intel_pm.c 236.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29
#include <drm/drm_plane_helper.h>
30 31
#include "i915_drv.h"
#include "intel_drv.h"
32 33
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
34
#include <drm/drm_atomic_helper.h>
35

B
Ben Widawsky 已提交
36
/**
37 38
 * DOC: RC6
 *
B
Ben Widawsky 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

59
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60
{
61
	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 63 64
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);

65 66
	I915_WRITE(GEN8_CONFIG0,
		   I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67

68
	/* WaEnableChickenDCPR:skl,bxt,kbl,glk */
69 70
	I915_WRITE(GEN8_CHICKEN_DCPR_1,
		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71 72

	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73
	/* WaFbcWakeMemOn:skl,bxt,kbl,glk */
74 75 76
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
		   DISP_FBC_WM_DIS |
		   DISP_FBC_MEMORY_WAKE);
77 78 79 80

	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_DISABLE_DUMMY0);
81 82
}

83
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84
{
85
	gen9_init_clock_gating(dev_priv);
86

87 88 89 90
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

91 92
	/*
	 * FIXME:
93
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 95
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97 98 99 100 101

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
102 103
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
104 105
}

106 107 108 109 110 111 112 113 114 115 116
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
	gen9_init_clock_gating(dev_priv);

	/*
	 * WaDisablePWMClockGating:glk
	 * Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 118 119 120 121 122 123 124 125 126

	/* WaDDIIOTimeout:glk */
	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
		u32 val = I915_READ(CHICKEN_MISC_2);
		val &= ~(GLK_CL0_PWR_DOWN |
			 GLK_CL1_PWR_DOWN |
			 GLK_CL2_PWR_DOWN);
		I915_WRITE(CHICKEN_MISC_2, val);
	}

127 128
}

129
static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
{
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

167
static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
{
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

194
	dev_priv->ips.r_t = dev_priv->mem_freq;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
226
		dev_priv->ips.c_m = 0;
227
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228
		dev_priv->ips.c_m = 1;
229
	} else {
230
		dev_priv->ips.c_m = 2;
231 232 233
	}
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

272 273
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
							 bool is_ddr3,
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

334 335 336
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

337
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338
{
339
	bool was_enabled;
340
	u32 val;
341

342
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343
		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345
		POSTING_READ(FW_BLC_SELF_VLV);
346
	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349
		POSTING_READ(FW_BLC_SELF);
350
	} else if (IS_PINEVIEW(dev_priv)) {
351 352 353 354 355 356
		val = I915_READ(DSPFW3);
		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
		if (enable)
			val |= PINEVIEW_SELF_REFRESH_EN;
		else
			val &= ~PINEVIEW_SELF_REFRESH_EN;
357
		I915_WRITE(DSPFW3, val);
358
		POSTING_READ(DSPFW3);
359
	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360
		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 362 363
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
364
		POSTING_READ(FW_BLC_SELF);
365
	} else if (IS_I915GM(dev_priv)) {
366 367 368 369 370
		/*
		 * FIXME can't find a bit like this for 915G, and
		 * and yet it does have the related watermark in
		 * FW_BLC_SELF. What's going on?
		 */
371
		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 373 374
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
375
		POSTING_READ(INSTPM);
376
	} else {
377
		return false;
378
	}
379

380 381
	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);

382 383 384 385 386
	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
		      enableddisabled(enable),
		      enableddisabled(was_enabled));

	return was_enabled;
387 388
}

389
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
390
{
391 392
	bool ret;

393
	mutex_lock(&dev_priv->wm.wm_mutex);
394
	ret = _intel_set_memory_cxsr(dev_priv, enable);
395 396
	dev_priv->wm.vlv.cxsr = enable;
	mutex_unlock(&dev_priv->wm.wm_mutex);
397 398

	return ret;
399
}
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
415
static const int pessimal_latency_ns = 5000;
416

417 418 419
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

420
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
421
{
422
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
423
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
425 426
	enum pipe pipe = crtc->pipe;
	int sprite0_start, sprite1_start;
427

428
	switch (pipe) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
449 450
		MISSING_CASE(pipe);
		return;
451 452
	}

453 454 455 456 457 458 459 460 461 462 463
	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
	fifo_state->plane[PLANE_CURSOR] = 63;

	DRM_DEBUG_KMS("Pipe %c FIFO size: %d/%d/%d/%d\n",
		      pipe_name(pipe),
		      fifo_state->plane[PLANE_PRIMARY],
		      fifo_state->plane[PLANE_SPRITE0],
		      fifo_state->plane[PLANE_SPRITE1],
		      fifo_state->plane[PLANE_CURSOR]);
464 465
}

466
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
467 468 469 470 471 472 473 474 475 476 477 478 479 480
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

481
static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

497
static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
514 515 516 517 518
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
519 520
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
521 522 523 524 525
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
526 527
};
static const struct intel_watermark_params pineview_cursor_wm = {
528 529 530 531 532
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
533 534
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
535 536 537 538 539
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
540 541
};
static const struct intel_watermark_params g4x_wm_info = {
542 543 544 545 546
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
547 548
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
549 550 551 552 553
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
554 555
};
static const struct intel_watermark_params i965_cursor_wm_info = {
556 557 558 559 560
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
561 562
};
static const struct intel_watermark_params i945_wm_info = {
563 564 565 566 567
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
568 569
};
static const struct intel_watermark_params i915_wm_info = {
570 571 572 573 574
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
575
};
576
static const struct intel_watermark_params i830_a_wm_info = {
577 578 579 580 581
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
582
};
583 584 585 586 587 588 589
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
590
static const struct intel_watermark_params i845_wm_info = {
591 592 593 594 595
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
596 597 598 599 600 601
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
602
 * @cpp: bytes per pixel
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
618
					int fifo_size, int cpp,
619 620 621 622 623 624 625 626 627 628
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
629
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
630 631 632 633 634 635 636 637 638 639 640 641 642 643
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
644 645 646 647 648 649 650 651 652 653 654

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

655 656 657
	return wm_size;
}

658
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
659
{
660
	struct intel_crtc *crtc, *enabled = NULL;
661

662
	for_each_intel_crtc(&dev_priv->drm, crtc) {
663
		if (intel_crtc_active(crtc)) {
664 665 666 667 668 669 670 671 672
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

673
static void pineview_update_wm(struct intel_crtc *unused_crtc)
674
{
675
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
676
	struct intel_crtc *crtc;
677 678 679 680
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

681 682 683 684
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
					 dev_priv->is_ddr3,
					 dev_priv->fsb_freq,
					 dev_priv->mem_freq);
685 686
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
687
		intel_set_memory_cxsr(dev_priv, false);
688 689 690
		return;
	}

691
	crtc = single_enabled_crtc(dev_priv);
692
	if (crtc) {
693 694 695 696
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
697
		int cpp = fb->format->cpp[0];
698
		int clock = adjusted_mode->crtc_clock;
699 700 701 702

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
703
					cpp, latency->display_sr);
704 705
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
706
		reg |= FW_WM(wm, SR);
707 708 709 710 711 712
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
713
					cpp, latency->cursor_sr);
714 715
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
716
		reg |= FW_WM(wm, CURSOR_SR);
717 718 719 720 721
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
722
					cpp, latency->display_hpll_disable);
723 724
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
725
		reg |= FW_WM(wm, HPLL_SR);
726 727 728 729 730
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
731
					cpp, latency->cursor_hpll_disable);
732 733
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
734
		reg |= FW_WM(wm, HPLL_CURSOR);
735 736 737
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

738
		intel_set_memory_cxsr(dev_priv, true);
739
	} else {
740
		intel_set_memory_cxsr(dev_priv, false);
741 742 743
	}
}

744
static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
745 746 747 748 749 750 751 752
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
753
	struct intel_crtc *crtc;
754
	const struct drm_display_mode *adjusted_mode;
755
	const struct drm_framebuffer *fb;
756
	int htotal, hdisplay, clock, cpp;
757 758 759
	int line_time_us, line_count;
	int entries, tlb_miss;

760
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
761
	if (!intel_crtc_active(crtc)) {
762 763 764 765 766
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

767 768
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
769
	clock = adjusted_mode->crtc_clock;
770
	htotal = adjusted_mode->crtc_htotal;
771
	hdisplay = crtc->config->pipe_src_w;
772
	cpp = fb->format->cpp[0];
773 774

	/* Use the small buffer method to calculate plane watermark */
775
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
776 777 778 779 780 781 782 783 784
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
785
	line_time_us = max(htotal * 1000 / clock, 1);
786
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
787
	entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
806
static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
807 808 809 810 811 812 813 814
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
815
		DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
816 817 818 819 820
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
821
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
822 823 824 825 826 827 828 829 830 831 832 833
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

834
static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
835 836 837 838 839 840
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
841
	struct intel_crtc *crtc;
842
	const struct drm_display_mode *adjusted_mode;
843
	const struct drm_framebuffer *fb;
844
	int hdisplay, htotal, cpp, clock;
845 846 847 848 849 850 851 852 853 854
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

855
	crtc = intel_get_crtc_for_plane(dev_priv, plane);
856 857
	adjusted_mode = &crtc->config->base.adjusted_mode;
	fb = crtc->base.primary->state->fb;
858
	clock = adjusted_mode->crtc_clock;
859
	htotal = adjusted_mode->crtc_htotal;
860
	hdisplay = crtc->config->pipe_src_w;
861
	cpp = fb->format->cpp[0];
862

863
	line_time_us = max(htotal * 1000 / clock, 1);
864
	line_count = (latency_ns / line_time_us + 1000) / 1000;
865
	line_size = hdisplay * cpp;
866 867

	/* Use the minimum of the small and large buffer method for primary */
868
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
869 870 871 872 873 874
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
875
	entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
876 877 878
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

879
	return g4x_check_srwm(dev_priv,
880 881 882 883
			      *display_wm, *cursor_wm,
			      display, cursor);
}

884 885 886
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

887
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
888 889
				const struct vlv_wm_values *wm)
{
890 891 892
	enum pipe pipe;

	for_each_pipe(dev_priv, pipe) {
893 894
		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);

895 896 897 898 899 900
		I915_WRITE(VLV_DDL(pipe),
			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
	}
901

902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Zero the (unused) WM1 watermarks, and also clear all the
	 * high order bits so that there are no out of bounds values
	 * present in the registers during the reprogramming.
	 */
	I915_WRITE(DSPHOWM, 0);
	I915_WRITE(DSPHOWM1, 0);
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);

913
	I915_WRITE(DSPFW1,
914
		   FW_WM(wm->sr.plane, SR) |
915 916 917
		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
918
	I915_WRITE(DSPFW2,
919 920 921
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
922
	I915_WRITE(DSPFW3,
923
		   FW_WM(wm->sr.cursor, CURSOR_SR));
924 925 926

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
927 928
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929
		I915_WRITE(DSPFW8_CHV,
930 931
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
932
		I915_WRITE(DSPFW9_CHV,
933 934
			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
935
		I915_WRITE(DSPHOWM,
936
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
937 938 939 940 941 942 943 944 945
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
946 947
	} else {
		I915_WRITE(DSPFW7,
948 949
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
950
		I915_WRITE(DSPHOWM,
951
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
952 953 954 955 956 957
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
958 959 960
	}

	POSTING_READ(DSPFW1);
961 962
}

963 964
#undef FW_WM_VLV

965 966 967 968
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
969
				   unsigned int cpp,
970 971 972 973 974
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
975
	ret = (ret + 1) * horiz_pixels * cpp;
976 977 978 979 980
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

981
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
982 983 984 985
{
	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

986 987
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

988 989 990
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
991 992

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
993 994 995
	}
}

996 997
static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
				     const struct intel_plane_state *plane_state,
998 999
				     int level)
{
1000
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1001
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1002 1003
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
1004
	int clock, htotal, cpp, width, wm;
1005 1006 1007 1008

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

1009
	if (!plane_state->base.visible)
1010 1011
		return 0;

1012
	cpp = plane_state->base.fb->format->cpp[0];
1013 1014 1015
	clock = adjusted_mode->crtc_clock;
	htotal = adjusted_mode->crtc_htotal;
	width = crtc_state->pipe_src_w;
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
1028
		wm = vlv_wm_method2(clock, htotal, width, cpp,
1029 1030 1031 1032 1033 1034
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

1035 1036 1037 1038 1039 1040
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
	return (active_planes & (BIT(PLANE_SPRITE0) |
				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}

1041
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1042
{
1043
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1044 1045
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1046
	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1047 1048 1049
	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
	int num_active_planes = hweight32(active_planes);
	const int fifo_size = 511;
1050
	int fifo_extra, fifo_left = fifo_size;
1051
	int sprite0_fifo_extra = 0;
1052 1053
	unsigned int total_rate;
	enum plane_id plane_id;
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	/*
	 * When enabling sprite0 after sprite1 has already been enabled
	 * we tend to get an underrun unless sprite0 already has some
	 * FIFO space allcoated. Hence we always allocate at least one
	 * cacheline for sprite0 whenever sprite1 is enabled.
	 *
	 * All other plane enable sequences appear immune to this problem.
	 */
	if (vlv_need_sprite0_fifo_workaround(active_planes))
		sprite0_fifo_extra = 1;

1066 1067
	total_rate = raw->plane[PLANE_PRIMARY] +
		raw->plane[PLANE_SPRITE0] +
1068 1069
		raw->plane[PLANE_SPRITE1] +
		sprite0_fifo_extra;
1070

1071 1072
	if (total_rate > fifo_size)
		return -EINVAL;
1073

1074 1075
	if (total_rate == 0)
		total_rate = 1;
1076

1077
	for_each_plane_id_on_crtc(crtc, plane_id) {
1078 1079
		unsigned int rate;

1080 1081
		if ((active_planes & BIT(plane_id)) == 0) {
			fifo_state->plane[plane_id] = 0;
1082 1083 1084
			continue;
		}

1085 1086 1087
		rate = raw->plane[plane_id];
		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
		fifo_left -= fifo_state->plane[plane_id];
1088 1089
	}

1090 1091 1092
	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
	fifo_left -= sprite0_fifo_extra;

1093 1094 1095
	fifo_state->plane[PLANE_CURSOR] = 63;

	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1096 1097

	/* spread the remainder evenly */
1098
	for_each_plane_id_on_crtc(crtc, plane_id) {
1099 1100 1101 1102 1103
		int plane_extra;

		if (fifo_left == 0)
			break;

1104
		if ((active_planes & BIT(plane_id)) == 0)
1105 1106 1107
			continue;

		plane_extra = min(fifo_extra, fifo_left);
1108
		fifo_state->plane[plane_id] += plane_extra;
1109 1110 1111
		fifo_left -= plane_extra;
	}

1112 1113 1114 1115 1116 1117 1118 1119 1120
	WARN_ON(active_planes != 0 && fifo_left != 0);

	/* give it all to the first plane if none are active */
	if (active_planes == 0) {
		WARN_ON(fifo_left != fifo_size);
		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
	}

	return 0;
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static int vlv_num_wm_levels(struct drm_i915_private *dev_priv)
{
	return dev_priv->wm.max_level + 1;
}

/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
			       struct vlv_wm_state *wm_state, int level)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	for (; level < vlv_num_wm_levels(dev_priv); level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id)
			wm_state->wm[level].plane[plane_id] = USHRT_MAX;

		wm_state->sr[level].cursor = USHRT_MAX;
		wm_state->sr[level].plane = USHRT_MAX;
	}
}

1145 1146 1147 1148 1149 1150 1151 1152
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
	if (wm > fifo_size)
		return USHRT_MAX;
	else
		return fifo_size - wm;
}

1153 1154 1155 1156
/*
 * Starting from 'level' set all higher
 * levels to 'value' in the "raw" watermarks.
 */
1157
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1158
				 int level, enum plane_id plane_id, u16 value)
1159
{
1160 1161
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	int num_levels = vlv_num_wm_levels(dev_priv);
1162
	bool dirty = false;
1163

1164 1165
	for (; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1166

1167
		dirty |= raw->plane[plane_id] != value;
1168
		raw->plane[plane_id] = value;
1169
	}
1170 1171

	return dirty;
1172 1173
}

1174
static bool vlv_plane_wm_compute(struct intel_crtc_state *crtc_state,
1175
				 const struct intel_plane_state *plane_state)
1176
{
1177 1178 1179
	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
	enum plane_id plane_id = plane->id;
	int num_levels = vlv_num_wm_levels(to_i915(plane->base.dev));
1180
	int level;
1181
	bool dirty = false;
1182

1183
	if (!plane_state->base.visible) {
1184 1185
		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
		goto out;
1186
	}
1187

1188 1189 1190 1191
	for (level = 0; level < num_levels; level++) {
		struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1192

1193 1194
		if (wm > max_wm)
			break;
1195

1196
		dirty |= raw->plane[plane_id] != wm;
1197 1198
		raw->plane[plane_id] = wm;
	}
1199

1200
	/* mark all higher levels as invalid */
1201
	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211
out:
	if (dirty)
		DRM_DEBUG_KMS("%s wms: [0]=%d,[1]=%d,[2]=%d\n",
			      plane->base.name,
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);

	return dirty;
1212
}
1213

1214 1215 1216 1217 1218 1219 1220
static bool vlv_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
				  enum plane_id plane_id, int level)
{
	const struct vlv_pipe_wm *raw =
		&crtc_state->wm.vlv.raw[level];
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1221

1222 1223
	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
static bool vlv_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
{
	return vlv_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
		vlv_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}

static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_atomic_state *state =
		to_intel_atomic_state(crtc_state->base.state);
	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
	int num_active_planes = hweight32(crtc_state->active_planes &
					  ~BIT(PLANE_CURSOR));
1244
	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1245 1246 1247 1248
	struct intel_plane_state *plane_state;
	struct intel_plane *plane;
	enum plane_id plane_id;
	int level, ret, i;
1249
	unsigned int dirty = 0;
1250 1251 1252 1253 1254 1255 1256 1257

	for_each_intel_plane_in_state(state, plane, plane_state, i) {
		const struct intel_plane_state *old_plane_state =
			to_intel_plane_state(plane->base.state);

		if (plane_state->base.crtc != &crtc->base &&
		    old_plane_state->base.crtc != &crtc->base)
			continue;
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		if (vlv_plane_wm_compute(crtc_state, plane_state))
			dirty |= BIT(plane->id);
	}

	/*
	 * DSPARB registers may have been reset due to the
	 * power well being turned off. Make sure we restore
	 * them to a consistent state even if no primary/sprite
	 * planes are initially active.
	 */
	if (needs_modeset)
		crtc_state->fifo_changed = true;

	if (!dirty)
		return 0;

	/* cursor changes don't warrant a FIFO recompute */
	if (dirty & ~BIT(PLANE_CURSOR)) {
		const struct intel_crtc_state *old_crtc_state =
			to_intel_crtc_state(crtc->base.state);
		const struct vlv_fifo_state *old_fifo_state =
			&old_crtc_state->wm.vlv.fifo_state;

		ret = vlv_compute_fifo(crtc_state);
		if (ret)
			return ret;

		if (needs_modeset ||
		    memcmp(old_fifo_state, fifo_state,
			   sizeof(*fifo_state)) != 0)
			crtc_state->fifo_changed = true;
1290
	}
1291

1292 1293 1294 1295 1296 1297 1298
	/* initially allow all levels */
	wm_state->num_levels = vlv_num_wm_levels(dev_priv);
	/*
	 * Note that enabling cxsr with no primary/sprite planes
	 * enabled can wedge the pipe. Hence we only allow cxsr
	 * with exactly one enabled primary/sprite plane.
	 */
1299
	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1300

