Ben Widawsky 已提交
5313
		i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
5314 5315
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
5316 5317 5318
	}
}

5319
static void ironlake_disable_rc6(struct drm_device *dev)
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5341 5342 5343
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
5344 5345
		return -ENOMEM;

5346 5347 5348
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
5349 5350 5351 5352 5353 5354 5355
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

5356
static void ironlake_enable_rc6(struct drm_device *dev)
5357 5358
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5359
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
5360
	bool was_interruptible;
5361 5362 5363 5364 5365 5366 5367 5368
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

5369 5370
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5371
	ret = ironlake_setup_rc6(dev);
5372
	if (ret)
5373 5374
		return;

5375 5376 5377
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

5378 5379 5380 5381
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
5382
	ret = intel_ring_begin(ring, 6);
5383 5384
	if (ret) {
		ironlake_teardown_rc6(dev);
5385
		dev_priv->mm.interruptible = was_interruptible;
5386 5387 5388
		return;
	}

5389 5390
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
5391
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
5392 5393 5394 5395 5396 5397 5398 5399
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
5400 5401 5402 5403 5404 5405

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
5406 5407
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
5408
	if (ret) {
5409
		DRM_ERROR("failed to enable ironlake power savings\n");
5410 5411 5412 5413
		ironlake_teardown_rc6(dev);
		return;
	}

5414
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5415
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
B
Ben Widawsky 已提交
5416

5417
	intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5418 5419
}

5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5449
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5450 5451 5452 5453 5454 5455
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5456 5457
	assert_spin_locked(&mchdev_lock);

5458
	diff1 = now - dev_priv->ips.last_time1;
5459 5460 5461 5462 5463 5464 5465

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5466
		return dev_priv->ips.chipset_power;
5467 5468 5469 5470 5471 5472 5473 5474

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5475 5476
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5477 5478
		diff += total_count;
	} else {
5479
		diff = total_count - dev_priv->ips.last_count1;
5480 5481 5482
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5483 5484
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5495 5496
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5497

5498
	dev_priv->ips.chipset_power = ret;
5499 5500 5501 5502

	return ret;
}

5503 5504
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5505
	struct drm_device *dev = dev_priv->dev;
5506 5507
	unsigned long val;

5508
	if (INTEL_INFO(dev)->gen != 5)
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
5537
	struct drm_device *dev = dev_priv->dev;
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
5671
	if (INTEL_INFO(dev)->is_mobile)
5672 5673 5674 5675 5676
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

5677
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5678
{
5679
	u64 now, diff, diffms;
5680 5681
	u32 count;

5682
	assert_spin_locked(&mchdev_lock);
5683

5684 5685 5686
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5687 5688 5689 5690 5691 5692 5693

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5694 5695
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5696 5697
		diff += count;
	} else {
5698
		diff = count - dev_priv->ips.last_count2;
5699 5700
	}

5701 5702
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5703 5704 5705 5706

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5707
	dev_priv->ips.gfx_power = diff;
5708 5709
}

5710 5711
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5712 5713 5714
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5715 5716
		return;

5717
	spin_lock_irq(&mchdev_lock);
5718 5719 5720

	__i915_update_gfx_val(dev_priv);

5721
	spin_unlock_irq(&mchdev_lock);
5722 5723
}

5724
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5725 5726 5727 5728
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5729 5730
	assert_spin_locked(&mchdev_lock);

5731
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5751
	corr2 = (corr * dev_priv->ips.corr);
5752 5753 5754 5755

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5756
	__i915_update_gfx_val(dev_priv);
5757

5758
	return dev_priv->ips.gfx_power + state2;
5759 5760
}

5761 5762
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5763
	struct drm_device *dev = dev_priv->dev;
5764 5765
	unsigned long val;

5766
	if (INTEL_INFO(dev)->gen != 5)
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5789
	spin_lock_irq(&mchdev_lock);
5790 5791 5792 5793
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5794 5795
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5796 5797 5798 5799

	ret = chipset_val + graphics_val;

out_unlock:
5800
	spin_unlock_irq(&mchdev_lock);
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5816
	spin_lock_irq(&mchdev_lock);
5817 5818 5819 5820 5821 5822
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5823 5824
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5825 5826

out_unlock:
5827
	spin_unlock_irq(&mchdev_lock);
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5844
	spin_lock_irq(&mchdev_lock);
5845 5846 5847 5848 5849 5850
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5851 5852
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5853 5854

out_unlock:
5855
	spin_unlock_irq(&mchdev_lock);
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5869
	struct intel_engine_cs *ring;
5870
	bool ret = false;
5871
	int i;
5872

