intel_pm.c 206.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34
/**
35 36
 * DOC: RC6
 *
B
Ben Widawsky 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

57 58
static void bxt_init_clock_gating(struct drm_device *dev)
{
59 60
	struct drm_i915_private *dev_priv = dev->dev_private;

61 62 63 64
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

65 66
	/*
	 * FIXME:
67
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
68 69
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
70
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
71 72 73 74 75 76 77 78

	/*
	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
	 * to stay fully on.
	 */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
		I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
			   PWM1_GATING_DIS | PWM2_GATING_DIS);
79 80
}

81 82
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
83
	struct drm_i915_private *dev_priv = dev->dev_private;
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
122
	struct drm_i915_private *dev_priv = dev->dev_private;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

148
	dev_priv->ips.r_t = dev_priv->mem_freq;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
180
		dev_priv->ips.c_m = 0;
181
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
182
		dev_priv->ips.c_m = 1;
183
	} else {
184
		dev_priv->ips.c_m = 2;
185 186 187
	}
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

226
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

288 289 290
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

291
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
292
{
293 294
	struct drm_device *dev = dev_priv->dev;
	u32 val;
295

296
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
297
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
298
		POSTING_READ(FW_BLC_SELF_VLV);
299
		dev_priv->wm.vlv.cxsr = enable;
300 301
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
302
		POSTING_READ(FW_BLC_SELF);
303 304 305 306
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
307
		POSTING_READ(DSPFW3);
308 309 310 311
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
312
		POSTING_READ(FW_BLC_SELF);
313 314 315 316
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
317
		POSTING_READ(INSTPM);
318 319 320
	} else {
		return;
	}
321

322 323
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
324 325
}

326

327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
341
static const int pessimal_latency_ns = 5000;
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

398
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

414
static int i830_get_fifo_size(struct drm_device *dev, int plane)
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

431
static int i845_get_fifo_size(struct drm_device *dev, int plane)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
449 450 451 452 453
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
454 455
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
456 457 458 459 460
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
461 462
};
static const struct intel_watermark_params pineview_cursor_wm = {
463 464 465 466 467
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468 469
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
470 471 472 473 474
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475 476
};
static const struct intel_watermark_params g4x_wm_info = {
477 478 479 480 481
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
482 483
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
484 485 486 487 488
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
489 490
};
static const struct intel_watermark_params valleyview_wm_info = {
491 492 493 494 495
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
496 497
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
498 499 500 501 502
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
503 504
};
static const struct intel_watermark_params i965_cursor_wm_info = {
505 506 507 508 509
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
510 511
};
static const struct intel_watermark_params i945_wm_info = {
512 513 514 515 516
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
517 518
};
static const struct intel_watermark_params i915_wm_info = {
519 520 521 522 523
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
524
};
525
static const struct intel_watermark_params i830_a_wm_info = {
526 527 528 529 530
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
531
};
532 533 534 535 536 537 538
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
539
static const struct intel_watermark_params i845_wm_info = {
540 541 542 543 544
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
545 546 547 548 549 550
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
551
 * @cpp: bytes per pixel
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
567
					int fifo_size, int cpp,
568 569 570 571 572 573 574 575 576 577
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
578
	entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
579 580 581 582 583 584 585 586 587 588 589 590 591 592
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
593 594 595 596 597 598 599 600 601 602 603

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

604 605 606 607 608 609 610
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

611
	for_each_crtc(dev, crtc) {
612
		if (intel_crtc_active(crtc)) {
613 614 615 616 617 618 619 620 621
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

622
static void pineview_update_wm(struct drm_crtc *unused_crtc)
623
{
624
	struct drm_device *dev = unused_crtc->dev;
625 626 627 628 629 630 631 632 633 634
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
635
		intel_set_memory_cxsr(dev_priv, false);
636 637 638 639 640
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
641
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
642
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
643
		int clock = adjusted_mode->crtc_clock;
644 645 646 647

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
648
					cpp, latency->display_sr);
649 650
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
651
		reg |= FW_WM(wm, SR);
652 653 654 655 656 657
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
658
					cpp, latency->cursor_sr);
659 660
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
661
		reg |= FW_WM(wm, CURSOR_SR);
662 663 664 665 666
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
667
					cpp, latency->display_hpll_disable);
668 669
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
670
		reg |= FW_WM(wm, HPLL_SR);
671 672 673 674 675
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
676
					cpp, latency->cursor_hpll_disable);
677 678
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
679
		reg |= FW_WM(wm, HPLL_CURSOR);
680 681 682
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

683
		intel_set_memory_cxsr(dev_priv, true);
684
	} else {
685
		intel_set_memory_cxsr(dev_priv, false);
686 687 688 689 690 691 692 693 694 695 696 697 698
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
699
	const struct drm_display_mode *adjusted_mode;
700
	int htotal, hdisplay, clock, cpp;
701 702 703 704
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
705
	if (!intel_crtc_active(crtc)) {
706 707 708 709 710
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

711
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
712
	clock = adjusted_mode->crtc_clock;
713
	htotal = adjusted_mode->crtc_htotal;
714
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
715
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
716 717

	/* Use the small buffer method to calculate plane watermark */
718
	entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
719 720 721 722 723 724 725 726 727
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
728
	line_time_us = max(htotal * 1000 / clock, 1);
729
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
730
	entries = line_count * crtc->cursor->state->crtc_w * cpp;
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
785
	const struct drm_display_mode *adjusted_mode;
786
	int hdisplay, htotal, cpp, clock;
787 788 789 790 791 792 793 794 795 796 797
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
798
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
799
	clock = adjusted_mode->crtc_clock;
800
	htotal = adjusted_mode->crtc_htotal;
801
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
802
	cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
803

804
	line_time_us = max(htotal * 1000 / clock, 1);
805
	line_count = (latency_ns / line_time_us + 1000) / 1000;
806
	line_size = hdisplay * cpp;
807 808

	/* Use the minimum of the small and large buffer method for primary */
809
	small = ((clock * cpp / 1000) * latency_ns) / 1000;
810 811 812 813 814 815
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
816
	entries = line_count * cpp * crtc->cursor->state->crtc_w;
817 818 819 820 821 822 823 824
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

825 826 827
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

828 829 830 831 832 833 834 835 836 837 838 839
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

840
	I915_WRITE(DSPFW1,
841 842 843 844
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
845
	I915_WRITE(DSPFW2,
846 847 848
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
849
	I915_WRITE(DSPFW3,
850
		   FW_WM(wm->sr.cursor, CURSOR_SR));
851 852 853

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
854 855
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
856
		I915_WRITE(DSPFW8_CHV,
857 858
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
859
		I915_WRITE(DSPFW9_CHV,
860 861
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
862
		I915_WRITE(DSPHOWM,
863 864 865 866 867 868 869 870 871 872
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
873 874
	} else {
		I915_WRITE(DSPFW7,
875 876
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
877
		I915_WRITE(DSPHOWM,
878 879 880 881 882 883 884
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
885 886
	}

887 888 889 890 891 892
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

893
	POSTING_READ(DSPFW1);
894 895
}

896 897
#undef FW_WM_VLV

898 899 900 901 902 903
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

904 905 906 907
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
908
				   unsigned int cpp,
909 910 911 912 913
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
914
	ret = (ret + 1) * horiz_pixels * cpp;
915 916 917 918 919 920 921 922 923 924 925 926
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

927 928
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

929 930 931
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
932 933

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
934 935 936 937 938 939 940 941 942
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
943
	int clock, htotal, cpp, width, wm;
944 945 946 947 948 949 950

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

951
	cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
967
		wm = vlv_wm_method2(clock, htotal, width, cpp,
968 969 970 971 972 973
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1075
static void vlv_compute_wm(struct intel_crtc *crtc)
1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1085
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087 1088 1089

	wm_state->num_active_planes = 0;

1090
	vlv_compute_fifo(crtc);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
1147
					wm_state->wm[level].cursor;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1166
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167 1168 1169 1170 1171 1172 1173
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1264 1265 1266 1267 1268 1269
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1270
	wm->level = to_i915(dev)->wm.max_level;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1289 1290 1291
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1318
	vlv_compute_wm(intel_crtc);
1319 1320
	vlv_merge_wm(dev, &wm);

1321 1322 1323
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1324
		return;
1325
	}
1326 1327 1328 1329 1330 1331 1332 1333 1334

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1335
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336 1337
		intel_set_memory_cxsr(dev_priv, false);

1338 1339 1340
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1341 1342 1343 1344 1345 1346 1347 1348
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1349
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1361 1362
}

1363 1364
#define single_plane_enabled(mask) is_power_of_2(mask)

1365
static void g4x_update_wm(struct drm_crtc *crtc)
1366
{
1367
	struct drm_device *dev = crtc->dev;
1368 1369 1370 1371 1372
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1373
	bool cxsr_enabled;
1374

1375
	if (g4x_compute_wm0(dev, PIPE_A,
1376 1377
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1378
			    &planea_wm, &cursora_wm))
1379
		enabled |= 1 << PIPE_A;
1380

1381
	if (g4x_compute_wm0(dev, PIPE_B,
1382 1383
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1384
			    &planeb_wm, &cursorb_wm))
1385
		enabled |= 1 << PIPE_B;
1386 1387 1388 1389 1390 1391

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1392
			     &plane_sr, &cursor_sr)) {
1393
		cxsr_enabled = true;
1394
	} else {
1395
		cxsr_enabled = false;
1396
		intel_set_memory_cxsr(dev_priv, false);
1397 1398
		plane_sr = cursor_sr = 0;
	}
1399