1301
	for (level = 0; level < wm_state->num_levels; level++) {
1302 1303
		const struct vlv_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1304

1305 1306
		if (!vlv_crtc_wm_is_valid(crtc_state, level))
			break;
1307

1308 1309 1310 1311 1312 1313 1314 1315
		for_each_plane_id_on_crtc(crtc, plane_id) {
			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}

		wm_state->sr[level].plane =
			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1316
						 raw->plane[PLANE_SPRITE0],
1317 1318
						 raw->plane[PLANE_SPRITE1]),
					    sr_fifo_size);
1319

1320 1321 1322
		wm_state->sr[level].cursor =
			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
					    63);
1323 1324
	}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (level == 0)
		return -EINVAL;

	/* limit to only levels we can actually handle */
	wm_state->num_levels = level;

	/* invalidate the higher levels */
	vlv_invalidate_wms(crtc, wm_state, level);

	return 0;
1335 1336
}

1337 1338 1339
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

1340 1341
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
1342
{
1343
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1344
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1345 1346
	const struct vlv_fifo_state *fifo_state =
		&crtc_state->wm.vlv.fifo_state;
1347
	int sprite0_start, sprite1_start, fifo_size;
1348

1349 1350 1351
	if (!crtc_state->fifo_changed)
		return;

1352 1353 1354
	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1355

1356 1357
	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
	WARN_ON(fifo_size != 511);
1358

1359 1360
	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);

1361 1362
	spin_lock(&dev_priv->wm.dsparb_lock);

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
1419 1420 1421 1422

	POSTING_READ(DSPARB);

	spin_unlock(&dev_priv->wm.dsparb_lock);
1423 1424 1425 1426
}

#undef VLV_FIFO

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static int vlv_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *crtc,
				       struct intel_crtc_state *crtc_state)
{
	struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
	const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
	const struct vlv_wm_state *active = &crtc->wm.active.vlv;
	int level;

	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
1437 1438
	intermediate->cxsr = optimal->cxsr && active->cxsr &&
		!crtc_state->disable_cxsr;
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

	for (level = 0; level < intermediate->num_levels; level++) {
		enum plane_id plane_id;

		for_each_plane_id_on_crtc(crtc, plane_id) {
			intermediate->wm[level].plane[plane_id] =
				min(optimal->wm[level].plane[plane_id],
				    active->wm[level].plane[plane_id]);
		}

		intermediate->sr[level].plane = min(optimal->sr[level].plane,
						    active->sr[level].plane);
		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
						     active->sr[level].cursor);
	}

	vlv_invalidate_wms(crtc, intermediate, level);

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
1461 1462
	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
		crtc_state->wm.need_postvbl_update = true;
1463 1464 1465 1466

	return 0;
}

1467
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1468 1469 1470 1471 1472
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1473
	wm->level = dev_priv->wm.max_level;
1474 1475
	wm->cxsr = true;

1476
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1477
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1492 1493 1494
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1495
	for_each_intel_crtc(&dev_priv->drm, crtc) {
1496
		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
1497 1498 1499
		enum pipe pipe = crtc->pipe;

		wm->pipe[pipe] = wm_state->wm[wm->level];
1500
		if (crtc->active && wm->cxsr)
1501 1502
			wm->sr = wm_state->sr[wm->level];

1503 1504 1505 1506
		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1507 1508 1509
	}
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
static bool is_disabling(int old, int new, int threshold)
{
	return old >= threshold && new < threshold;
}

static bool is_enabling(int old, int new, int threshold)
{
	return old < threshold && new >= threshold;
}

1520
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
1521
{
1522 1523
	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
	struct vlv_wm_values new_wm = {};
1524

1525
	vlv_merge_wm(dev_priv, &new_wm);
1526

1527
	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1528 1529
		return;

1530
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1531 1532
		chv_set_memory_dvfs(dev_priv, false);

1533
	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1534 1535
		chv_set_memory_pm5(dev_priv, false);

1536
	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1537
		_intel_set_memory_cxsr(dev_priv, false);
1538

1539
	vlv_write_wm_values(dev_priv, &new_wm);
1540

1541
	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1542
		_intel_set_memory_cxsr(dev_priv, true);
1543

1544
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1545 1546
		chv_set_memory_pm5(dev_priv, true);

1547
	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1548 1549
		chv_set_memory_dvfs(dev_priv, true);

1550
	*old_wm = new_wm;
1551 1552
}

1553 1554 1555 1556 1557 1558 1559
static void vlv_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	mutex_lock(&dev_priv->wm.wm_mutex);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

static void vlv_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);

	if (!crtc_state->wm.need_postvbl_update)
		return;

	mutex_lock(&dev_priv->wm.wm_mutex);
	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
1576 1577 1578 1579
	vlv_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}

1580 1581
#define single_plane_enabled(mask) is_power_of_2(mask)

1582
static void g4x_update_wm(struct intel_crtc *crtc)
1583
{
1584
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1585 1586 1587 1588
	static const int sr_latency_ns = 12000;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1589
	bool cxsr_enabled;
1590

1591
	if (g4x_compute_wm0(dev_priv, PIPE_A,
1592 1593
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1594
			    &planea_wm, &cursora_wm))
1595
		enabled |= 1 << PIPE_A;
1596

1597
	if (g4x_compute_wm0(dev_priv, PIPE_B,
1598 1599
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1600
			    &planeb_wm, &cursorb_wm))
1601
		enabled |= 1 << PIPE_B;
1602 1603

	if (single_plane_enabled(enabled) &&
1604
	    g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1605 1606 1607
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1608
			     &plane_sr, &cursor_sr)) {
1609
		cxsr_enabled = true;
1610
	} else {
1611
		cxsr_enabled = false;
1612
		intel_set_memory_cxsr(dev_priv, false);
1613 1614
		plane_sr = cursor_sr = 0;
	}
1615

1616 1617
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1618 1619 1620 1621 1622
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1623 1624 1625 1626
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1627
	I915_WRITE(DSPFW2,
1628
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1629
		   FW_WM(cursora_wm, CURSORA));
1630 1631
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1632
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1633
		   FW_WM(cursor_sr, CURSOR_SR));
1634 1635 1636

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1637 1638
}

1639
static void i965_update_wm(struct intel_crtc *unused_crtc)
1640
{
1641
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1642
	struct intel_crtc *crtc;
1643 1644
	int srwm = 1;
	int cursor_sr = 16;
1645
	bool cxsr_enabled;
1646 1647

	/* Calc sr entries for one plane configs */
1648
	crtc = single_enabled_crtc(dev_priv);
1649 1650 1651
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1652 1653 1654 1655
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
1656
		int clock = adjusted_mode->crtc_clock;
1657
		int htotal = adjusted_mode->crtc_htotal;
1658
		int hdisplay = crtc->config->pipe_src_w;
1659
		int cpp = fb->format->cpp[0];
1660 1661 1662
		unsigned long line_time_us;
		int entries;

1663
		line_time_us = max(htotal * 1000 / clock, 1);
1664 1665 1666

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1667
			cpp * hdisplay;
1668 1669 1670 1671 1672 1673 1674 1675 1676
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1677
			cpp * crtc->base.cursor->state->crtc_w;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1689
		cxsr_enabled = true;
1690
	} else {
1691
		cxsr_enabled = false;
1692
		/* Turn off self refresh if both pipes are enabled */
1693
		intel_set_memory_cxsr(dev_priv, false);
1694 1695 1696 1697 1698 1699
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1700 1701 1702 1703 1704 1705
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1706
	/* update cursor SR watermark */
1707
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1708 1709 1710

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1711 1712
}

1713 1714
#undef FW_WM

1715
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1716
{
1717
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1718 1719 1720 1721 1722 1723
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
1724
	struct intel_crtc *crtc, *enabled = NULL;
1725

1726
	if (IS_I945GM(dev_priv))
1727
		wm_info = &i945_wm_info;
1728
	else if (!IS_GEN2(dev_priv))
1729 1730
		wm_info = &i915_wm_info;
	else
1731
		wm_info = &i830_a_wm_info;
1732

1733
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1734
	crtc = intel_get_crtc_for_plane(dev_priv, 0);
1735 1736 1737 1738 1739 1740 1741
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1742
		if (IS_GEN2(dev_priv))
1743
			cpp = 4;
1744
		else
1745
			cpp = fb->format->cpp[0];
1746

1747
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1748
					       wm_info, fifo_size, cpp,
1749
					       pessimal_latency_ns);
1750
		enabled = crtc;
1751
	} else {
1752
		planea_wm = fifo_size - wm_info->guard_size;
1753 1754 1755 1756
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

1757
	if (IS_GEN2(dev_priv))
1758
		wm_info = &i830_bc_wm_info;
1759

1760
	fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1761
	crtc = intel_get_crtc_for_plane(dev_priv, 1);
1762 1763 1764 1765 1766 1767 1768
	if (intel_crtc_active(crtc)) {
		const struct drm_display_mode *adjusted_mode =
			&crtc->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			crtc->base.primary->state->fb;
		int cpp;

1769
		if (IS_GEN2(dev_priv))
1770
			cpp = 4;
1771
		else
1772
			cpp = fb->format->cpp[0];
1773

1774
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1775
					       wm_info, fifo_size, cpp,
1776
					       pessimal_latency_ns);
1777 1778 1779 1780
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1781
	} else {
1782
		planeb_wm = fifo_size - wm_info->guard_size;
1783 1784 1785
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1786 1787 1788

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1789
	if (IS_I915GM(dev_priv) && enabled) {
1790
		struct drm_i915_gem_object *obj;
1791

1792
		obj = intel_fb_obj(enabled->base.primary->state->fb);
1793 1794

		/* self-refresh seems busted with untiled */
1795
		if (!i915_gem_object_is_tiled(obj))
1796 1797 1798
			enabled = NULL;
	}

1799 1800 1801 1802 1803 1804
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1805
	intel_set_memory_cxsr(dev_priv, false);
1806 1807

	/* Calc sr entries for one plane configs */
1808
	if (HAS_FW_BLC(dev_priv) && enabled) {
1809 1810
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1811 1812 1813 1814
		const struct drm_display_mode *adjusted_mode =
			&enabled->config->base.adjusted_mode;
		const struct drm_framebuffer *fb =
			enabled->base.primary->state->fb;
1815
		int clock = adjusted_mode->crtc_clock;
1816
		int htotal = adjusted_mode->crtc_htotal;
1817 1818
		int hdisplay = enabled->config->pipe_src_w;
		int cpp;
1819 1820 1821
		unsigned long line_time_us;
		int entries;

1822
		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1823
			cpp = 4;
1824
		else
1825
			cpp = fb->format->cpp[0];
1826

1827
		line_time_us = max(htotal * 1000 / clock, 1);
1828 1829 1830

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1831
			cpp * hdisplay;
1832 1833 1834 1835 1836 1837
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

1838
		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1839 1840
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1841
		else
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1858 1859
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1860 1861
}

1862
static void i845_update_wm(struct intel_crtc *unused_crtc)
1863
{
1864
	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1865
	struct intel_crtc *crtc;
1866
	const struct drm_display_mode *adjusted_mode;
1867 1868 1869
	uint32_t fwater_lo;
	int planea_wm;

1870
	crtc = single_enabled_crtc(dev_priv);
1871 1872 1873
	if (crtc == NULL)
		return;

1874
	adjusted_mode = &crtc->config->base.adjusted_mode;
1875
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1876
				       &i845_wm_info,
1877
				       dev_priv->display.get_fifo_size(dev_priv, 0),
1878
				       4, pessimal_latency_ns);
1879 1880 1881 1882 1883 1884 1885 1886
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1887
/* latency must be in 0.1us units. */
1888
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1889 1890 1891
{
	uint64_t ret;

1892 1893 1894
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1895
	ret = (uint64_t) pixel_rate * cpp * latency;
1896 1897 1898 1899 1900
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1901
/* latency must be in 0.1us units. */
1902
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1903
			       uint32_t horiz_pixels, uint8_t cpp,
1904 1905 1906 1907
			       uint32_t latency)
{
	uint32_t ret;

1908 1909
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1910 1911
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1912

1913
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1914
	ret = (ret + 1) * horiz_pixels * cpp;
1915 1916 1917 1918
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1919
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1920
			   uint8_t cpp)
1921
{
1922 1923 1924 1925 1926 1927
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1928
	if (WARN_ON(!cpp))
1929 1930 1931 1932
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1933
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1934 1935
}

1936
struct ilk_wm_maximums {
1937 1938 1939 1940 1941 1942
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1943 1944 1945 1946
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1947
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1948
				   const struct intel_plane_state *pstate,
1949 1950
				   uint32_t mem_value,
				   bool is_lp)
1951
{
1952
	uint32_t method1, method2;
1953
	int cpp;
1954

1955
	if (!cstate->base.active || !pstate->base.visible)
1956 1957
		return 0;

1958
	cpp = pstate->base.fb->format->cpp[0];
1959

1960
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
1961 1962 1963 1964

	if (!is_lp)
		return method1;

1965
	method2 = ilk_wm_method2(cstate->pixel_rate,
1966
				 cstate->base.adjusted_mode.crtc_htotal,
1967
				 drm_rect_width(&pstate->base.dst),
1968
				 cpp, mem_value);
1969 1970

	return min(method1, method2);
1971 1972
}

1973 1974 1975 1976
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1977
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1978
				   const struct intel_plane_state *pstate,
1979 1980 1981
				   uint32_t mem_value)
{
	uint32_t method1, method2;
1982
	int cpp;
1983

1984
	if (!cstate->base.active || !pstate->base.visible)
1985 1986
		return 0;

1987
	cpp = pstate->base.fb->format->cpp[0];
1988

1989 1990
	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
	method2 = ilk_wm_method2(cstate->pixel_rate,
1991
				 cstate->base.adjusted_mode.crtc_htotal,
1992
				 drm_rect_width(&pstate->base.dst),
1993
				 cpp, mem_value);
1994 1995 1996
	return min(method1, method2);
}

1997 1998 1999 2000
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
2001
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2002
				   const struct intel_plane_state *pstate,
2003 2004
				   uint32_t mem_value)
{
2005 2006
	int cpp;

2007
	/*
2008 2009 2010 2011 2012 2013
	 * Treat cursor with fb as always visible since cursor updates
	 * can happen faster than the vrefresh rate, and the current
	 * watermark code doesn't handle that correctly. Cursor updates
	 * which set/clear the fb or change the cursor size are going
	 * to get throttled by intel_legacy_cursor_update() to work
	 * around this problem with the watermark code.
2014
	 */
2015
	if (!cstate->base.active || !pstate->base.fb)
2016 2017
		return 0;

2018 2019
	cpp = pstate->base.fb->format->cpp[0];

2020
	return ilk_wm_method2(cstate->pixel_rate,
2021
			      cstate->base.adjusted_mode.crtc_htotal,
2022
			      pstate->base.crtc_w, cpp, mem_value);
2023 2024
}

2025
/* Only for WM_LP. */
2026
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2027
				   const struct intel_plane_state *pstate,
2028
				   uint32_t pri_val)
2029
{
2030
	int cpp;
2031

2032
	if (!cstate->base.active || !pstate->base.visible)
2033 2034
		return 0;

2035
	cpp = pstate->base.fb->format->cpp[0];
2036

2037
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2038 2039
}

2040 2041
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2042
{
2043
	if (INTEL_GEN(dev_priv) >= 8)
2044
		return 3072;
2045
	else if (INTEL_GEN(dev_priv) >= 7)
2046 2047 2048 2049 2050
		return 768;
	else
		return 512;
}

2051 2052 2053
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
		     int level, bool is_sprite)
2054
{
2055
	if (INTEL_GEN(dev_priv) >= 8)
2056 2057
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
2058
	else if (INTEL_GEN(dev_priv) >= 7)
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

2069 2070
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2071
{
2072
	if (INTEL_GEN(dev_priv) >= 7)
2073 2074 2075 2076 2077
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

2078
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2079
{
2080
	if (INTEL_GEN(dev_priv) >= 8)
2081 2082 2083 2084 2085
		return 31;
	else
		return 15;
}

2086 2087 2088
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
2089
				     const struct intel_wm_config *config,
2090 2091 2092
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
2093 2094
	struct drm_i915_private *dev_priv = to_i915(dev);
	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2095 2096

	/* if sprites aren't enabled, sprites get nothing */
2097
	if (is_sprite && !config->sprites_enabled)
2098 2099 2100
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
2101
	if (level == 0 || config->num_pipes_active > 1) {
2102
		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2103 2104 2105 2106 2107 2108

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
2109
		if (INTEL_GEN(dev_priv) <= 6)
2110 2111 2112
			fifo_size /= 2;
	}

2113
	if (config->sprites_enabled) {
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
2125
	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2126 2127 2128 2129
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2130 2131
				      int level,
				      const struct intel_wm_config *config)
2132 2133
{
	/* HSW LP1+ watermarks w/ multiple pipes */
2134
	if (level > 0 && config->num_pipes_active > 1)
2135 2136 2137
		return 64;

	/* otherwise just report max that registers can hold */
2138
	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2139 2140
}

2141
static void ilk_compute_wm_maximums(const struct drm_device *dev,
2142 2143 2144
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
2145
				    struct ilk_wm_maximums *max)
2146
{
2147 2148 2149
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
2150
	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2151 2152
}

2153
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2154 2155 2156
					int level,
					struct ilk_wm_maximums *max)
{
2157 2158 2159 2160
	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2161 2162
}

2163
static bool ilk_validate_wm_level(int level,
2164
				  const struct ilk_wm_maximums *max,
2165
				  struct intel_wm_level *result)
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

2204
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2205
				 const struct intel_crtc *intel_crtc,
2206
				 int level,
2207
				 struct intel_crtc_state *cstate,
2208 2209 2210
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2211
				 struct intel_wm_level *result)
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	if (pristate) {
		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
						     pri_latency, level);
		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
	}

	if (sprstate)
		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);

	if (curstate)
		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);

2236 2237 2238
	result->enable = true;
}

2239
static uint32_t
2240
hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2241
{
2242 2243
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(cstate->base.state);
2244 2245
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2246
	u32 linetime, ips_linetime;
2247

2248 2249 2250 2251
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
2252
	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2253
		return 0;
2254

2255 2256 2257
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2258 2259 2260
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2261
					 intel_state->cdclk.logical.cdclk);
2262

2263 2264
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2265 2266
}

2267 2268
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
				  uint16_t wm[8])
2269
{
2270
	if (IS_GEN9(dev_priv)) {
2271
		uint32_t val;
2272
		int ret, i;
2273
		int level, max_level = ilk_wm_max_level(dev_priv);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		/*
		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
		 * need to be disabled. We make sure to sanitize the values out
		 * of the punit to satisfy this requirement.
		 */
		for (level = 1; level <= max_level; level++) {
			if (wm[level] == 0) {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
				break;
			}
		}

2329
		/*
2330
		 * WaWmMemoryReadLatency:skl,glk
2331
		 *
2332
		 * punit doesn't take into account the read latency so we need
2333 2334
		 * to add 2us to the various latency levels we retrieve from the
		 * punit when level 0 response data us 0us.
2335
		 */
2336 2337 2338 2339 2340
		if (wm[0] == 0) {
			wm[0] += 2;
			for (level = 1; level <= max_level; level++) {
				if (wm[level] == 0)
					break;
2341
				wm[level] += 2;
2342
			}
2343 2344
		}

