intel_pm.c 206.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void bxt_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

63 64
	/*
	 * FIXME:
65
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 67
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 70
}

71 72
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
73
	struct drm_i915_private *dev_priv = dev->dev_private;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = dev->dev_private;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

138
	dev_priv->ips.r_t = dev_priv->mem_freq;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
170
		dev_priv->ips.c_m = 0;
171
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
172
		dev_priv->ips.c_m = 1;
173
	} else {
174
		dev_priv->ips.c_m = 2;
175 176 177
	}
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

216
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

278 279 280
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

281
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
282
{
283 284
	struct drm_device *dev = dev_priv->dev;
	u32 val;
285

286 287
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
288
		POSTING_READ(FW_BLC_SELF_VLV);
289
		dev_priv->wm.vlv.cxsr = enable;
290 291
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
292
		POSTING_READ(FW_BLC_SELF);
293 294 295 296
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
297
		POSTING_READ(DSPFW3);
298 299 300 301
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
302
		POSTING_READ(FW_BLC_SELF);
303 304 305 306
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
307
		POSTING_READ(INSTPM);
308 309 310
	} else {
		return;
	}
311

312 313
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
314 315
}

316

317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
331
static const int pessimal_latency_ns = 5000;
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

388
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

404
static int i830_get_fifo_size(struct drm_device *dev, int plane)
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

421
static int i845_get_fifo_size(struct drm_device *dev, int plane)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
439 440 441 442 443
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
444 445
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
446 447 448 449 450
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 452
};
static const struct intel_watermark_params pineview_cursor_wm = {
453 454 455 456 457
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 459
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
460 461 462 463 464
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 466
};
static const struct intel_watermark_params g4x_wm_info = {
467 468 469 470 471
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
472 473
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
474 475 476 477 478
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
479 480
};
static const struct intel_watermark_params valleyview_wm_info = {
481 482 483 484 485
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
488 489 490 491 492
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params i965_cursor_wm_info = {
495 496 497 498 499
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params i945_wm_info = {
502 503 504 505 506
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params i915_wm_info = {
509 510 511 512 513
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
514
};
515
static const struct intel_watermark_params i830_a_wm_info = {
516 517 518 519 520
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
521
};
522 523 524 525 526 527 528
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
529
static const struct intel_watermark_params i845_wm_info = {
530 531 532 533 534
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
584 585 586 587 588 589 590 591 592 593 594

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

595 596 597 598 599 600 601
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

602
	for_each_crtc(dev, crtc) {
603
		if (intel_crtc_active(crtc)) {
604 605 606 607 608 609 610 611 612
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

613
static void pineview_update_wm(struct drm_crtc *unused_crtc)
614
{
615
	struct drm_device *dev = unused_crtc->dev;
616 617 618 619 620 621 622 623 624 625
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626
		intel_set_memory_cxsr(dev_priv, false);
627 628 629 630 631
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
632
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
634
		int clock = adjusted_mode->crtc_clock;
635 636 637 638 639 640 641

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
642
		reg |= FW_WM(wm, SR);
643 644 645 646 647 648 649 650 651
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
652
		reg |= FW_WM(wm, CURSOR_SR);
653 654 655 656 657 658 659 660
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
661
		reg |= FW_WM(wm, HPLL_SR);
662 663 664 665 666 667 668 669
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
670
		reg |= FW_WM(wm, HPLL_CURSOR);
671 672 673
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

674
		intel_set_memory_cxsr(dev_priv, true);
675
	} else {
676
		intel_set_memory_cxsr(dev_priv, false);
677 678 679 680 681 682 683 684 685 686 687 688 689
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
690
	const struct drm_display_mode *adjusted_mode;
691 692 693 694 695
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
696
	if (!intel_crtc_active(crtc)) {
697 698 699 700 701
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

702
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703
	clock = adjusted_mode->crtc_clock;
704
	htotal = adjusted_mode->crtc_htotal;
705
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
707 708 709 710 711 712 713 714 715 716 717 718

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
719
	line_time_us = max(htotal * 1000 / clock, 1);
720
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
776
	const struct drm_display_mode *adjusted_mode;
777 778 779 780 781 782 783 784 785 786 787 788
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
789
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790
	clock = adjusted_mode->crtc_clock;
791
	htotal = adjusted_mode->crtc_htotal;
792
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
794

795
	line_time_us = max(htotal * 1000 / clock, 1);
796 797 798 799 800 801 802 803 804 805 806
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
807
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
808 809 810 811 812 813 814 815
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

816 817 818
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

819 820 821 822 823 824 825 826 827 828 829 830
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

831
	I915_WRITE(DSPFW1,
832 833 834 835
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836
	I915_WRITE(DSPFW2,
837 838 839
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840
	I915_WRITE(DSPFW3,
841
		   FW_WM(wm->sr.cursor, CURSOR_SR));
842 843 844

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
845 846
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847
		I915_WRITE(DSPFW8_CHV,
848 849
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850
		I915_WRITE(DSPFW9_CHV,
851 852
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853
		I915_WRITE(DSPHOWM,
854 855 856 857 858 859 860 861 862 863
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864 865
	} else {
		I915_WRITE(DSPFW7,
866 867
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868
		I915_WRITE(DSPHOWM,
869 870 871 872 873 874 875
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876 877
	}

878 879 880 881 882 883
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

884
	POSTING_READ(DSPFW1);
885 886
}

887 888
#undef FW_WM_VLV

889 890 891 892 893 894
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

918 919
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

920 921 922
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923 924

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1066
static void vlv_compute_wm(struct intel_crtc *crtc)
1067 1068 1069 1070 1071 1072 1073 1074 1075
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1076
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078 1079 1080

	wm_state->num_active_planes = 0;

1081
	vlv_compute_fifo(crtc);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
					wm_state->sr[level].cursor;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1157
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158 1159 1160 1161 1162 1163 1164
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1255 1256 1257 1258 1259 1260
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1261
	wm->level = to_i915(dev)->wm.max_level;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1280 1281 1282
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1309
	vlv_compute_wm(intel_crtc);
1310 1311
	vlv_merge_wm(dev, &wm);

1312 1313 1314
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1315
		return;
1316
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1326
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327 1328
		intel_set_memory_cxsr(dev_priv, false);

1329 1330 1331
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1332 1333 1334 1335 1336 1337 1338 1339
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1340
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1352 1353
}

1354 1355
#define single_plane_enabled(mask) is_power_of_2(mask)

1356
static void g4x_update_wm(struct drm_crtc *crtc)
1357
{
1358
	struct drm_device *dev = crtc->dev;
1359 1360 1361 1362 1363
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1364
	bool cxsr_enabled;
1365

1366
	if (g4x_compute_wm0(dev, PIPE_A,
1367 1368
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1369
			    &planea_wm, &cursora_wm))
1370
		enabled |= 1 << PIPE_A;
1371

1372
	if (g4x_compute_wm0(dev, PIPE_B,
1373 1374
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1375
			    &planeb_wm, &cursorb_wm))
1376
		enabled |= 1 << PIPE_B;
1377 1378 1379 1380 1381 1382

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1383
			     &plane_sr, &cursor_sr)) {
1384
		cxsr_enabled = true;
1385
	} else {
1386
		cxsr_enabled = false;
1387
		intel_set_memory_cxsr(dev_priv, false);
1388 1389
		plane_sr = cursor_sr = 0;
	}
1390

1391 1392
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 1394 1395 1396 1397
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1398 1399 1400 1401
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1402
	I915_WRITE(DSPFW2,
1403
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404
		   FW_WM(cursora_wm, CURSORA));
1405 1406
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1407
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408
		   FW_WM(cursor_sr, CURSOR_SR));
1409 1410 1411

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1412 1413
}

1414
static void i965_update_wm(struct drm_crtc *unused_crtc)
1415
{
1416
	struct drm_device *dev = unused_crtc->dev;
1417 1418 1419 1420
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1421
	bool cxsr_enabled;
1422 1423 1424 1425 1426 1427

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1428
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429
		int clock = adjusted_mode->crtc_clock;
1430
		int htotal = adjusted_mode->crtc_htotal;
1431
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433 1434 1435
		unsigned long line_time_us;
		int entries;

1436
		line_time_us = max(htotal * 1000 / clock, 1);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450
			pixel_size * crtc->cursor->state->crtc_w;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1462
		cxsr_enabled = true;
1463
	} else {
1464
		cxsr_enabled = false;
1465
		/* Turn off self refresh if both pipes are enabled */
1466
		intel_set_memory_cxsr(dev_priv, false);
1467 1468 1469 1470 1471 1472
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1473 1474 1475 1476 1477 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1479
	/* update cursor SR watermark */
1480
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481 1482 1483

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1484 1485
}

1486 1487
#undef FW_WM

1488
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489
{
1490
	struct drm_device *dev = unused_crtc->dev;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1505
		wm_info = &i830_a_wm_info;
1506 1507 1508

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1509
	if (intel_crtc_active(crtc)) {
1510
		const struct drm_display_mode *adjusted_mode;
1511
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512 1513 1514
		if (IS_GEN2(dev))
			cpp = 4;

1515
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517
					       wm_info, fifo_size, cpp,
1518
					       pessimal_latency_ns);
1519
		enabled = crtc;
1520
	} else {
1521
		planea_wm = fifo_size - wm_info->guard_size;
1522 1523 1524 1525 1526 1527
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1528 1529 1530

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1531
	if (intel_crtc_active(crtc)) {
1532
		const struct drm_display_mode *adjusted_mode;
1533
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534 1535 1536
		if (IS_GEN2(dev))
			cpp = 4;