1400 1401
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402 1403 1404 1405 1406
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1407 1408 1409 1410
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1411
	I915_WRITE(DSPFW2,
1412
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413
		   FW_WM(cursora_wm, CURSORA));
1414 1415
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1416
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417
		   FW_WM(cursor_sr, CURSOR_SR));
1418 1419 1420

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1421 1422
}

1423
static void i965_update_wm(struct drm_crtc *unused_crtc)
1424
{
1425
	struct drm_device *dev = unused_crtc->dev;
1426 1427 1428 1429
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1430
	bool cxsr_enabled;
1431 1432 1433 1434 1435 1436

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1437
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438
		int clock = adjusted_mode->crtc_clock;
1439
		int htotal = adjusted_mode->crtc_htotal;
1440
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442 1443 1444
		unsigned long line_time_us;
		int entries;

1445
		line_time_us = max(htotal * 1000 / clock, 1);
1446 1447 1448

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449
			cpp * hdisplay;
1450 1451 1452 1453 1454 1455 1456 1457 1458
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459
			cpp * crtc->cursor->state->crtc_w;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1471
		cxsr_enabled = true;
1472
	} else {
1473
		cxsr_enabled = false;
1474
		/* Turn off self refresh if both pipes are enabled */
1475
		intel_set_memory_cxsr(dev_priv, false);
1476 1477 1478 1479 1480 1481
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1482 1483 1484 1485 1486 1487
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1488
	/* update cursor SR watermark */
1489
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490 1491 1492

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1493 1494
}

1495 1496
#undef FW_WM

1497
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498
{
1499
	struct drm_device *dev = unused_crtc->dev;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1514
		wm_info = &i830_a_wm_info;
1515 1516 1517

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1518
	if (intel_crtc_active(crtc)) {
1519
		const struct drm_display_mode *adjusted_mode;
1520
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521 1522 1523
		if (IS_GEN2(dev))
			cpp = 4;

1524
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526
					       wm_info, fifo_size, cpp,
1527
					       pessimal_latency_ns);
1528
		enabled = crtc;
1529
	} else {
1530
		planea_wm = fifo_size - wm_info->guard_size;
1531 1532 1533 1534 1535 1536
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1537 1538 1539

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1540
	if (intel_crtc_active(crtc)) {
1541
		const struct drm_display_mode *adjusted_mode;
1542
		int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543 1544 1545
		if (IS_GEN2(dev))
			cpp = 4;

1546
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548
					       wm_info, fifo_size, cpp,
1549
					       pessimal_latency_ns);
1550 1551 1552 1553
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1554
	} else {
1555
		planeb_wm = fifo_size - wm_info->guard_size;
1556 1557 1558
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1559 1560 1561

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1562
	if (IS_I915GM(dev) && enabled) {
1563
		struct drm_i915_gem_object *obj;
1564

1565
		obj = intel_fb_obj(enabled->primary->state->fb);
1566 1567

		/* self-refresh seems busted with untiled */
1568
		if (obj->tiling_mode == I915_TILING_NONE)
1569 1570 1571
			enabled = NULL;
	}

1572 1573 1574 1575 1576 1577
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1578
	intel_set_memory_cxsr(dev_priv, false);
1579 1580 1581 1582 1583

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1584
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585
		int clock = adjusted_mode->crtc_clock;
1586
		int htotal = adjusted_mode->crtc_htotal;
1587
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588
		int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589 1590 1591
		unsigned long line_time_us;
		int entries;

1592
		line_time_us = max(htotal * 1000 / clock, 1);
1593 1594 1595

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596
			cpp * hdisplay;
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1623 1624
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1625 1626
}

1627
static void i845_update_wm(struct drm_crtc *unused_crtc)
1628
{
1629
	struct drm_device *dev = unused_crtc->dev;
1630 1631
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1632
	const struct drm_display_mode *adjusted_mode;
1633 1634 1635 1636 1637 1638 1639
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1640
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642
				       &i845_wm_info,
1643
				       dev_priv->display.get_fifo_size(dev, 0),
1644
				       4, pessimal_latency_ns);
1645 1646 1647 1648 1649 1650 1651 1652
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1653
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654
{
1655
	uint32_t pixel_rate;
1656

1657
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658 1659 1660 1661

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1662
	if (pipe_config->pch_pfit.enabled) {
1663
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664 1665 1666 1667
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1668 1669 1670 1671 1672 1673 1674 1675

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

1676 1677 1678
		if (WARN_ON(!pfit_w || !pfit_h))
			return pixel_rate;

1679 1680 1681 1682 1683 1684 1685
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1686
/* latency must be in 0.1us units. */
1687
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688 1689 1690
{
	uint64_t ret;

1691 1692 1693
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1694
	ret = (uint64_t) pixel_rate * cpp * latency;
1695 1696 1697 1698 1699
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1700
/* latency must be in 0.1us units. */
1701
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702
			       uint32_t horiz_pixels, uint8_t cpp,
1703 1704 1705 1706
			       uint32_t latency)
{
	uint32_t ret;

1707 1708
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;
1709 1710
	if (WARN_ON(!pipe_htotal))
		return UINT_MAX;
1711

1712
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713
	ret = (ret + 1) * horiz_pixels * cpp;
1714 1715 1716 1717
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1718
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719
			   uint8_t cpp)
1720
{
1721 1722 1723 1724 1725 1726
	/*
	 * Neither of these should be possible since this function shouldn't be
	 * called if the CRTC is off or the plane is invisible.  But let's be
	 * extra paranoid to avoid a potential divide-by-zero if we screw up
	 * elsewhere in the driver.
	 */
1727
	if (WARN_ON(!cpp))
1728 1729 1730 1731
		return 0;
	if (WARN_ON(!horiz_pixels))
		return 0;

1732
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733 1734
}

1735
struct ilk_wm_maximums {
1736 1737 1738 1739 1740 1741
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1742 1743 1744 1745
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1746
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747
				   const struct intel_plane_state *pstate,
1748 1749
				   uint32_t mem_value,
				   bool is_lp)
1750
{
1751 1752
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753 1754
	uint32_t method1, method2;

1755
	if (!cstate->base.active || !pstate->visible)
1756 1757
		return 0;

1758
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759 1760 1761 1762

	if (!is_lp)
		return method1;

1763 1764
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1765
				 drm_rect_width(&pstate->dst),
1766
				 cpp, mem_value);
1767 1768

	return min(method1, method2);
1769 1770
}

1771 1772 1773 1774
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1775
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776
				   const struct intel_plane_state *pstate,
1777 1778
				   uint32_t mem_value)
{
1779 1780
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781 1782
	uint32_t method1, method2;

1783
	if (!cstate->base.active || !pstate->visible)
1784 1785
		return 0;

1786
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787 1788
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1789
				 drm_rect_width(&pstate->dst),
1790
				 cpp, mem_value);
1791 1792 1793
	return min(method1, method2);
}

1794 1795 1796 1797
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1798
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799
				   const struct intel_plane_state *pstate,
1800 1801
				   uint32_t mem_value)
{
1802 1803 1804 1805 1806 1807 1808
	/*
	 * We treat the cursor plane as always-on for the purposes of watermark
	 * calculation.  Until we have two-stage watermark programming merged,
	 * this is necessary to avoid flickering.
	 */
	int cpp = 4;
	int width = pstate->visible ? pstate->base.crtc_w : 64;
1809

1810
	if (!cstate->base.active)
1811 1812
		return 0;

1813 1814
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1815
			      width, cpp, mem_value);
1816 1817
}

1818
/* Only for WM_LP. */
1819
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820
				   const struct intel_plane_state *pstate,
1821
				   uint32_t pri_val)
1822
{
1823 1824
	int cpp = pstate->base.fb ?
		drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825

1826
	if (!cstate->base.active || !pstate->visible)
1827 1828
		return 0;

1829
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830 1831
}

1832 1833
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1834 1835 1836
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1837 1838 1839 1840 1841
		return 768;
	else
		return 512;
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1876 1877 1878
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1879
				     const struct intel_wm_config *config,
1880 1881 1882 1883 1884 1885
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1886
	if (is_sprite && !config->sprites_enabled)
1887 1888 1889
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1890
	if (level == 0 || config->num_pipes_active > 1) {
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1902
	if (config->sprites_enabled) {
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1914
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915 1916 1917 1918
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919 1920
				      int level,
				      const struct intel_wm_config *config)
1921 1922
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1923
	if (level > 0 && config->num_pipes_active > 1)
1924 1925 1926
		return 64;

	/* otherwise just report max that registers can hold */
1927
	return ilk_cursor_wm_reg_max(dev, level);
1928 1929
}

1930
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931 1932 1933
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1934
				    struct ilk_wm_maximums *max)
1935
{
1936 1937 1938
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1939
	max->fbc = ilk_fbc_wm_reg_max(dev);
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1952
static bool ilk_validate_wm_level(int level,
1953
				  const struct ilk_wm_maximums *max,
1954
				  struct intel_wm_level *result)
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1993
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994
				 const struct intel_crtc *intel_crtc,
1995
				 int level,
1996
				 struct intel_crtc_state *cstate,
1997 1998 1999
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
2000
				 struct intel_wm_level *result)
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

2013 2014 2015 2016 2017
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018 2019 2020
	result->enable = true;
}

2021
static uint32_t
2022 2023
hsw_compute_linetime_wm(struct drm_device *dev,
			struct intel_crtc_state *cstate)
2024 2025
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2026 2027
	const struct drm_display_mode *adjusted_mode =
		&cstate->base.adjusted_mode;
2028
	u32 linetime, ips_linetime;
2029

2030 2031 2032 2033 2034
	if (!cstate->base.active)
		return 0;
	if (WARN_ON(adjusted_mode->crtc_clock == 0))
		return 0;
	if (WARN_ON(dev_priv->cdclk_freq == 0))
2035
		return 0;
2036