5873
	spin_lock_irq(&mchdev_lock);
5874 5875 5876 5877
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5878 5879
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5880 5881

out_unlock:
5882
	spin_unlock_irq(&mchdev_lock);
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5899
	spin_lock_irq(&mchdev_lock);
5900 5901 5902 5903 5904 5905
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5906
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5907

5908
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5909 5910 5911
		ret = false;

out_unlock:
5912
	spin_unlock_irq(&mchdev_lock);
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5940 5941
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5942
	spin_lock_irq(&mchdev_lock);
5943
	i915_mch_dev = dev_priv;
5944
	spin_unlock_irq(&mchdev_lock);
5945 5946 5947 5948 5949 5950

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5951
	spin_lock_irq(&mchdev_lock);
5952
	i915_mch_dev = NULL;
5953
	spin_unlock_irq(&mchdev_lock);
5954
}
5955

5956
static void intel_init_emon(struct drm_device *dev)
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6024
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6025 6026
}

6027 6028
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6029 6030
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6031 6032 6033
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6034
		valleyview_init_gt_powersave(dev);
6035 6036 6037 6038
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6039 6040 6041
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6042
		valleyview_cleanup_gt_powersave(dev);
6043 6044
}

6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Interrupts should be disabled already to avoid re-arming. */
6058
	WARN_ON(intel_irqs_enabled(dev_priv));
6059 6060 6061 6062

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

	cancel_work_sync(&dev_priv->rps.work);
6063 6064 6065

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6066 6067
}

6068 6069
void intel_disable_gt_powersave(struct drm_device *dev)
{
6070 6071
	struct drm_i915_private *dev_priv = dev->dev_private;

6072
	/* Interrupts should be disabled already to avoid re-arming. */
6073
	WARN_ON(intel_irqs_enabled(dev_priv));
6074

6075
	if (IS_IRONLAKE_M(dev)) {
6076
		ironlake_disable_drps(dev);
6077
		ironlake_disable_rc6(dev);
6078
	} else if (INTEL_INFO(dev)->gen >= 6) {
6079
		intel_suspend_gt_powersave(dev);
6080

6081
		mutex_lock(&dev_priv->rps.hw_lock);
6082 6083 6084
		if (IS_CHERRYVIEW(dev))
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6085 6086 6087
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6088
		dev_priv->rps.enabled = false;
6089
		mutex_unlock(&dev_priv->rps.hw_lock);
6090
	}
6091 6092
}

6093 6094 6095 6096 6097 6098 6099
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6100
	mutex_lock(&dev_priv->rps.hw_lock);
6101

6102 6103 6104
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6105
		valleyview_enable_rps(dev);
6106 6107
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6108
		__gen6_update_ring_freq(dev);
6109 6110
	} else {
		gen6_enable_rps(dev);
6111
		__gen6_update_ring_freq(dev);
6112
	}
6113
	dev_priv->rps.enabled = true;
6114
	mutex_unlock(&dev_priv->rps.hw_lock);
6115 6116

	intel_runtime_pm_put(dev_priv);
6117 6118
}

6119 6120
void intel_enable_gt_powersave(struct drm_device *dev)
{
6121 6122
	struct drm_i915_private *dev_priv = dev->dev_private;

6123
	if (IS_IRONLAKE_M(dev)) {
6124
		mutex_lock(&dev->struct_mutex);
6125 6126 6127
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
6128
		mutex_unlock(&dev->struct_mutex);
6129
	} else if (INTEL_INFO(dev)->gen >= 6) {
6130 6131 6132 6133
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6134 6135 6136 6137 6138 6139 6140
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6141
		 */
6142 6143 6144
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6145 6146 6147
	}
}

6148 6149 6150 6151 6152 6153 6154 6155
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->rps.enabled = false;
	intel_enable_gt_powersave(dev);
}

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6168 6169 6170 6171 6172
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

6173
	for_each_pipe(dev_priv, pipe) {
6174 6175 6176
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6177
		intel_flush_primary_plane(dev_priv, pipe);
6178 6179 6180
	}
}

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6195
static void ironlake_init_clock_gating(struct drm_device *dev)
6196 6197
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6198
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6199