1537
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539
					       wm_info, fifo_size, cpp,
1540
					       pessimal_latency_ns);
1541 1542 1543 1544
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1545
	} else {
1546
		planeb_wm = fifo_size - wm_info->guard_size;
1547 1548 1549
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1550 1551 1552

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1553
	if (IS_I915GM(dev) && enabled) {
1554
		struct drm_i915_gem_object *obj;
1555

1556
		obj = intel_fb_obj(enabled->primary->state->fb);
1557 1558

		/* self-refresh seems busted with untiled */
1559
		if (obj->tiling_mode == I915_TILING_NONE)
1560 1561 1562
			enabled = NULL;
	}

1563 1564 1565 1566 1567 1568
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1569
	intel_set_memory_cxsr(dev_priv, false);
1570 1571 1572 1573 1574

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1575
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576
		int clock = adjusted_mode->crtc_clock;
1577
		int htotal = adjusted_mode->crtc_htotal;
1578
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580 1581 1582
		unsigned long line_time_us;
		int entries;

1583
		line_time_us = max(htotal * 1000 / clock, 1);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1614 1615
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1616 1617
}

1618
static void i845_update_wm(struct drm_crtc *unused_crtc)
1619
{
1620
	struct drm_device *dev = unused_crtc->dev;
1621 1622
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1623
	const struct drm_display_mode *adjusted_mode;
1624 1625 1626 1627 1628 1629 1630
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1631
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633
				       &i845_wm_info,
1634
				       dev_priv->display.get_fifo_size(dev, 0),
1635
				       4, pessimal_latency_ns);
1636 1637 1638 1639 1640 1641 1642 1643
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1644
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645
{
1646
	uint32_t pixel_rate;
1647

1648
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649 1650 1651 1652

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1653
	if (pipe_config->pch_pfit.enabled) {
1654
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 1656 1657 1658
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1674
/* latency must be in 0.1us units. */
1675
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676 1677 1678 1679
			       uint32_t latency)
{
	uint64_t ret;

1680 1681 1682
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1683 1684 1685 1686 1687 1688
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1689
/* latency must be in 0.1us units. */
1690
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691 1692 1693 1694 1695
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1696 1697 1698
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1699 1700 1701 1702 1703 1704
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1705
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706 1707 1708 1709 1710
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1711 1712 1713 1714 1715 1716 1717
struct skl_pipe_wm_parameters {
	bool active;
	uint32_t pipe_htotal;
	uint32_t pixel_rate; /* in KHz */
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
};

1718
struct ilk_wm_maximums {
1719 1720 1721 1722 1723 1724
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1725 1726 1727 1728 1729 1730 1731
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1732 1733 1734 1735
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1736
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1737
				   const struct intel_plane_state *pstate,
1738 1739
				   uint32_t mem_value,
				   bool is_lp)
1740
{
1741
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1742 1743
	uint32_t method1, method2;

1744
	if (!cstate->base.active || !pstate->visible)
1745 1746
		return 0;

1747
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1748 1749 1750 1751

	if (!is_lp)
		return method1;

1752 1753
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1754 1755
				 drm_rect_width(&pstate->dst),
				 bpp,
1756 1757 1758
				 mem_value);

	return min(method1, method2);
1759 1760
}

1761 1762 1763 1764
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1765
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1766
				   const struct intel_plane_state *pstate,
1767 1768
				   uint32_t mem_value)
{
1769
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1770 1771
	uint32_t method1, method2;

1772
	if (!cstate->base.active || !pstate->visible)
1773 1774
		return 0;

1775 1776 1777
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1778 1779
				 drm_rect_width(&pstate->dst),
				 bpp,
1780 1781 1782 1783
				 mem_value);
	return min(method1, method2);
}

1784 1785 1786 1787
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1788
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1789
				   const struct intel_plane_state *pstate,
1790 1791
				   uint32_t mem_value)
{
1792 1793
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1794
	if (!cstate->base.active || !pstate->visible)
1795 1796
		return 0;

1797 1798
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1799 1800
			      drm_rect_width(&pstate->dst),
			      bpp,
1801 1802 1803
			      mem_value);
}

1804
/* Only for WM_LP. */
1805
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1806
				   const struct intel_plane_state *pstate,
1807
				   uint32_t pri_val)
1808
{
1809 1810
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1811
	if (!cstate->base.active || !pstate->visible)
1812 1813
		return 0;

1814
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1815 1816
}

1817 1818
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1819 1820 1821
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1822 1823 1824 1825 1826
		return 768;
	else
		return 512;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1861 1862 1863
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1864
				     const struct intel_wm_config *config,
1865 1866 1867 1868 1869 1870
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1871
	if (is_sprite && !config->sprites_enabled)
1872 1873 1874
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1875
	if (level == 0 || config->num_pipes_active > 1) {
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1887
	if (config->sprites_enabled) {
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1899
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1900 1901 1902 1903
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1904 1905
				      int level,
				      const struct intel_wm_config *config)
1906 1907
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1908
	if (level > 0 && config->num_pipes_active > 1)
1909 1910 1911
		return 64;

	/* otherwise just report max that registers can hold */
1912
	return ilk_cursor_wm_reg_max(dev, level);
1913 1914
}

1915
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1916 1917 1918
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1919
				    struct ilk_wm_maximums *max)
1920
{
1921 1922 1923
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1924
	max->fbc = ilk_fbc_wm_reg_max(dev);
1925 1926
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1937
static bool ilk_validate_wm_level(int level,
1938
				  const struct ilk_wm_maximums *max,
1939
				  struct intel_wm_level *result)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1978
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1979
				 const struct intel_crtc *intel_crtc,
1980
				 int level,
1981
				 struct intel_crtc_state *cstate,
1982
				 struct intel_wm_level *result)
1983
{
1984
	struct intel_plane *intel_plane;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
		struct intel_plane_state *pstate =
			to_intel_plane_state(intel_plane->base.state);

		switch (intel_plane->base.type) {
		case DRM_PLANE_TYPE_PRIMARY:
			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
							     pri_latency,
							     level);
			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
							     result->pri_val);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
							     spr_latency);
			break;
		case DRM_PLANE_TYPE_CURSOR:
			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
							     cur_latency);
			break;
		}
	}

2019 2020 2021
	result->enable = true;
}

2022 2023
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2024 2025
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2026
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2027
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2028
	u32 linetime, ips_linetime;
2029

2030
	if (!intel_crtc->active)
2031
		return 0;
2032

2033 2034 2035
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2036 2037 2038
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2039
					 dev_priv->cdclk_freq);
2040

2041 2042
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2043 2044
}

2045
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2046 2047 2048
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2049 2050
	if (IS_GEN9(dev)) {
		uint32_t val;
2051
		int ret, i;
2052
		int level, max_level = ilk_wm_max_level(dev);
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2095
		/*
2096 2097
		 * WaWmMemoryReadLatency:skl
		 *
2098 2099 2100 2101 2102 2103 2104 2105
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2106 2107 2108 2109 2110
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2111 2112 2113 2114 2115
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2116 2117 2118
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2119

2120 2121
				break;
			}
2122
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2123 2124 2125 2126 2127
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2128 2129 2130 2131
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2132 2133 2134 2135 2136 2137 2138
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2139 2140 2141 2142 2143 2144 2145
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2146 2147 2148
	}
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2167
int ilk_wm_max_level(const struct drm_device *dev)
2168 2169
{
	/* how many WM levels are we expecting */
2170
	if (INTEL_INFO(dev)->gen >= 9)
2171 2172
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2173
		return 4;
2174
	else if (INTEL_INFO(dev)->gen >= 6)
2175
		return 3;
2176
	else
2177 2178
		return 2;
}
2179

2180 2181
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2182
				   const uint16_t wm[8])
2183 2184
{
	int level, max_level = ilk_wm_max_level(dev);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2195 2196 2197 2198 2199 2200 2201
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2202 2203 2204 2205 2206 2207 2208 2209
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2247
static void ilk_setup_wm_latency(struct drm_device *dev)
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2260 2261 2262 2263

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2264 2265 2266

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2267 2268
}

2269 2270 2271 2272 2273 2274 2275 2276
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, intel_crtc) {
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

2295
/* Compute new watermarks for the pipe */
2296 2297
static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
				  struct intel_pipe_wm *pipe_wm)
2298
{
2299 2300
	struct drm_crtc *crtc = cstate->base.crtc;
	struct drm_device *dev = crtc->dev;
2301
	const struct drm_i915_private *dev_priv = dev->dev_private;
2302
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303 2304
	struct intel_plane *intel_plane;
	struct intel_plane_state *sprstate = NULL;
2305 2306 2307 2308 2309
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2310
	struct ilk_wm_maximums max;
2311

2312
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2313 2314 2315 2316
		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
			sprstate = to_intel_plane_state(intel_plane->base.state);
			break;
		}
2317 2318 2319 2320 2321 2322 2323
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2324
	pipe_wm->pipe_enabled = cstate->base.active;
2325
	pipe_wm->sprites_enabled = sprstate->visible;
2326
	pipe_wm->sprites_scaled = config.sprites_scaled;
2327

2328
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2329
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2330 2331 2332
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2333
	if (config.sprites_scaled)
2334 2335
		max_level = 0;

2336
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2337

2338
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2339
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2340

2341 2342 2343
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2344
	/* At least LP0 must be valid */
2345
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2346
		return false;
2347 2348 2349 2350 2351 2352

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2353
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2366
	return true;
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2378 2379
	ret_wm->enable = true;