2037 2038 2039
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2040 2041 2042
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043
					 dev_priv->cdclk_freq);
2044

2045 2046
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2047 2048
}

2049
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050 2051 2052
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2053 2054
	if (IS_GEN9(dev)) {
		uint32_t val;
2055
		int ret, i;
2056
		int level, max_level = ilk_wm_max_level(dev);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2099
		/*
2100 2101
		 * WaWmMemoryReadLatency:skl
		 *
2102 2103 2104 2105 2106 2107 2108 2109
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2110 2111 2112 2113 2114
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2115 2116 2117 2118 2119
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2120 2121 2122
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2123

2124 2125
				break;
			}
2126
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127 2128 2129 2130 2131
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2132 2133 2134 2135
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2136 2137 2138 2139 2140 2141 2142
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143 2144 2145 2146 2147 2148 2149
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150 2151 2152
	}
}

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2171
int ilk_wm_max_level(const struct drm_device *dev)
2172 2173
{
	/* how many WM levels are we expecting */
2174
	if (INTEL_INFO(dev)->gen >= 9)
2175 2176
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177
		return 4;
2178
	else if (INTEL_INFO(dev)->gen >= 6)
2179
		return 3;
2180
	else
2181 2182
		return 2;
}
2183

2184 2185
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2186
				   const uint16_t wm[8])
2187 2188
{
	int level, max_level = ilk_wm_max_level(dev);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2199 2200 2201 2202 2203 2204 2205
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2206 2207 2208 2209 2210 2211 2212 2213
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2251
static void ilk_setup_wm_latency(struct drm_device *dev)
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264 2265 2266 2267

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268 2269 2270

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2271 2272
}

2273 2274 2275 2276 2277 2278 2279 2280
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2281
/* Compute new watermarks for the pipe */
2282 2283
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2284
{
2285 2286
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2287
	const struct drm_i915_private *dev_priv = dev->dev_private;
2288
	struct intel_crtc_state *cstate = NULL;
2289
	struct intel_plane *intel_plane;
2290 2291
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2292
	struct intel_plane_state *sprstate = NULL;
2293
	struct intel_plane_state *curstate = NULL;
2294
	int level, max_level = ilk_wm_max_level(dev);
2295 2296 2297 2298
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2299
	struct ilk_wm_maximums max;
2300

2301 2302 2303 2304 2305
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;
2306
	memset(pipe_wm, 0, sizeof(*pipe_wm));
2307

2308
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2320 2321
	}

2322 2323
	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
2324 2325 2326
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2327 2328 2329 2330
	pipe_wm->pipe_enabled = cstate->base.active;
	pipe_wm->sprites_enabled = config.sprites_enabled;
	pipe_wm->sprites_scaled = config.sprites_scaled;

2331
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2332
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333 2334 2335
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336
	if (config.sprites_scaled)
2337 2338
		max_level = 0;

2339 2340
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341

2342
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344

2345 2346 2347 2348 2349 2350
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

	/* At least LP0 must be valid */
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
		return -EINVAL;
2351 2352 2353 2354 2355 2356

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2357 2358
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
				     pristate, sprstate, curstate, &wm);
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2371
	return 0;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2383 2384
	ret_wm->enable = true;

2385
	for_each_intel_crtc(dev, intel_crtc) {
2386 2387 2388
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389 2390 2391 2392
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2393

2394 2395 2396 2397 2398
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2399
		if (!wm->enable)
2400
			ret_wm->enable = false;
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2413
			 const struct intel_wm_config *config,
2414
			 const struct ilk_wm_maximums *max,
2415 2416
			 struct intel_pipe_wm *merged)
{
2417
	struct drm_i915_private *dev_priv = dev->dev_private;
2418
	int level, max_level = ilk_wm_max_level(dev);
2419
	int last_enabled_level = max_level;
2420

2421 2422 2423 2424 2425
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2426 2427
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428 2429 2430 2431 2432 2433 2434

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2435 2436 2437 2438 2439
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2440 2441 2442 2443 2444 2445

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2446 2447
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2448 2449 2450
			wm->fbc_val = 0;
		}
	}
2451 2452 2453 2454 2455 2456 2457

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2458
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459
	    intel_fbc_is_active(dev_priv)) {
2460 2461 2462 2463 2464 2465
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2466 2467
}

2468 2469 2470 2471 2472 2473
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2474 2475 2476 2477 2478
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2479
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480 2481 2482 2483 2484
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2485
static void ilk_compute_wm_results(struct drm_device *dev,
2486
				   const struct intel_pipe_wm *merged,
2487
				   enum intel_ddb_partitioning partitioning,
2488
				   struct ilk_wm_values *results)
2489
{
2490 2491
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2492

2493
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2494
	results->partitioning = partitioning;
2495

2496
	/* LP1+ register values */
2497
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498
		const struct intel_wm_level *r;
2499

2500
		level = ilk_wm_lp_to_level(wm_lp, merged);
2501

2502
		r = &merged->wm[level];
2503

2504 2505 2506 2507 2508
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2509
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510 2511 2512
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2513 2514 2515
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2516 2517 2518 2519 2520 2521 2522
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2523 2524 2525 2526
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2527 2528 2529 2530 2531
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532
	}
2533

2534
	/* LP0 register values */
2535
	for_each_intel_crtc(dev, intel_crtc) {
2536 2537
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
2538
		enum pipe pipe = intel_crtc->pipe;
2539
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2540 2541 2542 2543

		if (WARN_ON(!r->enable))
			continue;

2544
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545

2546 2547 2548 2549
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2550 2551 2552
	}
}

2553 2554
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2555
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556 2557
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2558
{
2559 2560
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2561

2562 2563 2564 2565 2566
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2567 2568
	}

2569 2570
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571 2572 2573
			return r2;
		else
			return r1;
2574
	} else if (level1 > level2) {
2575 2576 2577 2578 2579 2580
		return r1;
	} else {
		return r2;
	}
}

2581 2582 2583 2584 2585 2586 2587 2588
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2589
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590 2591
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2592 2593 2594 2595 2596
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2597
	for_each_pipe(dev_priv, pipe) {
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2641 2642
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2643
{
2644
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645
	bool changed = false;
2646

2647 2648 2649
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650
		changed = true;
2651 2652 2653 2654
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655
		changed = true;
2656 2657 2658 2659
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660
		changed = true;
2661
	}
2662

2663 2664 2665 2666
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2667

2668 2669 2670 2671 2672 2673 2674
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2675 2676
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2677 2678
{
	struct drm_device *dev = dev_priv->dev;
2679
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680 2681 2682
	unsigned int dirty;
	uint32_t val;

2683
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684 2685 2686 2687 2688
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2689
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694 2695
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2696
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701 2702
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2703
	if (dirty & WM_DIRTY_DDB) {
2704
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2719 2720
	}

2721
	if (dirty & WM_DIRTY_FBC) {
2722 2723 2724 2725 2726 2727 2728 2729
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2730 2731 2732 2733 2734
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2735 2736 2737 2738 2739
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2740

2741
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747 2748

	dev_priv->wm.hw = *results;
2749 2750
}

2751
static bool ilk_disable_lp_wm(struct drm_device *dev)
2752 2753 2754 2755 2756 2757
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2758 2759 2760 2761 2762 2763
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2764
#define BXT_DDB_SIZE		512
2765

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2788 2789
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790
				   const struct intel_crtc_state *cstate,
2791 2792 2793
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2794
	struct drm_crtc *for_crtc = cstate->base.crtc;
2795 2796 2797 2798
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2799
	if (!cstate->base.active) {
2800 2801 2802 2803 2804
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2805 2806 2807 2808
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2809 2810 2811 2812 2813

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2814
		if (!to_intel_crtc(crtc)->active)
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825
	alloc->end = alloc->start + pipe_size;
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2836 2837 2838 2839
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2840 2841
	if (entry->end)
		entry->end += 1;
2842 2843
}

2844 2845
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2846 2847 2848 2849 2850
{
	enum pipe pipe;
	int plane;
	u32 val;

2851 2852
	memset(ddb, 0, sizeof(*ddb));

2853
	for_each_pipe(dev_priv, pipe) {
2854 2855 2856
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
			continue;

2857
		for_each_plane(dev_priv, pipe, plane) {
2858 2859 2860 2861 2862 2863
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2864 2865
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2866 2867 2868
	}
}

2869
static unsigned int
2870 2871 2872
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2873
{
2874 2875
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2876 2877

	/* for planar format */
2878
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2879
		if (y)  /* y-plane data rate */
2880 2881 2882
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2883
		else    /* uv-plane data rate */
2884 2885 2886
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2887 2888 2889
	}

	/* for packed formats */
2890 2891 2892
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2893 2894 2895 2896 2897 2898 2899 2900
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2901
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2902
{
2903 2904 2905
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2906 2907
	unsigned int total_data_rate = 0;

2908 2909
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2910

2911
		if (pstate->fb == NULL)
2912 2913
			continue;

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2927 2928 2929 2930 2931 2932
	}

	return total_data_rate;
}

static void
2933
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2934 2935
		      struct skl_ddb_allocation *ddb /* out */)
{
2936
	struct drm_crtc *crtc = cstate->base.crtc;
2937
	struct drm_device *dev = crtc->dev;
2938 2939
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_wm_config *config = &dev_priv->wm.config;
2940
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941
	struct intel_plane *intel_plane;
2942
	enum pipe pipe = intel_crtc->pipe;
2943
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2944
	uint16_t alloc_size, start, cursor_blocks;
2945
	uint16_t minimum[I915_MAX_PLANES];
2946
	uint16_t y_minimum[I915_MAX_PLANES];
2947 2948
	unsigned int total_data_rate;

