intel_pm.c 155.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

34
#define FORCEWAKE_ACK_TIMEOUT_MS 2
35

36 37 38
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
 * during in-memory transfers and, therefore, reduce the power packet.
39
 *
40 41
 * The benefits of FBC are mostly visible with solid backgrounds and
 * variation-less patterns.
42
 *
43 44
 * FBC-related functionality can be enabled by the means of the
 * i915.i915_enable_fbc parameter
45 46
 */

47 48 49 50 51 52 53 54
static bool intel_crtc_active(struct drm_crtc *crtc)
{
	/* Be paranoid as we can arrive here with only partial
	 * state retrieved from the hardware during setup.
	 */
	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
}

55
static void i8xx_disable_fbc(struct drm_device *dev)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 fbc_ctl;

	/* Disable compression */
	fbc_ctl = I915_READ(FBC_CONTROL);
	if ((fbc_ctl & FBC_CTL_EN) == 0)
		return;

	fbc_ctl &= ~FBC_CTL_EN;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

	/* Wait for compressing bit to clear */
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
		DRM_DEBUG_KMS("FBC idle timed out\n");
		return;
	}

	DRM_DEBUG_KMS("disabled FBC\n");
}

77
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int cfb_pitch;
	int plane, i;
	u32 fbc_ctl, fbc_ctl2;

	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
	if (fb->pitches[0] < cfb_pitch)
		cfb_pitch = fb->pitches[0];

	/* FBC_CTL wants 64B units */
	cfb_pitch = (cfb_pitch / 64) - 1;
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;

	/* Clear old tags */
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
		I915_WRITE(FBC_TAG + (i * 4), 0);

	/* Set it up... */
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
	fbc_ctl2 |= plane;
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
	I915_WRITE(FBC_FENCE_OFF, crtc->y);

	/* enable it... */
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
	if (IS_I945GM(dev))
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
	fbc_ctl |= obj->fence_reg;
	I915_WRITE(FBC_CONTROL, fbc_ctl);

116 117
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
118 119
}

120
static bool i8xx_fbc_enabled(struct drm_device *dev)
121 122 123 124 125 126
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}

127
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);

	/* enable it... */
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);

151
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
152 153
}

154
static void g4x_disable_fbc(struct drm_device *dev)
155 156 157 158 159 160 161 162 163 164 165 166 167 168
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);

		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

169
static bool g4x_fbc_enabled(struct drm_device *dev)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}

static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 blt_ecoskpd;

	/* Make sure blitter notifies FBC of writes */
	gen6_gt_force_wake_get(dev_priv);
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
		GEN6_BLITTER_LOCK_SHIFT;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
			 GEN6_BLITTER_LOCK_SHIFT);
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
	gen6_gt_force_wake_put(dev_priv);
}

196
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
	unsigned long stall_watermark = 200;
	u32 dpfc_ctl;

	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	dpfc_ctl &= DPFC_RESERVED;
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
	/* Set persistent mode for front-buffer rendering, ala X. */
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);

	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
	/* enable it... */
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);

	if (IS_GEN6(dev)) {
		I915_WRITE(SNB_DPFC_CTL_SA,
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
		sandybridge_blit_fbc_update(dev);
	}

231
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
232 233
}

234
static void ironlake_disable_fbc(struct drm_device *dev)
235 236 237 238 239 240 241 242 243 244
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpfc_ctl;

	/* Disable compression */
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
	if (dpfc_ctl & DPFC_CTL_EN) {
		dpfc_ctl &= ~DPFC_CTL_EN;
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);

245
		if (IS_IVYBRIDGE(dev))
246
			/* WaFbcDisableDpfcClockGating:ivb */
247 248 249 250
			I915_WRITE(ILK_DSPCLK_GATE_D,
				   I915_READ(ILK_DSPCLK_GATE_D) &
				   ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);

251
		if (IS_HASWELL(dev))
252
			/* WaFbcDisableDpfcClockGating:hsw */
253 254 255 256
			I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
				   I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
				   ~HSW_DPFC_GATING_DISABLE);

257 258 259 260
		DRM_DEBUG_KMS("disabled FBC\n");
	}
}

261
static bool ironlake_fbc_enabled(struct drm_device *dev)
262 263 264 265 266 267
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_framebuffer *fb = crtc->fb;
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_i915_gem_object *obj = intel_fb->obj;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);

	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
		   IVB_DPFC_CTL_FENCE_EN |
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);

R
Rodrigo Vivi 已提交
283
	if (IS_IVYBRIDGE(dev)) {
284
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
R
Rodrigo Vivi 已提交
285
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
286
		/* WaFbcDisableDpfcClockGating:ivb */
R
Rodrigo Vivi 已提交
287 288 289
		I915_WRITE(ILK_DSPCLK_GATE_D,
			   I915_READ(ILK_DSPCLK_GATE_D) |
			   ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
290
	} else {
291
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
292 293
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
			   HSW_BYPASS_FBC_QUEUE);
294
		/* WaFbcDisableDpfcClockGating:hsw */
295 296 297
		I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
			   I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
			   HSW_DPFC_GATING_DISABLE);
R
Rodrigo Vivi 已提交
298
	}
299

300 301 302 303 304 305 306 307 308
	I915_WRITE(SNB_DPFC_CTL_SA,
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);

	sandybridge_blit_fbc_update(dev);

	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
bool intel_fbc_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.fbc_enabled)
		return false;

	return dev_priv->display.fbc_enabled(dev);
}

static void intel_fbc_work_fn(struct work_struct *__work)
{
	struct intel_fbc_work *work =
		container_of(to_delayed_work(__work),
			     struct intel_fbc_work, work);
	struct drm_device *dev = work->crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	mutex_lock(&dev->struct_mutex);
	if (work == dev_priv->fbc_work) {
		/* Double check that we haven't switched fb without cancelling
		 * the prior work.
		 */
		if (work->crtc->fb == work->fb) {
			dev_priv->display.enable_fbc(work->crtc,
						     work->interval);

			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
			dev_priv->cfb_fb = work->crtc->fb->base.id;
			dev_priv->cfb_y = work->crtc->y;
		}

		dev_priv->fbc_work = NULL;
	}
	mutex_unlock(&dev->struct_mutex);

	kfree(work);
}

static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
{
	if (dev_priv->fbc_work == NULL)
		return;

	DRM_DEBUG_KMS("cancelling pending FBC enable\n");

	/* Synchronisation is provided by struct_mutex and checking of
	 * dev_priv->fbc_work, so we can perform the cancellation
	 * entirely asynchronously.
	 */
	if (cancel_delayed_work(&dev_priv->fbc_work->work))
		/* tasklet was killed before being run, clean up */
		kfree(dev_priv->fbc_work);

	/* Mark the work as no longer wanted so that if it does
	 * wake-up (because the work was already running and waiting
	 * for our mutex), it will discover that is no longer
	 * necessary to run.
	 */
	dev_priv->fbc_work = NULL;
}

void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
	struct intel_fbc_work *work;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!dev_priv->display.enable_fbc)
		return;

	intel_cancel_fbc_work(dev_priv);

	work = kzalloc(sizeof *work, GFP_KERNEL);
	if (work == NULL) {
		dev_priv->display.enable_fbc(crtc, interval);
		return;
	}

	work->crtc = crtc;
	work->fb = crtc->fb;
	work->interval = interval;
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);

	dev_priv->fbc_work = work;

	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");

	/* Delay the actual enabling to let pageflipping cease and the
	 * display to settle before starting the compression. Note that
	 * this delay also serves a second purpose: it allows for a
	 * vblank to pass after disabling the FBC before we attempt
	 * to modify the control registers.
	 *
	 * A more complicated solution would involve tracking vblanks
	 * following the termination of the page-flipping sequence
	 * and indeed performing the enable as a co-routine and not
	 * waiting synchronously upon the vblank.
	 */
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}

void intel_disable_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_cancel_fbc_work(dev_priv);

	if (!dev_priv->display.disable_fbc)
		return;

	dev_priv->display.disable_fbc(dev);
	dev_priv->cfb_plane = -1;
}

/**
 * intel_update_fbc - enable/disable FBC as needed
 * @dev: the drm_device
 *
 * Set up the framebuffer compression hardware at mode set time.  We
 * enable it if possible:
 *   - plane A only (on pre-965)
 *   - no pixel mulitply/line duplication
 *   - no alpha buffer discard
 *   - no dual wide
434
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
 *
 * We can't assume that any compression will take place (worst case),
 * so the compressed buffer has to be the same size as the uncompressed
 * one.  It also must reside (along with the line length buffer) in
 * stolen memory.
 *
 * We need to enable/disable FBC on a global basis.
 */
void intel_update_fbc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = NULL, *tmp_crtc;
	struct intel_crtc *intel_crtc;
	struct drm_framebuffer *fb;
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj;
	int enable_fbc;
452
	unsigned int max_hdisplay, max_vdisplay;
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	if (!i915_powersave)
		return;

	if (!I915_HAS_FBC(dev))
		return;

	/*
	 * If FBC is already on, we just have to verify that we can
	 * keep it that way...
	 * Need to disable if:
	 *   - more than one pipe is active
	 *   - changing FBC params (stride, fence, mode)
	 *   - new fb is too large to fit in compressed buffer
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
	 */
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
470 471
		if (intel_crtc_active(tmp_crtc) &&
		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			if (crtc) {
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
				goto out_disable;
			}
			crtc = tmp_crtc;
		}
	}

	if (!crtc || crtc->fb == NULL) {
		DRM_DEBUG_KMS("no output, disabling\n");
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
		goto out_disable;
	}

	intel_crtc = to_intel_crtc(crtc);
	fb = crtc->fb;
	intel_fb = to_intel_framebuffer(fb);
	obj = intel_fb->obj;

	enable_fbc = i915_enable_fbc;
	if (enable_fbc < 0) {
		DRM_DEBUG_KMS("fbc set to per-chip default\n");
		enable_fbc = 1;
R
Rodrigo Vivi 已提交
496
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
497 498 499 500 501 502 503 504 505 506 507 508 509 510
			enable_fbc = 0;
	}
	if (!enable_fbc) {
		DRM_DEBUG_KMS("fbc disabled per module param\n");
		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
		goto out_disable;
	}
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
		DRM_DEBUG_KMS("mode incompatible with compression, "
			      "disabling\n");
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
		goto out_disable;
	}
511 512 513 514 515 516 517 518 519 520

	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
		max_hdisplay = 4096;
		max_vdisplay = 2048;
	} else {
		max_hdisplay = 2048;
		max_vdisplay = 1536;
	}
	if ((crtc->mode.hdisplay > max_hdisplay) ||
	    (crtc->mode.vdisplay > max_vdisplay)) {
521 522 523 524
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
		goto out_disable;
	}
R
Rodrigo Vivi 已提交
525 526
	if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
	    intel_crtc->plane != 0) {
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
		goto out_disable;
	}

	/* The use of a CPU fence is mandatory in order to detect writes
	 * by the CPU to the scanout and trigger updates to the FBC.
	 */
	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
		goto out_disable;
	}

	/* If the kernel debugger is active, always disable compression */
	if (in_dbg_master())
		goto out_disable;