2380
	for_each_intel_crtc(dev, intel_crtc) {
2381
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2382 2383 2384 2385
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2386

2387 2388 2389 2390 2391
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2392
		if (!wm->enable)
2393
			ret_wm->enable = false;
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2406
			 const struct intel_wm_config *config,
2407
			 const struct ilk_wm_maximums *max,
2408 2409
			 struct intel_pipe_wm *merged)
{
2410
	struct drm_i915_private *dev_priv = dev->dev_private;
2411
	int level, max_level = ilk_wm_max_level(dev);
2412
	int last_enabled_level = max_level;
2413

2414 2415 2416 2417 2418
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2419 2420
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2421 2422 2423 2424 2425 2426 2427

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2428 2429 2430 2431 2432
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2433 2434 2435 2436 2437 2438

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2439 2440
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2441 2442 2443
			wm->fbc_val = 0;
		}
	}
2444 2445 2446 2447 2448 2449 2450

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2451 2452
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2453 2454 2455 2456 2457 2458
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2459 2460
}

2461 2462 2463 2464 2465 2466
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2467 2468 2469 2470 2471
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2472
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2473 2474 2475 2476 2477
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2478
static void ilk_compute_wm_results(struct drm_device *dev,
2479
				   const struct intel_pipe_wm *merged,
2480
				   enum intel_ddb_partitioning partitioning,
2481
				   struct ilk_wm_values *results)
2482
{
2483 2484
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2485

2486
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2487
	results->partitioning = partitioning;
2488

2489
	/* LP1+ register values */
2490
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2491
		const struct intel_wm_level *r;
2492

2493
		level = ilk_wm_lp_to_level(wm_lp, merged);
2494

2495
		r = &merged->wm[level];
2496

2497 2498 2499 2500 2501
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2502
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2503 2504 2505
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2506 2507 2508
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2509 2510 2511 2512 2513 2514 2515
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2516 2517 2518 2519
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2520 2521 2522 2523 2524
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2525
	}
2526

2527
	/* LP0 register values */
2528
	for_each_intel_crtc(dev, intel_crtc) {
2529
		enum pipe pipe = intel_crtc->pipe;
2530 2531
		const struct intel_wm_level *r =
			&intel_crtc->wm.active.wm[0];
2532 2533 2534 2535

		if (WARN_ON(!r->enable))
			continue;

2536
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2537

2538 2539 2540 2541
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2542 2543 2544
	}
}

2545 2546
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2547
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2548 2549
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2550
{
2551 2552
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2553

2554 2555 2556 2557 2558
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2559 2560
	}

2561 2562
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2563 2564 2565
			return r2;
		else
			return r1;
2566
	} else if (level1 > level2) {
2567 2568 2569 2570 2571 2572
		return r1;
	} else {
		return r2;
	}
}

2573 2574 2575 2576 2577 2578 2579 2580
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2581
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2582 2583
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2584 2585 2586 2587 2588
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2589
	for_each_pipe(dev_priv, pipe) {
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2633 2634
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2635
{
2636
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2637
	bool changed = false;
2638

2639 2640 2641
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2642
		changed = true;
2643 2644 2645 2646
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2647
		changed = true;
2648 2649 2650 2651
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2652
		changed = true;
2653
	}
2654

2655 2656 2657 2658
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2659

2660 2661 2662 2663 2664 2665 2666
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2667 2668
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2669 2670
{
	struct drm_device *dev = dev_priv->dev;
2671
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2672 2673 2674
	unsigned int dirty;
	uint32_t val;

2675
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2676 2677 2678 2679 2680
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2681
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2682
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2683
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2684
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2685
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2686 2687
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2688
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2689
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2690
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2691
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2692
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2693 2694
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2695
	if (dirty & WM_DIRTY_DDB) {
2696
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2711 2712
	}

2713
	if (dirty & WM_DIRTY_FBC) {
2714 2715 2716 2717 2718 2719 2720 2721
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2722 2723 2724 2725 2726
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2727 2728 2729 2730 2731
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2732

2733
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2734
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2735
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2736
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2737
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2738
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2739 2740

	dev_priv->wm.hw = *results;
2741 2742
}

2743 2744 2745 2746 2747 2748 2749
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2750 2751 2752 2753 2754 2755
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2756
#define BXT_DDB_SIZE		512
2757 2758 2759

static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2760
				   struct drm_crtc *for_crtc,
2761
				   const struct intel_wm_config *config,
2762
				   const struct skl_pipe_wm_parameters *params,
2763 2764 2765 2766 2767 2768
				   struct skl_ddb_entry *alloc /* out */)
{
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2769
	if (!params->active) {
2770 2771 2772 2773 2774
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2775 2776 2777 2778
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2779 2780 2781 2782 2783

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2784
		if (!to_intel_crtc(crtc)->active)
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2795
	alloc->end = alloc->start + pipe_size;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2806 2807 2808 2809
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2810 2811
	if (entry->end)
		entry->end += 1;
2812 2813
}

2814 2815
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2816 2817 2818 2819 2820 2821
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2822
		for_each_plane(dev_priv, pipe, plane) {
2823 2824 2825 2826 2827 2828
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2829 2830
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2831 2832 2833
	}
}

2834
static unsigned int
2835
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2836
{
2837 2838

	/* for planar format */
2839
	if (p->y_bytes_per_pixel) {
2840
		if (y)  /* y-plane data rate */
2841
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2842
		else    /* uv-plane data rate */
2843
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2844 2845 2846
	}

	/* for packed formats */
2847
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2848 2849 2850 2851 2852 2853 2854 2855
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2856 2857
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
				 const struct skl_pipe_wm_parameters *params)
2858 2859
{
	unsigned int total_data_rate = 0;
2860
	int plane;
2861

2862 2863
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
2864

2865 2866
		p = &params->plane[plane];
		if (!p->enabled)
2867 2868
			continue;

2869 2870 2871 2872
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
		if (p->y_bytes_per_pixel) {
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
		}
2873 2874 2875 2876 2877 2878
	}

	return total_data_rate;
}

static void
2879
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2880
		      const struct intel_wm_config *config,
2881
		      const struct skl_pipe_wm_parameters *params,
2882 2883 2884
		      struct skl_ddb_allocation *ddb /* out */)
{
	struct drm_device *dev = crtc->dev;
2885
	struct drm_i915_private *dev_priv = dev->dev_private;
2886 2887
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
2888
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2889
	uint16_t alloc_size, start, cursor_blocks;
2890
	uint16_t minimum[I915_MAX_PLANES];
2891
	uint16_t y_minimum[I915_MAX_PLANES];
2892
	unsigned int total_data_rate;
2893
	int plane;
2894

2895
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2896
	alloc_size = skl_ddb_entry_size(alloc);
2897 2898
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2899 2900
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2901 2902 2903 2904
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2905 2906
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2907 2908

	alloc_size -= cursor_blocks;
2909
	alloc->end -= cursor_blocks;
2910

2911
	/* 1. Allocate the mininum required blocks for each active plane */
2912 2913
	for_each_plane(dev_priv, pipe, plane) {
		const struct intel_plane_wm_parameters *p;
2914

2915 2916
		p = &params->plane[plane];
		if (!p->enabled)
2917 2918
			continue;

2919 2920 2921 2922
		minimum[plane] = 8;
		alloc_size -= minimum[plane];
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
		alloc_size -= y_minimum[plane];
2923 2924
	}

2925
	/*
2926 2927
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2928 2929 2930
	 *
	 * FIXME: we may not allocate every single block here.
	 */
2931
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2932

2933
	start = alloc->start;
2934 2935
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
		const struct intel_plane_wm_parameters *p;
2936 2937
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
2938

2939 2940
		p = &params->plane[plane];
		if (!p->enabled)
2941 2942
			continue;

2943
		data_rate = skl_plane_relative_data_rate(p, 0);
2944 2945

		/*
2946
		 * allocation for (packed formats) or (uv-plane part of planar format):
2947 2948 2949
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2950
		plane_blocks = minimum[plane];
2951 2952
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2953

2954 2955
		ddb->plane[pipe][plane].start = start;
		ddb->plane[pipe][plane].end = start + plane_blocks;
2956 2957

		start += plane_blocks;
2958 2959 2960 2961

		/*
		 * allocation for y_plane part of planar format:
		 */
2962 2963 2964
		if (p->y_bytes_per_pixel) {
			y_data_rate = skl_plane_relative_data_rate(p, 1);
			y_plane_blocks = y_minimum[plane];
2965 2966 2967
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

2968 2969
			ddb->y_plane[pipe][plane].start = start;
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2970 2971 2972 2973

			start += y_plane_blocks;
		}

2974 2975 2976 2977
	}

}

2978
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2979 2980
{
	/* TODO: Take into account the scalers once we support them */
2981
	return config->base.adjusted_mode.crtc_clock;
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

2998
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2999 3000 3001 3002 3003 3004 3005
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3006
			       uint64_t tiling, uint32_t latency)
3007
{
3008 3009 3010
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3011 3012 3013 3014 3015

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3026 3027
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3028
				plane_blocks_per_line;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

3045 3046
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3047 3048 3049 3050 3051
		return true;

	return false;
}

3052 3053 3054 3055
static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;
3056
	struct drm_plane *plane;
3057 3058 3059

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += to_intel_crtc(crtc)->active;
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126