2949
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2950
	alloc_size = skl_ddb_entry_size(alloc);
2951 2952
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2953 2954
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2955 2956 2957 2958
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2959 2960
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2961 2962

	alloc_size -= cursor_blocks;
2963
	alloc->end -= cursor_blocks;
2964

2965
	/* 1. Allocate the mininum required blocks for each active plane */
2966 2967 2968 2969
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
2970

2971 2972 2973
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2974 2975
			continue;

2976 2977 2978 2979
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
2980 2981
	}

2982
	/*
2983 2984
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2985 2986 2987
	 *
	 * FIXME: we may not allocate every single block here.
	 */
2988
	total_data_rate = skl_get_total_relative_data_rate(cstate);
2989

2990
	start = alloc->start;
2991 2992 2993
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
2994 2995
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
2996
		int id = skl_wm_plane_id(intel_plane);
2997

2998 2999 3000
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
3001 3002
			continue;

3003
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3004 3005

		/*
3006
		 * allocation for (packed formats) or (uv-plane part of planar format):
3007 3008 3009
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
3010
		plane_blocks = minimum[id];
3011 3012
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
3013

3014 3015
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3016 3017

		start += plane_blocks;
3018 3019 3020 3021

		/*
		 * allocation for y_plane part of planar format:
		 */
3022 3023 3024 3025 3026
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3027 3028 3029
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3030 3031
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3032 3033 3034 3035

			start += y_plane_blocks;
		}

3036 3037 3038 3039
	}

}

3040
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3041 3042
{
	/* TODO: Take into account the scalers once we support them */
3043
	return config->base.adjusted_mode.crtc_clock;
3044 3045 3046 3047
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3048
 * for the read latency) and cpp should always be <= 8, so that
3049 3050 3051
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
3052
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3053 3054 3055 3056 3057 3058
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3059
	wm_intermediate_val = latency * pixel_rate * cpp / 512;
3060 3061 3062 3063 3064 3065
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3066
			       uint32_t horiz_pixels, uint8_t cpp,
3067
			       uint64_t tiling, uint32_t latency)
3068
{
3069 3070 3071
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3072 3073 3074 3075

	if (latency == 0)
		return UINT_MAX;

3076
	plane_bytes_per_line = horiz_pixels * cpp;
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3087 3088
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3089
				plane_blocks_per_line;
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;

3101 3102 3103 3104 3105
	/*
	 * If ddb allocation of pipes changed, it may require recalculation of
	 * watermarks
	 */
	if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3106 3107 3108 3109 3110
		return true;

	return false;
}

3111
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3112 3113
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3114
				 uint16_t ddb_allocation,
3115
				 int level,
3116 3117
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3118
{
3119 3120
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3121 3122 3123 3124 3125
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3126
	uint8_t cpp;
3127

3128
	if (latency == 0 || !cstate->base.active || !fb)
3129 3130
		return false;

3131
	cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3132
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3133
				 cpp, latency);
3134 3135 3136
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3137
				 cpp, fb->modifier[0],
3138
				 latency);
3139

3140
	plane_bytes_per_line = cstate->pipe_src_w * cpp;
3141
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3142

3143 3144
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3145 3146
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3147
		if (intel_rotation_90_or_270(plane->state->rotation)) {
3148
			int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3149 3150 3151
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

3152
			switch (cpp) {
3153 3154 3155 3156 3157 3158 3159 3160
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3161
			}
3162 3163
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3164 3165 3166 3167 3168 3169 3170
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3171

3172 3173
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3174

3175
	if (level >= 1 && level <= 7) {
3176 3177
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3178 3179 3180 3181
			res_lines += 4;
		else
			res_blocks++;
	}
3182

3183
	if (res_blocks >= ddb_allocation || res_lines > 31)
3184 3185 3186 3187
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3188 3189 3190 3191 3192 3193

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3194
				 struct intel_crtc_state *cstate,
3195 3196 3197
				 int level,
				 struct skl_wm_level *result)
{
3198 3199 3200
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3201
	uint16_t ddb_blocks;
3202 3203 3204 3205
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3206 3207 3208

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3209
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3210 3211
						cstate,
						intel_plane,
3212
						ddb_blocks,
3213
						level,
3214 3215 3216 3217 3218
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3219
static uint32_t
3220
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3221
{
3222
	if (!cstate->base.active)
3223 3224
		return 0;

3225
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3226
		return 0;
3227

3228 3229
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3230 3231
}

3232
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3233
				      struct skl_wm_level *trans_wm /* out */)
3234
{
3235
	struct drm_crtc *crtc = cstate->base.crtc;
3236
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3237
	struct intel_plane *intel_plane;
3238

3239
	if (!cstate->base.active)
3240
		return;
3241 3242

	/* Until we know more, just disable transition WMs */
3243 3244 3245
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3246
		trans_wm->plane_en[i] = false;
3247
	}
3248 3249
}

3250
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3251 3252 3253
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3254
	struct drm_device *dev = cstate->base.crtc->dev;
3255 3256 3257 3258
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3259 3260
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3261
	}
3262
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3263

3264
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3265 3266 3267 3268 3269 3270 3271 3272 3273
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3274 3275
	uint32_t temp;
	int i;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3292 3293
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3294

3295
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3296 3297
			temp |= PLANE_WM_EN;

3298
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3299 3300 3301

	}

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3314 3315 3316
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3317 3318
		temp |= PLANE_WM_EN;

3319
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3320

3321 3322 3323
	r->wm_linetime[pipe] = p_wm->linetime;
}

3324 3325
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
				i915_reg_t reg,
3326 3327 3328 3329 3330 3331 3332 3333
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3334 3335 3336 3337 3338 3339
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

3340
	for_each_intel_crtc(dev, crtc) {
3341 3342 3343
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3344 3345
		if (!new->dirty[pipe])
			continue;
3346

3347
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3348

3349 3350 3351 3352 3353
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3354
				   new->plane[pipe][PLANE_CURSOR][level]);
3355
		}
3356 3357 3358
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3359 3360
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3361

3362
		for (i = 0; i < intel_num_planes(crtc); i++) {
3363 3364 3365
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3366 3367 3368 3369
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3370 3371

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3372
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3373 3374 3375
	}
}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3400 3401
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3402 3403 3404
{
	int plane;

3405 3406
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3407
	for_each_plane(dev_priv, pipe, plane) {
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3434
	bool reallocated[I915_MAX_PIPES] = {};
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3457
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3482
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3483
			intel_wait_for_vblank(dev, pipe);
3484
			reallocated[pipe] = true;
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3507
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3508 3509 3510
	}
}

3511 3512 3513 3514 3515
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3517

3518
	skl_allocate_pipe_ddb(cstate, ddb);
3519
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3520

3521
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3522 3523
		return false;

3524
	intel_crtc->wm.active.skl = *pipe_wm;
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
3549
	for_each_intel_crtc(dev, intel_crtc) {
3550 3551 3552 3553 3554 3555 3556 3557 3558
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3559
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3560 3561 3562 3563 3564 3565 3566 3567 3568
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3569
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3570 3571 3572 3573
		r->dirty[intel_crtc->pipe] = true;
	}
}

3574 3575 3576 3577 3578 3579 3580
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3581
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3582 3583 3584 3585 3586 3587 3588

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3589 3590
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3591 3592 3593

}

3594 3595 3596 3597 3598 3599
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3600 3601
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3602

3603 3604 3605 3606 3607

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3608

3609
	if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3610 3611
		return;

3612
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3613 3614
	results->dirty[intel_crtc->pipe] = true;

3615
	skl_update_other_pipe_wm(dev, crtc, results);
3616
	skl_write_wm_values(dev_priv, results);
3617
	skl_flush_wm_values(dev_priv, results);
3618 3619 3620

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3621 3622
}

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, crtc) {
		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

3641
static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3642
{
3643 3644 3645
	struct drm_crtc *crtc = cstate->base.crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
3646
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3647
	struct ilk_wm_maximums max;
3648
	struct intel_wm_config config = {};
3649
	struct ilk_wm_values results = {};
3650
	enum intel_ddb_partitioning partitioning;
3651

3652 3653 3654 3655
	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3656 3657

	/* 5/6 split only in single pipe config on IVB+ */
3658
	if (INTEL_INFO(dev)->gen >= 7 &&
3659 3660 3661
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3662

3663
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3664
	} else {
3665
		best_lp_wm = &lp_wm_1_2;
3666 3667
	}

3668
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3669
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3670

3671
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3672

3673
	ilk_write_wm_values(dev_priv, &results);
3674 3675
}

3676
static void ilk_update_wm(struct drm_crtc *crtc)
3677
{
3678 3679
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3680

3681
	WARN_ON(cstate->base.active != intel_crtc->active);
3682

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (cstate->disable_lp_wm) {
		ilk_disable_lp_wm(crtc->dev);
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3693
	}
3694 3695 3696 3697

	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;

	ilk_program_watermarks(cstate);
3698 3699
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3718 3719
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3720
					val & PLANE_WM_BLOCKS_MASK;
3721
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3734 3735
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3736
					val & PLANE_WM_BLOCKS_MASK;
3737
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750 3751
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3764
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3765 3766 3767 3768
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3769
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3770

3771
	if (!intel_crtc->active)
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3784
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3785 3786 3787 3788 3789 3790 3791 3792
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3793
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3794
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3795 3796

	intel_crtc->wm.active.skl = *active;
3797 3798 3799 3800
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3801 3802
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3803 3804
	struct drm_crtc *crtc;