546 547 548 549 550 551
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
		goto out_disable;
	}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	/* If the scanout has not changed, don't modify the FBC settings.
	 * Note that we make the fundamental assumption that the fb->obj
	 * cannot be unpinned (and have its GTT offset and fence revoked)
	 * without first being decoupled from the scanout and FBC disabled.
	 */
	if (dev_priv->cfb_plane == intel_crtc->plane &&
	    dev_priv->cfb_fb == fb->base.id &&
	    dev_priv->cfb_y == crtc->y)
		return;

	if (intel_fbc_enabled(dev)) {
		/* We update FBC along two paths, after changing fb/crtc
		 * configuration (modeswitching) and after page-flipping
		 * finishes. For the latter, we know that not only did
		 * we disable the FBC at the start of the page-flip
		 * sequence, but also more than one vblank has passed.
		 *
		 * For the former case of modeswitching, it is possible
		 * to switch between two FBC valid configurations
		 * instantaneously so we do need to disable the FBC
		 * before we can modify its control registers. We also
		 * have to wait for the next vblank for that to take
		 * effect. However, since we delay enabling FBC we can
		 * assume that a vblank has passed since disabling and
		 * that we can safely alter the registers in the deferred
		 * callback.
		 *
		 * In the scenario that we go from a valid to invalid
		 * and then back to valid FBC configuration we have
		 * no strict enforcement that a vblank occurred since
		 * disabling the FBC. However, along all current pipe
		 * disabling paths we do need to wait for a vblank at
		 * some point. And we wait before enabling FBC anyway.
		 */
		DRM_DEBUG_KMS("disabling active FBC for update\n");
		intel_disable_fbc(dev);
	}

	intel_enable_fbc(crtc, 500);
	return;

out_disable:
	/* Multiple disables should be harmless */
	if (intel_fbc_enabled(dev)) {
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
		intel_disable_fbc(dev);
	}
599
	i915_gem_stolen_cleanup_compression(dev);
600 601
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

669
	dev_priv->ips.r_t = dev_priv->mem_freq;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
701
		dev_priv->ips.c_m = 0;
702
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
703
		dev_priv->ips.c_m = 1;
704
	} else {
705
		dev_priv->ips.c_m = 2;
706 707 708
	}
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

747
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

771
static void pineview_disable_cxsr(struct drm_device *dev)
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* deactivate cxsr */
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
static const int latency_ns = 5000;

795
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

811
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

828
static int i845_get_fifo_size(struct drm_device *dev, int plane)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

844
static int i830_get_fifo_size(struct drm_device *dev, int plane)
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
	PINEVIEW_DISPLAY_FIFO,
	PINEVIEW_MAX_WM,
	PINEVIEW_DFT_HPLLOFF_WM,
	PINEVIEW_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
	PINEVIEW_CURSOR_FIFO,
	PINEVIEW_CURSOR_MAX_WM,
	PINEVIEW_CURSOR_DFT_WM,
	PINEVIEW_CURSOR_GUARD_WM,
	PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
	G4X_FIFO_SIZE,
	G4X_MAX_WM,
	G4X_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_wm_info = {
	VALLEYVIEW_FIFO_SIZE,
	VALLEYVIEW_MAX_WM,
	VALLEYVIEW_MAX_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
	I965_CURSOR_FIFO,
	VALLEYVIEW_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
	I965_CURSOR_FIFO,
	I965_CURSOR_MAX_WM,
	I965_CURSOR_DFT_WM,
	2,
	I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

static const struct intel_watermark_params ironlake_display_wm_info = {
	ILK_DISPLAY_FIFO,
	ILK_DISPLAY_MAXWM,
	ILK_DISPLAY_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
	ILK_CURSOR_FIFO,
	ILK_CURSOR_MAXWM,
	ILK_CURSOR_DFTWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
	ILK_DISPLAY_SR_FIFO,
	ILK_DISPLAY_MAX_SRWM,
	ILK_DISPLAY_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
	ILK_CURSOR_SR_FIFO,
	ILK_CURSOR_MAX_SRWM,
	ILK_CURSOR_DFT_SRWM,
	2,
	ILK_FIFO_LINE_SIZE
};

static const struct intel_watermark_params sandybridge_display_wm_info = {
	SNB_DISPLAY_FIFO,
	SNB_DISPLAY_MAXWM,
	SNB_DISPLAY_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
	SNB_CURSOR_FIFO,
	SNB_CURSOR_MAXWM,
	SNB_CURSOR_DFTWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
	SNB_DISPLAY_SR_FIFO,
	SNB_DISPLAY_MAX_SRWM,
	SNB_DISPLAY_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
	SNB_CURSOR_SR_FIFO,
	SNB_CURSOR_MAX_SRWM,
	SNB_CURSOR_DFT_SRWM,
	2,
	SNB_FIFO_LINE_SIZE
};


/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1066
		if (intel_crtc_active(crtc)) {
1067 1068 1069 1070 1071 1072 1073 1074 1075
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

1076
static void pineview_update_wm(struct drm_device *dev)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
		pineview_disable_cxsr(dev);
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
		int clock = crtc->mode.clock;
		int pixel_size = crtc->fb->bits_per_pixel / 8;

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
		reg |= wm << DSPFW_SR_SHIFT;
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
		reg |= wm & DSPFW_HPLL_SR_MASK;
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

		/* activate cxsr */
		I915_WRITE(DSPFW3,
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
	} else {
		pineview_disable_cxsr(dev);
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
1160
	if (!intel_crtc_active(crtc)) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

	htotal = crtc->mode.htotal;
	hdisplay = crtc->mode.hdisplay;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
	line_time_us = ((htotal * 1000) / clock);
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
	entries = line_count * 64 * pixel_size;
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	hdisplay = crtc->mode.hdisplay;
	htotal = crtc->mode.htotal;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

static bool vlv_compute_drain_latency(struct drm_device *dev,
				     int plane,
				     int *plane_prec_mult,
				     int *plane_dl,
				     int *cursor_prec_mult,
				     int *cursor_dl)
{
	struct drm_crtc *crtc;
	int clock, pixel_size;
	int entries;

	crtc = intel_get_crtc_for_plane(dev, plane);
1289
	if (!intel_crtc_active(crtc))
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		return false;

	clock = crtc->mode.clock;	/* VESA DOT Clock */
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */

	entries = (clock / 1000) * pixel_size;
	*plane_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
						     pixel_size);

	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
	*cursor_prec_mult = (entries > 256) ?
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);

	return true;
}

/*
 * Update drain latency registers of memory arbiter
 *
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
 * to be programmed. Each plane has a drain latency multiplier and a drain
 * latency value.
 */

static void vlv_update_drain_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
							either 16 or 32 */

	/* For plane A, Cursor A */
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
				      &cursor_prec_mult, &cursora_dl)) {
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;

		I915_WRITE(VLV_DDL1, cursora_prec |
				(cursora_dl << DDL_CURSORA_SHIFT) |
				planea_prec | planea_dl);
	}

	/* For plane B, Cursor B */
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
				      &cursor_prec_mult, &cursorb_dl)) {
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;

		I915_WRITE(VLV_DDL2, cursorb_prec |
				(cursorb_dl << DDL_CURSORB_SHIFT) |
				planeb_prec | planeb_dl);
	}
}

#define single_plane_enabled(mask) is_power_of_2(mask)

1354
static void valleyview_update_wm(struct drm_device *dev)
1355 1356 1357 1358 1359
{
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
1360
	int ignore_plane_sr, ignore_cursor_sr;
1361 1362 1363 1364
	unsigned int enabled = 0;

	vlv_update_drain_latency(dev);

1365
	if (g4x_compute_wm0(dev, PIPE_A,
1366 1367 1368
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1369
		enabled |= 1 << PIPE_A;
1370

1371
	if (g4x_compute_wm0(dev, PIPE_B,
1372 1373 1374
			    &valleyview_wm_info, latency_ns,
			    &valleyview_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1375
		enabled |= 1 << PIPE_B;
1376 1377 1378 1379 1380 1381

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1382 1383 1384 1385 1386
			     &plane_sr, &ignore_cursor_sr) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     2*sr_latency_ns,
			     &valleyview_wm_info,
			     &valleyview_cursor_wm_info,
1387
			     &ignore_plane_sr, &cursor_sr)) {
1388
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1389
	} else {
1390 1391
		I915_WRITE(FW_BLC_SELF_VLV,
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1392 1393
		plane_sr = cursor_sr = 0;
	}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1406
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1407 1408
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	I915_WRITE(DSPFW3,
1409 1410
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1411 1412
}

1413
static void g4x_update_wm(struct drm_device *dev)
1414 1415 1416 1417 1418 1419 1420
{
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;

1421
	if (g4x_compute_wm0(dev, PIPE_A,
1422 1423 1424
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planea_wm, &cursora_wm))
1425
		enabled |= 1 << PIPE_A;
1426

1427
	if (g4x_compute_wm0(dev, PIPE_B,
1428 1429 1430
			    &g4x_wm_info, latency_ns,
			    &g4x_cursor_wm_info, latency_ns,
			    &planeb_wm, &cursorb_wm))
1431
		enabled |= 1 << PIPE_B;
1432 1433 1434 1435 1436 1437

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1438
			     &plane_sr, &cursor_sr)) {
1439
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1440
	} else {
1441 1442
		I915_WRITE(FW_BLC_SELF,
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1443 1444
		plane_sr = cursor_sr = 0;
	}
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
		   (plane_sr << DSPFW_SR_SHIFT) |
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
		   planea_wm);
	I915_WRITE(DSPFW2,
1457
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1458 1459 1460
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1461
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1462 1463 1464
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1465
static void i965_update_wm(struct drm_device *dev)
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
		int clock = crtc->mode.clock;
		int htotal = crtc->mode.htotal;
		int hdisplay = crtc->mode.hdisplay;
		int pixel_size = crtc->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = ((htotal * 1000) / clock);

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * 64;
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
	} else {
		/* Turn off self refresh if both pipes are enabled */
		if (IS_CRESTLINE(dev))
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
				   & ~FW_BLC_SELF_EN);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
		   (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
	/* update cursor SR watermark */
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}

1530
static void i9xx_update_wm(struct drm_device *dev)
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
		wm_info = &i855_wm_info;

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1550
	if (intel_crtc_active(crtc)) {
1551 1552 1553 1554
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1555
		planea_wm = intel_calculate_wm(crtc->mode.clock,
1556
					       wm_info, fifo_size, cpp,
1557 1558 1559 1560 1561 1562 1563
					       latency_ns);
		enabled = crtc;
	} else
		planea_wm = fifo_size - wm_info->guard_size;

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1564
	if (intel_crtc_active(crtc)) {
1565 1566 1567 1568
		int cpp = crtc->fb->bits_per_pixel / 8;
		if (IS_GEN2(dev))
			cpp = 4;

1569
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1570
					       wm_info, fifo_size, cpp,
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
					       latency_ns);
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
	} else
		planeb_wm = fifo_size - wm_info->guard_size;

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
	if (IS_I945G(dev) || IS_I945GM(dev))
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
	else if (IS_I915GM(dev))
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
		int clock = enabled->mode.clock;
		int htotal = enabled->mode.htotal;
		int hdisplay = enabled->mode.hdisplay;
		int pixel_size = enabled->fb->bits_per_pixel / 8;
		unsigned long line_time_us;
		int entries;

		line_time_us = (htotal * 1000) / clock;