	/* FIXME: I don't think we need those two global parameters on SKL */
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		config->sprites_enabled |= intel_plane->wm.enabled;
		config->sprites_scaled |= intel_plane->wm.scaled;
	}
}

static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
					   struct skl_pipe_wm_parameters *p)
{
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct drm_plane *plane;
	struct drm_framebuffer *fb;
	int i = 1; /* Index for sprite planes start */

	p->active = intel_crtc->active;
	if (p->active) {
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);

		fb = crtc->primary->state->fb;
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
		if (fb) {
			p->plane[0].enabled = true;
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
			p->plane[0].tiling = fb->modifier[0];
		} else {
			p->plane[0].enabled = false;
			p->plane[0].bytes_per_pixel = 0;
			p->plane[0].y_bytes_per_pixel = 0;
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
		}
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
		p->plane[0].rotation = crtc->primary->state->rotation;

		fb = crtc->cursor->state->fb;
		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
		if (fb) {
			p->plane[PLANE_CURSOR].enabled = true;
			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
		} else {
			p->plane[PLANE_CURSOR].enabled = false;
			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
			p->plane[PLANE_CURSOR].horiz_pixels = 64;
			p->plane[PLANE_CURSOR].vert_pixels = 64;
		}
	}

	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
		struct intel_plane *intel_plane = to_intel_plane(plane);

		if (intel_plane->pipe == pipe &&
			plane->type == DRM_PLANE_TYPE_OVERLAY)
			p->plane[i++] = intel_plane->wm;
	}
3127 3128
}

3129
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3130 3131
				 struct skl_pipe_wm_parameters *p,
				 struct intel_plane_wm_parameters *p_params,
3132
				 uint16_t ddb_allocation,
3133
				 int level,
3134 3135
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3136
{
3137 3138 3139 3140 3141
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3142
	uint8_t bytes_per_pixel;
3143

3144
	if (latency == 0 || !p->active || !p_params->enabled)
3145 3146
		return false;

3147 3148 3149 3150
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
		p_params->y_bytes_per_pixel :
		p_params->bytes_per_pixel;
	method1 = skl_wm_method1(p->pixel_rate,
3151
				 bytes_per_pixel,
3152
				 latency);
3153 3154 3155
	method2 = skl_wm_method2(p->pixel_rate,
				 p->pipe_htotal,
				 p_params->horiz_pixels,
3156
				 bytes_per_pixel,
3157
				 p_params->tiling,
3158
				 latency);
3159

3160
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3161
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3162

3163 3164
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3165 3166
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3167 3168
		if (intel_rotation_90_or_270(p_params->rotation)) {
			switch (p_params->bytes_per_pixel) {
3169 3170 3171 3172 3173 3174 3175 3176
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3177
			}
3178 3179
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3180 3181 3182 3183 3184 3185 3186
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3187

3188 3189
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3190

3191
	if (level >= 1 && level <= 7) {
3192 3193
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3194 3195 3196 3197
			res_lines += 4;
		else
			res_blocks++;
	}
3198

3199
	if (res_blocks >= ddb_allocation || res_lines > 31)
3200 3201 3202 3203
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3204 3205 3206 3207 3208 3209

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3210 3211
				 struct skl_pipe_wm_parameters *p,
				 enum pipe pipe,
3212
				 int level,
3213
				 int num_planes,
3214 3215 3216
				 struct skl_wm_level *result)
{
	uint16_t ddb_blocks;
3217
	int i;
3218

3219
	for (i = 0; i < num_planes; i++) {
3220 3221
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3222
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3223
						p, &p->plane[i],
3224
						ddb_blocks,
3225
						level,
3226 3227 3228
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
3229 3230 3231 3232 3233 3234 3235

	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
						 &p->plane[PLANE_CURSOR],
						 ddb_blocks, level,
						 &result->plane_res_b[PLANE_CURSOR],
						 &result->plane_res_l[PLANE_CURSOR]);
3236 3237
}

3238
static uint32_t
3239
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3240
{
3241
	if (!to_intel_crtc(crtc)->active)
3242 3243
		return 0;

3244
	if (WARN_ON(p->pixel_rate == 0))
3245
		return 0;
3246

3247
	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3248 3249
}

3250 3251
static void skl_compute_transition_wm(struct drm_crtc *crtc,
				      struct skl_pipe_wm_parameters *params,
3252
				      struct skl_wm_level *trans_wm /* out */)
3253
{
3254
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3255
	int i;
3256

3257
	if (!params->active)
3258
		return;
3259 3260

	/* Until we know more, just disable transition WMs */
3261
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3262
		trans_wm->plane_en[i] = false;
3263
	trans_wm->plane_en[PLANE_CURSOR] = false;
3264 3265
}

3266
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3267
				struct skl_ddb_allocation *ddb,
3268
				struct skl_pipe_wm_parameters *params,
3269 3270
				struct skl_pipe_wm *pipe_wm)
{
3271
	struct drm_device *dev = crtc->dev;
3272
	const struct drm_i915_private *dev_priv = dev->dev_private;
3273
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3274 3275 3276
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3277 3278 3279
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
				     level, intel_num_planes(intel_crtc),
				     &pipe_wm->wm[level]);
3280
	}
3281
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3282

3283
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3284 3285 3286
}

static void skl_compute_wm_results(struct drm_device *dev,
3287
				   struct skl_pipe_wm_parameters *p,
3288 3289 3290 3291 3292 3293
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3294 3295
	uint32_t temp;
	int i;
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3312 3313
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3314

3315
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3316 3317
			temp |= PLANE_WM_EN;

3318
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3319 3320 3321

	}

3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3334 3335 3336
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3337 3338
		temp |= PLANE_WM_EN;

3339
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3340

3341 3342 3343
	r->wm_linetime[pipe] = p_wm->linetime;
}

3344 3345 3346 3347 3348 3349 3350 3351 3352
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3363 3364
		if (!new->dirty[pipe])
			continue;
3365

3366
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367

3368 3369 3370 3371 3372
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3373
				   new->plane[pipe][PLANE_CURSOR][level]);
3374
		}
3375 3376 3377
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3378 3379
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3380

3381
		for (i = 0; i < intel_num_planes(crtc); i++) {
3382 3383 3384
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3385 3386 3387 3388
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3389 3390

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3392 3393 3394
	}
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3419 3420
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421 3422 3423
{
	int plane;

3424 3425
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3426
	for_each_plane(dev_priv, pipe, plane) {
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453
	bool reallocated[I915_MAX_PIPES] = {};
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3476
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3502
			intel_wait_for_vblank(dev, pipe);
3503
			reallocated[pipe] = true;
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3526
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3527 3528 3529
	}
}

3530
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531
			       struct skl_pipe_wm_parameters *params,
3532
			       struct intel_wm_config *config,
3533 3534 3535 3536 3537
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

3538 3539 3540
	skl_compute_wm_pipe_parameters(crtc, params);
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3541

3542
	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3543 3544
		return false;

3545
	intel_crtc->wm.skl_active = *pipe_wm;
3546

3547 3548 3549 3550 3551
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
3552
				     struct intel_wm_config *config,
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
3573
		struct skl_pipe_wm_parameters params = {};
3574 3575 3576 3577 3578 3579 3580 3581 3582
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3583 3584
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
						&params, config,
3585 3586 3587 3588 3589 3590 3591 3592 3593
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3594
		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3595 3596 3597 3598
		r->dirty[intel_crtc->pipe] = true;
	}
}

3599 3600 3601 3602 3603 3604 3605
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3606
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3607 3608 3609 3610 3611 3612 3613

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3614 3615
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3616 3617 3618

}

3619 3620 3621 3622 3623
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3624
	struct skl_pipe_wm_parameters params = {};
3625
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3626 3627
	struct skl_pipe_wm pipe_wm = {};
	struct intel_wm_config config = {};
3628

3629 3630 3631 3632 3633

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3634

3635 3636
	skl_compute_wm_global_parameters(dev, &config);

3637 3638
	if (!skl_update_pipe_wm(crtc, &params, &config,
				&results->ddb, &pipe_wm))
3639 3640
		return;

3641
	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3642 3643
	results->dirty[intel_crtc->pipe] = true;

3644
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3645
	skl_write_wm_values(dev_priv, results);
3646
	skl_flush_wm_values(dev_priv, results);
3647 3648 3649

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3650 3651
}

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
static void
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct intel_plane *intel_plane = to_intel_plane(plane);
	struct drm_framebuffer *fb = plane->state->fb;

	intel_plane->wm.enabled = enabled;
	intel_plane->wm.scaled = scaled;
	intel_plane->wm.horiz_pixels = sprite_width;
	intel_plane->wm.vert_pixels = sprite_height;
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;

	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
	intel_plane->wm.bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
	intel_plane->wm.y_bytes_per_pixel =
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;

	/*
	 * Framebuffer can be NULL on plane disable, but it does not
	 * matter for watermarks if we assume no tiling in that case.
	 */
	if (fb)
		intel_plane->wm.tiling = fb->modifier[0];
	intel_plane->wm.rotation = plane->state->rotation;

	skl_update_wm(crtc);
}

3685
static void ilk_update_wm(struct drm_crtc *crtc)
3686
{
3687 3688 3689 3690
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3691 3692
	struct ilk_wm_maximums max;
	struct ilk_wm_values results = {};
3693
	enum intel_ddb_partitioning partitioning;
3694 3695 3696
	struct intel_pipe_wm pipe_wm = {};
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
	struct intel_wm_config config = {};
3697

3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
	WARN_ON(cstate->base.active != intel_crtc->active);

	intel_compute_pipe_wm(cstate, &pipe_wm);

	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
		return;

	intel_crtc->wm.active = pipe_wm;