2345
	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2346 2347 2348 2349 2350
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2351 2352 2353 2354
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2355
	} else if (INTEL_GEN(dev_priv) >= 6) {
2356 2357 2358 2359 2360 2361
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2362
	} else if (INTEL_GEN(dev_priv) >= 5) {
2363 2364 2365 2366 2367 2368
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2369 2370 2371
	}
}

2372 2373
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2374 2375
{
	/* ILK sprite LP0 latency is 1300 ns */
2376
	if (IS_GEN5(dev_priv))
2377 2378 2379
		wm[0] = 13;
}

2380 2381
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
				       uint16_t wm[5])
2382 2383
{
	/* ILK cursor LP0 latency is 1300 ns */
2384
	if (IS_GEN5(dev_priv))
2385 2386 2387
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
2388
	if (IS_IVYBRIDGE(dev_priv))
2389 2390 2391
		wm[3] *= 2;
}

2392
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2393 2394
{
	/* how many WM levels are we expecting */
2395
	if (INTEL_GEN(dev_priv) >= 9)
2396
		return 7;
2397
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2398
		return 4;
2399
	else if (INTEL_GEN(dev_priv) >= 6)
2400
		return 3;
2401
	else
2402 2403
		return 2;
}
2404

2405
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2406
				   const char *name,
2407
				   const uint16_t wm[8])
2408
{
2409
	int level, max_level = ilk_wm_max_level(dev_priv);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2420 2421 2422 2423
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
2424
		if (IS_GEN9(dev_priv))
2425 2426
			latency *= 10;
		else if (level > 0)
2427 2428 2429 2430 2431 2432 2433 2434
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2435 2436 2437
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
2438
	int level, max_level = ilk_wm_max_level(dev_priv);
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

2450
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
{
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2466 2467 2468
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2469 2470
}

2471
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2472
{
2473
	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2474 2475 2476 2477 2478 2479

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

2480
	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2481
	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2482

2483 2484 2485
	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2486

2487
	if (IS_GEN6(dev_priv))
2488
		snb_wm_latency_quirk(dev_priv);
2489 2490
}

2491
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2492
{
2493
	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2494
	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2495 2496
}

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static bool ilk_validate_pipe_wm(struct drm_device *dev,
				 struct intel_pipe_wm *pipe_wm)
{
	/* LP0 watermark maximums depend on this pipe alone */
	const struct intel_wm_config config = {
		.num_pipes_active = 1,
		.sprites_enabled = pipe_wm->sprites_enabled,
		.sprites_scaled = pipe_wm->sprites_scaled,
	};
	struct ilk_wm_maximums max;

	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
		DRM_DEBUG_KMS("LP0 watermark invalid\n");
		return false;
	}

	return true;
}

2520
/* Compute new watermarks for the pipe */
2521
static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2522
{
2523 2524
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2525
	struct intel_pipe_wm *pipe_wm;
2526
	struct drm_device *dev = state->dev;
2527
	const struct drm_i915_private *dev_priv = to_i915(dev);
2528
	struct intel_plane *intel_plane;
2529
	struct intel_plane_state *pristate = NULL;
2530
	struct intel_plane_state *sprstate = NULL;
2531
	struct intel_plane_state *curstate = NULL;
2532
	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2533
	struct ilk_wm_maximums max;
2534

2535
	pipe_wm = &cstate->wm.ilk.optimal;
2536

2537
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2538 2539 2540 2541 2542 2543
		struct intel_plane_state *ps;

		ps = intel_atomic_get_existing_plane_state(state,
							   intel_plane);
		if (!ps)
			continue;
2544 2545

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2546
			pristate = ps;
2547
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2548
			sprstate = ps;
2549
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2550
			curstate = ps;
2551 2552
	}

2553
	pipe_wm->pipe_enabled = cstate->base.active;
2554
	if (sprstate) {
2555 2556 2557 2558
		pipe_wm->sprites_enabled = sprstate->base.visible;
		pipe_wm->sprites_scaled = sprstate->base.visible &&
			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2559 2560
	}

2561 2562
	usable_level = max_level;

2563
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2564
	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2565
		usable_level = 1;
2566 2567

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2568
	if (pipe_wm->sprites_scaled)
2569
		usable_level = 0;
2570

2571
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2572 2573 2574 2575
			     pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);

	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
	pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2576

2577
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2578
		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2579

2580
	if (!ilk_validate_pipe_wm(dev, pipe_wm))
2581
		return -EINVAL;
2582

2583
	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2584 2585

	for (level = 1; level <= max_level; level++) {
2586
		struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2587

2588
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2589
				     pristate, sprstate, curstate, wm);
2590 2591 2592 2593 2594 2595

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
2596 2597 2598 2599 2600 2601
		if (level > usable_level)
			continue;

		if (ilk_validate_wm_level(level, &max, wm))
			pipe_wm->wm[level] = *wm;
		else
2602
			usable_level = level;
2603 2604
	}

2605
	return 0;
2606 2607
}

2608 2609 2610 2611 2612 2613 2614 2615 2616
/*
 * Build a set of 'intermediate' watermark values that satisfy both the old
 * state and the new state.  These can be programmed to the hardware
 * immediately.
 */
static int ilk_compute_intermediate_wm(struct drm_device *dev,
				       struct intel_crtc *intel_crtc,
				       struct intel_crtc_state *newstate)
{
2617
	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2618
	struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2619
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2620 2621 2622 2623 2624 2625

	/*
	 * Start with the final, target watermarks, then combine with the
	 * currently active watermarks to get values that are safe both before
	 * and after the vblank.
	 */
2626
	*a = newstate->wm.ilk.optimal;
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	a->pipe_enabled |= b->pipe_enabled;
	a->sprites_enabled |= b->sprites_enabled;
	a->sprites_scaled |= b->sprites_scaled;

	for (level = 0; level <= max_level; level++) {
		struct intel_wm_level *a_wm = &a->wm[level];
		const struct intel_wm_level *b_wm = &b->wm[level];

		a_wm->enable &= b_wm->enable;
		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
	}

	/*
	 * We need to make sure that these merged watermark values are
	 * actually a valid configuration themselves.  If they're not,
	 * there's no safe way to transition from the old state to
	 * the new state, so we need to fail the atomic transaction.
	 */
	if (!ilk_validate_pipe_wm(dev, a))
		return -EINVAL;

	/*
	 * If our intermediate WM are identical to the final WM, then we can
	 * omit the post-vblank programming; only update if it's different.
	 */
2655 2656
	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
		newstate->wm.need_postvbl_update = true;
2657 2658 2659 2660

	return 0;
}

2661 2662 2663 2664 2665 2666 2667 2668 2669
/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2670 2671
	ret_wm->enable = true;

2672
	for_each_intel_crtc(dev, intel_crtc) {
2673
		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2674 2675 2676 2677
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2678

2679 2680 2681 2682 2683
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2684
		if (!wm->enable)
2685
			ret_wm->enable = false;
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2698
			 const struct intel_wm_config *config,
2699
			 const struct ilk_wm_maximums *max,
2700 2701
			 struct intel_pipe_wm *merged)
{
2702
	struct drm_i915_private *dev_priv = to_i915(dev);
2703
	int level, max_level = ilk_wm_max_level(dev_priv);
2704
	int last_enabled_level = max_level;
2705

2706
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2707
	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2708
	    config->num_pipes_active > 1)
2709
		last_enabled_level = 0;
2710

2711
	/* ILK: FBC WM must be disabled always */
2712
	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2713 2714 2715 2716 2717 2718 2719

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2720 2721 2722 2723 2724
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2725 2726 2727 2728 2729 2730

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2731 2732
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2733 2734 2735
			wm->fbc_val = 0;
		}
	}
2736 2737 2738 2739 2740 2741 2742

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2743
	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2744
	    intel_fbc_is_active(dev_priv)) {
2745 2746 2747 2748 2749 2750
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2751 2752
}

2753 2754 2755 2756 2757 2758
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2759 2760 2761
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
2762
	struct drm_i915_private *dev_priv = to_i915(dev);
2763

2764
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2765 2766 2767 2768 2769
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2770
static void ilk_compute_wm_results(struct drm_device *dev,
2771
				   const struct intel_pipe_wm *merged,
2772
				   enum intel_ddb_partitioning partitioning,
2773
				   struct ilk_wm_values *results)
2774
{
2775
	struct drm_i915_private *dev_priv = to_i915(dev);
2776 2777
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2778

2779
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2780
	results->partitioning = partitioning;
2781

2782
	/* LP1+ register values */
2783
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2784
		const struct intel_wm_level *r;
2785

2786
		level = ilk_wm_lp_to_level(wm_lp, merged);
2787

2788
		r = &merged->wm[level];
2789

2790 2791 2792 2793 2794
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2795
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2796 2797 2798
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2799 2800 2801
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2802
		if (INTEL_GEN(dev_priv) >= 8)
2803 2804 2805 2806 2807 2808
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2809 2810 2811 2812
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2813
		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2814 2815 2816 2817
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2818
	}
2819

2820
	/* LP0 register values */
2821
	for_each_intel_crtc(dev, intel_crtc) {
2822
		enum pipe pipe = intel_crtc->pipe;
2823 2824
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.ilk.wm[0];
2825 2826 2827 2828

		if (WARN_ON(!r->enable))
			continue;

2829
		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2830

2831 2832 2833 2834
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2835 2836 2837
	}
}

2838 2839
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2840
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2841 2842
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2843
{
2844
	int level, max_level = ilk_wm_max_level(to_i915(dev));
2845
	int level1 = 0, level2 = 0;
2846

2847 2848 2849 2850 2851
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2852 2853
	}

2854 2855
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2856 2857 2858
			return r2;
		else
			return r1;
2859
	} else if (level1 > level2) {
2860 2861 2862 2863 2864 2865
		return r1;
	} else {
		return r2;
	}
}

2866 2867 2868 2869 2870 2871 2872 2873
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2874
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2875 2876
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2877 2878 2879 2880 2881
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2882
	for_each_pipe(dev_priv, pipe) {
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2926 2927
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2928
{
2929
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2930
	bool changed = false;
2931

2932 2933 2934
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2935
		changed = true;
2936 2937 2938 2939
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2940
		changed = true;
2941 2942 2943 2944
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2945
		changed = true;
2946
	}
2947

2948 2949 2950 2951
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2952

2953 2954 2955 2956 2957 2958 2959
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2960 2961
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2962
{
2963
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2964 2965 2966
	unsigned int dirty;
	uint32_t val;

2967
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2968 2969 2970 2971 2972
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2973
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2974
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2975
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2976
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2977
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2978 2979
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2980
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2981
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2982
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2983
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2984
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2985 2986
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2987
	if (dirty & WM_DIRTY_DDB) {
2988
		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
3003 3004
	}

3005
	if (dirty & WM_DIRTY_FBC) {
3006 3007 3008 3009 3010 3011 3012 3013
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

3014 3015 3016 3017
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

3018
	if (INTEL_GEN(dev_priv) >= 7) {
3019 3020 3021 3022 3023
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
3024

3025
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3026
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3027
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3028
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3029
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3030
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3031 3032

	dev_priv->wm.hw = *results;
3033 3034
}

3035
bool ilk_disable_lp_wm(struct drm_device *dev)
3036
{
3037
	struct drm_i915_private *dev_priv = to_i915(dev);
3038 3039 3040 3041

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

3042
#define SKL_SAGV_BLOCK_TIME	30 /* µs */
3043

3044 3045 3046 3047 3048 3049 3050 3051
/*
 * FIXME: We still don't have the proper code detect if we need to apply the WA,
 * so assume we'll always need it in order to avoid underruns.
 */
static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);

3052
	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3053 3054 3055 3056 3057
		return true;

	return false;
}

3058 3059 3060
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
3061 3062 3063 3064 3065 3066 3067 3068
	if (IS_KABYLAKE(dev_priv))
		return true;

	if (IS_SKYLAKE(dev_priv) &&
	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
		return true;

	return false;
3069 3070
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/*
 * SAGV dynamically adjusts the system agent voltage and clock frequencies
 * depending on power and performance requirements. The display engine access
 * to system memory is blocked during the adjustment time. Because of the
 * blocking time, having this enabled can cause full system hangs and/or pipe
 * underruns if we don't meet all of the following requirements:
 *
 *  - <= 1 pipe enabled
 *  - All planes can enable watermarks for latencies >= SAGV engine block time
 *  - We're not using an interlaced display configuration
 */
int
3083
intel_enable_sagv(struct drm_i915_private *dev_priv)
3084 3085 3086
{
	int ret;

3087 3088 3089 3090
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
		return 0;

	DRM_DEBUG_KMS("Enabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				      GEN9_SAGV_ENABLE);

	/* We don't need to wait for the SAGV when enabling */
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3106
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3107
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3108
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3109 3110 3111 3112 3113 3114
		return 0;
	} else if (ret < 0) {
		DRM_ERROR("Failed to enable the SAGV\n");
		return ret;
	}

3115
	dev_priv->sagv_status = I915_SAGV_ENABLED;
3116 3117 3118 3119
	return 0;
}

int
3120
intel_disable_sagv(struct drm_i915_private *dev_priv)
3121
{
3122
	int ret;
3123

3124 3125 3126 3127
	if (!intel_has_sagv(dev_priv))
		return 0;

	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3128 3129 3130 3131 3132 3133
		return 0;

	DRM_DEBUG_KMS("Disabling the SAGV\n");
	mutex_lock(&dev_priv->rps.hw_lock);

	/* bspec says to keep retrying for at least 1 ms */
3134 3135 3136 3137
	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
				GEN9_SAGV_DISABLE,
				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
				1);
3138 3139 3140 3141 3142 3143
	mutex_unlock(&dev_priv->rps.hw_lock);

	/*
	 * Some skl systems, pre-release machines in particular,
	 * don't actually have an SAGV.
	 */
3144
	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3145
		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3146
		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3147
		return 0;
3148 3149 3150
	} else if (ret < 0) {
		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
		return ret;
3151 3152
	}

3153
	dev_priv->sagv_status = I915_SAGV_DISABLED;
3154 3155 3156
	return 0;
}

3157
bool intel_can_enable_sagv(struct drm_atomic_state *state)
3158 3159 3160 3161
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3162 3163
	struct intel_crtc *crtc;
	struct intel_plane *plane;
3164
	struct intel_crtc_state *cstate;
3165
	enum pipe pipe;
3166
	int level, latency;
3167

3168 3169 3170
	if (!intel_has_sagv(dev_priv))
		return false;

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	/*
	 * SKL workaround: bspec recommends we disable the SAGV when we have
	 * more then one pipe enabled
	 *
	 * If there are no active CRTCs, no additional checks need be performed
	 */
	if (hweight32(intel_state->active_crtcs) == 0)
		return true;
	else if (hweight32(intel_state->active_crtcs) > 1)
		return false;

	/* Since we're now guaranteed to only have one active CRTC... */
	pipe = ffs(intel_state->active_crtcs) - 1;
3184
	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3185
	cstate = to_intel_crtc_state(crtc->base.state);
3186

3187
	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3188 3189
		return false;

3190
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3191 3192
		struct skl_plane_wm *wm =
			&cstate->wm.skl.optimal.planes[plane->id];
3193

3194
		/* Skip this plane if it's not enabled */
3195
		if (!wm->wm[0].plane_en)
3196 3197 3198
			continue;

		/* Find the highest enabled wm level for this plane */
3199
		for (level = ilk_wm_max_level(dev_priv);
3200
		     !wm->wm[level].plane_en; --level)
3201 3202
		     { }

3203 3204 3205
		latency = dev_priv->wm.skl_latency[level];

		if (skl_needs_memory_bw_wa(intel_state) &&
V
Ville Syrjälä 已提交
3206
		    plane->base.state->fb->modifier ==
3207 3208 3209
		    I915_FORMAT_MOD_X_TILED)
			latency += 15;

3210 3211 3212 3213 3214
		/*
		 * If any of the planes on this pipe don't enable wm levels
		 * that incur memory latencies higher then 30µs we can't enable
		 * the SAGV
		 */
3215
		if (latency < SKL_SAGV_BLOCK_TIME)
3216 3217 3218 3219 3220 3221
			return false;
	}

	return true;
}

3222 3223
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3224
				   const struct intel_crtc_state *cstate,
3225 3226
				   struct skl_ddb_entry *alloc, /* out */
				   int *num_active /* out */)
3227
{
3228 3229 3230
	struct drm_atomic_state *state = cstate->base.state;
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct drm_i915_private *dev_priv = to_i915(dev);
3231
	struct drm_crtc *for_crtc = cstate->base.crtc;
3232 3233
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;
3234

3235
	if (WARN_ON(!state) || !cstate->base.active) {
3236 3237
		alloc->start = 0;
		alloc->end = 0;
3238
		*num_active = hweight32(dev_priv->active_crtcs);
3239 3240 3241
		return;
	}

3242 3243 3244 3245 3246
	if (intel_state->active_pipe_changes)
		*num_active = hweight32(intel_state->active_crtcs);
	else
		*num_active = hweight32(dev_priv->active_crtcs);

3247 3248
	ddb_size = INTEL_INFO(dev_priv)->ddb_size;
	WARN_ON(ddb_size == 0);
3249 3250 3251

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

3252
	/*
3253 3254 3255 3256 3257 3258
	 * If the state doesn't change the active CRTC's, then there's
	 * no need to recalculate; the existing pipe allocation limits
	 * should remain unchanged.  Note that we're safe from racing
	 * commits since any racing commit that changes the active CRTC
	 * list would need to grab _all_ crtc locks, including the one
	 * we currently hold.
3259
	 */
3260
	if (!intel_state->active_pipe_changes) {
3261 3262 3263 3264 3265
		/*
		 * alloc may be cleared by clear_intel_crtc_state,
		 * copy from old state to be sure
		 */
		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3266
		return;
3267
	}
3268 3269 3270 3271 3272 3273

	nth_active_pipe = hweight32(intel_state->active_crtcs &
				    (drm_crtc_mask(for_crtc) - 1));
	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
	alloc->start = nth_active_pipe * ddb_size / *num_active;
	alloc->end = alloc->start + pipe_size;
3274 3275
}

3276
static unsigned int skl_cursor_allocation(int num_active)
3277
{
3278
	if (num_active == 1)
3279 3280 3281 3282 3283
		return 32;

	return 8;
}

3284 3285 3286 3287
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
3288 3289
	if (entry->end)
		entry->end += 1;
3290 3291
}

3292 3293
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
3294
{
3295
	struct intel_crtc *crtc;
3296

3297 3298
	memset(ddb, 0, sizeof(*ddb));

3299
	for_each_intel_crtc(&dev_priv->drm, crtc) {
3300
		enum intel_display_power_domain power_domain;
3301 3302
		enum plane_id plane_id;
		enum pipe pipe = crtc->pipe;
3303 3304 3305

		power_domain = POWER_DOMAIN_PIPE(pipe);
		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3306 3307
			continue;

3308 3309 3310 3311 3312 3313 3314
		for_each_plane_id_on_crtc(crtc, plane_id) {
			u32 val;

			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
			else
				val = I915_READ(CUR_BUF_CFG(pipe));
3315