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

	if (HAS_FW_BLC(dev)) {
		if (enabled) {
			if (IS_I945G(dev) || IS_I945GM(dev))
				I915_WRITE(FW_BLC_SELF,
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
			else if (IS_I915GM(dev))
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
			DRM_DEBUG_KMS("memory self refresh enabled\n");
		} else
			DRM_DEBUG_KMS("memory self refresh disabled\n");
	}
}

1647
static void i830_update_wm(struct drm_device *dev)
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
				       dev_priv->display.get_fifo_size(dev, 0),
1660
				       4, latency_ns);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

#define ILK_LP0_PLANE_LATENCY		700
#define ILK_LP0_CURSOR_LATENCY		1300

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool ironlake_check_srwm(struct drm_device *dev, int level,
				int fbc_wm, int display_wm, int cursor_wm,
				const struct intel_watermark_params *display,
				const struct intel_watermark_params *cursor)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);

	if (fbc_wm > SNB_FBC_MAX_SRWM) {
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
			      fbc_wm, SNB_FBC_MAX_SRWM, level);

		/* fbc has it's own way to disable FBC WM */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
		return false;
1697 1698 1699 1700
	} else if (INTEL_INFO(dev)->gen >= 6) {
		/* enable FBC WM (except on ILK, where it must remain off) */
		I915_WRITE(DISP_ARB_CTL,
			   I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	}

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
		return false;
	}

	if (!(fbc_wm || display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
		return false;
	}

	return true;
}

/*
 * Compute watermark values of WM[1-3],
 */
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
				  int latency_ns,
				  const struct intel_watermark_params *display,
				  const struct intel_watermark_params *cursor,
				  int *fbc_wm, int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int hdisplay, htotal, pixel_size, clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*fbc_wm = *display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	hdisplay = crtc->mode.hdisplay;
	htotal = crtc->mode.htotal;
	clock = crtc->mode.clock;
	pixel_size = crtc->fb->bits_per_pixel / 8;

	line_time_us = (htotal * 1000) / clock;
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/*
	 * Spec says:
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
	 */
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;

	/* calculate the self-refresh watermark for display cursor */
	entries = line_count * pixel_size * 64;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return ironlake_check_srwm(dev, level,
				   *fbc_wm, *display_wm, *cursor_wm,
				   display, cursor);
}

1777
static void ironlake_update_wm(struct drm_device *dev)
1778 1779 1780 1781 1782 1783
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1784
	if (g4x_compute_wm0(dev, PIPE_A,
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
			    &ironlake_display_wm_info,
			    ILK_LP0_PLANE_LATENCY,
			    &ironlake_cursor_wm_info,
			    ILK_LP0_CURSOR_LATENCY,
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEA_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1795
		enabled |= 1 << PIPE_A;
1796 1797
	}

1798
	if (g4x_compute_wm0(dev, PIPE_B,
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
			    &ironlake_display_wm_info,
			    ILK_LP0_PLANE_LATENCY,
			    &ironlake_cursor_wm_info,
			    ILK_LP0_CURSOR_LATENCY,
			    &plane_wm, &cursor_wm)) {
		I915_WRITE(WM0_PIPEB_ILK,
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1809
		enabled |= 1 << PIPE_B;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled))
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
				   ILK_READ_WM1_LATENCY() * 500,
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
				   ILK_READ_WM2_LATENCY() * 500,
				   &ironlake_display_srwm_info,
				   &ironlake_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/*
	 * WM3 is unsupported on ILK, probably because we don't have latency
	 * data for that power state
	 */
}

1860
static void sandybridge_update_wm(struct drm_device *dev)
1861 1862 1863 1864 1865 1866 1867 1868
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	unsigned int enabled;

	enabled = 0;
1869
	if (g4x_compute_wm0(dev, PIPE_A,
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1880
		enabled |= 1 << PIPE_A;
1881 1882
	}

1883
	if (g4x_compute_wm0(dev, PIPE_B,
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1894
		enabled |= 1 << PIPE_B;
1895 1896
	}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
				   SNB_READ_WM1_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
				   SNB_READ_WM2_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM3 */
	if (!ironlake_compute_srwm(dev, 3, enabled,
				   SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

static void ivybridge_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	u32 val;
	int fbc_wm, plane_wm, cursor_wm;
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
	unsigned int enabled;

	enabled = 0;
1972
	if (g4x_compute_wm0(dev, PIPE_A,
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEA_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEA_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
			      " plane %d, " "cursor: %d\n",
			      plane_wm, cursor_wm);
1983
		enabled |= 1 << PIPE_A;
1984 1985
	}

1986
	if (g4x_compute_wm0(dev, PIPE_B,
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEB_ILK);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEB_ILK, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
1997
		enabled |= 1 << PIPE_B;
1998 1999
	}

2000
	if (g4x_compute_wm0(dev, PIPE_C,
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
			    &sandybridge_display_wm_info, latency,
			    &sandybridge_cursor_wm_info, latency,
			    &plane_wm, &cursor_wm)) {
		val = I915_READ(WM0_PIPEC_IVB);
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
		I915_WRITE(WM0_PIPEC_IVB, val |
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
			      " plane %d, cursor: %d\n",
			      plane_wm, cursor_wm);
2011
		enabled |= 1 << PIPE_C;
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	}

	/*
	 * Calculate and update the self-refresh watermark only when one
	 * display plane is used.
	 *
	 * SNB support 3 levels of watermark.
	 *
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
	 * and disabled in the descending order
	 *
	 */
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	if (!single_plane_enabled(enabled) ||
	    dev_priv->sprite_scaling_enabled)
		return;
	enabled = ffs(enabled) - 1;

	/* WM1 */
	if (!ironlake_compute_srwm(dev, 1, enabled,
				   SNB_READ_WM1_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM1_LP_ILK,
		   WM1_LP_SR_EN |
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

	/* WM2 */
	if (!ironlake_compute_srwm(dev, 2, enabled,
				   SNB_READ_WM2_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &fbc_wm, &plane_wm, &cursor_wm))
		return;

	I915_WRITE(WM2_LP_ILK,
		   WM2_LP_EN |
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);

2063
	/* WM3, note we have to correct the cursor latency */
2064 2065 2066 2067
	if (!ironlake_compute_srwm(dev, 3, enabled,
				   SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
2068 2069 2070 2071 2072 2073
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
	    !ironlake_compute_srwm(dev, 3, enabled,
				   2 * SNB_READ_WM3_LATENCY() * 500,
				   &sandybridge_display_srwm_info,
				   &sandybridge_cursor_srwm_info,
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		return;

	I915_WRITE(WM3_LP_ILK,
		   WM3_LP_EN |
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
		   (plane_wm << WM1_LP_SR_SHIFT) |
		   cursor_wm);
}

2084 2085 2086 2087 2088 2089
static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
				      struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	uint32_t pixel_rate, pfit_size;

2090
	pixel_rate = intel_crtc->config.adjusted_mode.clock;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

	pfit_size = intel_crtc->config.pch_pfit.size;
	if (pfit_size) {
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;

		pipe_w = intel_crtc->config.requested_mode.hdisplay;
		pipe_h = intel_crtc->config.requested_mode.vdisplay;
		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint64_t ret;

	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

2138 2139 2140 2141 2142 2143
static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
struct hsw_pipe_wm_parameters {
	bool active;
	bool sprite_enabled;
	uint8_t pri_bytes_per_pixel;
	uint8_t spr_bytes_per_pixel;
	uint8_t cur_bytes_per_pixel;
	uint32_t pri_horiz_pixels;
	uint32_t spr_horiz_pixels;
	uint32_t cur_horiz_pixels;
	uint32_t pipe_htotal;
	uint32_t pixel_rate;
};

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
struct hsw_wm_maximums {
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

struct hsw_lp_wm_result {
	bool enable;
	bool fbc_enable;
	uint32_t pri_val;
	uint32_t spr_val;
	uint32_t cur_val;
	uint32_t fbc_val;
};

2173 2174 2175 2176 2177
struct hsw_wm_values {
	uint32_t wm_pipe[3];
	uint32_t wm_lp[3];
	uint32_t wm_lp_spr[3];
	uint32_t wm_linetime[3];
2178
	bool enable_fbc_wm;
2179 2180 2181 2182 2183 2184 2185
};

enum hsw_data_buf_partitioning {
	HSW_DATA_BUF_PART_1_2,
	HSW_DATA_BUF_PART_5_6,
};

2186 2187 2188 2189
/* For both WM_PIPE and WM_LP. */
static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t mem_value,
				   bool is_lp)
2190
{
2191 2192
	uint32_t method1, method2;

2193 2194 2195 2196
	/* TODO: for now, assume the primary plane is always enabled. */
	if (!params->active)
		return 0;

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	method1 = hsw_wm_method1(params->pixel_rate,
				 params->pri_bytes_per_pixel,
				 mem_value);

	if (!is_lp)
		return method1;

	method2 = hsw_wm_method2(params->pixel_rate,
				 params->pipe_htotal,
				 params->pri_horiz_pixels,
				 params->pri_bytes_per_pixel,
				 mem_value);

	return min(method1, method2);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
}

/* For both WM_PIPE and WM_LP. */
static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t mem_value)
{
	uint32_t method1, method2;

	if (!params->active || !params->sprite_enabled)
		return 0;

	method1 = hsw_wm_method1(params->pixel_rate,
				 params->spr_bytes_per_pixel,
				 mem_value);
	method2 = hsw_wm_method2(params->pixel_rate,
				 params->pipe_htotal,
				 params->spr_horiz_pixels,
				 params->spr_bytes_per_pixel,
				 mem_value);
	return min(method1, method2);
}

/* For both WM_PIPE and WM_LP. */
static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t mem_value)
{
	if (!params->active)
		return 0;

	return hsw_wm_method2(params->pixel_rate,
			      params->pipe_htotal,
			      params->cur_horiz_pixels,
			      params->cur_bytes_per_pixel,
			      mem_value);
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
/* Only for WM_LP. */
static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
				   uint32_t pri_val,
				   uint32_t mem_value)
{
	if (!params->active)
		return 0;

	return hsw_wm_fbc(pri_val,
			  params->pri_horiz_pixels,
			  params->pri_bytes_per_pixel);
}

static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
			      struct hsw_pipe_wm_parameters *params,
			      struct hsw_lp_wm_result *result)
{
	enum pipe pipe;
	uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];

	for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
		struct hsw_pipe_wm_parameters *p = &params[pipe];

		pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
		spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
		cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
		fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
	}

	result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
	result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
	result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
	result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);

	if (result->fbc_val > max->fbc) {
		result->fbc_enable = false;
		result->fbc_val = 0;
	} else {
		result->fbc_enable = true;
	}

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;
	return result->enable;
}

2294 2295 2296 2297 2298 2299
static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
				    uint32_t mem_value, enum pipe pipe,
				    struct hsw_pipe_wm_parameters *params)
{
	uint32_t pri_val, cur_val, spr_val;

2300
	pri_val = hsw_compute_pri_wm(params, mem_value, false);
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	spr_val = hsw_compute_spr_wm(params, mem_value);
	cur_val = hsw_compute_cur_wm(params, mem_value);