6200 6201 6202 6203
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6204 6205 6206
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6224
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6225 6226 6227
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6228 6229

	ilk_init_lp_watermarks(dev);
6230 6231 6232 6233 6234 6235 6236 6237 6238

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6239
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6240 6241 6242 6243 6244 6245 6246 6247
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6248 6249
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6250 6251 6252 6253 6254 6255
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6256

6257
	/* WaDisableRenderCachePipelinedFlush:ilk */
6258 6259
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6260

6261 6262 6263
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6264
	g4x_disable_trickle_feed(dev);
6265

6266 6267 6268 6269 6270 6271 6272
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6273
	uint32_t val;
6274 6275 6276 6277 6278 6279

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6280 6281 6282
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6283 6284
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6285 6286 6287
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6288
	for_each_pipe(dev_priv, pipe) {
6289 6290 6291
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6292
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6293
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6294 6295 6296
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6297 6298
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6299
	/* WADP0ClockGatingDisable */
6300
	for_each_pipe(dev_priv, pipe) {
6301 6302 6303
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6304 6305
}

6306 6307 6308 6309 6310 6311
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6312 6313 6314
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6315 6316
}

6317
static void gen6_init_clock_gating(struct drm_device *dev)
6318 6319
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6320
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6321

6322
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6323 6324 6325 6326 6327

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6328
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6329 6330 6331
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6332
	/* WaSetupGtModeTdRowDispatch:snb */
6333 6334 6335 6336
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

6337 6338 6339
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6340 6341 6342
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6343 6344 6345 6346
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6347 6348 6349 6350
	 */
	I915_WRITE(GEN6_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

6351
	ilk_init_lp_watermarks(dev);
6352 6353

	I915_WRITE(CACHE_MODE_0,
6354
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6370
	 *
6371 6372
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6373 6374 6375 6376 6377
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6378
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6379 6380
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6381

6382 6383 6384 6385 6386 6387 6388 6389
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6390 6391 6392 6393 6394 6395 6396 6397
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6398 6399
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6400 6401 6402 6403 6404 6405 6406
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6407 6408 6409 6410
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6411

6412
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6413

6414
	cpt_init_clock_gating(dev);
6415 6416

	gen6_check_mch_setup(dev);
6417 6418 6419 6420 6421 6422
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6423
	/*
6424
	 * WaVSThreadDispatchOverride:ivb,vlv
6425 6426 6427 6428
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6429 6430 6431 6432 6433 6434 6435 6436
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6449 6450 6451 6452 6453

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6454 6455
}

6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6468
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6469 6470
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6471
	enum pipe pipe;
B
Ben Widawsky 已提交
6472 6473 6474 6475

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);
6476

6477
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6478
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6479

6480
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6481 6482 6483
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6484
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6485
	for_each_pipe(dev_priv, pipe) {
6486
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6487
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6488
			   BDW_DPRS_MASK_VBLANK_SRD);
6489
	}
6490

6491 6492 6493 6494 6495
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6496

6497 6498
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6499 6500 6501 6502

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6503

6504
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6505 6506
}

6507 6508 6509 6510
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6511
	ilk_init_lp_watermarks(dev);
6512

6513 6514 6515 6516 6517
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6518
	/* This is required by WaCatErrorRejectionIssue:hsw */
6519 6520 6521 6522
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6523 6524 6525
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6526

6527 6528 6529
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6530 6531 6532 6533
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6534
	/* WaDisable4x2SubspanOptimization:hsw */
6535 6536
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6537

6538 6539 6540
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6541 6542 6543 6544
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6545 6546 6547 6548
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

6549
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6550 6551
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6552 6553 6554
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6555

6556
	lpt_init_clock_gating(dev);
6557 6558
}

6559
static void ivybridge_init_clock_gating(struct drm_device *dev)
6560 6561
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6562
	uint32_t snpcr;
6563

6564
	ilk_init_lp_watermarks(dev);
6565

6566
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6567

6568
	/* WaDisableEarlyCull:ivb */
6569 6570 6571
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6572
	/* WaDisableBackToBackFlipFix:ivb */
6573 6574 6575 6576
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6577
	/* WaDisablePSDDualDispatchEnable:ivb */
6578 6579 6580 6581
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6582 6583 6584
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6585
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6586 6587 6588
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6589
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6590 6591 6592
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6593 6594 6595 6596
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6597 6598 6599 6600
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6601 6602
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6603
	}
6604

6605
	/* WaForceL3Serialization:ivb */
6606 6607 6608
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6609
	/*
6610
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6611
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6612 6613
	 */
	I915_WRITE(GEN6_UCGCTL2,
6614
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6615