3316 3317
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
		}
3318 3319

		intel_display_power_put(dev_priv, power_domain);
3320 3321 3322
	}
}

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
/*
 * Determines the downscale amount of a plane for the purposes of watermark calculations.
 * The bspec defines downscale amount as:
 *
 * """
 * Horizontal down scale amount = maximum[1, Horizontal source size /
 *                                           Horizontal destination size]
 * Vertical down scale amount = maximum[1, Vertical source size /
 *                                         Vertical destination size]
 * Total down scale amount = Horizontal down scale amount *
 *                           Vertical down scale amount
 * """
 *
 * Return value is provided in 16.16 fixed point form to retain fractional part.
 * Caller should take care of dividing & rounding off the value.
 */
static uint32_t
skl_plane_downscale_amount(const struct intel_plane_state *pstate)
{
	uint32_t downscale_h, downscale_w;
	uint32_t src_w, src_h, dst_w, dst_h;

3345
	if (WARN_ON(!pstate->base.visible))
3346 3347 3348
		return DRM_PLANE_HELPER_NO_SCALING;

	/* n.b., src is 16.16 fixed point, dst is whole integer */
3349 3350 3351 3352
	src_w = drm_rect_width(&pstate->base.src);
	src_h = drm_rect_height(&pstate->base.src);
	dst_w = drm_rect_width(&pstate->base.dst);
	dst_h = drm_rect_height(&pstate->base.dst);
3353
	if (drm_rotation_90_or_270(pstate->base.rotation))
3354 3355 3356 3357 3358 3359 3360 3361 3362
		swap(dst_w, dst_h);

	downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
	downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);

	/* Provide result in 16.16 fixed point */
	return (uint64_t)downscale_w * downscale_h >> 16;
}

3363
static unsigned int
3364 3365 3366
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
3367
{
3368
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3369
	uint32_t down_scale_amount, data_rate;
3370
	uint32_t width = 0, height = 0;
3371 3372
	struct drm_framebuffer *fb;
	u32 format;
3373

3374
	if (!intel_pstate->base.visible)
3375
		return 0;
3376 3377

	fb = pstate->fb;
V
Ville Syrjälä 已提交
3378
	format = fb->format->format;
3379

3380 3381 3382 3383
	if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
		return 0;
	if (y && format != DRM_FORMAT_NV12)
		return 0;
3384

3385 3386
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3387

3388
	if (drm_rotation_90_or_270(pstate->rotation))
3389
		swap(width, height);
3390 3391

	/* for planar format */
3392
	if (format == DRM_FORMAT_NV12) {
3393
		if (y)  /* y-plane data rate */
3394
			data_rate = width * height *
3395
				fb->format->cpp[0];
3396
		else    /* uv-plane data rate */
3397
			data_rate = (width / 2) * (height / 2) *
3398
				fb->format->cpp[1];
3399 3400
	} else {
		/* for packed formats */
3401
		data_rate = width * height * fb->format->cpp[0];
3402 3403
	}

3404 3405 3406
	down_scale_amount = skl_plane_downscale_amount(intel_pstate);

	return (uint64_t)data_rate * down_scale_amount >> 16;
3407 3408 3409 3410 3411 3412 3413 3414
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
3415 3416 3417
skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
				 unsigned *plane_data_rate,
				 unsigned *plane_y_data_rate)
3418
{
3419 3420
	struct drm_crtc_state *cstate = &intel_cstate->base;
	struct drm_atomic_state *state = cstate->state;
3421 3422
	struct drm_plane *plane;
	const struct drm_plane_state *pstate;
3423
	unsigned int total_data_rate = 0;
3424 3425 3426

	if (WARN_ON(!state))
		return 0;
3427

3428
	/* Calculate and cache data rate for each plane */
3429
	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3430 3431
		enum plane_id plane_id = to_intel_plane(plane)->id;
		unsigned int rate;
3432 3433 3434 3435

		/* packed/uv */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 0);
3436
		plane_data_rate[plane_id] = rate;
3437 3438

		total_data_rate += rate;
3439 3440 3441 3442

		/* y-plane */
		rate = skl_plane_relative_data_rate(intel_cstate,
						    pstate, 1);
3443
		plane_y_data_rate[plane_id] = rate;
3444

3445
		total_data_rate += rate;
3446 3447 3448 3449 3450
	}

	return total_data_rate;
}

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state *pstate,
		  const int y)
{
	struct drm_framebuffer *fb = pstate->fb;
	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
	uint32_t src_w, src_h;
	uint32_t min_scanlines = 8;
	uint8_t plane_bpp;

	if (WARN_ON(!fb))
		return 0;

	/* For packed formats, no y-plane, return 0 */
V
Ville Syrjälä 已提交
3465
	if (y && fb->format->format != DRM_FORMAT_NV12)
3466 3467 3468
		return 0;

	/* For Non Y-tile return 8-blocks */
V
Ville Syrjälä 已提交
3469 3470
	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
	    fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3471 3472
		return 8;

3473 3474
	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3475

3476
	if (drm_rotation_90_or_270(pstate->rotation))
3477 3478 3479
		swap(src_w, src_h);

	/* Halve UV plane width and height for NV12 */
V
Ville Syrjälä 已提交
3480
	if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3481 3482 3483 3484
		src_w /= 2;
		src_h /= 2;
	}

V
Ville Syrjälä 已提交
3485
	if (fb->format->format == DRM_FORMAT_NV12 && !y)
3486
		plane_bpp = fb->format->cpp[1];
3487
	else
3488
		plane_bpp = fb->format->cpp[0];
3489

3490
	if (drm_rotation_90_or_270(pstate->rotation)) {
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		switch (plane_bpp) {
		case 1:
			min_scanlines = 32;
			break;
		case 2:
			min_scanlines = 16;
			break;
		case 4:
			min_scanlines = 8;
			break;
		case 8:
			min_scanlines = 4;
			break;
		default:
			WARN(1, "Unsupported pixel depth %u for rotation",
			     plane_bpp);
			min_scanlines = 32;
		}
	}

	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
}

3514 3515 3516 3517 3518 3519 3520 3521
static void
skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
		 uint16_t *minimum, uint16_t *y_minimum)
{
	const struct drm_plane_state *pstate;
	struct drm_plane *plane;

	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3522
		enum plane_id plane_id = to_intel_plane(plane)->id;
3523

3524
		if (plane_id == PLANE_CURSOR)
3525 3526 3527 3528 3529
			continue;

		if (!pstate->visible)
			continue;

3530 3531
		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
		y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3532 3533 3534 3535 3536
	}

	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
}

3537
static int
3538
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3539 3540
		      struct skl_ddb_allocation *ddb /* out */)
{
3541
	struct drm_atomic_state *state = cstate->base.state;
3542
	struct drm_crtc *crtc = cstate->base.crtc;
3543 3544 3545
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
3546
	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3547
	uint16_t alloc_size, start;
3548 3549
	uint16_t minimum[I915_MAX_PLANES] = {};
	uint16_t y_minimum[I915_MAX_PLANES] = {};
3550
	unsigned int total_data_rate;
3551
	enum plane_id plane_id;
3552
	int num_active;
3553 3554
	unsigned plane_data_rate[I915_MAX_PLANES] = {};
	unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3555

3556 3557 3558 3559
	/* Clear the partitioning for disabled planes. */
	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
	memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));

3560 3561 3562
	if (WARN_ON(!state))
		return 0;

3563
	if (!cstate->base.active) {
3564
		alloc->start = alloc->end = 0;
3565 3566 3567
		return 0;
	}

3568
	skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3569
	alloc_size = skl_ddb_entry_size(alloc);
3570 3571
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3572
		return 0;
3573 3574
	}

3575
	skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3576

3577 3578 3579 3580 3581
	/*
	 * 1. Allocate the mininum required blocks for each active plane
	 * and allocate the cursor, it doesn't require extra allocation
	 * proportional to the data rate.
	 */
3582

3583 3584 3585
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		alloc_size -= minimum[plane_id];
		alloc_size -= y_minimum[plane_id];
3586 3587
	}

3588 3589 3590
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;

3591
	/*
3592 3593
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
3594 3595 3596
	 *
	 * FIXME: we may not allocate every single block here.
	 */
3597 3598 3599
	total_data_rate = skl_get_total_relative_data_rate(cstate,
							   plane_data_rate,
							   plane_y_data_rate);
3600
	if (total_data_rate == 0)
3601
		return 0;
3602

3603
	start = alloc->start;
3604
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3605 3606
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
3607

3608
		if (plane_id == PLANE_CURSOR)
3609 3610
			continue;

3611
		data_rate = plane_data_rate[plane_id];
3612 3613

		/*
3614
		 * allocation for (packed formats) or (uv-plane part of planar format):
3615 3616 3617
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3618
		plane_blocks = minimum[plane_id];
3619 3620
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3621

3622 3623
		/* Leave disabled planes at (0,0) */
		if (data_rate) {
3624 3625
			ddb->plane[pipe][plane_id].start = start;
			ddb->plane[pipe][plane_id].end = start + plane_blocks;
3626
		}
3627 3628

		start += plane_blocks;
3629 3630 3631 3632

		/*
		 * allocation for y_plane part of planar format:
		 */
3633
		y_data_rate = plane_y_data_rate[plane_id];
3634

3635
		y_plane_blocks = y_minimum[plane_id];
3636 3637
		y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
					total_data_rate);
3638

3639
		if (y_data_rate) {
3640 3641
			ddb->y_plane[pipe][plane_id].start = start;
			ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3642
		}
3643 3644

		start += y_plane_blocks;
3645 3646
	}

3647
	return 0;
3648 3649
}

3650 3651
/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3652
 * for the read latency) and cpp should always be <= 8, so that
3653 3654 3655
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3656 3657
static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
					 uint32_t latency)
3658
{
3659 3660
	uint32_t wm_intermediate_val;
	uint_fixed_16_16_t ret;
3661 3662

	if (latency == 0)
3663
		return FP_16_16_MAX;
3664

3665 3666
	wm_intermediate_val = latency * pixel_rate * cpp;
	ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3667 3668 3669
	return ret;
}

3670 3671 3672 3673
static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
			uint32_t pipe_htotal,
			uint32_t latency,
			uint_fixed_16_16_t plane_blocks_per_line)
3674
{
3675
	uint32_t wm_intermediate_val;
3676
	uint_fixed_16_16_t ret;
3677 3678

	if (latency == 0)
3679
		return FP_16_16_MAX;
3680 3681

	wm_intermediate_val = latency * pixel_rate;
3682 3683 3684
	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
					   pipe_htotal * 1000);
	ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3685 3686 3687
	return ret;
}

3688 3689 3690 3691 3692 3693 3694 3695
static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
					      struct intel_plane_state *pstate)
{
	uint64_t adjusted_pixel_rate;
	uint64_t downscale_amount;
	uint64_t pixel_rate;

	/* Shouldn't reach here on disabled planes... */
3696
	if (WARN_ON(!pstate->base.visible))
3697 3698 3699 3700 3701 3702
		return 0;

	/*
	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
	 * with additional adjustments for plane-specific scaling.
	 */
3703
	adjusted_pixel_rate = cstate->pixel_rate;
3704 3705 3706 3707 3708 3709 3710 3711
	downscale_amount = skl_plane_downscale_amount(pstate);

	pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
	WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));

	return pixel_rate;
}

3712 3713 3714 3715 3716 3717 3718 3719
static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
				struct intel_crtc_state *cstate,
				struct intel_plane_state *intel_pstate,
				uint16_t ddb_allocation,
				int level,
				uint16_t *out_blocks, /* out */
				uint8_t *out_lines, /* out */
				bool *enabled /* out */)
3720
{
3721 3722
	struct drm_plane_state *pstate = &intel_pstate->base;
	struct drm_framebuffer *fb = pstate->fb;
3723
	uint32_t latency = dev_priv->wm.skl_latency[level];
3724 3725 3726 3727 3728
	uint_fixed_16_16_t method1, method2;
	uint_fixed_16_16_t plane_blocks_per_line;
	uint_fixed_16_16_t selected_result;
	uint32_t interm_pbpl;
	uint32_t plane_bytes_per_line;
3729
	uint32_t res_blocks, res_lines;
3730
	uint8_t cpp;
3731
	uint32_t width = 0, height = 0;
3732
	uint32_t plane_pixel_rate;
3733 3734
	uint_fixed_16_16_t y_tile_minimum;
	uint32_t y_min_scanlines;
3735 3736 3737
	struct intel_atomic_state *state =
		to_intel_atomic_state(cstate->base.state);
	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3738
	bool y_tiled, x_tiled;
3739

3740
	if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3741 3742 3743
		*enabled = false;
		return 0;
	}
3744

3745 3746 3747 3748
	y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
		  fb->modifier == I915_FORMAT_MOD_Yf_TILED;
	x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;

3749 3750 3751 3752
	/* Display WA #1141: kbl. */
	if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
		latency += 4;

3753
	if (apply_memory_bw_wa && x_tiled)
3754 3755
		latency += 15;

3756 3757
	width = drm_rect_width(&intel_pstate->base.src) >> 16;
	height = drm_rect_height(&intel_pstate->base.src) >> 16;
3758

3759
	if (drm_rotation_90_or_270(pstate->rotation))
3760 3761
		swap(width, height);

3762
	cpp = fb->format->cpp[0];
3763 3764
	plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);

3765
	if (drm_rotation_90_or_270(pstate->rotation)) {
V
Ville Syrjälä 已提交
3766
		int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3767 3768
			fb->format->cpp[1] :
			fb->format->cpp[0];
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

		switch (cpp) {
		case 1:
			y_min_scanlines = 16;
			break;
		case 2:
			y_min_scanlines = 8;
			break;
		case 4:
			y_min_scanlines = 4;
			break;
3780 3781 3782
		default:
			MISSING_CASE(cpp);
			return -EINVAL;
3783 3784 3785 3786 3787
		}
	} else {
		y_min_scanlines = 4;
	}

3788 3789 3790
	if (apply_memory_bw_wa)
		y_min_scanlines *= 2;

3791
	plane_bytes_per_line = width * cpp;
3792
	if (y_tiled) {
3793 3794
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
					   y_min_scanlines, 512);
3795
		plane_blocks_per_line =
3796
		      fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3797
	} else if (x_tiled) {
3798 3799
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3800
	} else {
3801 3802
		interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
		plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3803 3804
	}

3805 3806
	method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
	method2 = skl_wm_method2(plane_pixel_rate,
3807
				 cstate->base.adjusted_mode.crtc_htotal,
3808
				 latency,
3809
				 plane_blocks_per_line);
3810

3811 3812
	y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
					     plane_blocks_per_line);
3813

3814
	if (y_tiled) {
3815
		selected_result = max_fixed_16_16(method2, y_tile_minimum);
3816
	} else {
3817 3818 3819
		if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
		    (plane_bytes_per_line / 512 < 1))
			selected_result = method2;
3820 3821 3822
		else if ((ddb_allocation /
			fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
			selected_result = min_fixed_16_16(method1, method2);
3823 3824 3825
		else
			selected_result = method1;
	}
3826

3827 3828 3829
	res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
	res_lines = DIV_ROUND_UP(selected_result.val,
				 plane_blocks_per_line.val);
3830

3831
	if (level >= 1 && level <= 7) {
3832
		if (y_tiled) {
3833
			res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3834
			res_lines += y_min_scanlines;
3835
		} else {
3836
			res_blocks++;
3837
		}
3838
	}
3839

3840 3841
	if (res_blocks >= ddb_allocation || res_lines > 31) {
		*enabled = false;
3842 3843 3844 3845 3846 3847 3848 3849

		/*
		 * If there are no valid level 0 watermarks, then we can't
		 * support this display configuration.
		 */
		if (level) {
			return 0;
		} else {
3850 3851
			struct drm_plane *plane = pstate->plane;

3852
			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3853 3854
			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
				      plane->base.id, plane->name,
3855 3856 3857
				      res_blocks, ddb_allocation, res_lines);
			return -EINVAL;
		}
3858
	}
3859 3860 3861

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3862
	*enabled = true;
3863

3864
	return 0;
3865 3866
}

3867 3868 3869 3870
static int
skl_compute_wm_level(const struct drm_i915_private *dev_priv,
		     struct skl_ddb_allocation *ddb,
		     struct intel_crtc_state *cstate,
L
Lyude 已提交
3871
		     struct intel_plane *intel_plane,
3872 3873
		     int level,
		     struct skl_wm_level *result)
3874
{
3875
	struct drm_atomic_state *state = cstate->base.state;
3876
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
L
Lyude 已提交
3877 3878
	struct drm_plane *plane = &intel_plane->base;
	struct intel_plane_state *intel_pstate = NULL;
3879
	uint16_t ddb_blocks;
3880
	enum pipe pipe = intel_crtc->pipe;
3881
	int ret;
L
Lyude 已提交
3882 3883 3884 3885 3886

	if (state)
		intel_pstate =
			intel_atomic_get_existing_plane_state(state,
							      intel_plane);
3887

3888
	/*
L
Lyude 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897
	 * Note: If we start supporting multiple pending atomic commits against
	 * the same planes/CRTC's in the future, plane->state will no longer be
	 * the correct pre-state to use for the calculations here and we'll
	 * need to change where we get the 'unchanged' plane data from.
	 *
	 * For now this is fine because we only allow one queued commit against
	 * a CRTC.  Even if the plane isn't modified by this transaction and we
	 * don't have a plane lock, we still have the CRTC's lock, so we know
	 * that no other transactions are racing with us to update it.
3898
	 */
L
Lyude 已提交
3899 3900
	if (!intel_pstate)
		intel_pstate = to_intel_plane_state(plane->state);
3901

L
Lyude 已提交
3902
	WARN_ON(!intel_pstate->base.fb);
3903

3904
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3905

L
Lyude 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	ret = skl_compute_plane_wm(dev_priv,
				   cstate,
				   intel_pstate,
				   ddb_blocks,
				   level,
				   &result->plane_res_b,
				   &result->plane_res_l,
				   &result->plane_en);
	if (ret)
		return ret;
3916 3917

	return 0;
3918 3919
}

3920
static uint32_t
3921
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3922
{
M
Mahesh Kumar 已提交
3923 3924
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_i915_private *dev_priv = to_i915(state->dev);
3925
	uint32_t pixel_rate;
M
Mahesh Kumar 已提交
3926
	uint32_t linetime_wm;
3927

3928
	if (!cstate->base.active)
3929 3930
		return 0;

3931
	pixel_rate = cstate->pixel_rate;
3932 3933

	if (WARN_ON(pixel_rate == 0))
3934
		return 0;
3935

M
Mahesh Kumar 已提交
3936 3937 3938 3939 3940 3941 3942 3943
	linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
				   1000, pixel_rate);

	/* Display WA #1135: bxt. */
	if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
		linetime_wm = DIV_ROUND_UP(linetime_wm, 2);

	return linetime_wm;
3944 3945
}

3946
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3947
				      struct skl_wm_level *trans_wm /* out */)
3948
{
3949
	if (!cstate->base.active)
3950
		return;
3951 3952

	/* Until we know more, just disable transition WMs */
L
Lyude 已提交
3953
	trans_wm->plane_en = false;
3954 3955
}

3956 3957 3958
static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
			     struct skl_ddb_allocation *ddb,
			     struct skl_pipe_wm *pipe_wm)
3959
{
3960
	struct drm_device *dev = cstate->base.crtc->dev;
3961
	const struct drm_i915_private *dev_priv = to_i915(dev);
L
Lyude 已提交
3962 3963
	struct intel_plane *intel_plane;
	struct skl_plane_wm *wm;
3964
	int level, max_level = ilk_wm_max_level(dev_priv);
3965
	int ret;
3966