	WARN(pri_val > 127,
	     "Primary WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));
	WARN(spr_val > 127,
	     "Sprite WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));
	WARN(cur_val > 63,
	     "Cursor WM error, mode not supported for pipe %c\n",
	     pipe_name(pipe));

	return (pri_val << WM0_PIPE_PLANE_SHIFT) |
	       (spr_val << WM0_PIPE_SPRITE_SHIFT) |
	       cur_val;
}

static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2321 2322
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2323 2324
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2325
	u32 linetime, ips_linetime;
2326

2327 2328
	if (!intel_crtc_active(crtc))
		return 0;
2329

2330 2331 2332
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2333 2334 2335
	linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
	ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
					 intel_ddi_get_cdclk_freq(dev_priv));
2336

2337 2338
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2339 2340
}

2341 2342
static void hsw_compute_wm_parameters(struct drm_device *dev,
				      struct hsw_pipe_wm_parameters *params,
2343
				      uint32_t *wm,
2344 2345
				      struct hsw_wm_maximums *lp_max_1_2,
				      struct hsw_wm_maximums *lp_max_5_6)
2346 2347 2348
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
2349 2350
	struct drm_plane *plane;
	uint64_t sskpd = I915_READ64(MCH_SSKPD);
2351
	enum pipe pipe;
2352
	int pipes_active = 0, sprites_enabled = 0;
2353

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
	if ((sskpd >> 56) & 0xFF)
		wm[0] = (sskpd >> 56) & 0xFF;
	else
		wm[0] = sskpd & 0xF;
	wm[1] = ((sskpd >> 4) & 0xFF) * 5;
	wm[2] = ((sskpd >> 12) & 0xFF) * 5;
	wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
	wm[4] = ((sskpd >> 32) & 0x1FF) * 5;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_crtc->pipe;
		p = &params[pipe];

		p->active = intel_crtc_active(crtc);
		if (!p->active)
			continue;

2374 2375
		pipes_active++;

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
		p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
		p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
		p->cur_bytes_per_pixel = 4;
		p->pri_horiz_pixels =
			intel_crtc->config.requested_mode.hdisplay;
		p->cur_horiz_pixels = 64;
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);
		struct hsw_pipe_wm_parameters *p;

		pipe = intel_plane->pipe;
		p = &params[pipe];

		p->sprite_enabled = intel_plane->wm.enable;
		p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
		p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2395 2396 2397 2398 2399 2400

		if (p->sprite_enabled)
			sprites_enabled++;
	}

	if (pipes_active > 1) {
2401 2402 2403
		lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
		lp_max_1_2->spr = lp_max_5_6->spr = 128;
		lp_max_1_2->cur = lp_max_5_6->cur = 64;
2404 2405
	} else {
		lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2406
		lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2407
		lp_max_1_2->spr = 384;
2408 2409
		lp_max_5_6->spr = 640;
		lp_max_1_2->cur = lp_max_5_6->cur = 255;
2410
	}
2411
	lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2412 2413 2414 2415 2416
}

static void hsw_compute_wm_results(struct drm_device *dev,
				   struct hsw_pipe_wm_parameters *params,
				   uint32_t *wm,
2417
				   struct hsw_wm_maximums *lp_maximums,
2418 2419 2420 2421
				   struct hsw_wm_values *results)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
2422
	struct hsw_lp_wm_result lp_results[4] = {};
2423
	enum pipe pipe;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	int level, max_level, wm_lp;

	for (level = 1; level <= 4; level++)
		if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
				       &lp_results[level - 1]))
			break;
	max_level = level - 1;

	/* The spec says it is preferred to disable FBC WMs instead of disabling
	 * a WM level. */
	results->enable_fbc_wm = true;
	for (level = 1; level <= max_level; level++) {
		if (!lp_results[level - 1].fbc_enable) {
			results->enable_fbc_wm = false;
			break;
		}
	}

	memset(results, 0, sizeof(*results));
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		const struct hsw_lp_wm_result *r;
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
		if (level > max_level)
			break;

		r = &lp_results[level - 1];
		results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
							  r->fbc_val,
							  r->pri_val,
							  r->cur_val);
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
	}
2457 2458 2459 2460 2461

	for_each_pipe(pipe)
		results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
							     pipe,
							     &params[pipe]);
2462 2463 2464

	for_each_pipe(pipe) {
		crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2465 2466 2467 2468
		results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
	}
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
					   struct hsw_wm_values *r2)
{
	int i, val_r1 = 0, val_r2 = 0;

	for (i = 0; i < 3; i++) {
		if (r1->wm_lp[i] & WM3_LP_EN)
			val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
		if (r2->wm_lp[i] & WM3_LP_EN)
			val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
	}

	if (val_r1 == val_r2) {
		if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
			return r2;
		else
			return r1;
	} else if (val_r1 > val_r2) {
		return r1;
	} else {
		return r2;
	}
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
				struct hsw_wm_values *results,
				enum hsw_data_buf_partitioning partitioning)
{
	struct hsw_wm_values previous;
	uint32_t val;
	enum hsw_data_buf_partitioning prev_partitioning;
2506
	bool prev_enable_fbc_wm;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
	previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
	previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
	previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
	previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
	previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
	previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
	previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
	previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
	previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
	previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));

	prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			    HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;

2524 2525
	prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);

2526 2527 2528 2529 2530 2531 2532 2533
	if (memcmp(results->wm_pipe, previous.wm_pipe,
		   sizeof(results->wm_pipe)) == 0 &&
	    memcmp(results->wm_lp, previous.wm_lp,
		   sizeof(results->wm_lp)) == 0 &&
	    memcmp(results->wm_lp_spr, previous.wm_lp_spr,
		   sizeof(results->wm_lp_spr)) == 0 &&
	    memcmp(results->wm_linetime, previous.wm_linetime,
		   sizeof(results->wm_linetime)) == 0 &&
2534 2535
	    partitioning == prev_partitioning &&
	    results->enable_fbc_wm == prev_enable_fbc_wm)
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
		return;

	if (previous.wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, 0);
	if (previous.wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, 0);
	if (previous.wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, 0);

	if (previous.wm_pipe[0] != results->wm_pipe[0])
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
	if (previous.wm_pipe[1] != results->wm_pipe[1])
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
	if (previous.wm_pipe[2] != results->wm_pipe[2])
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

	if (previous.wm_linetime[0] != results->wm_linetime[0])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
	if (previous.wm_linetime[1] != results->wm_linetime[1])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
	if (previous.wm_linetime[2] != results->wm_linetime[2])
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

	if (prev_partitioning != partitioning) {
		val = I915_READ(WM_MISC);
		if (partitioning == HSW_DATA_BUF_PART_1_2)
			val &= ~WM_MISC_DATA_PARTITION_5_6;
		else
			val |= WM_MISC_DATA_PARTITION_5_6;
		I915_WRITE(WM_MISC, val);
2566 2567
	}

2568 2569 2570 2571 2572 2573 2574 2575 2576
	if (prev_enable_fbc_wm != results->enable_fbc_wm) {
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
	if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
	if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);

	if (results->wm_lp[0] != 0)
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
	if (results->wm_lp[1] != 0)
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
	if (results->wm_lp[2] != 0)
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
}

static void haswell_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2595
	struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2596
	struct hsw_pipe_wm_parameters params[3];
2597
	struct hsw_wm_values results_1_2, results_5_6, *best_results;
2598
	uint32_t wm[5];
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	enum hsw_data_buf_partitioning partitioning;

	hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);

	hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
	if (lp_max_1_2.pri != lp_max_5_6.pri) {
		hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
				       &results_5_6);
		best_results = hsw_find_best_result(&results_1_2, &results_5_6);
	} else {
		best_results = &results_1_2;
	}

	partitioning = (best_results == &results_1_2) ?
		       HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2614

2615
	hsw_write_wm_values(dev_priv, best_results, partitioning);
2616 2617
}

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
				     uint32_t sprite_width, int pixel_size,
				     bool enable)
{
	struct drm_plane *plane;

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe == pipe) {
			intel_plane->wm.enable = enable;
			intel_plane->wm.horiz_pixels = sprite_width + 1;
			intel_plane->wm.bytes_per_pixel = pixel_size;
			break;
		}
	}

	haswell_update_wm(dev);
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
			      uint32_t sprite_width, int pixel_size,
			      const struct intel_watermark_params *display,
			      int display_latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	int clock;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
2649
	if (!intel_crtc_active(crtc)) {
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
		*sprite_wm = display->guard_size;
		return false;
	}

	clock = crtc->mode.clock;

	/* Use the small buffer method to calculate the sprite watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size -
		sprite_width * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*sprite_wm = entries + display->guard_size;
	if (*sprite_wm > (int)display->max_wm)
		*sprite_wm = display->max_wm;

	return true;
}

static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
				uint32_t sprite_width, int pixel_size,
				const struct intel_watermark_params *display,
				int latency_ns, int *sprite_wm)
{
	struct drm_crtc *crtc;
	unsigned long line_time_us;
	int clock;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*sprite_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
	clock = crtc->mode.clock;
	if (!clock) {
		*sprite_wm = 0;
		return false;
	}

	line_time_us = (sprite_width * 1000) / clock;
	if (!line_time_us) {
		*sprite_wm = 0;
		return false;
	}

	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = sprite_width * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*sprite_wm = entries + display->guard_size;

	return *sprite_wm > 0x3ff ? false : true;
}

2714
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2715 2716
					 uint32_t sprite_width, int pixel_size,
					 bool enable)
2717 2718 2719 2720 2721 2722 2723
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
	u32 val;
	int sprite_wm, reg;
	int ret;

2724 2725 2726
	if (!enable)
		return;

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	switch (pipe) {
	case 0:
		reg = WM0_PIPEA_ILK;
		break;
	case 1:
		reg = WM0_PIPEB_ILK;
		break;
	case 2:
		reg = WM0_PIPEC_IVB;
		break;
	default:
		return; /* bad pipe */
	}

	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
					    &sandybridge_display_wm_info,
					    latency, &sprite_wm);
	if (!ret) {
2745 2746
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
			      pipe_name(pipe));
2747 2748 2749 2750 2751 2752
		return;
	}

	val = I915_READ(reg);
	val &= ~WM0_PIPE_SPRITE_MASK;
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2753
	DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2754 2755 2756 2757 2758 2759 2760 2761


	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
					      SNB_READ_WM1_LATENCY() * 500,
					      &sprite_wm);
	if (!ret) {
2762 2763
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
			      pipe_name(pipe));
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		return;
	}
	I915_WRITE(WM1S_LP_ILK, sprite_wm);

	/* Only IVB has two more LP watermarks for sprite */
	if (!IS_IVYBRIDGE(dev))
		return;

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
					      SNB_READ_WM2_LATENCY() * 500,
					      &sprite_wm);
	if (!ret) {
2778 2779
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
			      pipe_name(pipe));
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
		return;
	}
	I915_WRITE(WM2S_LP_IVB, sprite_wm);