	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3711 3712

	/* 5/6 split only in single pipe config on IVB+ */
3713
	if (INTEL_INFO(dev)->gen >= 7 &&
3714 3715 3716
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3717

3718
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3719
	} else {
3720
		best_lp_wm = &lp_wm_1_2;
3721 3722
	}

3723
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3724
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3725

3726
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3727

3728
	ilk_write_wm_values(dev_priv, &results);
3729 3730
}

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
static void
ilk_update_sprite_wm(struct drm_plane *plane,
		     struct drm_crtc *crtc,
		     uint32_t sprite_width, uint32_t sprite_height,
		     int pixel_size, bool enabled, bool scaled)
{
	struct drm_device *dev = plane->dev;
	struct intel_plane *intel_plane = to_intel_plane(plane);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
		intel_wait_for_vblank(dev, intel_plane->pipe);

	ilk_update_wm(crtc);
}

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3771 3772
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3773
					val & PLANE_WM_BLOCKS_MASK;
3774
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3787 3788
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3789
					val & PLANE_WM_BLOCKS_MASK;
3790
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3803
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3816
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3817 3818 3819 3820
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3821
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3822

3823
	if (!intel_crtc->active)
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3836
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3837 3838 3839 3840 3841 3842 3843 3844
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3845
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3846 3847 3848 3849 3850
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3851 3852
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3853 3854
	struct drm_crtc *crtc;

3855
	skl_ddb_get_hw_state(dev_priv, ddb);
3856 3857 3858 3859
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3860 3861 3862 3863
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3864
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3865
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3866
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3867 3868 3869 3870 3871 3872 3873 3874
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3875
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3876
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3877

3878
	active->pipe_enabled = intel_crtc->active;
3879 3880

	if (active->pipe_enabled) {
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
}

3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

4024 4025 4026 4027 4028 4029 4030 4031 4032
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
4033
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4060 4061 4062
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4063
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4064 4065
	struct drm_crtc *crtc;

4066
	for_each_crtc(dev, crtc)
4067 4068 4069 4070 4071 4072 4073
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4074 4075 4076 4077
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4078

4079
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4080 4081 4082 4083 4084
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4085 4086 4087 4088 4089

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4122
void intel_update_watermarks(struct drm_crtc *crtc)
4123
{
4124
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4125 4126

	if (dev_priv->display.update_wm)
4127
		dev_priv->display.update_wm(crtc);
4128 4129
}

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
void intel_update_sprite_watermarks(struct drm_plane *plane,
				    struct drm_crtc *crtc,
				    uint32_t sprite_width,
				    uint32_t sprite_height,
				    int pixel_size,
				    bool enabled, bool scaled)
{
	struct drm_i915_private *dev_priv = plane->dev->dev_private;

	if (dev_priv->display.update_sprite_wm)
		dev_priv->display.update_sprite_wm(plane, crtc,
						   sprite_width, sprite_height,
						   pixel_size, enabled, scaled);
}

4145 4146 4147 4148 4149 4150 4151 4152 4153
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4154 4155 4156 4157 4158
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4159 4160
	assert_spin_locked(&mchdev_lock);

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4178
static void ironlake_enable_drps(struct drm_device *dev)
4179 4180 4181 4182 4183
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4184 4185
	spin_lock_irq(&mchdev_lock);

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4206
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4207 4208
		PXVFREQ_PX_SHIFT;

4209 4210
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4211

4212 4213 4214
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4231
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4232
		DRM_ERROR("stuck trying to change perf mode\n");
4233
	mdelay(1);
4234 4235 4236

	ironlake_set_drps(dev, fstart);

4237 4238
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4239
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4240
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4241
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4242 4243

	spin_unlock_irq(&mchdev_lock);
4244 4245
}

4246
static void ironlake_disable_drps(struct drm_device *dev)
4247 4248
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4249 4250 4251 4252 4253
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4254 4255 4256 4257 4258 4259 4260 4261 4262

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4263
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4264
	mdelay(1);
4265 4266
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4267
	mdelay(1);
4268

4269
	spin_unlock_irq(&mchdev_lock);
4270 4271
}

4272 4273 4274 4275 4276
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4277
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4278
{
4279
	u32 limits;
4280

4281 4282 4283 4284 4285 4286
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4287 4288 4289 4290 4291 4292 4293 4294 4295
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4296 4297 4298 4299

	return limits;
}

4300 4301 4302
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4303 4304
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4305 4306 4307 4308

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4309
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4310 4311 4312 4313
			new_power = BETWEEN;
		break;

	case BETWEEN:
4314
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4315
			new_power = LOW_POWER;
4316
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4317 4318 4319 4320
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4321
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4322 4323 4324 4325
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4326
	if (val <= dev_priv->rps.min_freq_softlimit)
4327
		new_power = LOW_POWER;
4328
	if (val >= dev_priv->rps.max_freq_softlimit)
4329 4330 4331 4332 4333 4334 4335 4336
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4337 4338
		ei_up = 16000;
		threshold_up = 95;
4339 4340

		/* Downclock if less than 85% busy over 32ms */
4341 4342
		ei_down = 32000;
		threshold_down = 85;
4343 4344 4345 4346
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4347 4348
		ei_up = 13000;
		threshold_up = 90;
4349 4350

		/* Downclock if less than 75% busy over 32ms */
4351 4352
		ei_down = 32000;
		threshold_down = 75;
4353 4354 4355 4356
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4357 4358
		ei_up = 10000;
		threshold_up = 85;
4359 4360

		/* Downclock if less than 60% busy over 32ms */
4361 4362
		ei_down = 32000;
		threshold_down = 60;
4363 4364 4365
		break;
	}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4384
	dev_priv->rps.power = new_power;
4385 4386
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4387 4388 4389
	dev_priv->rps.last_adj = 0;
}

4390 4391 4392 4393 4394
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4395
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4396
	if (val < dev_priv->rps.max_freq_softlimit)
4397
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4398

4399 4400
	mask &= dev_priv->pm_rps_events;

4401
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4402 4403
}

4404 4405 4406
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4407
static void gen6_set_rps(struct drm_device *dev, u8 val)
4408 4409
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4410

4411 4412 4413 4414
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
		return;

4415
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4416 4417
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4418

C
Chris Wilson 已提交
4419 4420 4421 4422 4423
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4424

4425 4426 4427 4428
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4429 4430 4431 4432 4433 4434 4435
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4436
	}
4437 4438 4439 4440

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4441
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4442
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4443

4444 4445
	POSTING_READ(GEN6_RPNSWREQ);

4446
	dev_priv->rps.cur_freq = val;
4447
	trace_intel_gpu_freq_change(val * 50);
4448 4449
}

4450 4451 4452 4453 4454
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4455 4456
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4457 4458 4459 4460 4461

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4462 4463
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4464
	if (val != dev_priv->rps.cur_freq) {
4465
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4466 4467 4468
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4469 4470 4471 4472 4473

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4474
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4475 4476
 *
 * * If Gfx is Idle, then
4477 4478 4479
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4480 4481 4482
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4483
	u32 val = dev_priv->rps.idle_freq;
4484

4485
	if (dev_priv->rps.cur_freq <= val)
4486 4487
		return;

4488 4489 4490 4491 4492
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4493 4494
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4507 4508
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4509 4510
	struct drm_device *dev = dev_priv->dev;

4511
	mutex_lock(&dev_priv->rps.hw_lock);
4512
	if (dev_priv->rps.enabled) {
4513
		if (IS_VALLEYVIEW(dev))
4514
			vlv_set_rps_idle(dev_priv);
4515
		else
4516
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4517
		dev_priv->rps.last_adj = 0;
4518
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4519
	}
4520
	mutex_unlock(&dev_priv->rps.hw_lock);
4521

4522
	spin_lock(&dev_priv->rps.client_lock);
4523 4524
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4525
	spin_unlock(&dev_priv->rps.client_lock);
4526 4527
}

4528
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4529 4530
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4531
{
4532 4533 4534 4535 4536 4537 4538
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4539

4540 4541 4542
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4543
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4544 4545
		rps = NULL;

4546 4547 4548 4549 4550 4551 4552 4553
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4554

4555 4556 4557
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4558 4559
		} else
			dev_priv->rps.boosts++;
4560
	}
4561
	spin_unlock(&dev_priv->rps.client_lock);
4562 4563
}

4564
void intel_set_rps(struct drm_device *dev, u8 val)
4565
{
4566 4567 4568 4569
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4570 4571
}

Z
Zhe Wang 已提交
4572 4573 4574 4575 4576
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4577
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4578 4579
}

4580
static void gen6_disable_rps(struct drm_device *dev)
4581 4582 4583 4584
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4585 4586 4587
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4588 4589 4590 4591 4592 4593 4594
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4595 4596 4597 4598
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4599 4600
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4601
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4602

4603
	I915_WRITE(GEN6_RC_CONTROL, 0);
4604

4605
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4606 4607
}

B
Ben Widawsky 已提交
4608 4609
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4610 4611 4612 4613 4614 4615
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4616 4617 4618 4619 4620 4621 4622 4623 4624
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4625 4626
}

I
Imre Deak 已提交
4627
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4628
{
4629 4630
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4631 4632
		return 0;

4633
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4634 4635 4636
	if (enable_rc6 >= 0) {
		int mask;