L
Lyude 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975
	/*
	 * We'll only calculate watermarks for planes that are actually
	 * enabled, so make sure all other planes are set as disabled.
	 */
	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));

	for_each_intel_plane_mask(&dev_priv->drm,
				  intel_plane,
				  cstate->base.plane_mask) {
3976
		wm = &pipe_wm->planes[intel_plane->id];
L
Lyude 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985

		for (level = 0; level <= max_level; level++) {
			ret = skl_compute_wm_level(dev_priv, ddb, cstate,
						   intel_plane, level,
						   &wm->wm[level]);
			if (ret)
				return ret;
		}
		skl_compute_transition_wm(cstate, &wm->trans_wm);
3986
	}
3987
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3988

3989
	return 0;
3990 3991
}

3992 3993
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3994 3995 3996 3997 3998 3999 4000 4001
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
			       i915_reg_t reg,
			       const struct skl_wm_level *level)
{
	uint32_t val = 0;

	if (level->plane_en) {
		val |= PLANE_WM_EN;
		val |= level->plane_res_b;
		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
	}

	I915_WRITE(reg, val);
}

4017 4018 4019
static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
			       const struct skl_plane_wm *wm,
			       const struct skl_ddb_allocation *ddb,
4020
			       enum plane_id plane_id)
4021 4022 4023 4024
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4025
	int level, max_level = ilk_wm_max_level(dev_priv);
4026 4027 4028
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4029
		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4030
				   &wm->wm[level]);
4031
	}
4032
	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4033
			   &wm->trans_wm);
4034

4035 4036 4037 4038
	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
			    &ddb->plane[pipe][plane_id]);
	skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
			    &ddb->y_plane[pipe][plane_id]);
4039 4040
}

4041 4042 4043
static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
				const struct skl_plane_wm *wm,
				const struct skl_ddb_allocation *ddb)
4044 4045 4046 4047
{
	struct drm_crtc *crtc = &intel_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
4048
	int level, max_level = ilk_wm_max_level(dev_priv);
4049 4050 4051
	enum pipe pipe = intel_crtc->pipe;

	for (level = 0; level <= max_level; level++) {
4052 4053
		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
				   &wm->wm[level]);
4054
	}
4055
	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4056

4057
	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4058
			    &ddb->plane[pipe][PLANE_CURSOR]);
4059 4060
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
bool skl_wm_level_equals(const struct skl_wm_level *l1,
			 const struct skl_wm_level *l2)
{
	if (l1->plane_en != l2->plane_en)
		return false;

	/* If both planes aren't enabled, the rest shouldn't matter */
	if (!l1->plane_en)
		return true;

	return (l1->plane_res_l == l2->plane_res_l &&
		l1->plane_res_b == l2->plane_res_b);
}

4075 4076
static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
					   const struct skl_ddb_entry *b)
4077
{
4078
	return a->start < b->end && b->start < a->end;
4079 4080
}

4081 4082 4083
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
				 const struct skl_ddb_entry *ddb,
				 int ignore)
4084
{
4085
	int i;
4086

4087 4088 4089
	for (i = 0; i < I915_MAX_PIPES; i++)
		if (i != ignore && entries[i] &&
		    skl_ddb_entries_overlap(ddb, entries[i]))
4090
			return true;
4091

4092
	return false;
4093 4094
}

4095
static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4096
			      const struct skl_pipe_wm *old_pipe_wm,
4097
			      struct skl_pipe_wm *pipe_wm, /* out */
4098
			      struct skl_ddb_allocation *ddb, /* out */
4099
			      bool *changed /* out */)
4100
{
4101
	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4102
	int ret;
4103

4104 4105 4106
	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
	if (ret)
		return ret;
4107

4108
	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4109 4110 4111
		*changed = false;
	else
		*changed = true;
4112

4113
	return 0;
4114 4115
}

4116 4117 4118 4119 4120 4121 4122
static uint32_t
pipes_modified(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
	uint32_t i, ret = 0;

4123
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4124 4125 4126 4127 4128
		ret |= drm_crtc_mask(crtc);

	return ret;
}

4129
static int
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
{
	struct drm_atomic_state *state = cstate->base.state;
	struct drm_device *dev = state->dev;
	struct drm_crtc *crtc = cstate->base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	struct drm_plane_state *plane_state;
	struct drm_plane *plane;
	enum pipe pipe = intel_crtc->pipe;

	WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));

4146
	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4147
		enum plane_id plane_id = to_intel_plane(plane)->id;
4148

4149 4150 4151 4152
		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
					&new_ddb->plane[pipe][plane_id]) &&
		    skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
					&new_ddb->y_plane[pipe][plane_id]))
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
			continue;

		plane_state = drm_atomic_get_plane_state(state, plane);
		if (IS_ERR(plane_state))
			return PTR_ERR(plane_state);
	}

	return 0;
}

4163 4164 4165 4166 4167 4168 4169
static int
skl_compute_ddb(struct drm_atomic_state *state)
{
	struct drm_device *dev = state->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct intel_crtc *intel_crtc;
4170
	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4171
	uint32_t realloc_pipes = pipes_modified(state);
4172 4173 4174 4175 4176 4177 4178 4179
	int ret;

	/*
	 * If this is our first atomic update following hardware readout,
	 * we can't trust the DDB that the BIOS programmed for us.  Let's
	 * pretend that all pipes switched active status so that we'll
	 * ensure a full DDB recompute.
	 */
4180 4181 4182 4183 4184 4185
	if (dev_priv->wm.distrust_bios_wm) {
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       state->acquire_ctx);
		if (ret)
			return ret;

4186 4187
		intel_state->active_pipe_changes = ~0;

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
		/*
		 * We usually only initialize intel_state->active_crtcs if we
		 * we're doing a modeset; make sure this field is always
		 * initialized during the sanitization process that happens
		 * on the first commit too.
		 */
		if (!intel_state->modeset)
			intel_state->active_crtcs = dev_priv->active_crtcs;
	}

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	/*
	 * If the modeset changes which CRTC's are active, we need to
	 * recompute the DDB allocation for *all* active pipes, even
	 * those that weren't otherwise being modified in any way by this
	 * atomic commit.  Due to the shrinking of the per-pipe allocations
	 * when new active CRTC's are added, it's possible for a pipe that
	 * we were already using and aren't changing at all here to suddenly
	 * become invalid if its DDB needs exceeds its new allocation.
	 *
	 * Note that if we wind up doing a full DDB recompute, we can't let
	 * any other display updates race with this transaction, so we need
	 * to grab the lock on *all* CRTC's.
	 */
4211
	if (intel_state->active_pipe_changes) {
4212
		realloc_pipes = ~0;
4213 4214
		intel_state->wm_results.dirty_pipes = ~0;
	}
4215

4216 4217 4218 4219 4220 4221
	/*
	 * We're not recomputing for the pipes not included in the commit, so
	 * make sure we start with the current state.
	 */
	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));

4222 4223 4224 4225 4226 4227 4228
	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
		struct intel_crtc_state *cstate;

		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
		if (IS_ERR(cstate))
			return PTR_ERR(cstate);

4229
		ret = skl_allocate_pipe_ddb(cstate, ddb);
4230 4231
		if (ret)
			return ret;
4232

4233
		ret = skl_ddb_add_affected_planes(cstate);
4234 4235
		if (ret)
			return ret;
4236 4237 4238 4239 4240
	}

	return 0;
}

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
static void
skl_copy_wm_for_pipe(struct skl_wm_values *dst,
		     struct skl_wm_values *src,
		     enum pipe pipe)
{
	memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
	       sizeof(dst->ddb.y_plane[pipe]));
	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
	       sizeof(dst->ddb.plane[pipe]));
}

4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
static void
skl_print_wm_changes(const struct drm_atomic_state *state)
{
	const struct drm_device *dev = state->dev;
	const struct drm_i915_private *dev_priv = to_i915(dev);
	const struct intel_atomic_state *intel_state =
		to_intel_atomic_state(state);
	const struct drm_crtc *crtc;
	const struct drm_crtc_state *cstate;
	const struct intel_plane *intel_plane;
	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4264
	int i;
4265

4266
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4267 4268
		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		enum pipe pipe = intel_crtc->pipe;
4269

4270
		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4271
			enum plane_id plane_id = intel_plane->id;
4272 4273
			const struct skl_ddb_entry *old, *new;

4274 4275
			old = &old_ddb->plane[pipe][plane_id];
			new = &new_ddb->plane[pipe][plane_id];
4276 4277 4278 4279

			if (skl_ddb_entry_equal(old, new))
				continue;

4280 4281 4282 4283 4284
			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
					 intel_plane->base.base.id,
					 intel_plane->base.name,
					 old->start, old->end,
					 new->start, new->end);
4285 4286 4287 4288
		}
	}
}

4289 4290 4291 4292 4293
static int
skl_compute_wm(struct drm_atomic_state *state)
{
	struct drm_crtc *crtc;
	struct drm_crtc_state *cstate;
4294 4295 4296
	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
	struct skl_wm_values *results = &intel_state->wm_results;
	struct skl_pipe_wm *pipe_wm;
4297
	bool changed = false;
4298
	int ret, i;
4299 4300 4301 4302 4303 4304 4305 4306 4307

	/*
	 * If this transaction isn't actually touching any CRTC's, don't
	 * bother with watermark calculation.  Note that if we pass this
	 * test, we're guaranteed to hold at least one CRTC state mutex,
	 * which means we can safely use values like dev_priv->active_crtcs
	 * since any racing commits that want to update them would need to
	 * hold _all_ CRTC state mutexes.
	 */
4308
	for_each_new_crtc_in_state(state, crtc, cstate, i)
4309 4310 4311 4312
		changed = true;
	if (!changed)
		return 0;

4313 4314 4315
	/* Clear all dirty flags */
	results->dirty_pipes = 0;

4316 4317 4318 4319
	ret = skl_compute_ddb(state);
	if (ret)
		return ret;

4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	/*
	 * Calculate WM's for all pipes that are part of this transaction.
	 * Note that the DDB allocation above may have added more CRTC's that
	 * weren't otherwise being modified (and set bits in dirty_pipes) if
	 * pipe allocations had to change.
	 *
	 * FIXME:  Now that we're doing this in the atomic check phase, we
	 * should allow skl_update_pipe_wm() to return failure in cases where
	 * no suitable watermark values can be found.
	 */
4330
	for_each_new_crtc_in_state(state, crtc, cstate, i) {
4331 4332
		struct intel_crtc_state *intel_cstate =
			to_intel_crtc_state(cstate);
4333 4334
		const struct skl_pipe_wm *old_pipe_wm =
			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4335 4336

		pipe_wm = &intel_cstate->wm.skl.optimal;
4337 4338
		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
					 &results->ddb, &changed);
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
		if (ret)
			return ret;

		if (changed)
			results->dirty_pipes |= drm_crtc_mask(crtc);

		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
			/* This pipe's WM's did not change */
			continue;

		intel_cstate->update_wm_pre = true;
	}

4352 4353
	skl_print_wm_changes(state);

4354 4355 4356
	return 0;
}

4357 4358 4359 4360 4361 4362
static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
				      struct intel_crtc_state *cstate)
{
	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4363
	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4364
	enum pipe pipe = crtc->pipe;
4365
	enum plane_id plane_id;
4366 4367 4368

	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
		return;
4369 4370

	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4371

4372 4373 4374 4375 4376 4377 4378 4379
	for_each_plane_id_on_crtc(crtc, plane_id) {
		if (plane_id != PLANE_CURSOR)
			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
					   ddb, plane_id);
		else
			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
					    ddb);
	}
4380 4381
}

4382 4383
static void skl_initial_wm(struct intel_atomic_state *state,
			   struct intel_crtc_state *cstate)
4384
{
4385
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4386
	struct drm_device *dev = intel_crtc->base.dev;
4387
	struct drm_i915_private *dev_priv = to_i915(dev);
4388
	struct skl_wm_values *results = &state->wm_results;
4389
	struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4390
	enum pipe pipe = intel_crtc->pipe;
4391

4392
	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4393 4394
		return;

4395
	mutex_lock(&dev_priv->wm.wm_mutex);
4396

4397 4398
	if (cstate->base.active_changed)
		skl_atomic_update_crtc_wm(state, cstate);
4399 4400

	skl_copy_wm_for_pipe(hw_vals, results, pipe);
4401 4402

	mutex_unlock(&dev_priv->wm.wm_mutex);
4403 4404
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

4423
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4424
{
4425
	struct drm_device *dev = &dev_priv->drm;
4426
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4427
	struct ilk_wm_maximums max;
4428
	struct intel_wm_config config = {};
4429
	struct ilk_wm_values results = {};
4430
	enum intel_ddb_partitioning partitioning;
4431

4432 4433 4434 4435
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4436 4437

	/* 5/6 split only in single pipe config on IVB+ */
4438
	if (INTEL_GEN(dev_priv) >= 7 &&
4439 4440 4441
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4442

4443
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4444
	} else {
4445
		best_lp_wm = &lp_wm_1_2;
4446 4447
	}

4448
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4449
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4450

4451
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4452

4453
	ilk_write_wm_values(dev_priv, &results);
4454 4455
}

4456 4457
static void ilk_initial_watermarks(struct intel_atomic_state *state,
				   struct intel_crtc_state *cstate)
4458
{
4459 4460
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4461

4462
	mutex_lock(&dev_priv->wm.wm_mutex);
4463
	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4464 4465 4466
	ilk_program_watermarks(dev_priv);
	mutex_unlock(&dev_priv->wm.wm_mutex);
}
4467

4468 4469
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
				    struct intel_crtc_state *cstate)
4470 4471 4472
{
	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4473

4474 4475
	mutex_lock(&dev_priv->wm.wm_mutex);
	if (cstate->wm.need_postvbl_update) {
4476
		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4477 4478 4479
		ilk_program_watermarks(dev_priv);
	}
	mutex_unlock(&dev_priv->wm.wm_mutex);
4480 4481
}

4482 4483
static inline void skl_wm_level_from_reg_val(uint32_t val,
					     struct skl_wm_level *level)
4484
{
4485 4486 4487 4488
	level->plane_en = val & PLANE_WM_EN;
	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
		PLANE_WM_LINES_MASK;
4489 4490
}

4491 4492
void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
			      struct skl_pipe_wm *out)
4493
{
4494
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4495 4496
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
4497 4498
	int level, max_level;
	enum plane_id plane_id;
4499
	uint32_t val;
4500

4501
	max_level = ilk_wm_max_level(dev_priv);
4502

4503 4504
	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
		struct skl_plane_wm *wm = &out->planes[plane_id];
4505

4506
		for (level = 0; level <= max_level; level++) {
4507 4508
			if (plane_id != PLANE_CURSOR)
				val = I915_READ(PLANE_WM(pipe, plane_id, level));
4509 4510
			else
				val = I915_READ(CUR_WM(pipe, level));
4511

4512
			skl_wm_level_from_reg_val(val, &wm->wm[level]);
4513 4514
		}

4515 4516
		if (plane_id != PLANE_CURSOR)
			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4517 4518 4519 4520
		else
			val = I915_READ(CUR_WM_TRANS(pipe));

		skl_wm_level_from_reg_val(val, &wm->trans_wm);
4521 4522
	}

4523 4524
	if (!intel_crtc->active)
		return;
4525

4526
	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4527 4528 4529 4530
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
4531
	struct drm_i915_private *dev_priv = to_i915(dev);
4532
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4533
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4534
	struct drm_crtc *crtc;
4535 4536
	struct intel_crtc *intel_crtc;
	struct intel_crtc_state *cstate;
4537

4538
	skl_ddb_get_hw_state(dev_priv, ddb);
4539 4540 4541 4542 4543 4544
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		cstate = to_intel_crtc_state(crtc->state);

		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);

4545
		if (intel_crtc->active)
4546 4547
			hw->dirty_pipes |= drm_crtc_mask(crtc);
	}
4548

4549 4550 4551 4552 4553 4554 4555
	if (dev_priv->active_crtcs) {
		/* Fully recompute DDB on first atomic commit */
		dev_priv->wm.distrust_bios_wm = true;
	} else {
		/* Easy/common case; just sanitize DDB now if everything off */
		memset(ddb, 0, sizeof(*ddb));
	}
4556 4557
}

4558 4559 4560
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
4561
	struct drm_i915_private *dev_priv = to_i915(dev);
4562
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4563
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4564
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4565
	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4566
	enum pipe pipe = intel_crtc->pipe;
4567
	static const i915_reg_t wm0_pipe_reg[] = {
4568 4569 4570 4571 4572 4573
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4574
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4575
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4576

4577 4578
	memset(active, 0, sizeof(*active));

4579
	active->pipe_enabled = intel_crtc->active;
4580 4581

	if (active->pipe_enabled) {
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
4596
		int level, max_level = ilk_wm_max_level(dev_priv);
4597 4598 4599 4600 4601 4602 4603 4604 4605

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
4606 4607

	intel_crtc->wm.active.ilk = *active;
4608 4609
}

4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

4624
		wm->ddl[pipe].plane[PLANE_PRIMARY] =
4625
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4626
		wm->ddl[pipe].plane[PLANE_CURSOR] =
4627
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4628
		wm->ddl[pipe].plane[PLANE_SPRITE0] =
4629
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4630
		wm->ddl[pipe].plane[PLANE_SPRITE1] =
4631 4632 4633 4634 4635
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
4636 4637 4638
	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4639 4640

	tmp = I915_READ(DSPFW2);
4641 4642 4643
	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4644 4645 4646 4647 4648 4649

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
4650 4651
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4652 4653

		tmp = I915_READ(DSPFW8_CHV);
4654 4655
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4656 4657

		tmp = I915_READ(DSPFW9_CHV);
4658 4659
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4660 4661 4662

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4663 4664 4665 4666 4667 4668 4669 4670 4671
		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4672 4673
	} else {
		tmp = I915_READ(DSPFW7);
4674 4675
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4676 4677 4678

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4679 4680 4681 4682 4683 4684
		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4695
	struct intel_crtc *crtc;
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4710 4711 4712 4713 4714 4715 4716 4717 4718
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4719
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4733 4734 4735 4736

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct vlv_wm_state *active = &crtc->wm.active.vlv;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;
		int level;

		vlv_get_fifo_size(crtc_state);

		active->num_levels = wm->level + 1;
		active->cxsr = wm->cxsr;

		for (level = 0; level < active->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			active->sr[level].plane = wm->sr.plane;
			active->sr[level].cursor = wm->sr.cursor;

			for_each_plane_id_on_crtc(crtc, plane_id) {
				active->wm[level].plane[plane_id] =
					wm->pipe[pipe].plane[plane_id];

				raw->plane[plane_id] =
					vlv_invert_wm_value(active->wm[level].plane[plane_id],
							    fifo_state->plane[plane_id]);
			}
		}

		for_each_plane_id_on_crtc(crtc, plane_id)
			vlv_raw_plane_wm_set(crtc_state, level,
					     plane_id, USHRT_MAX);
		vlv_invalidate_wms(crtc, active, level);

		crtc_state->wm.vlv.optimal = *active;
4775
		crtc_state->wm.vlv.intermediate = *active;
4776

4777
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4778 4779 4780 4781 4782
			      pipe_name(pipe),
			      wm->pipe[pipe].plane[PLANE_PRIMARY],
			      wm->pipe[pipe].plane[PLANE_CURSOR],
			      wm->pipe[pipe].plane[PLANE_SPRITE0],
			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
4783
	}
4784 4785 4786 4787 4788