3805
	skl_ddb_get_hw_state(dev_priv, ddb);
3806 3807 3808 3809
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3810 3811 3812 3813
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3814
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3815
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3816 3817
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3818
	enum pipe pipe = intel_crtc->pipe;
3819
	static const i915_reg_t wm0_pipe_reg[] = {
3820 3821 3822 3823 3824 3825
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3826
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3827
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3828

3829
	active->pipe_enabled = intel_crtc->active;
3830 3831

	if (active->pipe_enabled) {
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3856 3857

	intel_crtc->wm.active.ilk = *active;
3858 3859
}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

3977 3978 3979 3980 3981 3982 3983 3984 3985
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
3986
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

4013 4014 4015
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4016
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4017 4018
	struct drm_crtc *crtc;

4019
	for_each_crtc(dev, crtc)
4020 4021 4022 4023 4024 4025 4026
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4027 4028 4029 4030
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4031

4032
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4033 4034 4035 4036 4037
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4038 4039 4040 4041 4042

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4075
void intel_update_watermarks(struct drm_crtc *crtc)
4076
{
4077
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4078 4079

	if (dev_priv->display.update_wm)
4080
		dev_priv->display.update_wm(crtc);
4081 4082
}

4083
/*
4084 4085 4086 4087 4088 4089 4090 4091
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4092 4093 4094 4095 4096
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4097 4098
	assert_spin_locked(&mchdev_lock);

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4116
static void ironlake_enable_drps(struct drm_device *dev)
4117 4118 4119 4120 4121
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4122 4123
	spin_lock_irq(&mchdev_lock);

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4144
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4145 4146
		PXVFREQ_PX_SHIFT;

4147 4148
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4149

4150 4151 4152
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4169
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4170
		DRM_ERROR("stuck trying to change perf mode\n");
4171
	mdelay(1);
4172 4173 4174

	ironlake_set_drps(dev, fstart);

4175 4176
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4177
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4178
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4179
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4180 4181

	spin_unlock_irq(&mchdev_lock);
4182 4183
}

4184
static void ironlake_disable_drps(struct drm_device *dev)
4185 4186
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4187 4188 4189 4190 4191
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4192 4193 4194 4195 4196 4197 4198 4199 4200

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4201
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4202
	mdelay(1);
4203 4204
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4205
	mdelay(1);
4206

4207
	spin_unlock_irq(&mchdev_lock);
4208 4209
}

4210 4211 4212 4213 4214
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4215
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4216
{
4217
	u32 limits;
4218

4219 4220 4221 4222 4223 4224
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4225 4226 4227 4228 4229 4230 4231 4232 4233
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4234 4235 4236 4237

	return limits;
}

4238 4239 4240
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4241 4242
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4243 4244 4245 4246

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4247
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4248 4249 4250 4251
			new_power = BETWEEN;
		break;

	case BETWEEN:
4252
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4253
			new_power = LOW_POWER;
4254
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4255 4256 4257 4258
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4259
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4260 4261 4262 4263
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4264
	if (val <= dev_priv->rps.min_freq_softlimit)
4265
		new_power = LOW_POWER;
4266
	if (val >= dev_priv->rps.max_freq_softlimit)
4267 4268 4269 4270 4271 4272 4273 4274
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4275 4276
		ei_up = 16000;
		threshold_up = 95;
4277 4278

		/* Downclock if less than 85% busy over 32ms */
4279 4280
		ei_down = 32000;
		threshold_down = 85;
4281 4282 4283 4284
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4285 4286
		ei_up = 13000;
		threshold_up = 90;
4287 4288

		/* Downclock if less than 75% busy over 32ms */
4289 4290
		ei_down = 32000;
		threshold_down = 75;
4291 4292 4293 4294
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4295 4296
		ei_up = 10000;
		threshold_up = 85;
4297 4298

		/* Downclock if less than 60% busy over 32ms */
4299 4300
		ei_down = 32000;
		threshold_down = 60;
4301 4302 4303
		break;
	}

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4322
	dev_priv->rps.power = new_power;
4323 4324
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4325 4326 4327
	dev_priv->rps.last_adj = 0;
}

4328 4329 4330 4331 4332
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4333
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4334
	if (val < dev_priv->rps.max_freq_softlimit)
4335
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4336

4337 4338
	mask &= dev_priv->pm_rps_events;

4339
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4340 4341
}

4342 4343 4344
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4345
static void gen6_set_rps(struct drm_device *dev, u8 val)
4346 4347
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4348

4349
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4350
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4351 4352
		return;

4353
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4354 4355
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4356

C
Chris Wilson 已提交
4357 4358 4359 4360 4361
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4362

4363 4364 4365 4366
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4367 4368 4369 4370 4371 4372 4373
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4374
	}
4375 4376 4377 4378

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4379
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4380
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4381

4382 4383
	POSTING_READ(GEN6_RPNSWREQ);

4384
	dev_priv->rps.cur_freq = val;
4385
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4386 4387
}

4388 4389 4390 4391 4392
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4393 4394
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4395 4396 4397 4398 4399

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4400 4401
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4402
	if (val != dev_priv->rps.cur_freq) {
4403
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4404 4405 4406
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4407 4408 4409 4410 4411

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4412
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4413 4414
 *
 * * If Gfx is Idle, then
4415 4416 4417
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4418 4419 4420
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4421
	u32 val = dev_priv->rps.idle_freq;
4422

4423
	if (dev_priv->rps.cur_freq <= val)
4424 4425
		return;

4426 4427 4428 4429 4430
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4431 4432
}

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4445 4446
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4447 4448
	struct drm_device *dev = dev_priv->dev;

4449
	mutex_lock(&dev_priv->rps.hw_lock);
4450
	if (dev_priv->rps.enabled) {
4451
		if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4452
			vlv_set_rps_idle(dev_priv);
4453
		else
4454
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4455
		dev_priv->rps.last_adj = 0;
4456
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4457
	}
4458
	mutex_unlock(&dev_priv->rps.hw_lock);
4459

4460
	spin_lock(&dev_priv->rps.client_lock);
4461 4462
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4463
	spin_unlock(&dev_priv->rps.client_lock);
4464 4465
}

4466
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4467 4468
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4469
{
4470 4471 4472 4473 4474 4475 4476
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4477

4478 4479 4480
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4481
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4482 4483
		rps = NULL;

4484 4485 4486 4487 4488 4489 4490 4491
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4492

4493 4494 4495
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4496 4497
		} else
			dev_priv->rps.boosts++;
4498
	}
4499
	spin_unlock(&dev_priv->rps.client_lock);
4500 4501
}

4502
void intel_set_rps(struct drm_device *dev, u8 val)
4503
{
4504
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4505 4506 4507
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4508 4509
}

Z
Zhe Wang 已提交
4510 4511 4512 4513 4514
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4515
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4516 4517
}

4518
static void gen6_disable_rps(struct drm_device *dev)
4519 4520 4521 4522
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4523 4524 4525
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4526 4527 4528 4529 4530 4531 4532
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4533 4534 4535 4536
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4537 4538
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4539
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4540

4541
	I915_WRITE(GEN6_RC_CONTROL, 0);
4542

4543
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4544 4545
}

B
Ben Widawsky 已提交
4546 4547
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4548
	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4549 4550 4551 4552 4553
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4554 4555
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4556 4557 4558
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
			      onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4559 4560 4561

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4562
			      onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
B
Ben Widawsky 已提交
4563 4564
}

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool enable_rc6 = true;
	unsigned long rc6_ctx_base;

	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
		DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
		enable_rc6 = false;
	}

	/*
	 * The exact context size is not known for BXT, so assume a page size
	 * for this check.
	 */
	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
	if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
	      (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
					dev_priv->gtt.stolen_reserved_size))) {
		DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
		enable_rc6 = false;
	}

	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
		DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
		enable_rc6 = false;
	}

	if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
					    GEN6_RC_CTL_HW_ENABLE)) &&
	    ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
	     !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
		DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
		enable_rc6 = false;
	}

	return enable_rc6;
}

int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4608
{
4609 4610
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4611 4612
		return 0;

4613 4614 4615 4616 4617 4618 4619 4620
	if (!enable_rc6)
		return 0;

	if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
		DRM_INFO("RC6 disabled by BIOS\n");
		return 0;
	}

4621
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4622 4623 4624
	if (enable_rc6 >= 0) {
		int mask;

4625
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4626 4627 4628 4629 4630 4631
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4632 4633
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4634 4635 4636

		return enable_rc6 & mask;
	}
4637

4638
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4639
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4640 4641

	return INTEL_RC6_ENABLE;
4642 4643
}

I
Imre Deak 已提交
4644 4645 4646 4647 4648
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4649
static void gen6_init_rps_frequencies(struct drm_device *dev)
4650
{
4651 4652 4653 4654 4655
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4656 4657
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4658
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4671 4672 4673
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4674
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4675 4676
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
	    IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4677 4678 4679 4680 4681
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4682 4683 4684 4685
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4686 4687
	}

4688
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4689 4690 4691 4692 4693 4694 4695 4696 4697
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4698 4699
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4700 4701 4702 4703
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4704 4705 4706
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4707 4708
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4709 4710 4711 4712
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4713 4714
}

J
Jesse Barnes 已提交
4715
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4716
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4717 4718 4719 4720 4721
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4722 4723
	gen6_init_rps_frequencies(dev);

4724
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4725
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4726 4727 4728 4729
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4730 4731 4732 4733 4734 4735 4736 4737
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4738 4739
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4740 4741 4742 4743 4744
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4745 4746 4747 4748 4749

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4761
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4762 4763 4764 4765 4766

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4767 4768

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4769
	if (IS_SKYLAKE(dev))
4770 4771 4772
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4773 4774 4775 4776
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4777 4778 4779 4780