6616
	/* This is required by WaCatErrorRejectionIssue:ivb */
6617 6618 6619 6620
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6621
	g4x_disable_trickle_feed(dev);
6622 6623

	gen7_setup_fixed_func_scheduler(dev_priv);
6624

6625 6626 6627 6628 6629
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6630

6631
	/* WaDisable4x2SubspanOptimization:ivb */
6632 6633
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6634

6635 6636 6637
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6638 6639 6640 6641
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6642 6643 6644 6645
	 */
	I915_WRITE(GEN7_GT_MODE,
		   GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);

6646 6647 6648 6649
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6650

6651 6652
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6653 6654

	gen6_check_mch_setup(dev);
6655 6656
}

6657
static void valleyview_init_clock_gating(struct drm_device *dev)
6658 6659 6660
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6661
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6662

6663
	/* WaDisableEarlyCull:vlv */
6664 6665 6666
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6667
	/* WaDisableBackToBackFlipFix:vlv */
6668 6669 6670 6671
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6672
	/* WaPsdDispatchEnable:vlv */
6673
	/* WaDisablePSDDualDispatchEnable:vlv */
6674
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6675 6676
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6677

6678 6679 6680
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6681
	/* WaForceL3Serialization:vlv */
6682 6683 6684
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6685
	/* WaDisableDopClockGating:vlv */
6686 6687 6688
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6689
	/* This is required by WaCatErrorRejectionIssue:vlv */
6690 6691 6692 6693
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6694 6695
	gen7_setup_fixed_func_scheduler(dev_priv);

6696
	/*
6697
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6698
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6699 6700
	 */
	I915_WRITE(GEN6_UCGCTL2,
6701
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6702

6703 6704 6705 6706 6707
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6708

6709
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6710

6711 6712 6713 6714
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6715 6716
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6717

6718 6719 6720 6721 6722 6723
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6724
	/*
6725
	 * WaDisableVLVClockGating_VBIIssue:vlv
6726 6727 6728
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6729
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6730 6731
}

6732 6733 6734 6735 6736 6737 6738
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6739

6740 6741 6742 6743 6744
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6745 6746 6747 6748

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6749 6750 6751 6752

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6753 6754 6755 6756

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6757

6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
	/* WaDisableGunitClockGating:chv (pre-production hw) */
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
		   GINT_DIS);

	/* WaDisableFfDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));

	/* WaDisableDopClockGating:chv (pre-production hw) */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6769 6770
}

6771
static void g4x_init_clock_gating(struct drm_device *dev)
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6787 6788 6789 6790

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6791

6792 6793 6794
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6795
	g4x_disable_trickle_feed(dev);
6796 6797
}

6798
static void crestline_init_clock_gating(struct drm_device *dev)
6799 6800 6801 6802 6803 6804 6805 6806
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6807 6808
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6809 6810 6811

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6812 6813
}

6814
static void broadwater_init_clock_gating(struct drm_device *dev)
6815 6816 6817 6818 6819 6820 6821 6822 6823
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6824 6825
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6826 6827 6828

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6829 6830
}

6831
static void gen3_init_clock_gating(struct drm_device *dev)
6832 6833 6834 6835 6836 6837 6838
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6839 6840 6841

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6842 6843 6844

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6845 6846

	/* interrupts should cause a wake up from C3 */
6847
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6848 6849 6850

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6851 6852 6853

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6854 6855
}

6856
static void i85x_init_clock_gating(struct drm_device *dev)
6857 6858 6859 6860
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6861 6862 6863 6864

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6865 6866 6867

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6868 6869
}

6870
static void i830_init_clock_gating(struct drm_device *dev)
6871 6872 6873 6874
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6875 6876 6877 6878

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6879 6880 6881 6882 6883 6884 6885 6886 6887
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

6888 6889 6890 6891 6892 6893
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6894 6895
static void intel_init_fbc(struct drm_i915_private *dev_priv)
{
6896 6897
	if (!HAS_FBC(dev_priv)) {
		dev_priv->fbc.enabled = false;
6898
		return;
6899
	}
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920

	if (INTEL_INFO(dev_priv)->gen >= 7) {
		dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
		dev_priv->display.enable_fbc = gen7_enable_fbc;
		dev_priv->display.disable_fbc = ironlake_disable_fbc;
	} else if (INTEL_INFO(dev_priv)->gen >= 5) {
		dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
		dev_priv->display.enable_fbc = ironlake_enable_fbc;
		dev_priv->display.disable_fbc = ironlake_disable_fbc;
	} else if (IS_GM45(dev_priv)) {
		dev_priv->display.fbc_enabled = g4x_fbc_enabled;
		dev_priv->display.enable_fbc = g4x_enable_fbc;
		dev_priv->display.disable_fbc = g4x_disable_fbc;
	} else {
		dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
		dev_priv->display.enable_fbc = i8xx_enable_fbc;
		dev_priv->display.disable_fbc = i8xx_disable_fbc;