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
	struct intel_plane *plane;
	struct intel_crtc *crtc;

	mutex_lock(&dev_priv->wm.wm_mutex);

	for_each_intel_plane(&dev_priv->drm, plane) {
		struct intel_crtc *crtc =
			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		struct intel_plane_state *plane_state =
			to_intel_plane_state(plane->base.state);
		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
		const struct vlv_fifo_state *fifo_state =
			&crtc_state->wm.vlv.fifo_state;
		enum plane_id plane_id = plane->id;
		int level;

		if (plane_state->base.visible)
			continue;

		for (level = 0; level < wm_state->num_levels; level++) {
			struct vlv_pipe_wm *raw =
				&crtc_state->wm.vlv.raw[level];

			raw->plane[plane_id] = 0;

			wm_state->wm[level].plane[plane_id] =
				vlv_invert_wm_value(raw->plane[plane_id],
						    fifo_state->plane[plane_id]);
		}
	}

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);

		crtc_state->wm.vlv.intermediate =
			crtc_state->wm.vlv.optimal;
		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
	}

	vlv_program_watermarks(dev_priv);

	mutex_unlock(&dev_priv->wm.wm_mutex);
}

4838 4839
void ilk_wm_get_hw_state(struct drm_device *dev)
{
4840
	struct drm_i915_private *dev_priv = to_i915(dev);
4841
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4842 4843
	struct drm_crtc *crtc;

4844
	for_each_crtc(dev, crtc)
4845 4846 4847 4848 4849 4850 4851
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4852
	if (INTEL_GEN(dev_priv) >= 7) {
4853 4854 4855
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4856

4857
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4858 4859
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4860
	else if (IS_IVYBRIDGE(dev_priv))
4861 4862
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4863 4864 4865 4866 4867

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4900
void intel_update_watermarks(struct intel_crtc *crtc)
4901
{
4902
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4903 4904

	if (dev_priv->display.update_wm)
4905
		dev_priv->display.update_wm(crtc);
4906 4907
}

4908
/*
4909 4910 4911 4912 4913 4914 4915 4916
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4917
bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4918 4919 4920
{
	u16 rgvswctl;

4921
	lockdep_assert_held(&mchdev_lock);
4922

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4940
static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4941
{
4942
	u32 rgvmodectl;
4943 4944
	u8 fmax, fmin, fstart, vstart;

4945 4946
	spin_lock_irq(&mchdev_lock);

4947 4948
	rgvmodectl = I915_READ(MEMMODECTL);

4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4969
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4970 4971
		PXVFREQ_PX_SHIFT;

4972 4973
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4974

4975 4976 4977
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4994
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4995
		DRM_ERROR("stuck trying to change perf mode\n");
4996
	mdelay(1);
4997

4998
	ironlake_set_drps(dev_priv, fstart);
4999

5000 5001
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
5002
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5003
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5004
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
5005 5006

	spin_unlock_irq(&mchdev_lock);
5007 5008
}

5009
static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5010
{
5011 5012 5013 5014 5015
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
5016 5017 5018 5019 5020 5021 5022 5023 5024

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
5025
	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5026
	mdelay(1);
5027 5028
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
5029
	mdelay(1);
5030

5031
	spin_unlock_irq(&mchdev_lock);
5032 5033
}

5034 5035 5036 5037 5038
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
5039
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5040
{
5041
	u32 limits;
5042

5043 5044 5045 5046 5047 5048
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
5049
	if (IS_GEN9(dev_priv)) {
5050 5051 5052 5053 5054 5055 5056 5057
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
5058 5059 5060 5061

	return limits;
}

5062 5063 5064
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
5065 5066
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
5067 5068 5069 5070

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
5071 5072
		if (val > dev_priv->rps.efficient_freq + 1 &&
		    val > dev_priv->rps.cur_freq)
5073 5074 5075 5076
			new_power = BETWEEN;
		break;

	case BETWEEN:
5077 5078
		if (val <= dev_priv->rps.efficient_freq &&
		    val < dev_priv->rps.cur_freq)
5079
			new_power = LOW_POWER;
5080 5081
		else if (val >= dev_priv->rps.rp0_freq &&
			 val > dev_priv->rps.cur_freq)
5082 5083 5084 5085
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
5086 5087
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
		    val < dev_priv->rps.cur_freq)
5088 5089 5090 5091
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
5092
	if (val <= dev_priv->rps.min_freq_softlimit)
5093
		new_power = LOW_POWER;
5094
	if (val >= dev_priv->rps.max_freq_softlimit)
5095 5096 5097 5098 5099 5100 5101 5102
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
5103 5104
		ei_up = 16000;
		threshold_up = 95;
5105 5106

		/* Downclock if less than 85% busy over 32ms */
5107 5108
		ei_down = 32000;
		threshold_down = 85;
5109 5110 5111 5112
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
5113 5114
		ei_up = 13000;
		threshold_up = 90;
5115 5116

		/* Downclock if less than 75% busy over 32ms */
5117 5118
		ei_down = 32000;
		threshold_down = 75;
5119 5120 5121 5122
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
5123 5124
		ei_up = 10000;
		threshold_up = 85;
5125 5126

		/* Downclock if less than 60% busy over 32ms */
5127 5128
		ei_down = 32000;
		threshold_down = 60;
5129 5130 5131
		break;
	}

5132 5133 5134 5135 5136 5137
	/* When byt can survive without system hang with dynamic
	 * sw freq adjustments, this restriction can be lifted.
	 */
	if (IS_VALLEYVIEW(dev_priv))
		goto skip_hw_write;

5138
	I915_WRITE(GEN6_RP_UP_EI,
5139
		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
5140
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
5141 5142
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_up * threshold_up / 100));
5143 5144

	I915_WRITE(GEN6_RP_DOWN_EI,
5145
		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
5146
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
		   GT_INTERVAL_FROM_US(dev_priv,
				       ei_down * threshold_down / 100));

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);
5157

5158
skip_hw_write:
5159
	dev_priv->rps.power = new_power;
5160 5161
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
5162 5163 5164
	dev_priv->rps.last_adj = 0;
}

5165 5166 5167 5168
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

5169
	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5170
	if (val > dev_priv->rps.min_freq_softlimit)
5171
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5172
	if (val < dev_priv->rps.max_freq_softlimit)
5173
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5174

5175 5176
	mask &= dev_priv->pm_rps_events;

5177
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5178 5179
}

5180 5181 5182
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5183
static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5184
{
C
Chris Wilson 已提交
5185 5186 5187 5188 5189
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
5190

5191
		if (IS_GEN9(dev_priv))
5192 5193
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
5194
		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
C
Chris Wilson 已提交
5195 5196 5197 5198 5199 5200 5201
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
5202
	}
5203 5204 5205 5206

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
5207
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5208
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5209

5210
	dev_priv->rps.cur_freq = val;
5211
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5212 5213

	return 0;
5214 5215
}

5216
static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5217
{
5218 5219
	int err;

5220
	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5221 5222 5223
		      "Odd GPU freq value\n"))
		val &= ~1;

5224 5225
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

5226
	if (val != dev_priv->rps.cur_freq) {
5227 5228 5229 5230
		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
		if (err)
			return err;

5231
		gen6_set_rps_thresholds(dev_priv, val);
5232
	}
5233 5234 5235

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5236 5237

	return 0;
5238 5239
}

5240
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5241 5242
 *
 * * If Gfx is Idle, then
5243 5244 5245
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
5246 5247 5248
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
5249
	u32 val = dev_priv->rps.idle_freq;
5250
	int err;
5251

5252
	if (dev_priv->rps.cur_freq <= val)
5253 5254
		return;

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
	/* The punit delays the write of the frequency and voltage until it
	 * determines the GPU is awake. During normal usage we don't want to
	 * waste power changing the frequency if the GPU is sleeping (rc6).
	 * However, the GPU and driver is now idle and we do not want to delay
	 * switching to minimum voltage (reducing power whilst idle) as we do
	 * not expect to be woken in the near future and so must flush the
	 * change by waking the device.
	 *
	 * We choose to take the media powerwell (either would do to trick the
	 * punit into committing the voltage change) as that takes a lot less
	 * power than the render powerwell.
	 */
5267
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5268
	err = valleyview_set_rps(dev_priv, val);
5269
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5270 5271 5272

	if (err)
		DRM_ERROR("Failed to set RPS for idle\n");
5273 5274
}

5275 5276 5277 5278
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
5279 5280
		u8 freq;

5281
		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5282 5283 5284
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5285

5286 5287
		gen6_enable_rps_interrupts(dev_priv);

5288 5289 5290 5291 5292 5293
		/* Use the user's desired frequency as a guide, but for better
		 * performance, jump directly to RPe as our starting frequency.
		 */
		freq = max(dev_priv->rps.cur_freq,
			   dev_priv->rps.efficient_freq);

5294
		if (intel_set_rps(dev_priv,
5295
				  clamp(freq,
5296 5297 5298
					dev_priv->rps.min_freq_softlimit,
					dev_priv->rps.max_freq_softlimit)))
			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
5299 5300 5301 5302
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5303 5304
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
5305 5306 5307 5308 5309 5310 5311
	/* Flush our bottom-half so that it does not race with us
	 * setting the idle frequency and so that it is bounded by
	 * our rpm wakeref. And then disable the interrupts to stop any
	 * futher RPS reclocking whilst we are asleep.
	 */
	gen6_disable_rps_interrupts(dev_priv);

5312
	mutex_lock(&dev_priv->rps.hw_lock);
5313
	if (dev_priv->rps.enabled) {
5314
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5315
			vlv_set_rps_idle(dev_priv);
5316
		else
5317
			gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5318
		dev_priv->rps.last_adj = 0;
5319 5320
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5321
	}
5322
	mutex_unlock(&dev_priv->rps.hw_lock);
5323

5324
	spin_lock(&dev_priv->rps.client_lock);
5325 5326
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
5327
	spin_unlock(&dev_priv->rps.client_lock);
5328 5329
}

5330
void gen6_rps_boost(struct drm_i915_private *dev_priv,
5331 5332
		    struct intel_rps_client *rps,
		    unsigned long submitted)
5333
{
5334 5335 5336
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
5337
	if (!(dev_priv->gt.awake &&
5338
	      dev_priv->rps.enabled &&
5339
	      dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5340
		return;
5341

5342 5343 5344
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
5345
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5346 5347
		rps = NULL;

5348 5349 5350 5351 5352
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
5353
			schedule_work(&dev_priv->rps.work);
5354 5355
		}
		spin_unlock_irq(&dev_priv->irq_lock);
5356

5357 5358 5359
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
5360 5361
		} else
			dev_priv->rps.boosts++;
5362
	}
5363
	spin_unlock(&dev_priv->rps.client_lock);
5364 5365
}

5366
int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5367
{
5368 5369
	int err;

5370 5371 5372 5373
	lockdep_assert_held(&dev_priv->rps.hw_lock);
	GEM_BUG_ON(val > dev_priv->rps.max_freq);
	GEM_BUG_ON(val < dev_priv->rps.min_freq);

5374 5375 5376 5377 5378
	if (!dev_priv->rps.enabled) {
		dev_priv->rps.cur_freq = val;
		return 0;
	}

5379
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5380
		err = valleyview_set_rps(dev_priv, val);
5381
	else
5382 5383 5384
		err = gen6_set_rps(dev_priv, val);

	return err;
5385 5386
}

5387
static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5388 5389
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5390
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
5391 5392
}

5393
static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5394 5395 5396 5397
{
	I915_WRITE(GEN6_RP_CONTROL, 0);
}

5398
static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5399 5400
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
5401
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5402
	I915_WRITE(GEN6_RP_CONTROL, 0);
5403 5404
}

5405
static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5406 5407 5408 5409
{
	I915_WRITE(GEN6_RC_CONTROL, 0);
}

5410
static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5411
{
5412 5413
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
5414
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5415

5416
	I915_WRITE(GEN6_RC_CONTROL, 0);
5417

5418
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5419 5420
}

5421
static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
B
Ben Widawsky 已提交
5422
{
5423
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5424 5425 5426 5427 5428
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
5429
	if (HAS_RC6p(dev_priv))
5430 5431 5432 5433 5434
		DRM_DEBUG_DRIVER("Enabling RC6 states: "
				 "RC6 %s RC6p %s RC6pp %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
				 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5435 5436

	else
5437 5438
		DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
				 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
5439 5440
}

5441
static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5442
{
5443
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
5444 5445
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	u32 rc_ctl;
	int rc_sw_target;

	rc_ctl = I915_READ(GEN6_RC_CONTROL);
	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
		       RC_SW_TARGET_STATE_SHIFT;
	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
			 rc_sw_target);
5457 5458

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5459
		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5460 5461 5462 5463 5464 5465 5466 5467
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5468 5469 5470
	if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
					ggtt->stolen_reserved_size))) {
5471
		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5472 5473 5474 5475 5476 5477 5478
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5479
		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5480 5481 5482
		enable_rc6 = false;
	}

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN6_GFXPAUSE)) {
		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
		enable_rc6 = false;
	}

	if (!I915_READ(GEN8_MISC_CTRL0)) {
		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5497 5498 5499 5500 5501 5502
		enable_rc6 = false;
	}

	return enable_rc6;
}

5503
int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5504
{
5505
	/* No RC6 before Ironlake and code is gone for ilk. */
5506
	if (INTEL_INFO(dev_priv)->gen < 6)
I
Imre Deak 已提交
5507 5508
		return 0;

5509 5510 5511
	if (!enable_rc6)
		return 0;

5512
	if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5513 5514 5515 5516
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

5517
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
5518 5519 5520
	if (enable_rc6 >= 0) {
		int mask;

5521
		if (HAS_RC6p(dev_priv))
I
Imre Deak 已提交
5522 5523 5524 5525 5526 5527
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
5528 5529 5530
			DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
					 "(requested %d, valid %d)\n",
					 enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
5531 5532 5533

		return enable_rc6 & mask;
	}
5534

5535
	if (IS_IVYBRIDGE(dev_priv))
B
Ben Widawsky 已提交
5536
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5537 5538

	return INTEL_RC6_ENABLE;
5539 5540
}

5541
static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5542 5543
{
	/* All of these values are in units of 50MHz */
5544

5545
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
5546
	if (IS_GEN9_LP(dev_priv)) {
5547
		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5548 5549 5550 5551
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
5552
		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5553 5554 5555 5556
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}
5557
	/* hw_max = RP0 until we check for overclocking */
5558
	dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5559

5560
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5561
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5562
	    IS_GEN9_BC(dev_priv)) {
5563 5564 5565 5566 5567
		u32 ddcc_status = 0;

		if (sandybridge_pcode_read(dev_priv,
					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					   &ddcc_status) == 0)
5568
			dev_priv->rps.efficient_freq =
5569 5570 5571 5572
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
5573 5574
	}

5575
	if (IS_GEN9_BC(dev_priv)) {
5576
		/* Store the frequency values in 16.66 MHZ units, which is
5577 5578
		 * the natural hardware unit for SKL
		 */
5579 5580 5581 5582 5583 5584
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}
5585 5586
}

5587
static void reset_rps(struct drm_i915_private *dev_priv,
5588
		      int (*set)(struct drm_i915_private *, u8))
5589 5590 5591 5592 5593 5594 5595
{
	u8 freq = dev_priv->rps.cur_freq;

	/* force a reset */
	dev_priv->rps.power = -1;
	dev_priv->rps.cur_freq = -1;

5596 5597
	if (set(dev_priv, freq))
		DRM_ERROR("Failed to reset RPS to initial values\n");
5598 5599
}

J
Jesse Barnes 已提交
5600
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5601
static void gen9_enable_rps(struct drm_i915_private *dev_priv)
J
Jesse Barnes 已提交
5602 5603 5604
{
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

5605 5606 5607 5608 5609 5610 5611 5612
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
5613 5614
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

5615 5616 5617
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5618
	reset_rps(dev_priv, gen6_set_rps);
J
Jesse Barnes 已提交
5619 5620 5621 5622

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

5623
static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
Z
Zhe Wang 已提交
5624
{
5625
	struct intel_engine_cs *engine;
5626
	enum intel_engine_id id;
Z
Zhe Wang 已提交
5627 5628 5629 5630 5631 5632 5633
	uint32_t rc6_mask = 0;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5634
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5635 5636 5637 5638 5639

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
5640 5641

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5642
	if (IS_SKYLAKE(dev_priv))
5643 5644 5645
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
5646 5647
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5648
	for_each_engine(engine, dev_priv, id)
5649
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5650

5651
	if (HAS_GUC(dev_priv))
5652 5653
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
5654 5655
	I915_WRITE(GEN6_RC_SLEEP, 0);

5656 5657 5658 5659
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
5660
	/* 3a: Enable RC6 */
5661
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
Z
Zhe Wang 已提交
5662
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5663
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5664 5665 5666
	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
	I915_WRITE(GEN6_RC_CONTROL,
		   GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
Z
Zhe Wang 已提交
5667

5668 5669
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5670
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5671
	 */
5672
	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5673 5674 5675 5676
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5677

5678
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
5679 5680
}

5681
static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5682
{
5683
	struct intel_engine_cs *engine;
5684
	enum intel_engine_id id;
5685
	uint32_t rc6_mask = 0;
5686 5687 5688 5689 5690 5691

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5692
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5693 5694 5695 5696 5697 5698 5699 5700

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5701
	for_each_engine(engine, dev_priv, id)
5702
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5703
	I915_WRITE(GEN6_RC_SLEEP, 0);
5704
	if (IS_BROADWELL(dev_priv))
5705 5706 5707
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5708 5709

	/* 3: Enable RC6 */
5710
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5711
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5712 5713
	intel_print_rc6_info(dev_priv, rc6_mask);
	if (IS_BROADWELL(dev_priv))
5714 5715 5716 5717 5718 5719 5720
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
5721 5722

	/* 4 Program defaults and thresholds for RPS*/
5723 5724 5725 5726
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5741 5742

	/* 5: Enable RPS */
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

5753
	reset_rps(dev_priv, gen6_set_rps);
5754

5755
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5756 5757
}

5758
static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5759
{
5760
	struct intel_engine_cs *engine;
5761
	enum intel_engine_id id;
5762
	u32 rc6vids, rc6_mask = 0;
5763 5764
	u32 gtfifodbg;
	int rc6_mode;
5765
	int ret;
5766

5767
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5768

5769 5770 5771 5772 5773 5774 5775 5776 5777
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
5778 5779
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
5780 5781 5782 5783
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5784
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794

	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

5795
	for_each_engine(engine, dev_priv, id)
5796
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5797 5798 5799

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5800
	if (IS_IVYBRIDGE(dev_priv))
5801 5802 5803
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5804
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5805 5806
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

5807
	/* Check if we are enabling RC6 */
5808
	rc6_mode = intel_enable_rc6();
5809 5810 5811
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

5812
	/* We don't use those on Haswell */
5813
	if (!IS_HASWELL(dev_priv)) {
5814 5815
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5816

5817 5818 5819
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
5820

5821
	intel_print_rc6_info(dev_priv, rc6_mask);
5822 5823 5824 5825 5826 5827

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

5828 5829
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5830 5831
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

5832
	reset_rps(dev_priv, gen6_set_rps);
5833

5834 5835
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5836
	if (IS_GEN6(dev_priv) && ret) {
5837
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5838
	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5839 5840 5841 5842 5843 5844 5845 5846 5847
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5848
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5849 5850
}