	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
					      pixel_size,
					      &sandybridge_display_srwm_info,
					      SNB_READ_WM3_LATENCY() * 500,
					      &sprite_wm);
	if (!ret) {
2790 2791
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
			      pipe_name(pipe));
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		return;
	}
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
}

/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
void intel_update_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->display.update_wm)
		dev_priv->display.update_wm(dev);
}

void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2838 2839
				    uint32_t sprite_width, int pixel_size,
				    bool enable)
2840 2841 2842 2843 2844
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->display.update_sprite_wm)
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2845
						   pixel_size, enable);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
static struct drm_i915_gem_object *
intel_alloc_context_page(struct drm_device *dev)
{
	struct drm_i915_gem_object *ctx;
	int ret;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	ctx = i915_gem_alloc_object(dev, 4096);
	if (!ctx) {
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
		return NULL;
	}

2862
	ret = i915_gem_object_pin(ctx, 4096, true, false);
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	if (ret) {
		DRM_ERROR("failed to pin power context: %d\n", ret);
		goto err_unref;
	}

	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
	if (ret) {
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
		goto err_unpin;
	}

	return ctx;

err_unpin:
	i915_gem_object_unpin(ctx);
err_unref:
	drm_gem_object_unreference(&ctx->base);
	return NULL;
}

2883 2884 2885 2886 2887 2888 2889 2890 2891
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

2892 2893 2894 2895 2896
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

2897 2898
	assert_spin_locked(&mchdev_lock);

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

2916
static void ironlake_enable_drps(struct drm_device *dev)
2917 2918 2919 2920 2921
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

2922 2923
	spin_lock_irq(&mchdev_lock);

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
		PXVFREQ_PX_SHIFT;

2947 2948
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
2949

2950 2951 2952
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

2969
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2970
		DRM_ERROR("stuck trying to change perf mode\n");
2971
	mdelay(1);
2972 2973 2974

	ironlake_set_drps(dev, fstart);

2975
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2976
		I915_READ(0x112e0);
2977 2978 2979
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
	getrawmonotonic(&dev_priv->ips.last_time2);
2980 2981

	spin_unlock_irq(&mchdev_lock);
2982 2983
}

2984
static void ironlake_disable_drps(struct drm_device *dev)
2985 2986
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2987 2988 2989 2990 2991
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
2992 2993 2994 2995 2996 2997 2998 2999 3000

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
3001
	ironlake_set_drps(dev, dev_priv->ips.fstart);
3002
	mdelay(1);
3003 3004
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
3005
	mdelay(1);
3006

3007
	spin_unlock_irq(&mchdev_lock);
3008 3009
}

3010 3011 3012 3013 3014
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
3015
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3016
{
3017
	u32 limits;
3018

3019
	limits = 0;
3020 3021 3022 3023

	if (*val >= dev_priv->rps.max_delay)
		*val = dev_priv->rps.max_delay;
	limits |= dev_priv->rps.max_delay << 24;
3024 3025 3026 3027 3028 3029 3030

	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
3031 3032 3033
	if (*val <= dev_priv->rps.min_delay) {
		*val = dev_priv->rps.min_delay;
		limits |= dev_priv->rps.min_delay << 16;
3034 3035 3036 3037 3038 3039 3040 3041
	}

	return limits;
}

void gen6_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3042
	u32 limits = gen6_rps_limits(dev_priv, &val);
3043

3044
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3045 3046
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);
3047

3048
	if (val == dev_priv->rps.cur_delay)
3049 3050
		return;

3051 3052 3053 3054 3055 3056 3057 3058
	if (IS_HASWELL(dev))
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(val));
	else
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(val) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
3059 3060 3061 3062 3063 3064

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);

3065 3066
	POSTING_READ(GEN6_RPNSWREQ);

3067
	dev_priv->rps.cur_delay = val;
3068 3069

	trace_intel_gpu_freq_change(val * 50);
3070 3071
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long timeout = jiffies + msecs_to_jiffies(10);
	u32 limits = gen6_rps_limits(dev_priv, &val);
	u32 pval;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
	WARN_ON(val > dev_priv->rps.max_delay);
	WARN_ON(val < dev_priv->rps.min_delay);

	DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq,
				      dev_priv->rps.cur_delay),
			 vlv_gpu_freq(dev_priv->mem_freq, val));

	if (val == dev_priv->rps.cur_delay)
		return;

3091
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3092 3093

	do {
3094
		pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3095 3096 3097 3098 3099 3100 3101
		if (time_after(jiffies, timeout)) {
			DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
			break;
		}
		udelay(10);
	} while (pval & 1);

3102
	pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	if ((pval >> 8) != val)
		DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
			  val, pval >> 8);

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);

	dev_priv->rps.cur_delay = pval >> 8;

	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
}


3118
static void gen6_disable_rps(struct drm_device *dev)
3119 3120 3121
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3122
	I915_WRITE(GEN6_RC_CONTROL, 0);
3123 3124
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3125
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3126 3127 3128 3129 3130
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

3131 3132 3133
	spin_lock_irq(&dev_priv->rps.lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->rps.lock);
3134

3135
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3136 3137
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
	I915_WRITE(GEN6_PMIER, 0);
	/* Complete PM interrupt masking here doesn't race with the rps work
	 * item again unmasking PM interrupts because that is using a different
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */

	spin_lock_irq(&dev_priv->rps.lock);
	dev_priv->rps.pm_iir = 0;
	spin_unlock_irq(&dev_priv->rps.lock);

	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
3155 3156 3157 3158 3159

	if (dev_priv->vlv_pctx) {
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
		dev_priv->vlv_pctx = NULL;
	}
3160 3161
}

3162 3163
int intel_enable_rc6(const struct drm_device *dev)
{
3164
	/* Respect the kernel parameter if it is set */
3165 3166 3167
	if (i915_enable_rc6 >= 0)
		return i915_enable_rc6;

3168 3169 3170
	/* Disable RC6 on Ironlake */
	if (INTEL_INFO(dev)->gen == 5)
		return 0;
3171

3172 3173
	if (IS_HASWELL(dev)) {
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3174
		return INTEL_RC6_ENABLE;
3175
	}
3176

3177
	/* snb/ivb have more than one rc6 state. */
3178 3179 3180 3181
	if (INTEL_INFO(dev)->gen == 6) {
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
		return INTEL_RC6_ENABLE;
	}
3182

3183 3184 3185 3186
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
}

3187
static void gen6_enable_rps(struct drm_device *dev)
3188
{
3189
	struct drm_i915_private *dev_priv = dev->dev_private;
3190
	struct intel_ring_buffer *ring;
3191 3192
	u32 rp_state_cap;
	u32 gt_perf_status;
3193
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3194 3195
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
3196
	int i, ret;
3197

3198
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	gen6_gt_force_wake_get(dev_priv);

3216 3217 3218
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);

3219 3220
	/* In units of 50MHz */
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3221 3222
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
	dev_priv->rps.cur_delay = 0;
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

3233 3234
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3235 3236 3237 3238

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3239
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3240 3241
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

3242
	/* Check if we are enabling RC6 */
3243 3244 3245 3246
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

3247 3248 3249 3250
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3251

3252 3253 3254
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
3255 3256

	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3257 3258 3259
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3260 3261 3262 3263 3264 3265

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	if (IS_HASWELL(dev)) {
		I915_WRITE(GEN6_RPNSWREQ,
			   HSW_FREQUENCY(10));
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			   HSW_FREQUENCY(12));
	} else {
		I915_WRITE(GEN6_RPNSWREQ,
			   GEN6_FREQUENCY(10) |
			   GEN6_OFFSET(0) |
			   GEN6_AGGRESSIVE_TURBO);
		I915_WRITE(GEN6_RC_VIDEO_FREQ,
			   GEN6_FREQUENCY(12));
	}
3279 3280 3281

	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3282 3283
		   dev_priv->rps.max_delay << 24 |
		   dev_priv->rps.min_delay << 16);
3284

3285 3286 3287 3288
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3289

3290 3291 3292
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
3293
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3294 3295 3296
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
3297
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3298

B
Ben Widawsky 已提交
3299
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3300
	if (!ret) {
B
Ben Widawsky 已提交
3301 3302
		pcu_mbox = 0;
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3303
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3304
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3305 3306
					 (dev_priv->rps.max_delay & 0xff) * 50,
					 (pcu_mbox & 0xff) * 50);
3307
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
B
Ben Widawsky 已提交
3308 3309 3310
		}
	} else {
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3311 3312
	}

3313
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3314 3315

	/* requires MSI enabled */
3316
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) | GEN6_PM_RPS_EVENTS);
3317
	spin_lock_irq(&dev_priv->rps.lock);
3318 3319 3320
	/* FIXME: Our interrupt enabling sequence is bonghits.
	 * dev_priv->rps.pm_iir really should be 0 here. */
	dev_priv->rps.pm_iir = 0;
3321 3322
	I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3323
	spin_unlock_irq(&dev_priv->rps.lock);
3324
	/* unmask all PM interrupts */
3325 3326
	I915_WRITE(GEN6_PMINTRMSK, 0);

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

3341 3342 3343
	gen6_gt_force_wake_put(dev_priv);
}

3344
static void gen6_update_ring_freq(struct drm_device *dev)
3345
{
3346
	struct drm_i915_private *dev_priv = dev->dev_private;
3347
	int min_freq = 15;
3348 3349
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
3350 3351
	int scaling_factor = 180;

3352
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	max_ia_freq = cpufreq_quick_get_max(0);
	/*
	 * Default to measured freq if none found, PCU will ensure we don't go
	 * over
	 */
	if (!max_ia_freq)
		max_ia_freq = tsc_khz;

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

3365 3366 3367 3368
	min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
	/* convert DDR frequency from units of 133.3MHz to bandwidth */
	min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;

3369 3370 3371 3372 3373
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
3374
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3375
	     gpu_freq--) {
3376
		int diff = dev_priv->rps.max_delay - gpu_freq;
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
		unsigned int ia_freq = 0, ring_freq = 0;

		if (IS_HASWELL(dev)) {
			ring_freq = (gpu_freq * 5 + 3) / 4;
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
3397

B
Ben Widawsky 已提交
3398 3399
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3400 3401 3402
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
3403 3404 3405
	}
}

3406 3407 3408 3409
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp0;

3410
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

3423
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3424
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3425
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3426 3427 3428 3429 3430 3431 3432
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
{
3433
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3434 3435
}

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static void vlv_rps_timer_work(struct work_struct *work)
{
	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
						    rps.vlv_work.work);

	/*
	 * Timer fired, we must be idle.  Drop to min voltage state.
	 * Note: we use RPe here since it should match the
	 * Vmin we were shooting for.  That should give us better
	 * perf when we come back out of RC6 than if we used the
	 * min freq available.
	 */
	mutex_lock(&dev_priv->rps.hw_lock);
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
3469
								      -1,
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
								      pctx_size);
		goto out;
	}

	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
	dev_priv->vlv_pctx = pctx;
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring;
	u32 gtfifodbg, val, rpe;
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

3509 3510
	valleyview_setup_pctx(dev);

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
	gen6_gt_force_wake_get(dev_priv);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

	I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);

	/* allows RC6 residency counter to work */
	I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN7_RC_CTL_TO_MODE);

3542
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);