4637
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4638 4639 4640 4641 4642 4643
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4644 4645
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4646 4647 4648

		return enable_rc6 & mask;
	}
4649

4650
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4651
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4652 4653

	return INTEL_RC6_ENABLE;
4654 4655
}

I
Imre Deak 已提交
4656 4657 4658 4659 4660
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4661
static void gen6_init_rps_frequencies(struct drm_device *dev)
4662
{
4663 4664 4665 4666 4667
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4668 4669
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4670
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4683 4684 4685
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4686
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4687
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4688 4689 4690 4691 4692
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4693 4694 4695 4696
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4697 4698
	}

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4709 4710
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4711 4712 4713 4714
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4715 4716 4717
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4718 4719
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4720 4721 4722 4723
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4724 4725
}

J
Jesse Barnes 已提交
4726
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4727
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4728 4729 4730 4731 4732
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4733 4734
	gen6_init_rps_frequencies(dev);

4735 4736 4737 4738 4739 4740
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4741 4742 4743 4744 4745 4746 4747 4748
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4749 4750
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4751 4752 4753 4754 4755
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4756 4757 4758 4759 4760

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4772
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4773 4774 4775 4776 4777

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4778 4779 4780 4781 4782 4783 4784

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
	if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
				 (INTEL_REVID(dev) <= SKL_REVID_E0)))
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4785 4786 4787 4788
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4789 4790 4791 4792

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4793 4794
	I915_WRITE(GEN6_RC_SLEEP, 0);

4795 4796 4797 4798
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4799 4800 4801 4802 4803
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
4804
	/* WaRsUseTimeoutMode */
S
Sagar Arun Kamble 已提交
4805
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4806 4807
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4808 4809 4810
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4811 4812
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4813 4814 4815
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4816
	}
Z
Zhe Wang 已提交
4817

4818 4819
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4820
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4821
	 */
4822 4823 4824 4825 4826 4827
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4828

4829
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4830 4831 4832

}

4833 4834 4835
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4836
	struct intel_engine_cs *ring;
4837
	uint32_t rc6_mask = 0;
4838 4839 4840 4841 4842 4843 4844
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4845
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4846 4847 4848 4849

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4850 4851
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4852 4853 4854 4855 4856 4857 4858 4859

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4860 4861 4862 4863
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4864 4865 4866 4867

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4868
	intel_print_rc6_info(dev, rc6_mask);
4869 4870 4871 4872 4873 4874 4875 4876
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4877 4878

	/* 4 Program defaults and thresholds for RPS*/
4879 4880 4881 4882
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4897 4898

	/* 5: Enable RPS */
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4909
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4910
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4911

4912
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4913 4914
}

4915
static void gen6_enable_rps(struct drm_device *dev)
4916
{
4917
	struct drm_i915_private *dev_priv = dev->dev_private;
4918
	struct intel_engine_cs *ring;
4919
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4920 4921
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4922
	int i, ret;
4923

4924
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4940
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4941

4942 4943
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4944

4945 4946 4947 4948 4949 4950 4951 4952 4953
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4954 4955
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4956 4957 4958

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4959
	if (IS_IVYBRIDGE(dev))
4960 4961 4962
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4963
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4964 4965
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4966
	/* Check if we are enabling RC6 */
4967 4968 4969 4970
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4971 4972 4973 4974
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4975

4976 4977 4978
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4979

B
Ben Widawsky 已提交
4980
	intel_print_rc6_info(dev, rc6_mask);
4981 4982 4983 4984 4985 4986

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4987 4988
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4989 4990
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4991
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4992
	if (ret)
B
Ben Widawsky 已提交
4993
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4994 4995 4996 4997

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4998
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4999
				 (pcu_mbox & 0xff) * 50);
5000
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5001 5002
	}

5003
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5004
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5005

5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5020
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5021 5022
}

5023
static void __gen6_update_ring_freq(struct drm_device *dev)
5024
{
5025
	struct drm_i915_private *dev_priv = dev->dev_private;
5026
	int min_freq = 15;
5027 5028
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5029
	unsigned int max_gpu_freq, min_gpu_freq;
5030
	int scaling_factor = 180;
5031
	struct cpufreq_policy *policy;
5032

5033
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5034

5035 5036 5037 5038 5039 5040 5041 5042 5043
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5044
		max_ia_freq = tsc_khz;
5045
	}
5046 5047 5048 5049

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5050
	min_ring_freq = I915_READ(DCLK) & 0xf;
5051 5052
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5053

5054 5055 5056 5057 5058 5059 5060 5061 5062
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5063 5064 5065 5066 5067
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5068 5069
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5070 5071
		unsigned int ia_freq = 0, ring_freq = 0;

5072 5073 5074 5075 5076 5077 5078
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5079 5080 5081
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5082
			ring_freq = mult_frac(gpu_freq, 5, 4);
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5099

B
Ben Widawsky 已提交
5100 5101
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5102 5103 5104
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5105 5106 5107
	}
}

5108 5109 5110 5111
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5112
	if (!HAS_CORE_RING_FREQ(dev))
5113 5114 5115 5116 5117 5118 5119
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5120
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5121
{
5122
	struct drm_device *dev = dev_priv->dev;
5123 5124
	u32 val, rp0;

5125
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5126

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5142
	}
5143 5144 5145

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5159 5160 5161 5162
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5163 5164 5165
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5166 5167 5168
	return rp1;
}

5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5180
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5181 5182 5183
{
	u32 val, rp0;

5184
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5197
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5198
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5199
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5200 5201 5202 5203 5204
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5205
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5206
{
5207
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5208 5209
}

5210 5211 5212 5213 5214 5215 5216 5217 5218
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5240
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5241 5242 5243 5244 5245 5246
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5247 5248

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5249 5250
}

5251 5252 5253 5254 5255 5256 5257 5258
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5259 5260
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5261 5262 5263 5264 5265 5266 5267 5268
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5269
								      I915_GTT_OFFSET_NONE,
5270 5271 5272 5273
								      pctx_size);
		goto out;
	}

5274 5275
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5294
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5295 5296 5297
	dev_priv->vlv_pctx = pctx;
}

5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5309 5310 5311
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5312
	u32 val;
5313 5314 5315 5316 5317

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5331
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5332

5333 5334 5335
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5336
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5337 5338 5339 5340
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5341
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5342 5343
			 dev_priv->rps.efficient_freq);

5344 5345
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5346
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5347 5348
			 dev_priv->rps.rp1_freq);

5349 5350
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5351
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5352 5353
			 dev_priv->rps.min_freq);

5354 5355
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5366 5367
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5368
	struct drm_i915_private *dev_priv = dev->dev_private;
5369
	u32 val;
5370

5371
	cherryview_setup_pctx(dev);
5372 5373 5374

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5375
	mutex_lock(&dev_priv->sb_lock);
5376
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5377
	mutex_unlock(&dev_priv->sb_lock);
5378

5379 5380 5381 5382
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5383
	default:
5384 5385 5386
		dev_priv->mem_freq = 1600;
		break;
	}
5387
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5388

5389 5390 5391
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5392
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5393 5394 5395 5396
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5397
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5398 5399
			 dev_priv->rps.efficient_freq);

5400 5401
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5402
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5403 5404
			 dev_priv->rps.rp1_freq);

5405 5406
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5407
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5408
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5409 5410
			 dev_priv->rps.min_freq);

5411 5412 5413 5414 5415 5416
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5417 5418
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5419 5420 5421 5422 5423 5424 5425 5426
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5427 5428
}

5429 5430 5431 5432 5433
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5434 5435 5436 5437
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5438
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5454
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5455

5456 5457 5458
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5459 5460 5461 5462 5463 5464 5465 5466 5467
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5468 5469
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5483
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5484 5485 5486

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5487
	/* 4 Program defaults and thresholds for RPS*/
5488
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5499
		   GEN6_RP_MEDIA_IS_GFX |
5500 5501 5502 5503
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5504 5505 5506 5507 5508 5509
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5510 5511
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5512 5513 5514
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5515
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5516 5517 5518 5519
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5520
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5521 5522 5523
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5524
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5525 5526 5527 5528
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5529
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5530 5531
}

5532 5533 5534
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5535
	struct intel_engine_cs *ring;
5536
	u32 gtfifodbg, val, rc6_mode = 0;
5537 5538 5539 5540
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5541 5542
	valleyview_check_pctx(dev_priv);

5543
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5544 5545
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5546 5547 5548
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5549
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5550
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5551

5552 5553 5554
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5555
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5578
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5579 5580

	/* allows RC6 residency counter to work */
5581
	I915_WRITE(VLV_COUNTER_CONTROL,
5582 5583
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5584 5585
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5586

5587
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5588
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5589 5590 5591

	intel_print_rc6_info(dev, rc6_mode);

5592
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5593

D
Deepak S 已提交
5594 5595 5596 5597 5598 5599
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5600
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5601

5602 5603 5604
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5605
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5606 5607
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5608
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5609
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5610
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5611
			 dev_priv->rps.cur_freq);
5612

5613
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5614
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5615
			 dev_priv->rps.efficient_freq);
5616

5617
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5618

5619
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5620 5621
}

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5651
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5652 5653 5654 5655 5656 5657
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5658 5659
	assert_spin_locked(&mchdev_lock);

5660
	diff1 = now - dev_priv->ips.last_time1;
5661 5662 5663 5664 5665 5666 5667

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5668
		return dev_priv->ips.chipset_power;
5669 5670 5671 5672 5673 5674 5675 5676

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5677 5678
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5679 5680
		diff += total_count;
	} else {
5681
		diff = total_count - dev_priv->ips.last_count1;
5682 5683 5684
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5685 5686
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5697 5698
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5699