5851
static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5852 5853
{
	int min_freq = 15;
5854 5855
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5856
	unsigned int max_gpu_freq, min_gpu_freq;
5857
	int scaling_factor = 180;
5858
	struct cpufreq_policy *policy;
5859

5860
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5861

5862 5863 5864 5865 5866 5867 5868 5869 5870
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5871
		max_ia_freq = tsc_khz;
5872
	}
5873 5874 5875 5876

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5877
	min_ring_freq = I915_READ(DCLK) & 0xf;
5878 5879
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5880

5881
	if (IS_GEN9_BC(dev_priv)) {
5882 5883 5884 5885 5886 5887 5888 5889
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5890 5891 5892 5893 5894
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5895 5896
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5897 5898
		unsigned int ia_freq = 0, ring_freq = 0;

5899
		if (IS_GEN9_BC(dev_priv)) {
5900 5901 5902 5903 5904
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
5905
		} else if (INTEL_INFO(dev_priv)->gen >= 8) {
5906 5907
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
5908
		} else if (IS_HASWELL(dev_priv)) {
5909
			ring_freq = mult_frac(gpu_freq, 5, 4);
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5926

B
Ben Widawsky 已提交
5927 5928
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5929 5930 5931
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5932 5933 5934
	}
}

5935
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5936 5937 5938
{
	u32 val, rp0;

5939
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5940

5941
	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5956
	}
5957 5958 5959

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5973 5974 5975 5976
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5977 5978 5979
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5980 5981 5982
	return rp1;
}

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpn;

	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
		       FB_GFX_FREQ_FUSE_MASK);

	return rpn;
}

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

6005
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6006 6007 6008
{
	u32 val, rp0;

6009
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

6022
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6023
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6024
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6025 6026 6027 6028 6029
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

6030
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6031
{
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
6043 6044
}

6045 6046 6047 6048 6049 6050 6051 6052 6053
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

6054 6055 6056 6057 6058 6059 6060 6061 6062

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

6063
static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6064
{
6065
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
6066
	unsigned long pctx_paddr, paddr;
6067 6068 6069 6070 6071
	u32 pcbr;
	int pctx_size = 32*1024;

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6072
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6073
		paddr = (dev_priv->mm.stolen_base +
6074
			 (ggtt->stolen_size - pctx_size));
6075 6076 6077 6078

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
6079 6080

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6081 6082
}

6083
static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
{
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6096
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6097
								      pcbr_offset,
6098
								      I915_GTT_OFFSET_NONE,
6099 6100 6101 6102
								      pctx_size);
		goto out;
	}

6103 6104
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

6105 6106 6107 6108 6109 6110 6111 6112
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
6113
	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6114 6115
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6116
		goto out;
6117 6118 6119 6120 6121 6122
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
6123
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6124 6125 6126
	dev_priv->vlv_pctx = pctx;
}

6127
static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6128 6129 6130 6131
{
	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

C
Chris Wilson 已提交
6132
	i915_gem_object_put(dev_priv->vlv_pctx);
6133 6134 6135
	dev_priv->vlv_pctx = NULL;
}

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.gpll_ref_freq =
		vlv_get_cck_clock(dev_priv, "GPLL ref",
				  CCK_GPLL_CLOCK_CONTROL,
				  dev_priv->czclk_freq);

	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
			 dev_priv->rps.gpll_ref_freq);
}

6147
static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6148
{
6149
	u32 val;
6150

6151
	valleyview_setup_pctx(dev_priv);
6152

6153 6154
	vlv_init_gpll_ref_freq(dev_priv);

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
6168
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6169

6170 6171 6172
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6173
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6174 6175 6176 6177
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6178
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6179 6180
			 dev_priv->rps.efficient_freq);

6181 6182
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6183
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6184 6185
			 dev_priv->rps.rp1_freq);

6186 6187
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6188
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6189 6190 6191
			 dev_priv->rps.min_freq);
}

6192
static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6193
{
6194
	u32 val;
6195

6196
	cherryview_setup_pctx(dev_priv);
6197

6198 6199
	vlv_init_gpll_ref_freq(dev_priv);

V
Ville Syrjälä 已提交
6200
	mutex_lock(&dev_priv->sb_lock);
6201
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
6202
	mutex_unlock(&dev_priv->sb_lock);
6203

6204 6205 6206 6207
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
6208
	default:
6209 6210 6211
		dev_priv->mem_freq = 1600;
		break;
	}
6212
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6213

6214 6215 6216
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6217
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6218 6219 6220 6221
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6222
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6223 6224
			 dev_priv->rps.efficient_freq);

6225 6226
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6227
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6228 6229
			 dev_priv->rps.rp1_freq);

6230
	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
6231
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6232
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6233 6234
			 dev_priv->rps.min_freq);

6235 6236 6237 6238 6239
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");
6240 6241
}

6242
static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6243
{
6244
	valleyview_cleanup_pctx(dev_priv);
6245 6246
}

6247
static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6248
{
6249
	struct intel_engine_cs *engine;
6250
	enum intel_engine_id id;
6251
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6252 6253 6254

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6255 6256
	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
					     GT_FIFO_FREE_ENTRIES_CHV);
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6267
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6268

6269 6270 6271
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6272 6273 6274 6275 6276
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

6277
	for_each_engine(engine, dev_priv, id)
6278
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6279 6280
	I915_WRITE(GEN6_RC_SLEEP, 0);

6281 6282
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
6294 6295
	if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
	    (pcbr >> VLV_PCBR_ADDR_SHIFT))
6296
		rc6_mode = GEN7_RC_CTL_TO_MODE;
6297 6298 6299

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

6300
	/* 4 Program defaults and thresholds for RPS*/
6301
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6312
		   GEN6_RP_MEDIA_IS_GFX |
6313 6314 6315 6316
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
6317 6318 6319 6320 6321 6322
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6323 6324
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

6325 6326 6327
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6328
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6329 6330
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6331
	reset_rps(dev_priv, valleyview_set_rps);
6332

6333
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6334 6335
}

6336
static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6337
{
6338
	struct intel_engine_cs *engine;
6339
	enum intel_engine_id id;
6340
	u32 gtfifodbg, val, rc6_mode = 0;
6341 6342 6343

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

6344 6345
	valleyview_check_pctx(dev_priv);

6346 6347
	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
6348 6349
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
6350 6351 6352
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

6353
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6354
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6355

6356 6357 6358
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

6359
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

6379
	for_each_engine(engine, dev_priv, id)
6380
		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6381

6382
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6383 6384

	/* allows RC6 residency counter to work */
6385
	I915_WRITE(VLV_COUNTER_CONTROL,
6386 6387
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
6388 6389
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
6390

6391
	if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6392
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
6393

6394
	intel_print_rc6_info(dev_priv, rc6_mode);
B
Ben Widawsky 已提交
6395

6396
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6397

D
Deepak S 已提交
6398 6399 6400 6401 6402 6403
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

6404
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6405

6406 6407 6408
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

6409
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6410 6411
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

6412
	reset_rps(dev_priv, valleyview_set_rps);
6413

6414
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6415 6416
}

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

6446
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6447 6448 6449 6450 6451 6452
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

6453
	lockdep_assert_held(&mchdev_lock);
6454

6455
	diff1 = now - dev_priv->ips.last_time1;
6456 6457 6458 6459 6460 6461 6462

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
6463
		return dev_priv->ips.chipset_power;
6464 6465 6466 6467 6468 6469 6470 6471

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
6472 6473
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
6474 6475
		diff += total_count;
	} else {
6476
		diff = total_count - dev_priv->ips.last_count1;
6477 6478 6479
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6480 6481
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

6492 6493
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
6494

6495
	dev_priv->ips.chipset_power = ret;
6496 6497 6498 6499

	return ret;
}

6500 6501 6502 6503
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6504
	if (INTEL_INFO(dev_priv)->gen != 5)
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6543
{
6544 6545 6546
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

6547
	if (INTEL_INFO(dev_priv)->is_mobile)
6548 6549 6550
		return vm > 0 ? vm : 0;

	return vd;
6551 6552
}

6553
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6554
{
6555
	u64 now, diff, diffms;
6556 6557
	u32 count;

6558
	lockdep_assert_held(&mchdev_lock);
6559

6560 6561 6562
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
6563 6564 6565 6566 6567 6568 6569

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

6570 6571
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
6572 6573
		diff += count;
	} else {
6574
		diff = count - dev_priv->ips.last_count2;
6575 6576
	}

6577 6578
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
6579 6580 6581 6582

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
6583
	dev_priv->ips.gfx_power = diff;
6584 6585
}

6586 6587
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
6588
	if (INTEL_INFO(dev_priv)->gen != 5)
6589 6590
		return;

6591
	spin_lock_irq(&mchdev_lock);
6592 6593 6594

	__i915_update_gfx_val(dev_priv);

6595
	spin_unlock_irq(&mchdev_lock);
6596 6597
}

6598
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6599 6600 6601 6602
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

6603
	lockdep_assert_held(&mchdev_lock);
6604

6605
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
6625
	corr2 = (corr * dev_priv->ips.corr);
6626 6627 6628 6629

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

6630
	__i915_update_gfx_val(dev_priv);
6631

6632
	return dev_priv->ips.gfx_power + state2;
6633 6634
}

6635 6636 6637 6638
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
	unsigned long val;

6639
	if (INTEL_INFO(dev_priv)->gen != 5)
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

6662
	spin_lock_irq(&mchdev_lock);
6663 6664 6665 6666
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

6667 6668
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
6669 6670 6671 6672

	ret = chipset_val + graphics_val;

out_unlock:
6673
	spin_unlock_irq(&mchdev_lock);
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6689
	spin_lock_irq(&mchdev_lock);
6690 6691 6692 6693 6694 6695
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6696 6697
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
6698 6699

out_unlock:
6700
	spin_unlock_irq(&mchdev_lock);
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6717
	spin_lock_irq(&mchdev_lock);
6718 6719 6720 6721 6722 6723
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6724 6725
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
6726 6727

out_unlock:
6728
	spin_unlock_irq(&mchdev_lock);
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	bool ret = false;

6743
	spin_lock_irq(&mchdev_lock);
6744 6745
	if (i915_mch_dev)
		ret = i915_mch_dev->gt.awake;
6746
	spin_unlock_irq(&mchdev_lock);
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

6763
	spin_lock_irq(&mchdev_lock);
6764 6765 6766 6767 6768 6769
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

6770
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6771

6772
	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6773 6774 6775
		ret = false;

out_unlock:
6776
	spin_unlock_irq(&mchdev_lock);
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6804 6805
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6806
	spin_lock_irq(&mchdev_lock);
6807
	i915_mch_dev = dev_priv;
6808
	spin_unlock_irq(&mchdev_lock);
6809 6810 6811 6812 6813 6814

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6815
	spin_lock_irq(&mchdev_lock);
6816
	i915_mch_dev = NULL;
6817
	spin_unlock_irq(&mchdev_lock);
6818
}
6819

6820
static void intel_init_emon(struct drm_i915_private *dev_priv)
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
{
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6837
		I915_WRITE(PEW(i), 0);
6838
	for (i = 0; i < 3; i++)
6839
		I915_WRITE(DEW(i), 0);
6840 6841 6842

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6843
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6864
		I915_WRITE(PXW(i), val);
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6880
		I915_WRITE(PXWL(i), 0);
6881 6882 6883 6884 6885 6886

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6887
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6888 6889
}

6890
void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6891
{
6892 6893 6894 6895 6896 6897 6898 6899
	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6900

6901
	mutex_lock(&dev_priv->drm.struct_mutex);
6902 6903 6904
	mutex_lock(&dev_priv->rps.hw_lock);

	/* Initialize RPS limits (for userspace) */
6905 6906 6907 6908
	if (IS_CHERRYVIEW(dev_priv))
		cherryview_init_gt_powersave(dev_priv);
	else if (IS_VALLEYVIEW(dev_priv))
		valleyview_init_gt_powersave(dev_priv);
6909
	else if (INTEL_GEN(dev_priv) >= 6)
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
		gen6_init_rps_frequencies(dev_priv);

	/* Derive initial user preferences/limits from the hardware limits */
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
	dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;

	dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
	dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
		dev_priv->rps.min_freq_softlimit =
			max_t(int,
			      dev_priv->rps.efficient_freq,
			      intel_freq_opcode(dev_priv, 450));

6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
	/* After setting max-softlimit, find the overclock max freq */
	if (IS_GEN6(dev_priv) ||
	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
		u32 params = 0;

		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
		if (params & BIT(31)) { /* OC supported */
			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
					 (dev_priv->rps.max_freq & 0xff) * 50,
					 (params & 0xff) * 50);
			dev_priv->rps.max_freq = params & 0xff;
		}
	}

6939 6940 6941
	/* Finally allow us to boost to max by default */
	dev_priv->rps.boost_freq = dev_priv->rps.max_freq;

6942
	mutex_unlock(&dev_priv->rps.hw_lock);
6943
	mutex_unlock(&dev_priv->drm.struct_mutex);
6944 6945

	intel_autoenable_gt_powersave(dev_priv);
6946 6947
}

6948
void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6949
{
6950
	if (IS_VALLEYVIEW(dev_priv))
6951
		valleyview_cleanup_gt_powersave(dev_priv);
6952 6953 6954

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6955 6956
}

6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev_priv: i915 device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (INTEL_GEN(dev_priv) < 6)
		return;

	if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
		intel_runtime_pm_put(dev_priv);

	/* gen6_rps_idle() will be called later to disable interrupts */
}

6976 6977 6978 6979
void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
{
	dev_priv->rps.enabled = true; /* force disabling */
	intel_disable_gt_powersave(dev_priv);
6980 6981

	gen6_reset_rps_interrupts(dev_priv);
6982 6983
}

6984
void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6985
{
6986 6987
	if (!READ_ONCE(dev_priv->rps.enabled))
		return;
6988

6989
	mutex_lock(&dev_priv->rps.hw_lock);
6990

6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_disable_rc6(dev_priv);
		gen9_disable_rps(dev_priv);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_disable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_disable_rps(dev_priv);
	} else if (INTEL_GEN(dev_priv) >= 6) {
		gen6_disable_rps(dev_priv);
	}  else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_disable_drps(dev_priv);
7002
	}
7003 7004 7005

	dev_priv->rps.enabled = false;
	mutex_unlock(&dev_priv->rps.hw_lock);
7006 7007
}

7008
void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7009
{
7010 7011 7012
	/* We shouldn't be disabling as we submit, so this should be less
	 * racy than it appears!
	 */
7013 7014
	if (READ_ONCE(dev_priv->rps.enabled))
		return;
7015

7016 7017 7018
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev_priv))
		return;
7019

7020
	mutex_lock(&dev_priv->rps.hw_lock);
7021 7022 7023 7024 7025

	if (IS_CHERRYVIEW(dev_priv)) {
		cherryview_enable_rps(dev_priv);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		valleyview_enable_rps(dev_priv);
7026
	} else if (INTEL_GEN(dev_priv) >= 9) {
7027 7028
		gen9_enable_rc6(dev_priv);
		gen9_enable_rps(dev_priv);
7029
		if (IS_GEN9_BC(dev_priv))
7030
			gen6_update_ring_freq(dev_priv);
7031 7032
	} else if (IS_BROADWELL(dev_priv)) {
		gen8_enable_rps(dev_priv);
7033
		gen6_update_ring_freq(dev_priv);
7034
	} else if (INTEL_GEN(dev_priv) >= 6) {
7035
		gen6_enable_rps(dev_priv);
7036
		gen6_update_ring_freq(dev_priv);
7037 7038 7039
	} else if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
7040
	}
7041 7042 7043 7044 7045 7046 7047

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

7048
	dev_priv->rps.enabled = true;
7049 7050
	mutex_unlock(&dev_priv->rps.hw_lock);
}
I
Imre Deak 已提交
7051

7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
static void __intel_autoenable_gt_powersave(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
	struct intel_engine_cs *rcs;
	struct drm_i915_gem_request *req;

	if (READ_ONCE(dev_priv->rps.enabled))
		goto out;

7062
	rcs = dev_priv->engine[RCS];
7063
	if (rcs->last_retired_context)
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
		goto out;

	if (!rcs->init_context)
		goto out;

	mutex_lock(&dev_priv->drm.struct_mutex);

	req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
	if (IS_ERR(req))
		goto unlock;

	if (!i915.enable_execlists && i915_switch_context(req) == 0)
		rcs->init_context(req);

	/* Mark the device busy, calling intel_enable_gt_powersave() */
	i915_add_request_no_flush(req);

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
out:
	intel_runtime_pm_put(dev_priv);
}

void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
{
	if (READ_ONCE(dev_priv->rps.enabled))
		return;

	if (IS_IRONLAKE_M(dev_priv)) {
		ironlake_enable_drps(dev_priv);
		intel_init_emon(dev_priv);
	} else if (INTEL_INFO(dev_priv)->gen >= 6) {
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
		 */
		if (queue_delayed_work(dev_priv->wq,
				       &dev_priv->rps.autoenable_work,
				       round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
	}
}

7115
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7116 7117 7118 7119 7120 7121 7122 7123 7124
{
	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

7125
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7126
{
7127
	enum pipe pipe;
7128

7129
	for_each_pipe(dev_priv, pipe) {
7130 7131 7132
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
7133 7134 7135

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
7136 7137 7138
	}
}

7139
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
{
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

7151
static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7152
{
7153
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7154

7155 7156 7157 7158
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
7159 7160 7161
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7179
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7180 7181 7182
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
7183

7184
	ilk_init_lp_watermarks(dev_priv);
7185 7186 7187 7188 7189 7190 7191 7192

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
7193
	if (IS_IRONLAKE_M(dev_priv)) {
7194
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
7195 7196 7197 7198 7199 7200 7201 7202
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

7203 7204
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

7205 7206 7207 7208 7209 7210
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
7211

7212
	/* WaDisableRenderCachePipelinedFlush:ilk */
7213 7214
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7215

7216 7217 7218
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7219
	g4x_disable_trickle_feed(dev_priv);
7220

7221
	ibx_init_clock_gating(dev_priv);
7222 7223
}

7224
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
7225 7226
{
	int pipe;
7227
	uint32_t val;
7228 7229 7230 7231 7232 7233

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
7234 7235 7236
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
7237 7238
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
7239 7240 7241
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
7242
	for_each_pipe(dev_priv, pipe) {
7243 7244 7245
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7246
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
7247
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7248 7249 7250
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7251 7252
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
7253
	/* WADP0ClockGatingDisable */
7254
	for_each_pipe(dev_priv, pipe) {
7255 7256 7257
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
7258 7259
}

7260
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7261 7262 7263 7264
{
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
7265 7266 7267
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
7268 7269
}

7270
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7271
{
7272
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7273

7274
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7275 7276 7277 7278 7279

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

7280
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7281 7282 7283
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

7284 7285 7286
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7287 7288 7289
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7290 7291 7292 7293
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7294 7295
	 */
	I915_WRITE(GEN6_GT_MODE,
7296
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7297

7298
	ilk_init_lp_watermarks(dev_priv);
7299 7300

	I915_WRITE(CACHE_MODE_0,
7301
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
7317
	 *
7318 7319
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
7320 7321 7322 7323 7324
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

7325
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
7326 7327
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7328

7329 7330 7331 7332 7333 7334 7335 7336
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

7337 7338 7339 7340 7341 7342 7343 7344
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
7345 7346
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
7347 7348 7349 7350 7351 7352 7353
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7354 7355 7356 7357
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7358