	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	DRM_DEBUG_DRIVER("current GPU freq: %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
	dev_priv->rps.cur_delay = (val >> 8) & 0xff;

	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
	DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
						     dev_priv->rps.max_delay));

	rpe = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq, rpe));
3572
	dev_priv->rps.rpe_delay = rpe;
3573 3574 3575 3576 3577 3578 3579 3580 3581

	val = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
							    val));
	dev_priv->rps.min_delay = val;

	DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
			 vlv_gpu_freq(dev_priv->mem_freq, rpe));

3582 3583
	INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);

3584 3585 3586
	valleyview_set_rps(dev_priv->dev, rpe);

	/* requires MSI enabled */
3587
	I915_WRITE(GEN6_PMIER, GEN6_PM_RPS_EVENTS);
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
	spin_lock_irq(&dev_priv->rps.lock);
	WARN_ON(dev_priv->rps.pm_iir != 0);
	I915_WRITE(GEN6_PMIMR, 0);
	spin_unlock_irq(&dev_priv->rps.lock);
	/* enable all PM interrupts */
	I915_WRITE(GEN6_PMINTRMSK, 0);

	gen6_gt_force_wake_put(dev_priv);
}

3598
void ironlake_teardown_rc6(struct drm_device *dev)
3599 3600 3601
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3602 3603 3604 3605
	if (dev_priv->ips.renderctx) {
		i915_gem_object_unpin(dev_priv->ips.renderctx);
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
		dev_priv->ips.renderctx = NULL;
3606 3607
	}

3608 3609 3610 3611
	if (dev_priv->ips.pwrctx) {
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
		dev_priv->ips.pwrctx = NULL;
3612 3613 3614
	}
}

3615
static void ironlake_disable_rc6(struct drm_device *dev)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_READ(PWRCTXA)) {
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
			 50);

		I915_WRITE(PWRCTXA, 0);
		POSTING_READ(PWRCTXA);

		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
		POSTING_READ(RSTDBYCTL);
	}
}

static int ironlake_setup_rc6(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

3637 3638 3639
	if (dev_priv->ips.renderctx == NULL)
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.renderctx)
3640 3641
		return -ENOMEM;

3642 3643 3644
	if (dev_priv->ips.pwrctx == NULL)
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
	if (!dev_priv->ips.pwrctx) {
3645 3646 3647 3648 3649 3650 3651
		ironlake_teardown_rc6(dev);
		return -ENOMEM;
	}

	return 0;
}

3652
static void ironlake_enable_rc6(struct drm_device *dev)
3653 3654
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3655
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3656
	bool was_interruptible;
3657 3658 3659 3660 3661 3662 3663 3664
	int ret;

	/* rc6 disabled by default due to repeated reports of hanging during
	 * boot and resume.
	 */
	if (!intel_enable_rc6(dev))
		return;

3665 3666
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

3667
	ret = ironlake_setup_rc6(dev);
3668
	if (ret)
3669 3670
		return;

3671 3672 3673
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

3674 3675 3676 3677
	/*
	 * GPU can automatically power down the render unit if given a page
	 * to save state.
	 */
3678
	ret = intel_ring_begin(ring, 6);
3679 3680
	if (ret) {
		ironlake_teardown_rc6(dev);
3681
		dev_priv->mm.interruptible = was_interruptible;
3682 3683 3684
		return;
	}

3685 3686
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
	intel_ring_emit(ring, MI_SET_CONTEXT);
3687
	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3688 3689 3690 3691 3692 3693 3694 3695
			MI_MM_SPACE_GTT |
			MI_SAVE_EXT_STATE_EN |
			MI_RESTORE_EXT_STATE_EN |
			MI_RESTORE_INHIBIT);
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_advance(ring);
3696 3697 3698 3699 3700 3701

	/*
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
	 * does an implicit flush, combined with MI_FLUSH above, it should be
	 * safe to assume that renderctx is valid
	 */
3702 3703
	ret = intel_ring_idle(ring);
	dev_priv->mm.interruptible = was_interruptible;
3704
	if (ret) {
3705
		DRM_ERROR("failed to enable ironlake power savings\n");
3706 3707 3708 3709
		ironlake_teardown_rc6(dev);
		return;
	}

3710
	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3711 3712 3713
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

3743
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3744 3745 3746 3747 3748 3749
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

3750 3751
	assert_spin_locked(&mchdev_lock);

3752
	diff1 = now - dev_priv->ips.last_time1;
3753 3754 3755 3756 3757 3758 3759

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
3760
		return dev_priv->ips.chipset_power;
3761 3762 3763 3764 3765 3766 3767 3768

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
3769 3770
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
3771 3772
		diff += total_count;
	} else {
3773
		diff = total_count - dev_priv->ips.last_count1;
3774 3775 3776
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3777 3778
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

3789 3790
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
3791

3792
	dev_priv->ips.chipset_power = ret;
3793 3794 3795 3796

	return ret;
}

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
{
	static const struct v_table {
		u16 vd; /* in .1 mil */
		u16 vm; /* in .1 mil */
	} v_table[] = {
		{ 0, 0, },
		{ 375, 0, },
		{ 500, 0, },
		{ 625, 0, },
		{ 750, 0, },
		{ 875, 0, },
		{ 1000, 0, },
		{ 1125, 0, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4125, 3000, },
		{ 4250, 3125, },
		{ 4375, 3250, },
		{ 4500, 3375, },
		{ 4625, 3500, },
		{ 4750, 3625, },
		{ 4875, 3750, },
		{ 5000, 3875, },
		{ 5125, 4000, },
		{ 5250, 4125, },
		{ 5375, 4250, },
		{ 5500, 4375, },
		{ 5625, 4500, },
		{ 5750, 4625, },
		{ 5875, 4750, },
		{ 6000, 4875, },
		{ 6125, 5000, },
		{ 6250, 5125, },
		{ 6375, 5250, },
		{ 6500, 5375, },
		{ 6625, 5500, },
		{ 6750, 5625, },
		{ 6875, 5750, },
		{ 7000, 5875, },
		{ 7125, 6000, },
		{ 7250, 6125, },
		{ 7375, 6250, },
		{ 7500, 6375, },
		{ 7625, 6500, },
		{ 7750, 6625, },
		{ 7875, 6750, },
		{ 8000, 6875, },
		{ 8125, 7000, },
		{ 8250, 7125, },
		{ 8375, 7250, },
		{ 8500, 7375, },
		{ 8625, 7500, },
		{ 8750, 7625, },
		{ 8875, 7750, },
		{ 9000, 7875, },
		{ 9125, 8000, },
		{ 9250, 8125, },
		{ 9375, 8250, },
		{ 9500, 8375, },
		{ 9625, 8500, },
		{ 9750, 8625, },
		{ 9875, 8750, },
		{ 10000, 8875, },
		{ 10125, 9000, },
		{ 10250, 9125, },
		{ 10375, 9250, },
		{ 10500, 9375, },
		{ 10625, 9500, },
		{ 10750, 9625, },
		{ 10875, 9750, },
		{ 11000, 9875, },
		{ 11125, 10000, },
		{ 11250, 10125, },
		{ 11375, 10250, },
		{ 11500, 10375, },
		{ 11625, 10500, },
		{ 11750, 10625, },
		{ 11875, 10750, },
		{ 12000, 10875, },
		{ 12125, 11000, },
		{ 12250, 11125, },
		{ 12375, 11250, },
		{ 12500, 11375, },
		{ 12625, 11500, },
		{ 12750, 11625, },
		{ 12875, 11750, },
		{ 13000, 11875, },
		{ 13125, 12000, },
		{ 13250, 12125, },
		{ 13375, 12250, },
		{ 13500, 12375, },
		{ 13625, 12500, },
		{ 13750, 12625, },
		{ 13875, 12750, },
		{ 14000, 12875, },
		{ 14125, 13000, },
		{ 14250, 13125, },
		{ 14375, 13250, },
		{ 14500, 13375, },
		{ 14625, 13500, },
		{ 14750, 13625, },
		{ 14875, 13750, },
		{ 15000, 13875, },
		{ 15125, 14000, },
		{ 15250, 14125, },
		{ 15375, 14250, },
		{ 15500, 14375, },
		{ 15625, 14500, },
		{ 15750, 14625, },
		{ 15875, 14750, },
		{ 16000, 14875, },
		{ 16125, 15000, },
	};
	if (dev_priv->info->is_mobile)
		return v_table[pxvid].vm;
	else
		return v_table[pxvid].vd;
}

3969
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3970 3971 3972 3973 3974 3975
{
	struct timespec now, diff1;
	u64 diff;
	unsigned long diffms;
	u32 count;

3976
	assert_spin_locked(&mchdev_lock);
3977 3978

	getrawmonotonic(&now);
3979
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3980 3981 3982 3983 3984 3985 3986 3987

	/* Don't divide by 0 */
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

3988 3989
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
3990 3991
		diff += count;
	} else {
3992
		diff = count - dev_priv->ips.last_count2;
3993 3994
	}

3995 3996
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
3997 3998 3999 4000

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
4001
	dev_priv->ips.gfx_power = diff;
4002 4003
}

4004 4005 4006 4007 4008
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
	if (dev_priv->info->gen != 5)
		return;

4009
	spin_lock_irq(&mchdev_lock);
4010 4011 4012

	__i915_update_gfx_val(dev_priv);

4013
	spin_unlock_irq(&mchdev_lock);
4014 4015
}

4016
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4017 4018 4019 4020
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

4021 4022
	assert_spin_locked(&mchdev_lock);

4023
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
4043
	corr2 = (corr * dev_priv->ips.corr);
4044 4045 4046 4047

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

4048
	__i915_update_gfx_val(dev_priv);
4049

4050
	return dev_priv->ips.gfx_power + state2;
4051 4052
}

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

	if (dev_priv->info->gen != 5)
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

4080
	spin_lock_irq(&mchdev_lock);
4081 4082 4083 4084
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4085 4086
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
4087 4088 4089 4090

	ret = chipset_val + graphics_val;

out_unlock:
4091
	spin_unlock_irq(&mchdev_lock);
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4107
	spin_lock_irq(&mchdev_lock);
4108 4109 4110 4111 4112 4113
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4114 4115
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
4116 4117

out_unlock:
4118
	spin_unlock_irq(&mchdev_lock);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4135
	spin_lock_irq(&mchdev_lock);
4136 4137 4138 4139 4140 4141
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4142 4143
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
4144 4145

out_unlock:
4146
	spin_unlock_irq(&mchdev_lock);
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
4160
	struct intel_ring_buffer *ring;
4161
	bool ret = false;
4162
	int i;
4163

4164
	spin_lock_irq(&mchdev_lock);
4165 4166 4167 4168
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

4169 4170
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
4171 4172

out_unlock:
4173
	spin_unlock_irq(&mchdev_lock);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

4190
	spin_lock_irq(&mchdev_lock);
4191 4192 4193 4194 4195 4196
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

4197
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4198

4199
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4200 4201 4202
		ret = false;

out_unlock:
4203
	spin_unlock_irq(&mchdev_lock);
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
4231 4232
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4233
	spin_lock_irq(&mchdev_lock);
4234
	i915_mch_dev = dev_priv;
4235
	spin_unlock_irq(&mchdev_lock);
4236 4237 4238 4239 4240 4241