5700
	dev_priv->ips.chipset_power = ret;
5701 5702 5703 5704

	return ret;
}

5705 5706
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5707
	struct drm_device *dev = dev_priv->dev;
5708 5709
	unsigned long val;

5710
	if (INTEL_INFO(dev)->gen != 5)
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5749
{
5750
	struct drm_device *dev = dev_priv->dev;
5751 5752 5753
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5754
	if (INTEL_INFO(dev)->is_mobile)
5755 5756 5757
		return vm > 0 ? vm : 0;

	return vd;
5758 5759
}

5760
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5761
{
5762
	u64 now, diff, diffms;
5763 5764
	u32 count;

5765
	assert_spin_locked(&mchdev_lock);
5766

5767 5768 5769
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5770 5771 5772 5773 5774 5775 5776

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5777 5778
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5779 5780
		diff += count;
	} else {
5781
		diff = count - dev_priv->ips.last_count2;
5782 5783
	}

5784 5785
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5786 5787 5788 5789

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5790
	dev_priv->ips.gfx_power = diff;
5791 5792
}

5793 5794
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5795 5796 5797
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5798 5799
		return;

5800
	spin_lock_irq(&mchdev_lock);
5801 5802 5803

	__i915_update_gfx_val(dev_priv);

5804
	spin_unlock_irq(&mchdev_lock);
5805 5806
}

5807
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5808 5809 5810 5811
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5812 5813
	assert_spin_locked(&mchdev_lock);

5814
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5834
	corr2 = (corr * dev_priv->ips.corr);
5835 5836 5837 5838

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5839
	__i915_update_gfx_val(dev_priv);
5840

5841
	return dev_priv->ips.gfx_power + state2;
5842 5843
}

5844 5845
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5846
	struct drm_device *dev = dev_priv->dev;
5847 5848
	unsigned long val;

5849
	if (INTEL_INFO(dev)->gen != 5)
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5872
	spin_lock_irq(&mchdev_lock);
5873 5874 5875 5876
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5877 5878
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5879 5880 5881 5882

	ret = chipset_val + graphics_val;

out_unlock:
5883
	spin_unlock_irq(&mchdev_lock);
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5899
	spin_lock_irq(&mchdev_lock);
5900 5901 5902 5903 5904 5905
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5906 5907
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5908 5909

out_unlock:
5910
	spin_unlock_irq(&mchdev_lock);
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5927
	spin_lock_irq(&mchdev_lock);
5928 5929 5930 5931 5932 5933
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5934 5935
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5936 5937

out_unlock:
5938
	spin_unlock_irq(&mchdev_lock);
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5952
	struct intel_engine_cs *ring;
5953
	bool ret = false;
5954
	int i;
5955

5956
	spin_lock_irq(&mchdev_lock);
5957 5958 5959 5960
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5961 5962
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5963 5964

out_unlock:
5965
	spin_unlock_irq(&mchdev_lock);
5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5982
	spin_lock_irq(&mchdev_lock);
5983 5984 5985 5986 5987 5988
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5989
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5990

5991
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5992 5993 5994
		ret = false;

out_unlock:
5995
	spin_unlock_irq(&mchdev_lock);
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6023 6024
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6025
	spin_lock_irq(&mchdev_lock);
6026
	i915_mch_dev = dev_priv;
6027
	spin_unlock_irq(&mchdev_lock);
6028 6029 6030 6031 6032 6033

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6034
	spin_lock_irq(&mchdev_lock);
6035
	i915_mch_dev = NULL;
6036
	spin_unlock_irq(&mchdev_lock);
6037
}
6038

6039
static void intel_init_emon(struct drm_device *dev)
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6057
		I915_WRITE(PEW(i), 0);
6058
	for (i = 0; i < 3; i++)
6059
		I915_WRITE(DEW(i), 0);
6060 6061 6062

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6063
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6084
		I915_WRITE(PXW(i), val);
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6100
		I915_WRITE(PXWL(i), 0);
6101 6102 6103 6104 6105 6106

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6107
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6108 6109
}

6110 6111
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6112 6113
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6114 6115 6116
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6117
		valleyview_init_gt_powersave(dev);
6118 6119 6120 6121
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6122 6123 6124
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6125
		valleyview_cleanup_gt_powersave(dev);
6126 6127
}

6128 6129 6130 6131 6132 6133
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6134
	gen6_disable_rps_interrupts(dev);
6135 6136
}

6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6149 6150 6151
	if (INTEL_INFO(dev)->gen < 6)
		return;

6152
	gen6_suspend_rps(dev);
6153 6154 6155

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6156 6157
}

6158 6159
void intel_disable_gt_powersave(struct drm_device *dev)
{
6160 6161
	struct drm_i915_private *dev_priv = dev->dev_private;

6162
	if (IS_IRONLAKE_M(dev)) {
6163
		ironlake_disable_drps(dev);
6164
	} else if (INTEL_INFO(dev)->gen >= 6) {
6165
		intel_suspend_gt_powersave(dev);
6166

6167
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6168 6169 6170
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6171 6172
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6173 6174 6175
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6176

6177
		dev_priv->rps.enabled = false;
6178
		mutex_unlock(&dev_priv->rps.hw_lock);
6179
	}
6180 6181
}

6182 6183 6184 6185 6186 6187 6188
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6189
	mutex_lock(&dev_priv->rps.hw_lock);
6190

6191
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6192

6193 6194 6195
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6196
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6197
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6198
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6199
		gen9_enable_rps(dev);
6200 6201
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6202 6203
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6204
		__gen6_update_ring_freq(dev);
6205 6206
	} else {
		gen6_enable_rps(dev);
6207
		__gen6_update_ring_freq(dev);
6208
	}
6209 6210 6211 6212 6213 6214 6215

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6216
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6217

6218
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6219

6220
	mutex_unlock(&dev_priv->rps.hw_lock);
6221 6222

	intel_runtime_pm_put(dev_priv);
6223 6224
}

6225 6226
void intel_enable_gt_powersave(struct drm_device *dev)
{
6227 6228
	struct drm_i915_private *dev_priv = dev->dev_private;

6229 6230 6231 6232
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6233
	if (IS_IRONLAKE_M(dev)) {
6234
		mutex_lock(&dev->struct_mutex);
6235 6236
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6237
		mutex_unlock(&dev->struct_mutex);
6238
	} else if (INTEL_INFO(dev)->gen >= 6) {
6239 6240 6241 6242
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6243 6244 6245 6246 6247 6248 6249
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6250
		 */
6251 6252 6253
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6254 6255 6256
	}
}

6257 6258 6259 6260
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6261 6262 6263 6264
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6265 6266 6267
	dev_priv->rps.enabled = false;
}

6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6280 6281 6282
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6283
	enum pipe pipe;
6284

6285
	for_each_pipe(dev_priv, pipe) {
6286 6287 6288
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6289 6290 6291

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6292 6293 6294
	}
}

6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6309
static void ironlake_init_clock_gating(struct drm_device *dev)
6310 6311
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6312
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6313

6314 6315 6316 6317
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6318 6319 6320
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6338
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6339 6340 6341
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6342 6343

	ilk_init_lp_watermarks(dev);
6344 6345 6346 6347 6348 6349 6350 6351 6352

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6353
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6354 6355 6356 6357 6358 6359 6360 6361
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6362 6363
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6364 6365 6366 6367 6368 6369
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6370

6371
	/* WaDisableRenderCachePipelinedFlush:ilk */
6372 6373
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6374

6375 6376 6377
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6378
	g4x_disable_trickle_feed(dev);
6379

6380 6381 6382 6383 6384 6385 6386
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6387
	uint32_t val;
6388 6389 6390 6391 6392 6393

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6394 6395 6396
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6397 6398
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6399 6400 6401
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6402
	for_each_pipe(dev_priv, pipe) {
6403 6404 6405
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6406
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6407
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6408 6409 6410
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6411 6412
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6413
	/* WADP0ClockGatingDisable */
6414
	for_each_pipe(dev_priv, pipe) {
6415 6416 6417
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6418 6419
}

6420 6421 6422 6423 6424 6425
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6426 6427 6428
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6429 6430
}

6431
static void gen6_init_clock_gating(struct drm_device *dev)
6432 6433
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6434
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6435

6436
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6437 6438 6439 6440 6441

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6442
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6443 6444 6445
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6446 6447 6448
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6449 6450 6451
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6452 6453 6454 6455
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6456 6457
	 */
	I915_WRITE(GEN6_GT_MODE,
6458
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6459

6460
	ilk_init_lp_watermarks(dev);
6461 6462

	I915_WRITE(CACHE_MODE_0,
6463
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6479
	 *
6480 6481
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6482 6483 6484 6485 6486
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6487
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6488 6489
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6490

6491 6492 6493 6494 6495 6496 6497 6498
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6499 6500 6501 6502 6503 6504 6505 6506
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6507 6508
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6509 6510 6511 6512 6513 6514 6515
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6516 6517 6518 6519
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6520

6521
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6522

6523
	cpt_init_clock_gating(dev);
6524 6525

	gen6_check_mch_setup(dev);
6526 6527 6528 6529 6530 6531
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6532
	/*
6533
	 * WaVSThreadDispatchOverride:ivb,vlv
6534 6535 6536 6537
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6538 6539 6540 6541 6542 6543 6544 6545
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6546 6547 6548 6549 6550 6551 6552 6553
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6554
	if (HAS_PCH_LPT_LP(dev))
6555 6556 6557
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6558 6559

	/* WADPOClockGatingDisable:hsw */
6560 6561
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6562
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6563 6564
}