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4781 4782
	I915_WRITE(GEN6_RC_SLEEP, 0);

4783 4784 4785 4786
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4787 4788 4789
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4790
	DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4791
	/* WaRsUseTimeoutMode */
4792
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
4793
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4794
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4795 4796 4797
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4798 4799
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4800 4801 4802
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4803
	}
Z
Zhe Wang 已提交
4804

4805 4806
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4807
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4808
	 */
4809
	if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4810 4811 4812 4813
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4814

4815
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4816 4817 4818

}

4819 4820 4821
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4822
	struct intel_engine_cs *ring;
4823
	uint32_t rc6_mask = 0;
4824 4825 4826 4827 4828 4829 4830
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4831
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4832 4833 4834 4835

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4836 4837
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4838 4839 4840 4841 4842 4843 4844 4845

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4846 4847 4848 4849
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4850 4851 4852 4853

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4854
	intel_print_rc6_info(dev, rc6_mask);
4855 4856 4857 4858 4859 4860 4861 4862
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4863 4864

	/* 4 Program defaults and thresholds for RPS*/
4865 4866 4867 4868
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4883 4884

	/* 5: Enable RPS */
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4895
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4896
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4897

4898
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4899 4900
}

4901
static void gen6_enable_rps(struct drm_device *dev)
4902
{
4903
	struct drm_i915_private *dev_priv = dev->dev_private;
4904
	struct intel_engine_cs *ring;
4905
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4906 4907
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4908
	int i, ret;
4909

4910
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4911

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4926
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4927

4928 4929
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4930

4931 4932 4933 4934 4935 4936 4937 4938 4939
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4940 4941
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4942 4943 4944

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4945
	if (IS_IVYBRIDGE(dev))
4946 4947 4948
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4949
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4950 4951
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4952
	/* Check if we are enabling RC6 */
4953 4954 4955 4956
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4957 4958 4959 4960
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4961

4962 4963 4964
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4965

B
Ben Widawsky 已提交
4966
	intel_print_rc6_info(dev, rc6_mask);
4967 4968 4969 4970 4971 4972

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4973 4974
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4975 4976
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4977
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4978
	if (ret)
B
Ben Widawsky 已提交
4979
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4980 4981 4982 4983

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4984
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4985
				 (pcu_mbox & 0xff) * 50);
4986
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4987 4988
	}

4989
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4990
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4991

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

5006
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5007 5008
}

5009
static void __gen6_update_ring_freq(struct drm_device *dev)
5010
{
5011
	struct drm_i915_private *dev_priv = dev->dev_private;
5012
	int min_freq = 15;
5013 5014
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
5015
	unsigned int max_gpu_freq, min_gpu_freq;
5016
	int scaling_factor = 180;
5017
	struct cpufreq_policy *policy;
5018

5019
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5020

5021 5022 5023 5024 5025 5026 5027 5028 5029
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
5030
		max_ia_freq = tsc_khz;
5031
	}
5032 5033 5034 5035

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

5036
	min_ring_freq = I915_READ(DCLK) & 0xf;
5037 5038
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5039

5040
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5041 5042 5043 5044 5045 5046 5047 5048
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

5049 5050 5051 5052 5053
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
5054 5055
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
5056 5057
		unsigned int ia_freq = 0, ring_freq = 0;

5058
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5059 5060 5061 5062 5063 5064
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5065 5066 5067
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5068
			ring_freq = mult_frac(gpu_freq, 5, 4);
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5085

B
Ben Widawsky 已提交
5086 5087
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5088 5089 5090
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5091 5092 5093
	}
}

5094 5095 5096 5097
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5098
	if (!HAS_CORE_RING_FREQ(dev))
5099 5100 5101 5102 5103 5104 5105
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5106
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5107
{
5108
	struct drm_device *dev = dev_priv->dev;
5109 5110
	u32 val, rp0;

5111
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5112

5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5128
	}
5129 5130 5131

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5145 5146 5147 5148
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5149 5150 5151
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5152 5153 5154
	return rp1;
}

5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5166
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5167 5168 5169
{
	u32 val, rp0;

5170
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5183
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5184
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5185
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5186 5187 5188 5189 5190
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5191
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5192
{
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	u32 val;

	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
	/*
	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
	 * to make sure it matches what Punit accepts.
	 */
	return max_t(u32, val, 0xc0);
5204 5205
}

5206 5207 5208 5209 5210 5211 5212 5213 5214
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5236
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5237 5238 5239 5240 5241 5242
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5243 5244

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5245 5246
}

5247 5248 5249 5250 5251 5252 5253 5254
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5255 5256
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5257 5258 5259 5260 5261 5262 5263 5264
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5265
								      I915_GTT_OFFSET_NONE,
5266 5267 5268 5269
								      pctx_size);
		goto out;
	}

5270 5271
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5290
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5291 5292 5293
	dev_priv->vlv_pctx = pctx;
}

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5305 5306 5307
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5308
	u32 val;
5309 5310 5311 5312 5313

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5327
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5328

5329 5330 5331
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5332
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5333 5334 5335 5336
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5337
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5338 5339
			 dev_priv->rps.efficient_freq);

5340 5341
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5342
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5343 5344
			 dev_priv->rps.rp1_freq);

5345 5346
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5347
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5348 5349
			 dev_priv->rps.min_freq);

5350 5351
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5362 5363
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5364
	struct drm_i915_private *dev_priv = dev->dev_private;
5365
	u32 val;
5366

5367
	cherryview_setup_pctx(dev);
5368 5369 5370

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5371
	mutex_lock(&dev_priv->sb_lock);
5372
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5373
	mutex_unlock(&dev_priv->sb_lock);
5374

5375 5376 5377 5378
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5379
	default:
5380 5381 5382
		dev_priv->mem_freq = 1600;
		break;
	}
5383
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5384

5385 5386 5387
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5388
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5389 5390 5391 5392
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5393
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5394 5395
			 dev_priv->rps.efficient_freq);

5396 5397
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5398
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5399 5400
			 dev_priv->rps.rp1_freq);

5401 5402
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5403
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5404
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5405 5406
			 dev_priv->rps.min_freq);

5407 5408 5409 5410 5411 5412
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5413 5414
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5415 5416 5417 5418 5419 5420 5421 5422
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5423 5424
}

5425 5426 5427 5428 5429
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5430 5431 5432 5433
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5434
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5450
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5451

5452 5453 5454
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5455 5456 5457 5458 5459 5460 5461 5462 5463
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5464 5465
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5479
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5480 5481 5482

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5483
	/* 4 Program defaults and thresholds for RPS*/
5484
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5495
		   GEN6_RP_MEDIA_IS_GFX |
5496 5497 5498 5499
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5500 5501 5502 5503 5504 5505
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5506 5507
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5508 5509 5510
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5511
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5512 5513 5514 5515
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5516
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5517 5518 5519
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5520
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5521 5522 5523 5524
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5525
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5526 5527
}

5528 5529 5530
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5531
	struct intel_engine_cs *ring;
5532
	u32 gtfifodbg, val, rc6_mode = 0;
5533 5534 5535 5536
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5537 5538
	valleyview_check_pctx(dev_priv);

5539
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5540 5541
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5542 5543 5544
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5545
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5546
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5547

5548 5549 5550
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5551
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5574
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5575 5576

	/* allows RC6 residency counter to work */
5577
	I915_WRITE(VLV_COUNTER_CONTROL,
5578 5579
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5580 5581
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5582

5583
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5584
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5585 5586 5587

	intel_print_rc6_info(dev, rc6_mode);

5588
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5589

D
Deepak S 已提交
5590 5591 5592 5593 5594 5595
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5596
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5597

5598 5599 5600
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5601
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5602 5603
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5604
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5605
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5606
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5607
			 dev_priv->rps.cur_freq);
5608

5609
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5610
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5611
			 dev_priv->rps.efficient_freq);
5612

5613
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5614

5615
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5616 5617
}

5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5647
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5648 5649 5650 5651 5652 5653
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5654 5655
	assert_spin_locked(&mchdev_lock);

5656
	diff1 = now - dev_priv->ips.last_time1;
5657 5658 5659 5660 5661 5662 5663

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5664
		return dev_priv->ips.chipset_power;
5665 5666 5667 5668 5669 5670 5671 5672

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5673 5674
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5675 5676
		diff += total_count;
	} else {
5677
		diff = total_count - dev_priv->ips.last_count1;
5678 5679 5680
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5681 5682
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5693 5694
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5695

5696
	dev_priv->ips.chipset_power = ret;
5697 5698 5699 5700

	return ret;
}

5701 5702
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5703
	struct drm_device *dev = dev_priv->dev;
5704 5705
	unsigned long val;

5706
	if (INTEL_INFO(dev)->gen != 5)
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5745
{
5746
	struct drm_device *dev = dev_priv->dev;
5747 5748 5749
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5750
	if (INTEL_INFO(dev)->is_mobile)
5751 5752 5753
		return vm > 0 ? vm : 0;

	return vd;
5754 5755
}

5756
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5757
{
5758
	u64 now, diff, diffms;
5759 5760
	u32 count;

5761
	assert_spin_locked(&mchdev_lock);
5762

5763 5764 5765
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5766 5767 5768 5769 5770 5771 5772

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5773 5774
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5775 5776
		diff += count;
	} else {
5777
		diff = count - dev_priv->ips.last_count2;
5778 5779
	}

5780 5781
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5782 5783 5784 5785

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5786
	dev_priv->ips.gfx_power = diff;
5787 5788
}

5789 5790
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5791 5792 5793
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5794 5795
		return;