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
4242
	spin_lock_irq(&mchdev_lock);
4243
	i915_mch_dev = NULL;
4244
	spin_unlock_irq(&mchdev_lock);
4245
}
4246
static void intel_init_emon(struct drm_device *dev)
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
		I915_WRITE(PEW + (i * 4), 0);
	for (i = 0; i < 3; i++)
		I915_WRITE(DEW + (i * 4), 0);

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
		I915_WRITE(PXW + (i * 4), val);
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
		I915_WRITE(PXWL + (i * 4), 0);

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

4314
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4315 4316
}

4317 4318
void intel_disable_gt_powersave(struct drm_device *dev)
{
4319 4320
	struct drm_i915_private *dev_priv = dev->dev_private;

4321 4322 4323
	/* Interrupts should be disabled already to avoid re-arming. */
	WARN_ON(dev->irq_enabled);

4324
	if (IS_IRONLAKE_M(dev)) {
4325
		ironlake_disable_drps(dev);
4326
		ironlake_disable_rc6(dev);
4327
	} else if (INTEL_INFO(dev)->gen >= 6) {
4328
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4329
		cancel_work_sync(&dev_priv->rps.work);
4330 4331
		if (IS_VALLEYVIEW(dev))
			cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4332
		mutex_lock(&dev_priv->rps.hw_lock);
4333 4334 4335 4336
		if (IS_VALLEYVIEW(dev))
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
4337
		mutex_unlock(&dev_priv->rps.hw_lock);
4338
	}
4339 4340
}

4341 4342 4343 4344 4345 4346 4347
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

4348
	mutex_lock(&dev_priv->rps.hw_lock);
4349 4350 4351 4352 4353 4354 4355

	if (IS_VALLEYVIEW(dev)) {
		valleyview_enable_rps(dev);
	} else {
		gen6_enable_rps(dev);
		gen6_update_ring_freq(dev);
	}
4356
	mutex_unlock(&dev_priv->rps.hw_lock);
4357 4358
}

4359 4360
void intel_enable_gt_powersave(struct drm_device *dev)
{
4361 4362
	struct drm_i915_private *dev_priv = dev->dev_private;

4363 4364 4365 4366
	if (IS_IRONLAKE_M(dev)) {
		ironlake_enable_drps(dev);
		ironlake_enable_rc6(dev);
		intel_init_emon(dev);
4367
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4368 4369 4370 4371 4372 4373 4374
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 */
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
				      round_jiffies_up_relative(HZ));
4375 4376 4377
	}
}

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

4390
static void ironlake_init_clock_gating(struct drm_device *dev)
4391 4392
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4393
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4394 4395

	/* Required for FBC */
4396 4397 4398
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4416
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

4440 4441
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

4442 4443 4444 4445 4446 4447
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
4448

4449
	/* WaDisableRenderCachePipelinedFlush:ilk */
4450 4451
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4452 4453 4454 4455 4456 4457 4458 4459

	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4460
	uint32_t val;
4461 4462 4463 4464 4465 4466 4467 4468 4469

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
4470 4471 4472
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
4473
	for_each_pipe(pipe) {
4474 4475 4476
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4477
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
4478
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4479 4480 4481
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4482 4483
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
4484 4485 4486 4487 4488
	/* WADP0ClockGatingDisable */
	for_each_pipe(pipe) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
4489 4490
}

4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
		DRM_INFO("This can cause pipe underruns and display issues.\n");
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
	}
}

4504
static void gen6_init_clock_gating(struct drm_device *dev)
4505 4506 4507
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4508
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4509

4510
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4511 4512 4513 4514 4515

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

4516
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4517 4518 4519
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

4520
	/* WaSetupGtModeTdRowDispatch:snb */
4521 4522 4523 4524
	if (IS_SNB_GT1(dev))
		I915_WRITE(GEN6_GT_MODE,
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));

4525 4526 4527 4528 4529
	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	I915_WRITE(CACHE_MODE_0,
4530
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
4546
	 *
4547 4548
	 * Also apply WaDisableVDSUnitClockGating:snb and
	 * WaDisableRCPBUnitClockGating:snb.
4549 4550
	 */
	I915_WRITE(GEN6_UCGCTL2,
4551
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4552 4553 4554 4555
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

	/* Bspec says we need to always set all mask bits. */
4556 4557
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573

	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4574 4575 4576 4577
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4578

4579
	/* WaMbcDriverBootEnable:snb */
4580 4581 4582
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4583 4584 4585 4586 4587 4588
	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}
B
Ben Widawsky 已提交
4589 4590 4591 4592 4593

	/* The default value should be 0x200 according to docs, but the two
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4594 4595

	cpt_init_clock_gating(dev);
4596 4597

	gen6_check_mch_setup(dev);
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

4609 4610 4611
	if (IS_HASWELL(dev_priv->dev))
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;

4612 4613 4614
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4627 4628 4629 4630 4631

	/* WADPOClockGatingDisable:hsw */
	I915_WRITE(_TRANSA_CHICKEN1,
		   I915_READ(_TRANSA_CHICKEN1) |
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4632 4633
}

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4656
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4657 4658 4659
	 */
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);

4660
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4661 4662 4663
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4664
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
4665 4666 4667 4668 4669
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
			GEN7_WA_L3_CHICKEN_MODE);

4670
	/* This is required by WaCatErrorRejectionIssue:hsw */
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4682
	/* WaVSRefCountFullforceMissDisable:hsw */
4683 4684
	gen7_setup_fixed_func_scheduler(dev_priv);

4685
	/* WaDisable4x2SubspanOptimization:hsw */
4686 4687
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4688

4689
	/* WaMbcDriverBootEnable:hsw */
4690 4691 4692
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4693
	/* WaSwitchSolVfFArbitrationPriority:hsw */
4694 4695
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

4696 4697 4698
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4699

4700
	lpt_init_clock_gating(dev);
4701 4702
}

4703
static void ivybridge_init_clock_gating(struct drm_device *dev)
4704 4705 4706
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
4707
	uint32_t snpcr;
4708 4709 4710 4711 4712

	I915_WRITE(WM3_LP_ILK, 0);
	I915_WRITE(WM2_LP_ILK, 0);
	I915_WRITE(WM1_LP_ILK, 0);

4713
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4714

4715
	/* WaDisableEarlyCull:ivb */
4716 4717 4718
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

4719
	/* WaDisableBackToBackFlipFix:ivb */
4720 4721 4722 4723
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

4724
	/* WaDisablePSDDualDispatchEnable:ivb */
4725 4726 4727 4728 4729 4730 4731
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
	else
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

4732
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4733 4734 4735
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4736
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
4737 4738 4739
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4740 4741 4742 4743 4744 4745 4746 4747
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
	else
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

4748

4749
	/* WaForceL3Serialization:ivb */
4750 4751 4752
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4764
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4765 4766 4767 4768 4769
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

4770
	/* This is required by WaCatErrorRejectionIssue:ivb */
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4782
	/* WaMbcDriverBootEnable:ivb */
4783 4784 4785
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4786
	/* WaVSRefCountFullforceMissDisable:ivb */
4787
	gen7_setup_fixed_func_scheduler(dev_priv);
4788

4789
	/* WaDisable4x2SubspanOptimization:ivb */
4790 4791
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4792 4793 4794 4795 4796

	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4797

4798 4799
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
4800 4801

	gen6_check_mch_setup(dev);
4802 4803
}

4804
static void valleyview_init_clock_gating(struct drm_device *dev)
4805 4806 4807 4808
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;

4809
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4810

4811
	/* WaDisableEarlyCull:vlv */
4812 4813 4814
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

4815
	/* WaDisableBackToBackFlipFix:vlv */
4816 4817 4818 4819
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

4820
	/* WaDisablePSDDualDispatchEnable:vlv */
4821
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4822 4823
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4824

4825
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4826 4827 4828
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

4829
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
4830
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4831 4832
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);

4833
	/* WaForceL3Serialization:vlv */
4834 4835 4836
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4837
	/* WaDisableDopClockGating:vlv */
4838 4839 4840
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

4841
	/* WaForceL3Serialization:vlv */
4842 4843 4844
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

4845
	/* This is required by WaCatErrorRejectionIssue:vlv */
4846 4847 4848 4849
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

4850
	/* WaMbcDriverBootEnable:vlv */
4851 4852 4853
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);

4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
	 *
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4866
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4867
	 *
4868 4869
	 * Also apply WaDisableVDSUnitClockGating:vlv and
	 * WaDisableRCPBUnitClockGating:vlv.
4870 4871 4872
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4873
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4874 4875 4876 4877
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

4878 4879
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);

4880 4881 4882 4883 4884 4885 4886
	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4887 4888
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4889

4890
	/*
4891
	 * WaDisableVLVClockGating_VBIIssue:vlv
4892 4893 4894
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);

	/* Conservative clock gating settings for now */
	I915_WRITE(0x9400, 0xffffffff);
	I915_WRITE(0x9404, 0xffffffff);
	I915_WRITE(0x9408, 0xffffffff);
	I915_WRITE(0x940c, 0xffffffff);
	I915_WRITE(0x9410, 0xffffffff);
	I915_WRITE(0x9414, 0xffffffff);
	I915_WRITE(0x9418, 0xffffffff);
4905 4906
}

4907
static void g4x_init_clock_gating(struct drm_device *dev)
4908 4909 4910
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;
4911
	int pipe;
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4924 4925 4926 4927

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4928 4929 4930 4931 4932 4933 4934 4935

	for_each_pipe(pipe) {
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
		intel_flush_display_plane(dev_priv, pipe);
	}

4936 4937
}

4938
static void crestline_init_clock_gating(struct drm_device *dev)
4939 4940 4941 4942 4943 4944 4945 4946
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
4947 4948
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4949 4950
}

4951
static void broadwater_init_clock_gating(struct drm_device *dev)
4952 4953 4954 4955 4956 4957 4958 4959 4960
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
4961 4962
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4963 4964
}

4965
static void gen3_init_clock_gating(struct drm_device *dev)
4966 4967 4968 4969 4970 4971 4972
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
4973 4974 4975

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4976 4977 4978

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4979 4980
}

4981
static void i85x_init_clock_gating(struct drm_device *dev)
4982 4983 4984 4985 4986 4987
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
}

4988
static void i830_init_clock_gating(struct drm_device *dev)
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	dev_priv->display.init_clock_gating(dev);
}

5002 5003 5004 5005 5006 5007
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

5008 5009 5010 5011 5012
/**
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
5013 5014
bool intel_display_power_enabled(struct drm_device *dev,
				 enum intel_display_power_domain domain)
5015 5016 5017
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	if (!HAS_POWER_WELL(dev))
		return true;

	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
	case POWER_DOMAIN_TRANSCODER_EDP:
		return true;
	case POWER_DOMAIN_PIPE_B:
	case POWER_DOMAIN_PIPE_C:
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
	case POWER_DOMAIN_TRANSCODER_A:
	case POWER_DOMAIN_TRANSCODER_B:
	case POWER_DOMAIN_TRANSCODER_C:
5033 5034
		return I915_READ(HSW_PWR_WELL_DRIVER) ==
		       (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5035 5036 5037
	default:
		BUG();
	}
5038 5039
}