7359
	g4x_disable_trickle_feed(dev_priv);
B
Ben Widawsky 已提交
7360

7361
	cpt_init_clock_gating(dev_priv);
7362

7363
	gen6_check_mch_setup(dev_priv);
7364 7365 7366 7367 7368 7369
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

7370
	/*
7371
	 * WaVSThreadDispatchOverride:ivb,vlv
7372 7373 7374 7375
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
7376 7377 7378 7379 7380 7381 7382 7383
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

7384
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7385 7386 7387 7388 7389
{
	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
7390
	if (HAS_PCH_LPT_LP(dev_priv))
7391 7392 7393
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
7394 7395

	/* WADPOClockGatingDisable:hsw */
7396 7397
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7398
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7399 7400
}

7401
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7402
{
7403
	if (HAS_PCH_LPT_LP(dev_priv)) {
7404 7405 7406 7407 7408 7409 7410
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
				   int general_prio_credits,
				   int high_prio_credits)
{
	u32 misccpctl;

	/* WaTempDisableDOPClkGating:bdw */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);

	I915_WRITE(GEN8_L3SQCREG1,
		   L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
		   L3_HIGH_PRIO_CREDITS(high_prio_credits));

	/*
	 * Wait at least 100 clocks before re-enabling clock gating.
	 * See the definition of L3SQCREG1 in BSpec.
	 */
	POSTING_READ(GEN8_L3SQCREG1);
	udelay(1);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

7434
static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7435
{
7436
	gen9_init_clock_gating(dev_priv);
7437 7438 7439 7440 7441

	/* WaDisableSDEUnitClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7442 7443 7444 7445 7446

	/* WaDisableGamClockGating:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7447 7448 7449 7450

	/* WaFbcNukeOnHostModify:kbl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7451 7452
}

7453
static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7454
{
7455
	gen9_init_clock_gating(dev_priv);
7456 7457 7458 7459

	/* WAC6entrylatency:skl */
	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
		   FBC_LLC_FULLY_OPEN);
7460 7461 7462 7463

	/* WaFbcNukeOnHostModify:skl */
	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7464 7465
}

7466
static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
7467
{
7468
	enum pipe pipe;
B
Ben Widawsky 已提交
7469

7470
	ilk_init_lp_watermarks(dev_priv);
7471

7472
	/* WaSwitchSolVfFArbitrationPriority:bdw */
7473
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7474

7475
	/* WaPsrDPAMaskVBlankInSRD:bdw */
7476 7477 7478
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

7479
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7480
	for_each_pipe(dev_priv, pipe) {
7481
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
7482
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
7483
			   BDW_DPRS_MASK_VBLANK_SRD);
7484
	}
7485

7486 7487 7488 7489 7490
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7491

7492 7493
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7494 7495 7496 7497

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7498

7499 7500
	/* WaProgramL3SqcReg1Default:bdw */
	gen8_set_l3sqc_credits(dev_priv, 30, 2);
7501

7502 7503 7504 7505 7506 7507 7508
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

7509 7510 7511 7512
	/* WaKVMNotificationOnConfigChange:bdw */
	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);

7513
	lpt_init_clock_gating(dev_priv);
7514 7515 7516 7517 7518 7519 7520 7521

	/* WaDisableDopClockGating:bdw
	 *
	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
	 * clock gating.
	 */
	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
B
Ben Widawsky 已提交
7522 7523
}

7524
static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7525
{
7526
	ilk_init_lp_watermarks(dev_priv);
7527

7528 7529 7530 7531 7532
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

7533
	/* This is required by WaCatErrorRejectionIssue:hsw */
7534 7535 7536 7537
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7538 7539 7540
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7541

7542 7543 7544
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7545 7546 7547 7548
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

7549
	/* WaDisable4x2SubspanOptimization:hsw */
7550 7551
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7552

7553 7554 7555
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7556 7557 7558 7559
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7560 7561
	 */
	I915_WRITE(GEN7_GT_MODE,
7562
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7563

7564 7565 7566 7567
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

7568
	/* WaSwitchSolVfFArbitrationPriority:hsw */
7569 7570
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

7571 7572 7573
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7574

7575
	lpt_init_clock_gating(dev_priv);
7576 7577
}

7578
static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7579
{
7580
	uint32_t snpcr;
7581

7582
	ilk_init_lp_watermarks(dev_priv);
7583

7584
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7585

7586
	/* WaDisableEarlyCull:ivb */
7587 7588 7589
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7590
	/* WaDisableBackToBackFlipFix:ivb */
7591 7592 7593 7594
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7595
	/* WaDisablePSDDualDispatchEnable:ivb */
7596
	if (IS_IVB_GT1(dev_priv))
7597 7598 7599
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

7600 7601 7602
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7603
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7604 7605 7606
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

7607
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
7608 7609 7610
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7611
		   GEN7_WA_L3_CHICKEN_MODE);
7612
	if (IS_IVB_GT1(dev_priv))
7613 7614
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7615 7616 7617 7618
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7619 7620
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7621
	}
7622

7623
	/* WaForceL3Serialization:ivb */
7624 7625 7626
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7627
	/*
7628
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7629
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7630 7631
	 */
	I915_WRITE(GEN6_UCGCTL2,
7632
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7633

7634
	/* This is required by WaCatErrorRejectionIssue:ivb */
7635 7636 7637 7638
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7639
	g4x_disable_trickle_feed(dev_priv);
7640 7641

	gen7_setup_fixed_func_scheduler(dev_priv);
7642

7643 7644 7645 7646 7647
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
7648

7649
	/* WaDisable4x2SubspanOptimization:ivb */
7650 7651
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7652

7653 7654 7655
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
7656 7657 7658 7659
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7660 7661
	 */
	I915_WRITE(GEN7_GT_MODE,
7662
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7663

7664 7665 7666 7667
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7668

7669
	if (!HAS_PCH_NOP(dev_priv))
7670
		cpt_init_clock_gating(dev_priv);
7671

7672
	gen6_check_mch_setup(dev_priv);
7673 7674
}

7675
static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7676
{
7677
	/* WaDisableEarlyCull:vlv */
7678 7679 7680
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

7681
	/* WaDisableBackToBackFlipFix:vlv */
7682 7683 7684 7685
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

7686
	/* WaPsdDispatchEnable:vlv */
7687
	/* WaDisablePSDDualDispatchEnable:vlv */
7688
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7689 7690
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7691

7692 7693 7694
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7695
	/* WaForceL3Serialization:vlv */
7696 7697 7698
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

7699
	/* WaDisableDopClockGating:vlv */
7700 7701 7702
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

7703
	/* This is required by WaCatErrorRejectionIssue:vlv */
7704 7705 7706 7707
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

7708 7709
	gen7_setup_fixed_func_scheduler(dev_priv);

7710
	/*
7711
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7712
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7713 7714
	 */
	I915_WRITE(GEN6_UCGCTL2,
7715
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7716

7717 7718 7719 7720 7721
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7722

7723 7724 7725 7726
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
7727 7728
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7729

7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

7741 7742 7743 7744 7745 7746
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

7747
	/*
7748
	 * WaDisableVLVClockGating_VBIIssue:vlv
7749 7750 7751
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
7752
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7753 7754
}

7755
static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7756
{
7757 7758 7759 7760 7761
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7762 7763 7764 7765

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7766 7767 7768 7769

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7770 7771 7772 7773

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7774

7775 7776 7777 7778 7779 7780 7781
	/*
	 * WaProgramL3SqcReg1Default:chv
	 * See gfxspecs/Related Documents/Performance Guide/
	 * LSQC Setting Recommendations.
	 */
	gen8_set_l3sqc_credits(dev_priv, 38, 2);

7782 7783 7784 7785 7786
	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7787 7788
}

7789
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
{
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
7801
	if (IS_GM45(dev_priv))
7802 7803
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7804 7805 7806 7807

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7808

7809 7810 7811
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

7812
	g4x_disable_trickle_feed(dev_priv);
7813 7814
}

7815
static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7816 7817 7818 7819 7820 7821
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
7822 7823
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7824 7825 7826

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7827 7828
}

7829
static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7830 7831 7832 7833 7834 7835 7836
{
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
7837 7838
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7839 7840 7841

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7842 7843
}

7844
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7845 7846 7847 7848 7849 7850
{
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
7851

7852
	if (IS_PINEVIEW(dev_priv))
7853
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7854 7855 7856

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7857 7858

	/* interrupts should cause a wake up from C3 */
7859
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7860 7861 7862

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7863 7864 7865

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7866 7867
}

7868
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7869 7870
{
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7871 7872 7873 7874

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7875 7876 7877

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7878 7879
}

7880
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7881
{
7882 7883 7884
	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7885 7886
}

7887
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7888
{
7889
	dev_priv->display.init_clock_gating(dev_priv);
7890 7891
}

7892
void intel_suspend_hw(struct drm_i915_private *dev_priv)
7893
{
7894 7895
	if (HAS_PCH_LPT(dev_priv))
		lpt_suspend_hw(dev_priv);
7896 7897
}

7898
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
{
	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
}

/**
 * intel_init_clock_gating_hooks - setup the clock gating hooks
 * @dev_priv: device private
 *
 * Setup the hooks that configure which clocks of a given platform can be
 * gated and also apply various GT and display specific workarounds for these
 * platforms. Note that some GT specific workarounds are applied separately
 * when GPU contexts or batchbuffers start their execution.
 */
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv))
7915
		dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7916
	else if (IS_KABYLAKE(dev_priv))
7917
		dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7918
	else if (IS_BROXTON(dev_priv))
7919
		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7920 7921
	else if (IS_GEMINILAKE(dev_priv))
		dev_priv->display.init_clock_gating = glk_init_clock_gating;
7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937
	else if (IS_BROADWELL(dev_priv))
		dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
	else if (IS_CHERRYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
	else if (IS_HASWELL(dev_priv))
		dev_priv->display.init_clock_gating = haswell_init_clock_gating;
	else if (IS_IVYBRIDGE(dev_priv))
		dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
	else if (IS_VALLEYVIEW(dev_priv))
		dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
	else if (IS_GEN6(dev_priv))
		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
	else if (IS_GEN5(dev_priv))
		dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
	else if (IS_G4X(dev_priv))
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7938
	else if (IS_I965GM(dev_priv))
7939
		dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7940
	else if (IS_I965G(dev_priv))
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953
		dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	else if (IS_GEN3(dev_priv))
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
	else if (IS_GEN2(dev_priv))
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
	else {
		MISSING_CASE(INTEL_DEVID(dev_priv));
		dev_priv->display.init_clock_gating = nop_init_clock_gating;
	}
}

7954
/* Set up chip specific power management-related functions */
7955
void intel_init_pm(struct drm_i915_private *dev_priv)
7956
{
7957
	intel_fbc_init(dev_priv);
7958

7959
	/* For cxsr */
7960
	if (IS_PINEVIEW(dev_priv))
7961
		i915_pineview_get_mem_freq(dev_priv);
7962
	else if (IS_GEN5(dev_priv))
7963
		i915_ironlake_get_mem_freq(dev_priv);
7964

7965
	/* For FIFO watermark updates */
7966
	if (INTEL_GEN(dev_priv) >= 9) {
7967
		skl_setup_wm_latency(dev_priv);
7968
		dev_priv->display.initial_watermarks = skl_initial_wm;
7969
		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7970
		dev_priv->display.compute_global_watermarks = skl_compute_wm;
7971
	} else if (HAS_PCH_SPLIT(dev_priv)) {
7972
		ilk_setup_wm_latency(dev_priv);
7973

7974
		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7975
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7976
		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7977
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7978
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7979 7980 7981 7982 7983 7984
			dev_priv->display.compute_intermediate_wm =
				ilk_compute_intermediate_wm;
			dev_priv->display.initial_watermarks =
				ilk_initial_watermarks;
			dev_priv->display.optimize_watermarks =
				ilk_optimize_watermarks;
7985 7986 7987 7988
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}
7989
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7990
		vlv_setup_wm_latency(dev_priv);
7991
		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7992
		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7993
		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7994
		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7995
		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7996
	} else if (IS_PINEVIEW(dev_priv)) {
7997
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7998 7999 8000 8001 8002 8003 8004 8005 8006
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
8007
			intel_set_memory_cxsr(dev_priv, false);
8008 8009 8010
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
8011
	} else if (IS_G4X(dev_priv)) {
8012
		dev_priv->display.update_wm = g4x_update_wm;
8013
	} else if (IS_GEN4(dev_priv)) {
8014
		dev_priv->display.update_wm = i965_update_wm;
8015
	} else if (IS_GEN3(dev_priv)) {
8016 8017
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8018
	} else if (IS_GEN2(dev_priv)) {
8019
		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8020
			dev_priv->display.update_wm = i845_update_wm;
8021
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
8022 8023
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
8024
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
8025 8026 8027
		}
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8028 8029 8030
	}
}

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_UNIMPLEMENTED_CMD:
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8043
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
		return -EOVERFLOW;
	case GEN6_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	default:
		MISSING_CASE(flags)
		return 0;
	}
}

static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
{
	uint32_t flags =
		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;

	switch (flags) {
	case GEN6_PCODE_SUCCESS:
		return 0;
	case GEN6_PCODE_ILLEGAL_CMD:
		return -ENXIO;
	case GEN7_PCODE_TIMEOUT:
		return -ETIMEDOUT;
	case GEN7_PCODE_ILLEGAL_DATA:
		return -EINVAL;
	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
		return -EOVERFLOW;
	default:
		MISSING_CASE(flags);
		return 0;
	}
}

8075
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
8076
{
8077 8078
	int status;

8079
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8080

8081 8082 8083 8084 8085 8086
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8087 8088 8089 8090
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

8091 8092 8093
	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8094

8095 8096 8097
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8098 8099 8100 8101
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8102 8103
	*val = I915_READ_FW(GEN6_PCODE_DATA);
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8104

8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8116 8117 8118
	return 0;
}

8119
int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8120
			    u32 mbox, u32 val)
B
Ben Widawsky 已提交
8121
{
8122 8123
	int status;

8124
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
8125

8126 8127 8128 8129 8130 8131
	/* GEN6_PCODE_* are outside of the forcewake domain, we can
	 * use te fw I915_READ variants to reduce the amount of work
	 * required when reading/writing.
	 */

	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
B
Ben Widawsky 已提交
8132 8133 8134 8135
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

8136
	I915_WRITE_FW(GEN6_PCODE_DATA, val);
8137
	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8138
	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
B
Ben Widawsky 已提交
8139

8140 8141 8142
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
				       500)) {
B
Ben Widawsky 已提交
8143 8144 8145 8146
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

8147
	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
B
Ben Widawsky 已提交
8148

8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159
	if (INTEL_GEN(dev_priv) > 6)
		status = gen7_check_mailbox_status(dev_priv);
	else
		status = gen6_check_mailbox_status(dev_priv);

	if (status) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
				 status);
		return status;
	}

B
Ben Widawsky 已提交
8160 8161
	return 0;
}
8162

8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
				  u32 request, u32 reply_mask, u32 reply,
				  u32 *status)
{
	u32 val = request;

	*status = sandybridge_pcode_read(dev_priv, mbox, &val);

	return *status || ((val & reply_mask) == reply);
}

/**
 * skl_pcode_request - send PCODE request until acknowledgment
 * @dev_priv: device private
 * @mbox: PCODE mailbox ID the request is targeted for
 * @request: request ID
 * @reply_mask: mask used to check for request acknowledgment
 * @reply: value used to check for request acknowledgment
 * @timeout_base_ms: timeout for polling with preemption enabled
 *
 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8184
 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8185 8186
 * The request is acknowledged once the PCODE reply dword equals @reply after
 * applying @reply_mask. Polling is first attempted with preemption enabled
8187
 * for @timeout_base_ms and if this times out for another 50 ms with
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
 * preemption disabled.
 *
 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
 * other error as reported by PCODE.
 */
int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
		      u32 reply_mask, u32 reply, int timeout_base_ms)
{
	u32 status;
	int ret;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

#define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
				   &status)

	/*
	 * Prime the PCODE by doing a request first. Normally it guarantees
	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
	 * _wait_for() doesn't guarantee when its passed condition is evaluated
	 * first, so send the first request explicitly.
	 */
	if (COND) {
		ret = 0;
		goto out;
	}
	ret = _wait_for(COND, timeout_base_ms * 1000, 10);
	if (!ret)
		goto out;

	/*
	 * The above can time out if the number of requests was low (2 in the
	 * worst case) _and_ PCODE was busy for some reason even after a
	 * (queued) request and @timeout_base_ms delay. As a workaround retry
	 * the poll with preemption disabled to maximize the number of
8223
	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
8224
	 * account for interrupts that could reduce the number of these
8225 8226
	 * requests, and for any quirks of the PCODE firmware that delays
	 * the request completion.
8227 8228 8229 8230
	 */
	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
	WARN_ON_ONCE(timeout_base_ms > 3);
	preempt_disable();
8231
	ret = wait_for_atomic(COND, 50);
8232 8233 8234 8235 8236 8237 8238
	preempt_enable();

out:
	return ret ? ret : status;
#undef COND
}

8239 8240
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
8241 8242 8243 8244 8245
	/*
	 * N = val - 0xb7
	 * Slow = Fast = GPLL ref * N
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8246 8247
}

8248
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8249
{
8250
	return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8251 8252
}

8253
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8254
{
8255 8256 8257 8258 8259
	/*
	 * N = val / 2
	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8260 8261
}

8262
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8263
{
8264
	/* CHV needs even values */
8265
	return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8266 8267
}

8268
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8269
{
8270
	if (IS_GEN9(dev_priv))
8271 8272
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
8273
	else if (IS_CHERRYVIEW(dev_priv))
8274
		return chv_gpu_freq(dev_priv, val);
8275
	else if (IS_VALLEYVIEW(dev_priv))
8276 8277 8278
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
8279 8280
}

8281 8282
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
8283
	if (IS_GEN9(dev_priv))
8284 8285
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
8286
	else if (IS_CHERRYVIEW(dev_priv))
8287
		return chv_freq_opcode(dev_priv, val);
8288
	else if (IS_VALLEYVIEW(dev_priv))
8289 8290
		return byt_freq_opcode(dev_priv, val);
	else
8291
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8292
}
8293

8294 8295
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
8296
	struct drm_i915_gem_request *req;
8297 8298 8299 8300 8301
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
8302
	struct drm_i915_gem_request *req = boost->req;
8303

8304
	if (!i915_gem_request_completed(req))
8305
		gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8306

8307
	i915_gem_request_put(req);
8308 8309 8310
	kfree(boost);
}

8311
void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8312 8313 8314
{
	struct request_boost *boost;

8315
	if (req == NULL || INTEL_GEN(req->i915) < 6)
8316 8317
		return;

8318
	if (i915_gem_request_completed(req))
8319 8320
		return;

8321 8322 8323 8324
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

8325
	boost->req = i915_gem_request_get(req);
8326 8327

	INIT_WORK(&boost->work, __intel_rps_boost_work);
8328
	queue_work(req->i915->wq, &boost->work);
8329 8330
}

8331
void intel_pm_setup(struct drm_i915_private *dev_priv)
8332
{
D
Daniel Vetter 已提交
8333
	mutex_init(&dev_priv->rps.hw_lock);
8334
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
8335

8336 8337
	INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
			  __intel_autoenable_gt_powersave);
8338
	INIT_LIST_HEAD(&dev_priv->rps.clients);
8339

8340
	dev_priv->pm.suspended = false;
8341
	atomic_set(&dev_priv->pm.wakeref_count, 0);
8342
}