5796
	spin_lock_irq(&mchdev_lock);
5797 5798 5799

	__i915_update_gfx_val(dev_priv);

5800
	spin_unlock_irq(&mchdev_lock);
5801 5802
}

5803
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5804 5805 5806 5807
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5808 5809
	assert_spin_locked(&mchdev_lock);

5810
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5830
	corr2 = (corr * dev_priv->ips.corr);
5831 5832 5833 5834

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5835
	__i915_update_gfx_val(dev_priv);
5836

5837
	return dev_priv->ips.gfx_power + state2;
5838 5839
}

5840 5841
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5842
	struct drm_device *dev = dev_priv->dev;
5843 5844
	unsigned long val;

5845
	if (INTEL_INFO(dev)->gen != 5)
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5868
	spin_lock_irq(&mchdev_lock);
5869 5870 5871 5872
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5873 5874
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5875 5876 5877 5878

	ret = chipset_val + graphics_val;

out_unlock:
5879
	spin_unlock_irq(&mchdev_lock);
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5895
	spin_lock_irq(&mchdev_lock);
5896 5897 5898 5899 5900 5901
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5902 5903
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5904 5905

out_unlock:
5906
	spin_unlock_irq(&mchdev_lock);
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5923
	spin_lock_irq(&mchdev_lock);
5924 5925 5926 5927 5928 5929
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5930 5931
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5932 5933

out_unlock:
5934
	spin_unlock_irq(&mchdev_lock);
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5948
	struct intel_engine_cs *ring;
5949
	bool ret = false;
5950
	int i;
5951

5952
	spin_lock_irq(&mchdev_lock);
5953 5954 5955 5956
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5957 5958
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5959 5960

out_unlock:
5961
	spin_unlock_irq(&mchdev_lock);
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5978
	spin_lock_irq(&mchdev_lock);
5979 5980 5981 5982 5983 5984
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5985
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5986

5987
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5988 5989 5990
		ret = false;

out_unlock:
5991
	spin_unlock_irq(&mchdev_lock);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
6019 6020
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6021
	spin_lock_irq(&mchdev_lock);
6022
	i915_mch_dev = dev_priv;
6023
	spin_unlock_irq(&mchdev_lock);
6024 6025 6026 6027 6028 6029

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
6030
	spin_lock_irq(&mchdev_lock);
6031
	i915_mch_dev = NULL;
6032
	spin_unlock_irq(&mchdev_lock);
6033
}
6034

6035
static void intel_init_emon(struct drm_device *dev)
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
6053
		I915_WRITE(PEW(i), 0);
6054
	for (i = 0; i < 3; i++)
6055
		I915_WRITE(DEW(i), 0);
6056 6057 6058

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
6059
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6080
		I915_WRITE(PXW(i), val);
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6096
		I915_WRITE(PXWL(i), 0);
6097 6098 6099 6100 6101 6102

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6103
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6104 6105
}

6106 6107
void intel_init_gt_powersave(struct drm_device *dev)
{
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
	 * requirement.
	 */
	if (!i915.enable_rc6) {
		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
		intel_runtime_pm_get(dev_priv);
	}
I
Imre Deak 已提交
6118

6119 6120 6121
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6122
		valleyview_init_gt_powersave(dev);
6123 6124 6125 6126
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6127 6128
	struct drm_i915_private *dev_priv = dev->dev_private;

6129 6130 6131
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6132
		valleyview_cleanup_gt_powersave(dev);
6133 6134 6135

	if (!i915.enable_rc6)
		intel_runtime_pm_put(dev_priv);
6136 6137
}

6138 6139 6140 6141 6142 6143
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6144
	gen6_disable_rps_interrupts(dev);
6145 6146
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6159 6160 6161
	if (INTEL_INFO(dev)->gen < 6)
		return;

6162
	gen6_suspend_rps(dev);
6163 6164 6165

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6166 6167
}

6168 6169
void intel_disable_gt_powersave(struct drm_device *dev)
{
6170 6171
	struct drm_i915_private *dev_priv = dev->dev_private;

6172
	if (IS_IRONLAKE_M(dev)) {
6173
		ironlake_disable_drps(dev);
6174
	} else if (INTEL_INFO(dev)->gen >= 6) {
6175
		intel_suspend_gt_powersave(dev);
6176

6177
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6178 6179 6180
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6181 6182
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6183 6184 6185
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6186

6187
		dev_priv->rps.enabled = false;
6188
		mutex_unlock(&dev_priv->rps.hw_lock);
6189
	}
6190 6191
}

6192 6193 6194 6195 6196 6197 6198
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6199
	mutex_lock(&dev_priv->rps.hw_lock);
6200

6201
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6202

6203 6204 6205
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6206
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6207
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6208
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6209
		gen9_enable_rps(dev);
6210
		if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6211
			__gen6_update_ring_freq(dev);
6212 6213
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6214
		__gen6_update_ring_freq(dev);
6215 6216
	} else {
		gen6_enable_rps(dev);
6217
		__gen6_update_ring_freq(dev);
6218
	}
6219 6220 6221 6222 6223 6224 6225

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6226
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6227

6228
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6229

6230
	mutex_unlock(&dev_priv->rps.hw_lock);
6231 6232

	intel_runtime_pm_put(dev_priv);
6233 6234
}

6235 6236
void intel_enable_gt_powersave(struct drm_device *dev)
{
6237 6238
	struct drm_i915_private *dev_priv = dev->dev_private;

6239 6240 6241 6242
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6243
	if (IS_IRONLAKE_M(dev)) {
6244
		mutex_lock(&dev->struct_mutex);
6245 6246
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6247
		mutex_unlock(&dev->struct_mutex);
6248
	} else if (INTEL_INFO(dev)->gen >= 6) {
6249 6250 6251 6252
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6253 6254 6255 6256 6257 6258 6259
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6260
		 */
6261 6262 6263
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6264 6265 6266
	}
}

6267 6268 6269 6270
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6271 6272 6273 6274
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6275 6276 6277
	dev_priv->rps.enabled = false;
}

6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6290 6291 6292
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6293
	enum pipe pipe;
6294

6295
	for_each_pipe(dev_priv, pipe) {
6296 6297 6298
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6299 6300 6301

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6302 6303 6304
	}
}

6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6319
static void ironlake_init_clock_gating(struct drm_device *dev)
6320 6321
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6322
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6323

6324 6325 6326 6327
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6328 6329 6330
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6348
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6349 6350 6351
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6352 6353

	ilk_init_lp_watermarks(dev);
6354 6355 6356 6357 6358 6359 6360 6361 6362

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6363
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6364 6365 6366 6367 6368 6369 6370 6371
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6372 6373
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6374 6375 6376 6377 6378 6379
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6380

6381
	/* WaDisableRenderCachePipelinedFlush:ilk */
6382 6383
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6384

6385 6386 6387
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6388
	g4x_disable_trickle_feed(dev);
6389

6390 6391 6392 6393 6394 6395 6396
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6397
	uint32_t val;
6398 6399 6400 6401 6402 6403

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6404 6405 6406
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6407 6408
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6409 6410 6411
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6412
	for_each_pipe(dev_priv, pipe) {
6413 6414 6415
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6416
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6417
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6418 6419 6420
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6421 6422
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6423
	/* WADP0ClockGatingDisable */
6424
	for_each_pipe(dev_priv, pipe) {
6425 6426 6427
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6428 6429
}

6430 6431 6432 6433 6434 6435
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6436 6437 6438
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6439 6440
}

6441
static void gen6_init_clock_gating(struct drm_device *dev)
6442 6443
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6444
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6445

6446
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6447 6448 6449 6450 6451

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6452
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6453 6454 6455
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6456 6457 6458
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6459 6460 6461
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6462 6463 6464 6465
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6466 6467
	 */
	I915_WRITE(GEN6_GT_MODE,
6468
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6469

6470
	ilk_init_lp_watermarks(dev);
6471 6472

	I915_WRITE(CACHE_MODE_0,
6473
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6489
	 *
6490 6491
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6492 6493 6494 6495 6496
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6497
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6498 6499
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6500

6501 6502 6503 6504 6505 6506 6507 6508
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6509 6510 6511 6512 6513 6514 6515 6516
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6517 6518
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6519 6520 6521 6522 6523 6524 6525
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6526 6527 6528 6529
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6530

6531
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6532

6533
	cpt_init_clock_gating(dev);
6534 6535

	gen6_check_mch_setup(dev);
6536 6537 6538 6539 6540 6541
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6542
	/*
6543
	 * WaVSThreadDispatchOverride:ivb,vlv
6544 6545 6546 6547
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6548 6549 6550 6551 6552 6553 6554 6555
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6556 6557 6558 6559 6560 6561 6562 6563
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6564
	if (HAS_PCH_LPT_LP(dev))
6565 6566 6567
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6568 6569

	/* WADPOClockGatingDisable:hsw */
6570 6571
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6572
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6573 6574
}

6575 6576 6577 6578
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6579
	if (HAS_PCH_LPT_LP(dev)) {
6580 6581 6582 6583 6584 6585 6586
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6587
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6588 6589
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6590
	enum pipe pipe;
6591
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6592

6593
	ilk_init_lp_watermarks(dev);
6594

6595
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6596
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6597

6598
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6599 6600 6601
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6602
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6603
	for_each_pipe(dev_priv, pipe) {
6604
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6605
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6606
			   BDW_DPRS_MASK_VBLANK_SRD);
6607
	}
6608

6609 6610 6611 6612 6613
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6614

6615 6616
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6617 6618 6619 6620

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6621

6622 6623 6624 6625 6626 6627 6628 6629 6630
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6631 6632 6633 6634 6635 6636 6637
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6638
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6639 6640
}

6641 6642 6643 6644
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6645
	ilk_init_lp_watermarks(dev);
6646