5040
static void __intel_set_power_well(struct drm_device *dev, bool enable)
5041 5042
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5043 5044
	bool is_enabled, enable_requested;
	uint32_t tmp;
5045

5046 5047 5048
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	is_enabled = tmp & HSW_PWR_WELL_STATE;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5049

5050 5051 5052
	if (enable) {
		if (!enable_requested)
			I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5053

5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				      HSW_PWR_WELL_STATE), 20))
				DRM_ERROR("Timeout enabling power well\n");
		}
	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
5064 5065
		}
	}
5066
}
5067

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
static struct i915_power_well *hsw_pwr;

/* Display audio driver power well request */
void i915_request_power_well(void)
{
	if (WARN_ON(!hsw_pwr))
		return;

	spin_lock_irq(&hsw_pwr->lock);
	if (!hsw_pwr->count++ &&
			!hsw_pwr->i915_request)
		__intel_set_power_well(hsw_pwr->device, true);
	spin_unlock_irq(&hsw_pwr->lock);
}
EXPORT_SYMBOL_GPL(i915_request_power_well);

/* Display audio driver power well release */
void i915_release_power_well(void)
{
	if (WARN_ON(!hsw_pwr))
		return;

	spin_lock_irq(&hsw_pwr->lock);
	WARN_ON(!hsw_pwr->count);
	if (!--hsw_pwr->count &&
		       !hsw_pwr->i915_request)
		__intel_set_power_well(hsw_pwr->device, false);
	spin_unlock_irq(&hsw_pwr->lock);
}
EXPORT_SYMBOL_GPL(i915_release_power_well);

int i915_init_power_well(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	hsw_pwr = &dev_priv->power_well;

	hsw_pwr->device = dev;
	spin_lock_init(&hsw_pwr->lock);
	hsw_pwr->count = 0;

	return 0;
}

void i915_remove_power_well(struct drm_device *dev)
{
	hsw_pwr = NULL;
}

void intel_set_power_well(struct drm_device *dev, bool enable)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_power_well *power_well = &dev_priv->power_well;

	if (!HAS_POWER_WELL(dev))
		return;

	if (!i915_disable_power_well && !enable)
		return;

	spin_lock_irq(&power_well->lock);
	power_well->i915_request = enable;

	/* only reject "disable" power well request */
	if (power_well->count && !enable) {
		spin_unlock_irq(&power_well->lock);
		return;
	}

	__intel_set_power_well(dev, enable);
	spin_unlock_irq(&power_well->lock);
}

5141 5142 5143 5144 5145
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
5146
 */
5147
void intel_init_power_well(struct drm_device *dev)
5148 5149 5150
{
	struct drm_i915_private *dev_priv = dev->dev_private;

P
Paulo Zanoni 已提交
5151
	if (!HAS_POWER_WELL(dev))
5152 5153
		return;

5154 5155
	/* For now, we need the power well to be always enabled. */
	intel_set_power_well(dev, true);
5156

5157 5158 5159 5160
	/* We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now. */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5161 5162
}

5163 5164 5165 5166 5167 5168 5169 5170
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (I915_HAS_FBC(dev)) {
		if (HAS_PCH_SPLIT(dev)) {
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
R
Rodrigo Vivi 已提交
5171
			if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5172 5173 5174 5175 5176
				dev_priv->display.enable_fbc =
					gen7_enable_fbc;
			else
				dev_priv->display.enable_fbc =
					ironlake_enable_fbc;
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
		} else if (IS_GM45(dev)) {
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
			dev_priv->display.enable_fbc = g4x_enable_fbc;
			dev_priv->display.disable_fbc = g4x_disable_fbc;
		} else if (IS_CRESTLINE(dev)) {
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
		}
		/* 855GM needs testing */
	}

5190 5191 5192 5193 5194 5195
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	/* For FIFO watermark updates */
	if (HAS_PCH_SPLIT(dev)) {
		if (IS_GEN5(dev)) {
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
				dev_priv->display.update_wm = ironlake_update_wm;
			else {
				DRM_DEBUG_KMS("Failed to get proper latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
		} else if (IS_GEN6(dev)) {
			if (SNB_READ_WM0_LATENCY()) {
				dev_priv->display.update_wm = sandybridge_update_wm;
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
		} else if (IS_IVYBRIDGE(dev)) {
			if (SNB_READ_WM0_LATENCY()) {
5219
				dev_priv->display.update_wm = ivybridge_update_wm;
5220 5221 5222 5223 5224 5225 5226
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5227
		} else if (IS_HASWELL(dev)) {
5228
			if (I915_READ64(MCH_SSKPD)) {
5229
				dev_priv->display.update_wm = haswell_update_wm;
5230 5231
				dev_priv->display.update_sprite_wm =
					haswell_update_sprite_wm;
5232 5233 5234 5235 5236
			} else {
				DRM_DEBUG_KMS("Failed to read display plane latency. "
					      "Disable CxSR\n");
				dev_priv->display.update_wm = NULL;
			}
5237
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290
		} else
			dev_priv->display.update_wm = NULL;
	} else if (IS_VALLEYVIEW(dev)) {
		dev_priv->display.update_wm = valleyview_update_wm;
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
			pineview_disable_cxsr(dev);
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_I865G(dev)) {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
	} else if (IS_I85X(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	} else {
		dev_priv->display.update_wm = i830_update_wm;
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
		if (IS_845G(dev))
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
		else
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
	}
}

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
{
	u32 gt_thread_status_mask;

	if (IS_HASWELL(dev_priv->dev))
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
	else
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;

	/* w/a for a sporadic read returning 0 by waiting for the GT
	 * thread to wake up.
	 */
	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
		DRM_ERROR("GT thread status wait timed out\n");
}

5307 5308 5309 5310 5311 5312
static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
}

5313 5314
static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
{
5315
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5316
			    FORCEWAKE_ACK_TIMEOUT_MS))
5317
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5318

5319
	I915_WRITE_NOTRACE(FORCEWAKE, 1);
B
Ben Widawsky 已提交
5320
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5321

5322
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5323
			    FORCEWAKE_ACK_TIMEOUT_MS))
5324
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5325

5326
	/* WaRsForcewakeWaitTC0:snb */
5327 5328 5329
	__gen6_gt_wait_for_thread_c0(dev_priv);
}

5330 5331 5332
static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5333 5334
	/* something from same cacheline, but !FORCEWAKE_MT */
	POSTING_READ(ECOBUS);
5335 5336
}

5337 5338 5339 5340 5341 5342 5343 5344 5345
static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
{
	u32 forcewake_ack;

	if (IS_HASWELL(dev_priv->dev))
		forcewake_ack = FORCEWAKE_ACK_HSW;
	else
		forcewake_ack = FORCEWAKE_MT_ACK;

5346
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5347
			    FORCEWAKE_ACK_TIMEOUT_MS))
5348
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5349

5350
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5351 5352
	/* something from same cacheline, but !FORCEWAKE_MT */
	POSTING_READ(ECOBUS);
5353

5354
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5355
			    FORCEWAKE_ACK_TIMEOUT_MS))
5356
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5357

5358
	/* WaRsForcewakeWaitTC0:ivb,hsw */
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
	__gen6_gt_wait_for_thread_c0(dev_priv);
}

/*
 * Generally this is called implicitly by the register read function. However,
 * if some sequence requires the GT to not power down then this function should
 * be called at the beginning of the sequence followed by a call to
 * gen6_gt_force_wake_put() at the end of the sequence.
 */
void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
{
	unsigned long irqflags;

	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
	if (dev_priv->forcewake_count++ == 0)
		dev_priv->gt.force_wake_get(dev_priv);
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
}

void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
{
	u32 gtfifodbg;
	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
	     "MMIO read or write has been dropped %x\n", gtfifodbg))
		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
}

static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
5390 5391
	/* something from same cacheline, but !FORCEWAKE */
	POSTING_READ(ECOBUS);
5392 5393 5394 5395 5396
	gen6_gt_check_fifodbg(dev_priv);
}

static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
{
5397
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5398 5399
	/* something from same cacheline, but !FORCEWAKE_MT */
	POSTING_READ(ECOBUS);
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	gen6_gt_check_fifodbg(dev_priv);
}

/*
 * see gen6_gt_force_wake_get()
 */
void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
{
	unsigned long irqflags;

	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
	if (--dev_priv->forcewake_count == 0)
		dev_priv->gt.force_wake_put(dev_priv);
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
}

int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
{
	int ret = 0;

	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
		int loop = 500;
		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
			udelay(10);
			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
		}
		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
			++ret;
		dev_priv->gt_fifo_count = fifo;
	}
	dev_priv->gt_fifo_count--;

	return ret;
}

5436 5437 5438
static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
{
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5439 5440
	/* something from same cacheline, but !FORCEWAKE_VLV */
	POSTING_READ(FORCEWAKE_ACK_VLV);
5441 5442
}

5443 5444
static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
{
5445
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5446
			    FORCEWAKE_ACK_TIMEOUT_MS))
5447
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5448

5449
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5450 5451
	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
			   _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5452

5453
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5454
			    FORCEWAKE_ACK_TIMEOUT_MS))
5455 5456 5457 5458 5459 5460
		DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");

	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
			     FORCEWAKE_KERNEL),
			    FORCEWAKE_ACK_TIMEOUT_MS))
		DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5461

5462
	/* WaRsForcewakeWaitTC0:vlv */
5463 5464 5465 5466 5467
	__gen6_gt_wait_for_thread_c0(dev_priv);
}

static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
{
5468
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5469 5470 5471
	I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
			   _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
	/* The below doubles as a POSTING_READ */
5472
	gen6_gt_check_fifodbg(dev_priv);
5473 5474
}

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
void intel_gt_reset(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (IS_VALLEYVIEW(dev)) {
		vlv_force_wake_reset(dev_priv);
	} else if (INTEL_INFO(dev)->gen >= 6) {
		__gen6_gt_force_wake_reset(dev_priv);
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
			__gen6_gt_force_wake_mt_reset(dev_priv);
	}
}

5488 5489 5490 5491 5492 5493
void intel_gt_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	spin_lock_init(&dev_priv->gt_lock);

5494 5495
	intel_gt_reset(dev);

5496 5497 5498
	if (IS_VALLEYVIEW(dev)) {
		dev_priv->gt.force_wake_get = vlv_force_wake_get;
		dev_priv->gt.force_wake_put = vlv_force_wake_put;
5499 5500 5501 5502
	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
	} else if (IS_GEN6(dev)) {
5503 5504 5505
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
	}
5506 5507
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
5508 5509
}

B
Ben Widawsky 已提交
5510 5511
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
{
5512
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
{
5536
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
5556

5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
int vlv_gpu_freq(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	return ((val - 0xbd) * mult) + base;
}

int vlv_freq_opcode(int ddr_freq, int val)
{
	int mult, base;

	switch (ddr_freq) {
	case 800:
		mult = 20;
		base = 120;
		break;
	case 1066:
		mult = 22;
		base = 133;
		break;
	case 1333:
		mult = 21;
		base = 125;
		break;
	default:
		return -1;
	}

	val /= mult;
	val -= base / mult;
	val += 0xbd;

	if (val > 0xea)
		val = 0xea;

	return val;
}