6565 6566 6567 6568
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6569
	if (HAS_PCH_LPT_LP(dev)) {
6570 6571 6572 6573 6574 6575 6576
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6577
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6578 6579
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6580
	enum pipe pipe;
6581
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6582

6583
	ilk_init_lp_watermarks(dev);
6584

6585
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6586
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6587

6588
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6589 6590 6591
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6592
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6593
	for_each_pipe(dev_priv, pipe) {
6594
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6595
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6596
			   BDW_DPRS_MASK_VBLANK_SRD);
6597
	}
6598

6599 6600 6601 6602 6603
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6604

6605 6606
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6607 6608 6609 6610

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6611

6612 6613 6614 6615 6616 6617 6618 6619 6620
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6621 6622 6623 6624 6625 6626 6627
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6628
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6629 6630
}

6631 6632 6633 6634
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6635
	ilk_init_lp_watermarks(dev);
6636

6637 6638 6639 6640 6641
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6642
	/* This is required by WaCatErrorRejectionIssue:hsw */
6643 6644 6645 6646
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6647 6648 6649
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6650

6651 6652 6653
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6654 6655 6656 6657
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6658
	/* WaDisable4x2SubspanOptimization:hsw */
6659 6660
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6661

6662 6663 6664
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6665 6666 6667 6668
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6669 6670
	 */
	I915_WRITE(GEN7_GT_MODE,
6671
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6672

6673 6674 6675 6676
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6677
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6678 6679
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6680 6681 6682
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6683

6684
	lpt_init_clock_gating(dev);
6685 6686
}

6687
static void ivybridge_init_clock_gating(struct drm_device *dev)
6688 6689
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6690
	uint32_t snpcr;
6691

6692
	ilk_init_lp_watermarks(dev);
6693

6694
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6695

6696
	/* WaDisableEarlyCull:ivb */
6697 6698 6699
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6700
	/* WaDisableBackToBackFlipFix:ivb */
6701 6702 6703 6704
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6705
	/* WaDisablePSDDualDispatchEnable:ivb */
6706 6707 6708 6709
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6710 6711 6712
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6713
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6714 6715 6716
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6717
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6718 6719 6720
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6721 6722 6723 6724
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6725 6726 6727 6728
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6729 6730
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6731
	}
6732

6733
	/* WaForceL3Serialization:ivb */
6734 6735 6736
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6737
	/*
6738
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6739
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6740 6741
	 */
	I915_WRITE(GEN6_UCGCTL2,
6742
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6743

6744
	/* This is required by WaCatErrorRejectionIssue:ivb */
6745 6746 6747 6748
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6749
	g4x_disable_trickle_feed(dev);
6750 6751

	gen7_setup_fixed_func_scheduler(dev_priv);
6752

6753 6754 6755 6756 6757
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6758

6759
	/* WaDisable4x2SubspanOptimization:ivb */
6760 6761
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6762

6763 6764 6765
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6766 6767 6768 6769
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6770 6771
	 */
	I915_WRITE(GEN7_GT_MODE,
6772
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6773

6774 6775 6776 6777
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6778

6779 6780
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6781 6782

	gen6_check_mch_setup(dev);
6783 6784
}

6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6796
static void valleyview_init_clock_gating(struct drm_device *dev)
6797 6798 6799
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6800
	vlv_init_display_clock_gating(dev_priv);
6801

6802
	/* WaDisableEarlyCull:vlv */
6803 6804 6805
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6806
	/* WaDisableBackToBackFlipFix:vlv */
6807 6808 6809 6810
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6811
	/* WaPsdDispatchEnable:vlv */
6812
	/* WaDisablePSDDualDispatchEnable:vlv */
6813
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6814 6815
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6816

6817 6818 6819
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6820
	/* WaForceL3Serialization:vlv */
6821 6822 6823
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6824
	/* WaDisableDopClockGating:vlv */
6825 6826 6827
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6828
	/* This is required by WaCatErrorRejectionIssue:vlv */
6829 6830 6831 6832
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6833 6834
	gen7_setup_fixed_func_scheduler(dev_priv);

6835
	/*
6836
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6837
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6838 6839
	 */
	I915_WRITE(GEN6_UCGCTL2,
6840
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6841

6842 6843 6844 6845 6846
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6847

6848 6849 6850 6851
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6852 6853
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6854

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6866 6867 6868 6869 6870 6871
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6872
	/*
6873
	 * WaDisableVLVClockGating_VBIIssue:vlv
6874 6875 6876
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6877
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6878 6879
}

6880 6881 6882 6883
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6884
	vlv_init_display_clock_gating(dev_priv);
6885

6886 6887 6888 6889 6890
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6891 6892 6893 6894

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6895 6896 6897 6898

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6899 6900 6901 6902

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6903 6904 6905 6906 6907 6908

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6909 6910
}

6911
static void g4x_init_clock_gating(struct drm_device *dev)
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6927 6928 6929 6930

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6931

6932 6933 6934
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6935
	g4x_disable_trickle_feed(dev);
6936 6937
}

6938
static void crestline_init_clock_gating(struct drm_device *dev)
6939 6940 6941 6942 6943 6944 6945 6946
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6947 6948
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6949 6950 6951

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6952 6953
}

6954
static void broadwater_init_clock_gating(struct drm_device *dev)
6955 6956 6957 6958 6959 6960 6961 6962 6963
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6964 6965
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6966 6967 6968

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6969 6970
}

6971
static void gen3_init_clock_gating(struct drm_device *dev)
6972 6973 6974 6975 6976 6977 6978
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6979 6980 6981

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6982 6983 6984

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6985 6986

	/* interrupts should cause a wake up from C3 */
6987
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6988 6989 6990

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6991 6992 6993

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6994 6995
}

6996
static void i85x_init_clock_gating(struct drm_device *dev)
6997 6998 6999 7000
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7001 7002 7003 7004

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7005 7006 7007

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7008 7009
}

7010
static void i830_init_clock_gating(struct drm_device *dev)
7011 7012 7013 7014
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7015 7016 7017 7018

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7019 7020 7021 7022 7023 7024
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7025 7026
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7027 7028
}

7029 7030 7031 7032 7033 7034
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7035 7036 7037 7038 7039
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7040
	intel_fbc_init(dev_priv);
7041

7042 7043 7044 7045 7046 7047
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7048
	/* For FIFO watermark updates */
7049
	if (INTEL_INFO(dev)->gen >= 9) {
7050 7051
		skl_setup_wm_latency(dev);

7052 7053 7054
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
7055
		dev_priv->display.update_wm = skl_update_wm;
7056
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7057
	} else if (HAS_PCH_SPLIT(dev)) {
7058
		ilk_setup_wm_latency(dev);
7059

7060 7061 7062 7063 7064
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
7065
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7066 7067 7068 7069 7070 7071
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7072
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7073
		else if (IS_GEN6(dev))
7074
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7075
		else if (IS_IVYBRIDGE(dev))
7076
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7077
		else if (IS_HASWELL(dev))
7078
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7079
		else if (INTEL_INFO(dev)->gen == 8)
7080
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7081
	} else if (IS_CHERRYVIEW(dev)) {
7082 7083 7084
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7085 7086
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7087
	} else if (IS_VALLEYVIEW(dev)) {
7088 7089 7090
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7104
			intel_set_memory_cxsr(dev_priv, false);
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7122 7123 7124
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7125
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7126 7127
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7128
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7129 7130 7131 7132 7133 7134 7135 7136
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7137 7138 7139
	}
}

7140
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7141
{
7142
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7143 7144 7145 7146 7147 7148 7149

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7150
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7165
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7166
{
7167
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7187

7188
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7189
{
7190 7191 7192 7193 7194 7195 7196 7197
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7198 7199
	case 400:
		return 20;
7200 7201 7202
	default:
		return -1;
	}
7203
}
7204

7205 7206
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7207
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7208 7209 7210 7211 7212 7213

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7214 7215
}

7216
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7217
{
7218
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7219

7220 7221 7222
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7223

7224
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7225 7226
}

7227
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7228
{
7229
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7230

7231 7232 7233
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7234

7235
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7236 7237
}

7238
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7239
{
7240
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7241

7242 7243 7244
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7245

7246
	/* CHV needs even values */
7247
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7248 7249
}

7250
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7251
{
7252 7253 7254
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7255
		return chv_gpu_freq(dev_priv, val);
7256
	else if (IS_VALLEYVIEW(dev_priv->dev))
7257 7258 7259
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7260 7261
}

7262 7263
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7264 7265 7266
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7267
		return chv_freq_opcode(dev_priv, val);
7268
	else if (IS_VALLEYVIEW(dev_priv->dev))
7269 7270 7271 7272
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
7273

7274 7275
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7276
	struct drm_i915_gem_request *req;
7277 7278 7279 7280 7281
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7282
	struct drm_i915_gem_request *req = boost->req;
7283

7284 7285 7286
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7287

7288
	i915_gem_request_unreference__unlocked(req);
7289 7290 7291 7292
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7293
				       struct drm_i915_gem_request *req)
7294 7295 7296
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7297
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7298 7299
		return;

7300 7301 7302
	if (i915_gem_request_completed(req, true))
		return;

7303 7304 7305 7306
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7307 7308
	i915_gem_request_reference(req);
	boost->req = req;
7309 7310 7311 7312 7313

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7314
void intel_pm_setup(struct drm_device *dev)
7315 7316 7317
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7318
	mutex_init(&dev_priv->rps.hw_lock);
7319
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7320

7321 7322
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7323
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7324 7325
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7326

7327
	dev_priv->pm.suspended = false;
7328
}