		/* This value was pulled out of someone's hat */
		I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
	}
6921 6922

	dev_priv->fbc.enabled = dev_priv->display.fbc_enabled(dev_priv->dev);
6923 6924
}

6925 6926 6927 6928 6929
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6930
	intel_init_fbc(dev_priv);
6931

6932 6933 6934 6935 6936 6937
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6938
	/* For FIFO watermark updates */
6939
	if (IS_GEN9(dev)) {
6940 6941
		skl_setup_wm_latency(dev);

6942
		dev_priv->display.init_clock_gating = gen9_init_clock_gating;
6943 6944
		dev_priv->display.update_wm = skl_update_wm;
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6945
	} else if (HAS_PCH_SPLIT(dev)) {
6946
		ilk_setup_wm_latency(dev);
6947

6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6960
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6961
		else if (IS_GEN6(dev))
6962
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6963
		else if (IS_IVYBRIDGE(dev))
6964
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6965
		else if (IS_HASWELL(dev))
6966
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6967
		else if (INTEL_INFO(dev)->gen == 8)
6968
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6969
	} else if (IS_CHERRYVIEW(dev)) {
6970
		dev_priv->display.update_wm = cherryview_update_wm;
6971
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6972 6973
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
6974 6975
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
6976
		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
6990
			intel_set_memory_cxsr(dev_priv, false);
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7008 7009 7010
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7011
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7012 7013
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7014
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7015 7016 7017 7018 7019 7020 7021 7022
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7023 7024 7025
	}
}

B
Ben Widawsky 已提交
7026 7027
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
7028
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7029 7030 7031 7032 7033 7034 7035

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7036 7037
	if (INTEL_INFO(dev_priv)->gen >= 9)
		I915_WRITE(GEN9_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
7054
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7074

7075
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7076
{
7077
	int div;
7078

7079
	/* 4 x czclk */
7080
	switch (dev_priv->mem_freq) {
7081
	case 800:
7082
		div = 10;
7083 7084
		break;
	case 1066:
7085
		div = 12;
7086 7087
		break;
	case 1333:
7088
		div = 16;
7089 7090 7091 7092 7093
		break;
	default:
		return -1;
	}

7094
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7095 7096
}

7097
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7098
{
7099
	int mul;
7100

7101
	/* 4 x czclk */
7102
	switch (dev_priv->mem_freq) {
7103
	case 800:
7104
		mul = 10;
7105 7106
		break;
	case 1066:
7107
		mul = 12;
7108 7109
		break;
	case 1333:
7110
		mul = 16;
7111 7112 7113 7114 7115
		break;
	default:
		return -1;
	}

7116
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7117 7118
}

7119
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
{
	int div, freq;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		div = 5;
		break;
	case 267:
		div = 6;
		break;
	case 320:
	case 333:
	case 400:
		div = 8;
		break;
	default:
		return -1;
	}

	freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);

	return freq;
}

7144
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
{
	int mul, opcode;

	switch (dev_priv->rps.cz_freq) {
	case 200:
		mul = 5;
		break;
	case 267:
		mul = 6;
		break;
	case 320:
	case 333:
	case 400:
		mul = 8;
		break;
	default:
		return -1;
	}

7164
	/* CHV needs even values */
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
	opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);

	return opcode;
}

int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_gpu_freq(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_gpu_freq(dev_priv, val);

	return ret;
}

int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
	int ret = -1;

	if (IS_CHERRYVIEW(dev_priv->dev))
		ret = chv_freq_opcode(dev_priv, val);
	else if (IS_VALLEYVIEW(dev_priv->dev))
		ret = byt_freq_opcode(dev_priv, val);

	return ret;
}

D
Daniel Vetter 已提交
7194
void intel_pm_setup(struct drm_device *dev)
7195 7196 7197
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7198 7199
	mutex_init(&dev_priv->rps.hw_lock);

7200 7201
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7202

7203
	dev_priv->pm.suspended = false;
7204
}