6647 6648 6649 6650 6651
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6652
	/* This is required by WaCatErrorRejectionIssue:hsw */
6653 6654 6655 6656
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6657 6658 6659
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6660

6661 6662 6663
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6664 6665 6666 6667
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6668
	/* WaDisable4x2SubspanOptimization:hsw */
6669 6670
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6671

6672 6673 6674
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6675 6676 6677 6678
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6679 6680
	 */
	I915_WRITE(GEN7_GT_MODE,
6681
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6682

6683 6684 6685 6686
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6687
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6688 6689
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6690 6691 6692
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6693

6694
	lpt_init_clock_gating(dev);
6695 6696
}

6697
static void ivybridge_init_clock_gating(struct drm_device *dev)
6698 6699
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6700
	uint32_t snpcr;
6701

6702
	ilk_init_lp_watermarks(dev);
6703

6704
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6705

6706
	/* WaDisableEarlyCull:ivb */
6707 6708 6709
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6710
	/* WaDisableBackToBackFlipFix:ivb */
6711 6712 6713 6714
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6715
	/* WaDisablePSDDualDispatchEnable:ivb */
6716 6717 6718 6719
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6720 6721 6722
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6723
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6724 6725 6726
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6727
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6728 6729 6730
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6731 6732 6733 6734
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6735 6736 6737 6738
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6739 6740
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6741
	}
6742

6743
	/* WaForceL3Serialization:ivb */
6744 6745 6746
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6747
	/*
6748
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6749
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6750 6751
	 */
	I915_WRITE(GEN6_UCGCTL2,
6752
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6753

6754
	/* This is required by WaCatErrorRejectionIssue:ivb */
6755 6756 6757 6758
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6759
	g4x_disable_trickle_feed(dev);
6760 6761

	gen7_setup_fixed_func_scheduler(dev_priv);
6762

6763 6764 6765 6766 6767
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6768

6769
	/* WaDisable4x2SubspanOptimization:ivb */
6770 6771
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6772

6773 6774 6775
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6776 6777 6778 6779
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6780 6781
	 */
	I915_WRITE(GEN7_GT_MODE,
6782
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6783

6784 6785 6786 6787
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6788

6789 6790
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6791 6792

	gen6_check_mch_setup(dev);
6793 6794
}

6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6806
static void valleyview_init_clock_gating(struct drm_device *dev)
6807 6808 6809
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6810
	vlv_init_display_clock_gating(dev_priv);
6811

6812
	/* WaDisableEarlyCull:vlv */
6813 6814 6815
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6816
	/* WaDisableBackToBackFlipFix:vlv */
6817 6818 6819 6820
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6821
	/* WaPsdDispatchEnable:vlv */
6822
	/* WaDisablePSDDualDispatchEnable:vlv */
6823
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6824 6825
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6826

6827 6828 6829
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6830
	/* WaForceL3Serialization:vlv */
6831 6832 6833
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6834
	/* WaDisableDopClockGating:vlv */
6835 6836 6837
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6838
	/* This is required by WaCatErrorRejectionIssue:vlv */
6839 6840 6841 6842
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6843 6844
	gen7_setup_fixed_func_scheduler(dev_priv);

6845
	/*
6846
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6847
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6848 6849
	 */
	I915_WRITE(GEN6_UCGCTL2,
6850
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6851

6852 6853 6854 6855 6856
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6857

6858 6859 6860 6861
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6862 6863
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6864

6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6876 6877 6878 6879 6880 6881
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6882
	/*
6883
	 * WaDisableVLVClockGating_VBIIssue:vlv
6884 6885 6886
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6887
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6888 6889
}

6890 6891 6892 6893
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6894
	vlv_init_display_clock_gating(dev_priv);
6895

6896 6897 6898 6899 6900
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6901 6902 6903 6904

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6905 6906 6907 6908

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6909 6910 6911 6912

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6913 6914 6915 6916 6917 6918

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6919 6920
}

6921
static void g4x_init_clock_gating(struct drm_device *dev)
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6937 6938 6939 6940

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6941

6942 6943 6944
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6945
	g4x_disable_trickle_feed(dev);
6946 6947
}

6948
static void crestline_init_clock_gating(struct drm_device *dev)
6949 6950 6951 6952 6953 6954 6955 6956
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6957 6958
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6959 6960 6961

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6962 6963
}

6964
static void broadwater_init_clock_gating(struct drm_device *dev)
6965 6966 6967 6968 6969 6970 6971 6972 6973
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6974 6975
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6976 6977 6978

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6979 6980
}

6981
static void gen3_init_clock_gating(struct drm_device *dev)
6982 6983 6984 6985 6986 6987 6988
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6989 6990 6991

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6992 6993 6994

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6995 6996

	/* interrupts should cause a wake up from C3 */
6997
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6998 6999 7000

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7001 7002 7003

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7004 7005
}

7006
static void i85x_init_clock_gating(struct drm_device *dev)
7007 7008 7009 7010
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7011 7012 7013 7014

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7015 7016 7017

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7018 7019
}

7020
static void i830_init_clock_gating(struct drm_device *dev)
7021 7022 7023 7024
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7025 7026 7027 7028

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7029 7030 7031 7032 7033 7034
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7035 7036
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
7037 7038
}

7039 7040 7041 7042 7043 7044
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

7045 7046 7047 7048 7049
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

7050
	intel_fbc_init(dev_priv);
7051

7052 7053 7054 7055 7056 7057
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

7058
	/* For FIFO watermark updates */
7059
	if (INTEL_INFO(dev)->gen >= 9) {
7060 7061
		skl_setup_wm_latency(dev);

7062 7063 7064
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
7065
		dev_priv->display.update_wm = skl_update_wm;
7066
	} else if (HAS_PCH_SPLIT(dev)) {
7067
		ilk_setup_wm_latency(dev);
7068

7069 7070 7071 7072
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7073
			dev_priv->display.update_wm = ilk_update_wm;
7074
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7075
			dev_priv->display.program_watermarks = ilk_program_watermarks;
7076 7077 7078 7079 7080 7081
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
7082
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7083
		else if (IS_GEN6(dev))
7084
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7085
		else if (IS_IVYBRIDGE(dev))
7086
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7087
		else if (IS_HASWELL(dev))
7088
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7089
		else if (INTEL_INFO(dev)->gen == 8)
7090
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7091
	} else if (IS_CHERRYVIEW(dev)) {
7092 7093 7094
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7095 7096
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7097
	} else if (IS_VALLEYVIEW(dev)) {
7098 7099 7100
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7114
			intel_set_memory_cxsr(dev_priv, false);
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7132 7133 7134
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7135
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7136 7137
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7138
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7139 7140 7141 7142 7143 7144 7145 7146
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7147 7148 7149
	}
}

7150
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7151
{
7152
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7153 7154 7155 7156 7157 7158 7159

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7160
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7175
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7176
{
7177
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7197

7198
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7199
{
7200 7201 7202 7203 7204 7205 7206 7207
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7208 7209
	case 400:
		return 20;
7210 7211 7212
	default:
		return -1;
	}
7213
}
7214

7215 7216
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7217
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7218 7219 7220 7221 7222 7223

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7224 7225
}

7226
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7227
{
7228
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7229

7230 7231 7232
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7233

7234
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7235 7236
}

7237
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7238
{
7239
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7240

7241
	div = vlv_gpu_freq_div(czclk_freq);
7242 7243
	if (div < 0)
		return div;
7244
	div /= 2;
7245

7246
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7247 7248
}

7249
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7250
{
7251
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7252

7253
	mul = vlv_gpu_freq_div(czclk_freq);
7254 7255
	if (mul < 0)
		return mul;
7256
	mul /= 2;
7257

7258
	/* CHV needs even values */
7259
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7260 7261
}

7262
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7263
{
7264
	if (IS_GEN9(dev_priv->dev))
7265 7266
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
					 GEN9_FREQ_SCALER);
7267
	else if (IS_CHERRYVIEW(dev_priv->dev))
7268
		return chv_gpu_freq(dev_priv, val);
7269
	else if (IS_VALLEYVIEW(dev_priv->dev))
7270 7271 7272
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7273 7274
}

7275 7276
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7277
	if (IS_GEN9(dev_priv->dev))
7278 7279
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
					 GT_FREQUENCY_MULTIPLIER);
7280
	else if (IS_CHERRYVIEW(dev_priv->dev))
7281
		return chv_freq_opcode(dev_priv, val);
7282
	else if (IS_VALLEYVIEW(dev_priv->dev))
7283 7284
		return byt_freq_opcode(dev_priv, val);
	else
7285
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7286
}
7287

7288 7289
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7290
	struct drm_i915_gem_request *req;
7291 7292 7293 7294 7295
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7296
	struct drm_i915_gem_request *req = boost->req;
7297

7298 7299 7300
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7301

7302
	i915_gem_request_unreference__unlocked(req);
7303 7304 7305 7306
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7307
				       struct drm_i915_gem_request *req)
7308 7309 7310
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7311
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7312 7313
		return;

7314 7315 7316
	if (i915_gem_request_completed(req, true))
		return;

7317 7318 7319 7320
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7321 7322
	i915_gem_request_reference(req);
	boost->req = req;
7323 7324 7325 7326 7327

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7328
void intel_pm_setup(struct drm_device *dev)
7329 7330 7331
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7332
	mutex_init(&dev_priv->rps.hw_lock);
7333
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7334

7335 7336
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7337
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7338 7339
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7340

7341
	dev_priv->pm.suspended = false;
7342
	atomic_set(&dev_priv->pm.wakeref_count, 0);
7343
	atomic_set(&dev_priv->pm.atomic_seq, 0);
7344
}